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Abstract

The angular momentum of gas feeding a black hole (BH) may be misaligned with respect to the BH spin, resulting
in a tilted accretion disk. Rotation of the BH drags the surrounding spacetime, manifesting as Lense–Thirring
torques that lead to disk precession and warping. We study these processes by simulating a thin (H/r= 0.02),
highly tilted ( = 65 ) accretion disk around a rapidly rotating (a= 0.9375) BH at extremely high resolutions,
which we performed using the general-relativistic magnetohydrodynamic code H-AMR. The disk becomes
significantly warped and continuously tears into two individually precessing subdisks. We find that mass accretion
rates far exceed the standard α-viscosity expectations. We identify two novel dissipation mechanisms specific to
warped disks that are the main drivers of accretion, distinct from the local turbulent stresses that are usually thought
to drive accretion. In particular, we identify extreme scale height oscillations that occur twice an orbit throughout
our disk. When the scale height compresses, “nozzle” shocks form, dissipating orbital energy and driving
accretion. Separate from this phenomenon, there is also extreme dissipation at the location of the tear. This leads to
the formation of low-angular momentum “streamers” that rain down onto the inner subdisk, shocking it. The
addition of low-angular momentum gas to the inner subdisk causes it to rapidly accrete, even when it is transiently
aligned with the BH spin and thus unwarped. These mechanisms, if general, significantly modify the standard
accretion paradigm. Additionally, they may drive structural changes on much shorter timescales than expected in
α-disks, potentially explaining some of the extreme variability observed in active galactic nuclei.

Unified Astronomy Thesaurus concepts: Black holes (162); Accretion (14); General relativity (641);
Magnetohydrodynamics (1964); Astronomical simulations (1857)

1. Introduction

The traditional description of an accretion disk is the
axisymmetric, geometrically thin Shakura–Sunyaev model
(Shakura & Sunyaev 1973; Pringle 1981 for a review; Novikov
& Thorne 1973 for the relativistic treatment). While the
Shakura–Sunyaev model has found widespread utility in the
field, it is by no means a complete description of accretion. One
of its major assumptions is that the disk angular momentum is
aligned with the black hole (BH) spin. Yet, in most natural
circumstances, the infalling gas that forms the disk has no prior
knowledge of the BH spin orientation. Thus, many accretion
disks may be at least initially misaligned. This can drastically
alter the dynamics of the disk because the general-relativistic
“frame-dragging” of the Kerr BH will apply Lense–Thirring
(LT) torques to the disk (Lense & Thirring 1918; Misner et al.
1973). These torques induce differential precession about the
BH spin vector and can lead to large-scale warps in the disk.
Early analytic work found that these LT torques can align inner
regions of tilted accretion disks with the BH spin (Bardeen &
Petterson 1975), which has sometimes been invoked to neglect
the effects of disk tilt. While recent numerical simulations have
confirmed the existence of BP alignment in misaligned disks

with small tilts (Nelson & Papaloizou 2000; Lodato & Pringle
2007; Perego et al. 2009; Nealon et al. 2015; Liska et al. 2019),
at larger tilts the story changes dramatically. In both smoothed
particle hydrodynamics (SPH; Nixon et al. 2012, 2013; Drewes
& Nixon 2021; Raj et al. 2021) and general-relativistic
magnetohydrodynamic (GRMHD) simulations of highly tilted
disks (Liska et al. 2021, 2022; Musoke et al. 2022), the LT
torques are strong enough to sometimes rupture the accretion
disk, splitting it either into individually precessing annuli or
into discrete subdisks. It is these highly tilted, warped and torn
disks that we focus on in this paper.
There is a wealth of analytic work devoted to understanding

the dynamics of warped accretion disks. This includes early
work in the linearized domain of small warps (Papaloizou &
Pringle 1983; Kumar & Pringle 1985, see also Pringle 1992);
the fully nonlinear 1D theory that generalized the study of
warped accretion disks to arbitrarily sized warps (Ogilvie 2001,
2000; Ogilvie & Latter 2013); and more recently, the more
sophisticated affine model that is general to both warps and
eccentricities and treats the disk as a composition of mutable
fluid columns (Ogilvie 2018).
While analytic work provides a firm foundation for the

understanding of warped disks, there remains only partial
agreement between theory and the results of numerical
simulations. In particular, disk tearing is a highly nonlinear
process that results in discontinuities in the accretion flow,
which are difficult to study analytically. These systems also
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feature anomalously high mass accretion rates that are also
difficult to reconcile with theory. This was first reported in
works based on SPH simulations (Nixon et al. 2012), which
attributed the rapid accretion to the cancellation of misaligned
angular momentum in torn regions. Rapid accretion is also
found in GRMHD simulations of thin, tilted disks, which have
reported effective viscosities well in excess of those expected
in aligned thin disks (Liska et al. 2021).
In this work, we reveal multiple novel mechanisms that

enable rapid accretion in GRMHD simulations of thin, tilted
disks. In Section 2, we present the details of our simulation. In
Section 3, we examine the structure of the warped accretion
flow. In Section 4, we show that mass accretion occurs
anomalously fast, and investigate the dissipation mechanisms
that drive this rapid accretion. In Section 5, we contextualize
the theoretical impact of our results, discuss their observational
implications, and then summarize our findings.

2. Simulation Details

In this paper, we study a simulation of a thin, tilted accretion
disk performed with the GPU-accelerated, 3D GRMHD code
H-AMR (Liska et al. 2022). We work in spherical polar
coordinates (r, θ and j) and use a rapidly rotating (a= 0.9375)
BH. We initialize the disk with an aspect ratio H/r= 0.02 and
set the inner and outer radii to r= 6.5 rg and r= 76 rg,
respectively. We initialize the velocity as circular everywhere,
set the radial surface density profile to Σ∝ r−1, and set the
vertical density profile to a Gaussian profile with an FWHM
equal to the local scale height of the disk. We then tilt the disk
with respect to the equatorial plane by 65°. We insert into the
disk a purely toroidal magnetic field described by a covariant
vector potential, Aθ∝ (ρ− 0.0005)r2, where ρ is the fluid frame
gas density, which is normalized such that r =max 1. We
normalize the magnetic field so that the average ratio of gas to
magnetic pressure is β≈ 7, such that the disk remains
dominated by gas pressure. We maintain the disk thickness
by using a cooling function that removes excess internal energy
from the disk (e.g., Noble et al. 2009; Liska et al. 2019).

We perform the simulation on a spherical grid that is uniform
in rlog at extremely high resolutions, which are needed to
resolve the turbulent motions within the disk. To achieve high
resolution, we use several numerical speed-ups, including
acceleration on GPUs, three levels of adaptive mesh refinement
(AMR), and five levels of local adaptive time-stepping. The
maximum effective resolution at ∼10 rg in the disk, where
rg≡GM/c2 is the gravitational radius, is Nr× Nθ× Nf=
13440× 4608× 8192 cells. This resolution remains uniform
within four disk scale heights to ensure that the disk structure is
independent of the AMR criterion used. The three AMR levels
used to achieve this resolution are added at 2, 4, and 8 rg, such
that at the event horizon, the resolution is reduced to
1728× 576× 1024 in order to prevent the minimum time step
from becoming too small, thereby speeding up the computa-
tion. To prevent the Courant condition (Courant & Hilbert
1953) in the j direction from limiting the time step, we reduce
the azimuthal resolution progressively from Nf= 1024 cells
near the equator to 16 cells within 30° of either pole. Both inner
and outer radial boundary conditions allow matter and
magnetic fields to freely leave the domain. We set the inner
radial boundary to be five cells within the event horizon and the
outer radial boundary to be sufficiently large such that both are
causally disconnected from (and thus do not affect) the flow.

The polar boundary condition is transmissive, and the
azimuthal boundary condition is periodic (Liska et al. 2018).
We refer the reader to Liska et al. (2022) for a full description
of H-AMR and Musoke et al. (2022) for an analysis of this
simulation in the context of quasiperiodic oscillations in X-ray
binaries (XRBs).
In a companion paper, Liska et al. (2023; which we will refer

to as L23), we perform the same simulation that we have
analyzed here, except we separately evolve the electron and ion
entropies and use an M1 closure scheme for radiation rather
than a predefined cooling function. The inclusion of radiation
breaks the self-similarity of the flow; so in L23, we set the BH
mass to 10Me and the Eddington ratio to ∼0.35. The results of
the present work generally carry over in L23, and we refer the
reader there for detailed comparisons of radiative versus cooled
simulations of our disk.

3. Accretion Geometry

3.1. Main Features

Figure 1 shows a sequence of 3D renderings of the fluid
frame gas density (ρ) in our simulation, separated in time by
δt≈ 1000 rg/c. This figure depicts some of the main features of
our simulation. The disk extends out to roughly ≈100 rg. As
the central BH rotates, it drags spacetime with it, causing the
surrounding matter to rotate as well. This so-called “frame-
dragging” effect induces LT torques (Lense & Thirring 1918)
onto orbiting fluid parcels. These torques cause particle orbits
to precess with an angular frequency following the radial
dependence ΩLT∝ r−3. Were there no (magneto)hydrodynamic
stresses acting on the disk, the disk would shred completely
into independently precessing annuli. In reality, MHD stresses
work to redistribute disk angular momentum. When MHD
forces win, the disk maintains a warped structure, which we
characterize as a series of concentric annuli with smoothly
varying tilt and precession angles. However, when the LT
torques induce a strong enough warp, the disk becomes
unstable (Doǧan et al. 2018; Doğan & Nixon 2020), leading to

Figure 1. The LTtorques induced by the rotation of the central BH cause the
accretion disk to warp and, sometimes, tear into discrete subdisks. In each
panel, we plot a 3D rendering of the fluid frame gas density, separated by
δt ≈ 1000 rg/c. Azimuthal oscillations in the scale height are apparent in the
outer subdisk, where orbiting fluid parcels experience compressions and
expansions twice an orbit (evidenced by the light-blue “spokes” in the outer
subdisk). These oscillations are also apparent in the side-on view of the disk
shown in the inset of panel (d).
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a runaway increase in the amplitude of the warp that manifests
as a “tear.” This is seen most prominently in panels (b) and (c)
of Figure 1, where the outer and inner regions of the disk break
apart. These two “subdisks” precess almost independently of
one another. The long-lived outer subdisk undergoes near rigid-
body rotation, while the short-lived inner subdisk often
precesses differentially and is typically quickly consumed by
the BH. Afterwards, the outer subdisk refills the inner region,
and the tearing process repeats.

In total, we identified 10 tearing events over the course of
our simulation (e.g., Table 1 of Musoke et al. 2022). A typical
tearing cycle can last anywhere between ∼102 and ∼104 rg/c,
and while the exact location of the tear varies, it usually occurs
at r 10− 20 rg. The snapshots in Figure 1 depict the
transition between two tearing cycles. In Figure 1(a), the inner
subdisk from the previous tearing cycle is about to be
completely consumed. In Figure 1(b), the inner subdisk is
replenished, and is about to tear again. In Figure 1(c), the inner
subdisk tears off once again, and continues to precess in
Figure 1(d).

Figure 1 shows that the azimuthal distribution of gas density
exhibits a periodic structure: ρ increases and decreases twice an
orbit, as evidenced by the twin light-blue high-density “spokes”
in the outer subdisk. Whereas the volumetric density increases
locally, the surface density does not: this is because the
volumetric density increase is due to vertical (transverse to the
disk) compression. This is also shown in the inset panel of
Figure 1(d), where we show a side-on view of the disk. This
might come as a surprise, as accretion disks are typically
treated as axisymmetric, without any variation in the azimuthal
direction. This nonaxisymmetry is fundamentally due to the
warp, which we investigate in the following subsection.

3.2. Warp and Nonaxisymmetric Flow Structures

To better understand the nonaxisymmetric structures in our
accretion disk, we begin by examining the local properties of a
single annulus. For this, we use tilted coordinates r, q¢, and j¢,
which essentially “flatten” the warp of the disk and make
analysis more convenient. We describe the transformation to
tilted coordinates in theAppendix, with an accompanying
visualization in Figure 10. The main features to note are as
follows:

1. Because the transformation depends on the radial tilt and
precession profiles, it is different at different radii.

2. The tilted vertical unit vector, ˆ¢z , is co-aligned with the
angular momentum of the disk at every radius.

3. The tilted polar coordinate, q¢, is set such that the local
midplane of the disk is at q p¢ = 2.

4. The tilted azimuthal coordinate, j¢, is set such that the
local precession angle is at j¢ = 0.

In Figure 2, we depict the fluid frame gas density (ρ, panel
(a)) and mass flux (ρu r, panel (b)) as a function of q¢ and j¢.
This plot is shown at time t= 90, 471.8 rg/c and radius
r= 13 rg. Since gas motion is predominantly azimuthal, the
flow approximately follows the –q j¢ ¢ plane. In Figure 2(a), we
can immediately see that the disk scale height varies drastically
as a function of j¢. Specifically, it undergoes periodic
oscillation, compressing and expanding twice an orbit. The
velocity streamlines (depicted in black) also follow this
periodic motion, converging and diverging in phase with the
oscillations of the disk scale height. The radial mass flux,

depicted in Figure 2(b), also oscillates in phase with the scale
height oscillations, reversing direction at the compression
points. Additionally, these radial motions are approximately
antisymmetric about the midplane. Fluid parcels below (above)
the midplane move inward (outward) during the j p~ < ¢ <0
expansion and outward (inward) during the p j p~ < ¢ < 2
expansion. This radial “sloshing” of the disk is much larger in
magnitude than the average, inward radial mass flux associated
with accretion.
These oscillations can be qualitatively understood by

considering how a warp impacts the hydrodynamic force
balance of the disk (see also Lodato & Pringle 2007 for a useful
description). Consider two adjacent annuli that, when
unwarped, are in force equilibrium both radially and vertically.
Then, impose a small tilt on one annulus with respect to the
other, such that they are slightly misaligned. As fluid parcels in
the two annuli orbit, at two points along the orbit they are
maximally separated and at two points along the orbit they are
minimally separated. In the frame of the fluid parcel, this
manifests as a radial and vertical pressure gradient that
oscillates twice an orbit. These pressure gradients induce
corresponding oscillations of the particle orbits at the radial and
vertical epicyclic frequencies, which, far from the BH, are
approximately Keplerian. When the internal stresses of the disk
respond to these perturbations, we are left with the oscillating
patterns seen in Figure 2. Specifically, the vertical oscillations

Figure 2. An annulus of the warped disk experiences vertical and radial
oscillations twice an orbit. Panel (a): we depict the fluid frame gas density, ρ, at
radius r = 13 rg and time t = 90471.8 rg/c. We have also drawn velocity
streamlines of orbiting fluid parcels in black. The plot is depicted in tilted
coordinates,j¢ and q¢, wherej¢ = 0 indicates the local precession angle of the
disk and q p¢ = 2 indicates the local midplane of the disk. Panel (b): the same
as the top panel, except we plot the radial mass flux ρu r. The radial mass flux
also exhibits oscillations twice an orbit, except they are antisymmetric about
the local midplane of the disk.
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manifest as m= 2 scale height oscillations while the radial
oscillations manifest as an increasing eccentricity above and
below the midplane (as also seen in Deng et al. 2021). The
argument of periastron above and below the midplane is out of
phase by ≈180°.

These oscillations were also seen in the thick, tilted disk
simulations of Fragile & Blaes (2008), and were recently
computed analytically. Fairbairn & Ogilvie (2021b) developed
a theory of oscillating fluid tori that can describe annuli of
warped disks, and then in Fairbairn & Ogilvie (2021a) they
applied this theory to nonlinear warps in inviscid, Keplerian
disks. They identified a bouncing regime above a critical warp
amplitude, leading to large-scale height variations (Figure 2 of
Fairbairn & Ogilvie 2021a) that are remarkably similar to those
seen here. We refer the reader to these works for an analytical
analysis of this behavior.

Before continuing, we must describe some of our
diagnostics. This includes several averages, generally using
tilted coordinates, which we define as

 ( ) ˆ · ˆ · ( )ò òá ñ = A AW g x d W g x d , 1w
x

xx xx

where x is the coordinate over which we are performing the
average, and W is the weight (if we use one). gxx is one of the
components of the covariant metric tensor. We sometimes also
use this notation for multiple directions, i.e., á ñr

q j¢ ¢, would
indicate a density-weighted average over the tilted coordinates
q¢ and j¢.

We analyze the flow structures depicted in Figure 2 by
measuring the pressure scale height,

( )º á ¢ ñq¢H z , 2p p
2

g g

where pg is the fluid frame gas pressure. This expression for Hpg
returns the exact scale height, H, for an isothermal thin
accretion disk in vertical hydrostatic equilibrium (i.e., for the
vertical density and pressure profile ( )µ -z Hexp 22 2 ).

We explore the time-dependent structure of the scale height
oscillations in Figure 3, where we show spacetime (j¢ - t)
diagrams of H rpg at fixed radii r= 10 rg (panel (b)) and 40 rg
(panel (d)). These diagrams are shown from times
t≈ 72–90× 104 rg/c, during which the inner disk is shrinking
and the tearing radius is decreasing. We have depicted our
target scale height of H/r= 0.02 with white colors, such that
compressed regions are purple and expanded regions are
orange. We note, however, that since the “target thickness” of
the disk assumes vertical hydrostatic equilibrium, our cooling
prescription is a function only of the temperature profile and
does not consider vertical oscillations. Additionally, it occurs
on a Keplerian timescale, effectively averaging cooling over
the annulus. While this is an ad hoc treatment of the disk
thermodynamics, we find much of the same behavior in L23
where we self-consistently evolve radiation, reassuring us that
our scale height evaluation is robust.
At t= 79× 104 rg/c, the tearing radius crosses r= 10 rg.

Thus, the annulus depicted in the left panel belongs to the inner
subdisk before this time and the outer subdisk afterward. Since
our tilted coordinate system setsj¢ = 0 to the precession angle
at every radius, it is physically meaningful to analyze the phase
offsets of our scale height oscillations. We derive the phase
offsets by fitting ( )j¢H r,pg (Equation (2)) to a sinusoidal
dependence that we define at a given radius as,

˜ ˜ ( ) ˜ ( )( ) ( )j j= ¢ + ¢ +H H m Hsin . 3p p p
amp

0
mean

g g g

While we only use our fit for j ¢0 in Figure 3, we will return to
this expression in Section 4.2. Figure 3(b) highlights the phase
offset of the depicted annulus in blue. In the inner subdisk, the
offset between the precession angle and the scale height
oscillations varies in time, while in the outer subdisk the phase
offset is constant. This is also clear in the annulus depicted in
Figure 3(d), which at all times belongs to the outer subdisk and
has a roughly constant j¢ dependence. It is interesting that
these offsets are constant, because this implies that they evolve
with the warp, i.e., j¢ µ wei0 , where  ( )w r is the precession

Figure 3. The phase offset of the m = 2 scale height oscillations is equal to the precession angle (set to j¢ = 0) in the outer disk but not in the inner disk. We depict
this with spacetime diagrams of H rpg at fixed r = 10 rg (panel (b)) and r = 40 rg (panel (d)). In the time period visualized, the tearing radius is initially
10 rg < rtear < 40 rg, but drifts inward, crossing r = 10 rg at t ≈ 79 × 104 rg/c. This is reflected in the warp amplitude (ψ) plots accompanying each spacetime
diagram. In panel (a), we have drawn a red line when the disk tears. We have also drawn a blue dotted ψc = 0.089 line as an estimate for when extreme scale height
oscillations begin occurring, calculated using Equation (154) of Fairbairn & Ogilvie (2021a). When t < 79 × 104 rg/c, panel (b) shows the inner disk, which exhibits
radially dependent phase offsets (depicted in dark blue) due to strong differential precession. At all times at r = 40 rg, the depicted annulus is part of the outer disk, and
the phase of the scale height oscillations is locked with the precession angle. At r = 10 rg, the scale height is also generally larger than the target scale height (=0.02,
depicted in white) due to the enhanced dissipation and because vertical oscillations cause a departure from hydrostatic equilibrium.
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rate, which is nearly uniform in the outer subdisk. Yet, j¢0 is a
function of the warp, and points approximately at the “local”
line of nodes between misaligned adjacent annuli (e.g., it is
approximately pointed to by the unit vector ˆ ˆ´ ¶ ¶l l r , where
ˆ ( )l r is the angular momentum unit vector of an annulus). This
indicates that the entire outer subdisk precesses in a rigid, yet
warped, geometry (as expected analytically; e.g., Fairbairn &
Ogilvie 2021a).

To support our statements about the tear, in Figures 3(a) and
(c) we depict the warp amplitude, ∣ ∣

ˆ
y º ¶

¶
l

rln
, for each

spacetime diagram. In the left ψ plot, we have drawn a red
line at t≈ 79× 104 rg/c to indicate when the disk tears. We
have also drawn blue dotted lines at ψc= 0.089, which is an
estimate of the “critical” warp amplitude above which the
extreme scale height oscillations activate. We obtained this
value using Equation (154) of Fairbairn & Ogilvie (2021a) for
our target scale height of H/r= 0.02. Figure 3(c) shows that
the ψ ψc criterion is marginally satisfied in the outer subdisk
at r= 40 rg. This is a relatively mild warp, suggesting that it
may be easy to activate large-scale height oscillations even in
disks with initial tilt angles that are much smaller than the 65°
angle considered here.

3.3. Tearing Region

When the disk tears, the inner and outer subdisks begin to
precess independently. As the two subdisks evolve, they
expand until they interact. This interaction is strongest at the
line of nodes, where gas parcels orbiting in misaligned planes
collide. These gas parcels shock, leading to significant
dissipation (discussed later in Section 4.3). This dissipation
partially cancels the angular momentum of colliding gas
parcels, leading to the formation of low-angular momentum
streams of gas that then fall radially inwards. We refer to these
as “streamers,” and they are an important feature of the inner
accretion flow. To better examine the flow in this region, we
will define the following diagnostics.

First, we split the mass flow into inward and outward
components,

 ( ) ( ) ( )òq r j¢ º - Q ¢M r g u u d, 4r r
in

 ( ) ( ) ( )òq r j¢ º - Q - ¢M r g u u d, 5r r
out

where Θ(x) is the Heaviside step function. We also define the
average temperature of the flow as,

ˆ ( ) ( )q r¢ = á ñ á ñj j¢ ¢T r p, , 6g

where we have used a “ ˆ ” symbol as a reminder that the units
of T̂ are nonphysical. This expression also assumes that the
flow is gas-pressure dominated. We expect this is true for the
coronal regions, which are generally optically thin, but not for
the disk. In Figure 4, we depict Min, Mout, and T̂ in the R′–z′
plane (where ¢R is the cylindrical radius in tilted coordinates) at
time t= 78854.3 rg/c. We have chosen this time because this is
when the inner subdisk is transiently aligned with the BH spin.
The inner subdisk then has zero warp and thus no scale height
oscillations, allowing us to isolate the effects of the streamers
from the tear on the inner subdisk.
In Figure 4(a), we can see that Min is uniformly distributed

about the tearing radius rtear≈ 10 rg. This is because most of
the angular momentum at this radius is dissipated, causing the
gas distribution to spread more evenly over a spherical shell,
instead of being confined to an annulus. This low-angular
momentum gas then forms streamers that rain down onto the
inner subdisk, seen as radially extended filamentary structures
that sandwich the inner subdisk. Figure 4(b) shows that Mout
follows the structure of Min at the tearing radius. This is a
consequence of angular momentum conservation; since low-
angular momentum streams fall inward, there must also be an
outward transport of angular momentum. Since transport by
magnetic fields is subdominant (discussed later in Section 4.1),
angular momentum must be carried outward by mass. Inside

Figure 4. During a tear, the inner and outer subdisks collide, causing streamers of low-angular gas to rain down onto the inner subdisk. Panel (a): we plot contours of
inward flowing mass in tilted coordinates at time t = 78854.3rg/c. The mass flux has been integrated in j¢ and is depicted in the plane of tilted cylindrical ( ¢R ) and
vertical ( ¢z ) coordinates. At the tearing radius (rtear ≈ 10 rg), the mass flux is distributed roughly uniformly over a shell. Within the tear, gas plunges radially onto the
inner disk, shocking it and increasing the disk mass. Panel (b): same as panel (a), except we depict the outward flowing mass flux. Panel (c): same as panel (a), except
we plot the temperature of the gas. The streamer-populated region within the tear is roughly 2 orders of magnitude hotter than the inner subdisk. Panel (d): here, we
plot the radial profile of the dimensionless circularization radius of the gas ≡rc/r. Values above (below) unity indicate that the orbital velocity is above (below) its
value for a circular orbit. At rtear, rc/r is small, causing streamlines to plunge. Just above the tear, rc/r is above unity. Panel (e): here, we plot the radial profile of the
gas pressure in the disk. Since the disk is depleted of gas at the tear, the gas pressure must have a positive radial gradient at r  rtear. This causes an inward force that is
compensated by the super-Keplerian motion in this region.
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the tear, where there are free-falling streamers, there is
essentially zero outwardly flowing gas, as expected. In Figure
4(c), we see that the streamer-populated regions within the tear
are roughly 2 orders of magnitude hotter than the outer disk.
This is essentially because they evolve on a dynamical
timescale, making it difficult for them to cool. They also
collide with the inner disk, causing them to shock, heating this
region further. The hot, streamer-filled atmosphere is
reminiscent of the usual corona that surrounds many accretion
disks, suggesting that streamers may lead to hard X-ray
emission.

Moving on to the remaining panels of Figure 4, we first
define the specific angular momentum of a particle on a circular
orbit at r= rc in a Kerr metric as (Shapiro & Teukolsky 1983),

( )
( )»

- +
- +

ℓ
r a r a

r r r a r

2

3 2
. 7c

c
2

c
2

c c
2

c c
1 2

At every radius, we calculate the BH spin aligned specific
angular momentum of the gas, = -á ñj r

q j¢ ¢ℓ u uc t
, , and

numerically invert Equation (7) to find the corresponding
circularization radius of the gas. We express this dimension-
lessly as rc/r and plot it as a function of radius in Figure 4(d).
At most radii, rc/r≈ 1, and the orbital motion is approximately
circular. However, at rtear∼ 10 rg (shown in red), rc drops
substantially. This is caused by the cancellation of misaligned
angular momenta. The gas at this radius can fall inward until it
reaches its local value of rc and form streamers in the process.

Figure 4 also shows that just outside rtear, we have rcirc/
r> 1; this means the gas there is super-Keplerian. We can
understand why by turning to Figure 4(e), where we depict the
gas pressure in the disk, á ñr

q j¢ ¢pg
, , as a function of radius. The

depletion of gas at rtear causes a dip in pressure, which results
in a positive pressure gradient at radii rtear. This results in a
pressure force that is pointed inward, which is what
compensates the super-Keplerian centrifugal force of the gas.

4. Accretion Mechanisms

4.1. Why Do Highly Tilted Accretion Disks Accrete So
Rapidly?

In the previous section, we focused on the structure of the
warped accretion flow in our simulations. Now, we will study
how this structure determines the accretion mechanisms in our
disk. In aligned disks, angular momentum transport is usually
parameterized by the α parameter, which sets the strength of an
effective viscosity and is, in reality, thought to represent
magnetized turbulence driven by the magnetorotational
instability (MRI; Balbus & Hawley 1991). It is theoretically
expected that α< 1. This is because the turbulence should be
subsonic and confined by the scale height of the disk;
i.e., viscosity is v≈ leddyVeddy≈ αHcs where leddy<H and
Veddy< cs are the characteristic length and velocity scales of the
eddies, respectively (Pringle 1981).

Highly tilted and warped accretion disks can, however,
accrete at much higher rates (see the reported effective α
parameters in Liska et al. 2021, or the dynamically driven
accretion reported in Nixon et al. 2012). Figure 5 shows the
radial profiles of the effective α parameter, αeff, and the α
parameter derived from the Maxwell’s stress, αM. Both
quantities are averaged over the duration of a tearing event,
t∼ 72− 90× 104 rg/c. It is instructive to first look at αeff,

which is the effective α parameter that results when assuming
mass accretion is fully driven by local viscous processes,
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We can interpret αeff as the α parameter associated with local
turbulent stresses if accretion is, in fact, driven by local
turbulent stresses. However, as we can see from Figure 5, αeff

is ≈1–100 through much of the disk, which is much larger than
the α� 1 theoretical limit imposed on turbulent stresses.
Additionally, we can compare αeff to αM, which is defined as
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where bμ is the four-vector of the fluid frame magnetic field.
Here, αM represents angular momentum transport driven by
magnetized turbulence, thought to be seeded by the MRI, and
Figure 5 shows that it is bounded below unity as expected.
However, since αM is 2–3 orders of magnitude below αeff, we
can definitively say that magnetic stresses do not drive
accretion in our simulation.6

The main takeaways from Figure 5 are as follows: (i) mass
accretion occurs much faster in warped accretion disks than in
equatorial accretion disks, (ii) the transport is likely nonlocal in
nature, since αeff? 1, and (iii) accretion must occur mainly via
nonmagnetic stresses, since αM= αeff. In the following

Figure 5. The effective αparameter far exceeds both unity and the magnetic
αparameter, suggesting that accretion is neither driven by local turbulence
(where α  1) nor magnetic fields. We show this by plotting radial profiles of
the effective αparameter, αeff (Equation (8)), and the αparameter associated
with the Maxwell’s stress, αM (Equation (9)). These profiles are averaged from
times ∼72–90 × 104 rg/c. For both quantities, we also plot their instantaneous
profiles at each time, which are depicted in lighter colors. Our time averages are
not true steady-state measures of α because disk tearing makes the accretion
flow inherently transient. The imprint of disk tearing can be seen in the
instantaneous αeff curves, where we have labeled the radius of the tear, which
moves inward as the inner disk is accreted.

6 We note the absence of an αparameter associated with Reynolds’ stresses
in Figure 5; this was an intentional choice. The oscillating flow structures in our
warped disk break the ergodicity of the disk in the ĵ¢-direction and would merit
a spectral Reynolds’ decomposition of the flow into its Fourier modes, which is
beyond the scope of this work.
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subsections, we identify the two main accretion mechanisms in
our simulation.

4.2. Nozzle Shocks

In Section 3.2 we identified extreme scale height variations
that occur twice an orbit. We will now show that these
compressions lead to the formation of shocks that dissipate
orbital energy. These “nozzle shocks” are conceptually similar
to those that occur in tidal disruption events (TDEs; Kochanek
1994; Rees 1988). They were also seen in the thicker tilted disk
simulations of Fragile & Blaes (2008), who dubbed them
“standing shocks.” More recently, Fairbairn & Ogilvie (2021a)
also suggested nozzle shocks may form in warped disks.

Figure 6 shows the specific entropy, κg= pg/ρ
γ, in the

q j¢ - ¢ plane at radius r= 21 rg and time t= 115, 923.3 rg/c.
In a steady, laminar flow, κg should be conserved along
streamlines. However, if the gas shocks, then κg will increase,
making it a useful quantity for tracking dissipation. We can see
that throughout most of the depicted annulus, κg is roughly
constant, suggesting that the compressions are mostly adiabatic.
We say “mostly,” however, because at the points of maximum
compression, there is in fact dissipation occurring. To ascertain
this, we start by expressing the heating rate per unit volume of a
fluid parcel by its the change in entropy7 (Ressler et al. 2015),

( ) ( )r g k= - ¶g m
m

-Q u1 . 101
g

In practice, we use only positive values of Q, since negative
values result in a decrease in entropy along a streamline and are
unphysical in a steady flow.8 While this is a somewhat

crude fix, a more precise treatment would require a dedicated
heating scheme (i.e., Ressler et al. 2015). To analyze
dissipation in our nozzles, we are concerned only with the
dissipation of the ĵ¢ velocity components, so we will also
define ( )r g kº - ¶j

g j
j¢

- ¢
¢Q u1 1

g. We then integrate the
azimuthal heating rate vertically,

( )ò q= ¢j
p

q q j¢ ¢ ¢ ¢F g Q d . 11
0

Then, we perform a cumulative integral of this quantity in

azimuth, ò j¢
j

j
¢

¢F d
0

. We plot this in the bottom panel of

Figure 2, where we have normalized our integral to the
estimated orbital energy per unit area, Sá ñr

q j¢ ¢ut
, , where

ò r qS º ¢
p

q q¢ ¢g d
0

is the surface density of the disk. We

can then see a very sharp discontinuity almost exactly at j¢ =
p of scale ≈0.018, indicating that about 1.8% of orbital energy
is lost in the nozzle shock. Extrapolating, this would suggest
that ∼3.6% of orbital energy is lost every orbit, since there are
two nozzle shocks. This is a significant dissipation rate, which
we will now show is enough to power the rapid accretion that
we reported in Section 4.1.
We would like to isolate the dissipation associated with the

nozzle shocks, so we will use a criterion to select compressed
regions in our integration defined in Equation (11). To do this,
we use our sinusoidal fit to ( )j¢H r,pg , defined in Equation (3).
Then, we only consider the energy dissipation where

( )<H A fpg , where ( ) ˜ ˜( ) ( )º -A f H fHp p
mean amp

g g
and 0� f� 1.

For the specific choice of =f 1

2
, A is one standard deviation

below the mean of Equation (3). We then rewrite Equation (11)
with our A( f ) criterion,

( ) ( ( ) ) ( )ò q= Q - ¢
p

q q j¢ ¢ ¢F r g Q A f H d . 12pNZ
0

g

Next, we would like to relate this to a predicted mass accretion
rate that we can compare with the true mass accretion rate. To
do this, we treat FNZ as an axisymmetric, Newtonian
dissipation rate associated with a shear viscosity. We can then
relate FNZ to a predicted accretion rate (for details, see Pringle
1981) by writing,

 ( )p
»M

r F

GM

4

3
. 13NZ

3
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In Figure 7(a), we compare MNZ to the simulated M for
various values of f. Here, we have time-averaged MNZ over the
period ∼72− 90× 104 rg/c (same as Figure 5). Higher values
of f indicate a stricter criterion for selecting compressed regions
along an annulus. We can see that for f= 0–0.75, MNZ matches
M within an order-unity factor everywhere except the
innermost regions. At f= 1, MNZ starts departing farther from
M because our criterion for selecting the dissipation region
becomes too strict. To aid our intuition for the “strictness” of
our criterion, Figure 7(b) shows the percentage of the disk used
in our integration at every radius for each f. We see that when
f = 0.75, for which MNZ largely accounts for M at most radii,
we only select roughly ∼20% of an annulus at any given
radius, which is an already rather small fraction of the disk.
Note that MNZ underestimates M in the inner regions. This is

Figure 6. The vertical compressions of the warped disk lead to “nozzle shocks”
twice an orbit, where significant dissipation occurs. Panel (a): here, we depict
the fluid frame entropy (κg), at radius r = 21 rg and time t = 115923.3 rg/c in
the q j¢ - ¢ plane. We see that the entropy spikes at j¢ » 0 (or 2π) and π,
where the disk is most compressed. Panel (b): we plot the cumulative fraction
of dissipated energy along the annulus (Equation (11) and following text),
normalized to the orbital energy of the annulus. Across the j p¢ = nozzle
shock, ≈1.8% of the orbital energy is dissipated.

7 Entropy is also lost via our cooling function. However, we do not need to
consider it in this expression, as we are only concerned with the entropy
dissipated in shocks—not the entropy that’s removed by the cooling function.
8 While our flow is generally transient, this is a fine assumption in the
ĵ¢-direction since the orbital timescale is generally much shorter than any other
timescale.
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because the streamers discussed in Section 3.3 can additionally
drive accretion, which we explore further in Section 4.3.

Figure 7(c) shows our time-averaged estimates for the
dimensionless scale height mean, ˜ ( )Hp

mean

g
, and amplitude,

˜ ( )Hp
amp

g
. For both, we also plot instantaneous curves in lighter

colors to give the reader a better sense of the time-variability of
the scale height. At all radii, the mean exceeds the amplitude.
In general, the mean tends to be larger than our target scale
height H/r= 0.02. The reason for this is twofold: first, the
enhanced dissipation rate makes cooling to target thickness
more difficult, and second, the cooling prescription does not
account for the vertical oscillations, which also inflate the scale
height. Both the mean and the amplitude, however, become
small at r 5 rg because the inner region aligns with the BH
spin during the phase we have time-averaged, removing
the warp.

4.3. Streamers

In Section 3.3, we showed than when our disk tears in two,
the subdisks can interact and lead to dissipation. This
dissipation results in the formation of low-angular momentum
streamers that rain down onto the inner subdisk. In this
subsection we will study how this process can enhance
accretion in the inner region, as we saw in Figure 4. We
follow our approach in Section 3.3 where we focused on a
tearing cycle in which the inner subdisk transiently aligns with
the BH spin axis. During this aligned phase, the inner disk is
unwarped and thus has no nozzle shocks. This allows us to
isolate the effects of streamers on the accretion process.

We would like to first qualitatively depict the impact of
streamers on the inner subdisk. We do this in Figure 8(a),
where we have plotted the entropy density ρκg in the –q j¢ ¢
plane at radius r= 6 rg. This is aided by Figure 8(c), which
shows a 3D rendering of ρκg, where we have excised gas at
radii r> 20 rg to focus on the inner regions. Both snapshots are

at time t= 81, 062 rg/c when the tear is at rtear= 7.8 rg. We
find entropy density, rather than specific entropy, a useful
quantity to plot as it encodes both dissipation in shocks and
adiabatic compression. In both 2D and 3D renderings, we see
that the streamers collide with the subdisk, resulting in an
increase of ρκg. After they collide, some of the material from
the streamers “spills” over the inner subdisk.
In Figure 8(b), we depict the cumulative dissipation along

the azimuthal direction. This is analogous to our calculation in
Figure 6 (see also Equation (11) and following text), except
that we show dissipation rates for each direction (r, q¢, and j¢).
We do this because the streamer trajectories are significantly
altered from the mean flow of the disk. We see that as a
streamer crashes into the disk, it shocks, leading to significant
dissipation. If we compare this to the nozzle shock dissipation
in Figure 2(b), the dissipation is still concentrated at two points
along the annulus, because at each radius, streamers will make
landfall both above and below the inner subdisk. However, the
dissipation is less “peaked” than in a nozzle shock, more spread
in azimuth, and not concentrated near j¢ = 0 and π.
To make this analysis more quantitative, we will invoke the

conservation of mass and BH-aligned angular momentum, and
track the fluxes of each entering and leaving the inner subdisk.
We start by writing down the mass of the inner subdisk,

( )ò r q j= - ¢
<

M gdrd d . 14
r r

inner
tear

We also track the mass and (BH spin aligned) angular
momentum accreted by the inner subdisk from the outer
subdisk,

 ( )ò r= qj
=

M u dA 15
r r

r
tear

tear

 ( )ò r= j qj
=

L u u dA . 16
r r

r
tear

tear

Figure 7. Dissipation in nozzle shocks can mostly account for the measured mass accretion rate everywhere except the innermost regions of the disk. Panel (a): here,
we compare M to the estimated mass accretion rate due to nozzle shocks, MNZ (Equation (13)). We do this for multiple values of f (Equation (12)), where higher f
indicates a stricter cutoff for the degree of compression. Each quantity is averaged from times ∼72–90 × 104 rg/c. Panel (b): here, we show what percentage of a
given annulus passes our compression criterion when calculating MNZ, for each value of f. Panel (c): here, we show our fits for the dimensionless mean ( ˜ ( )H rp

mean

g
)

and amplitude ( ˜ ( )H rp
amp

g
) of the scale height oscillations (Equation (3)). The quantities are time-averaged over the same period as the other panels, with the

corresponding instantaneous curves depicted in lighter colors.
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We also will use the mass accreted by the BH,

 ( )ò r= qjM u dA . 17r
BH

event horizon

Finally, we define use the specific angular momentum of the
gas accreted onto the inner subdisk as,

  ( )ºℓ L M . 18accr tear tear

In Figure 9(a), we plot a time series ℓaccr normalized to the
specific angular momentum of a circular orbit at r= rtear, ≡ℓc

(Equation (7)). The time series is plotted over the course of the
same tearing cycle depicted in Figures 4 and 8, where the inner
subdisk transiently aligns with the BH spin. This is depicted in
Figure 9(c), where we plot a spacetime diagram of the tilt
angle,  . Here, the discontinuity between  » 0 and 65°
indicates the tear. At all times during this phase, ℓaccr/
ℓc≈ 0.5− 0.7. This means that all of the gas the inner subdisk
accretes will try to circularize at smaller and smaller radii. If the
mass of the accreted low-angular momentum gas becomes
comparable to the mass of the inner subdisk, then this will
cause the inner subdisk to shrink.

In Figure 9(b), we plot three masses normalized to the mass
of the inner subdisk at the beginning of the depicted phase,
Mdisk,0. We show the mass of the inner subdisk, Mdisk, the total
mass the inner subdisk accretes during the phase,

ò ò=dM M dttear tear , and the total mass the BH accretes

from the inner subdisk, ò ò=dM M dtBH BH . Before about

t≈ 83,000 rg/c, the BH accretion rate essentially traces the tear
accretion rate, suggesting the inner subdisk acts as a “conveyor
belt” of material. Since the accreted gas from the tear has low
specific angular momentum, the inner subdisk begins to shrink
during this phase. At t≈ 83,000 rg/c, each curve intersects; the
inner subdisk has been depleted of its initial mass by the BH

but has also been replenished by the tear. Since all of this
replenished material will try to circularize at smaller radii at the
time of accretion, the subdisk must shrink. After this transition,
the inner subdisk rapidly plunges into the BH, marking the end
of the tearing cycle.
Dissipation must be happening for the rapid accretion of the

inner subdisk to occur. We know that some of this dissipation
occurs at the tear, since streamlines that pass through it lose a
large fraction of their angular momentum. However, as we
showed in Figure 8, dissipation is also occurring where these
streamers merge with the inner subdisk. To get a better sense of
the positional dependence of the dissipation rate, we show a
spacetime diagram of ∫QdAθj in Figure 9(d). We can see that
along the tear, there is generally a peak in the dissipation rate,
but this peak can vary in strength by about 1–2 orders of
magnitude. Correlated with this peak is a spread in the
dissipation rate at radii 5 rg; these are due to the streamers. In
the final stages of the tearing cycle, the streamer dissipation rate
is particularly enhanced. Together, this suggests that dissipa-
tion at the tear and where the streamers collide with the inner
subdisks is comparably important. We also argue that this
effect is the cause for the discrepancy between M and MNZ seen
at radii 5–10 rg in Figure 7(a), indicating that streamer- and
tear-induced dissipation are essential contributors to accretion
in torn disks.

5. Discussion

5.1. Expanding the Standard Model of Accretion Disks

The results of Section 4 have profound implications for the
understanding of accretion disks. For decades, the standard
picture has been that thin, magnetized disks are subject to the
MRI that systematically drives angular momentum outward
and mass inward, thus enabling accretion (Balbus & Hawley
1991). Although we have demonstrated that magnetic stresses
do contribute to accretion (αM curve in Figure 5), they are

Figure 8. Low-angular momentum streamers produced at the tear crash into the inner subdisk, shocking it and leading to significant dissipation. Panel (a): we depict
the fluid frame entropy density (ρκg) at radius r = 6 rg and time t = 81, 062rg/c. Streamers that originated at rtear = 7.8 rg rain down onto a transiently aligned,
unwarped inner subdisk, shocking and dissipating their kinetic energy. Panel (b): we depict the cumulative dissipation, analogous to Figure 6(b), except we show the
dissipation in each direction ( q j¢ ¢r, , ). We see that we get dissipation of a similar strength to a nozzle shock, except the dissipation is more spread out on the inner
disk. The dissipation is still centered at two points along the annulus, but is no longer located atj¢ » 0 and π.Panel (c): we depict a 3D rendering of ρκg at the same
time. Here, we have excised gas at radii >20 rg to focus on the inner regions. We can see that streamers from the outer subdisk rain down onto the inner subdisk from
either side, and then “spill” over the top.
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highly subdominant to the warp-induced dissipation from
nozzle shocks (Section 4.2, disk tearing and streamers; Section
4.3). This is not to say the MRI can be neglected in our
simulations; were there no magnetized turbulence at all, we
expect that the disk would immediately shred because there
would be nothing to initially withstand the differential LT
torques induced by the BH (as discussed in Section 3.1).
Furthermore, the accretion mechanisms studied here are
strongest in the inner regions of the disk, as evidenced by the
steep radial dependence in Figure 5. Most astrophysical disks
are, in reality, much larger in radial extent than the one we have

simulated. Active galactic nuclei (AGNs) can harbor Novikov
& Thorne (1973) disks up to radii ∼103− 106 rg (depending on
the mass accretion rate) before becoming Toomre-unstable
(Toomre 1964; Sirko & Goodman 2003; Thompson et al.
2005). XRB disks are fundamentally limited in size by their
Hill radius, which is for instance ∼105− 106 rg for estimated
orbital parameters of Cygnus X-1 (Miller-Jones et al. 2021),
although the accretion flow will likely circularize at much
smaller radii. So, in misaligned disks hosted by BHs across the
mass spectrum, it may be that the MRI drives accretion through
most of the disk while the warp drives accretion in the inner
regions.
A difficulty of Novikov & Thorne (1973) disks is that their

radiation-dominated inner regions are both thermally (Pringle
et al. 1973) and viscously (Lightman & Eardley 1974) unstable.
This is essentially because any increase (decrease) in
temperature results in an increase (decrease) in viscous heating,
thus triggering a runaway process. This instability is specific to
α-disks, since it is assumed that the viscous stress is ∼αPtot,
which is ∝T4 for a radiation pressure dominated gas. Yet, there
is little observational evidence of the thermal-viscous
instability of thin disks, which appear to be stable up to
significant fractions of the Eddington luminosity (Done et al.
2004). We suggest that nozzle shock-driven accretion is
unlikely to be subject to this instability. We expect this
because thinner disks are more compressible and thus more
susceptible to dissipation in nozzle shocks. If dissipation
increases, then the disk will puff up, increasing the scale height
and thus decreasing the nozzle shock dissipation rate and
maintaining stability. We are unable to probe the stabilizing
effect of nozzle shocks in this work since we employ a
predefined cooling rate. However, in L23 where we re-run our
simulation using an M1 closure scheme for radiation, we find
that our disk is in fact thermally stable.
It is important to recognize that we have analyzed a single

simulation in this work. Paired with the results of Fragile &
Blaes (2008), Nixon et al. (2012), and Liska et al. (2021), it
does appear that rapid accretion may be a generic feature of
warped disks, but the parameter dependence must be explored
before we can ascertain this. One of the most important
parameters is the tilt angle. However, if accretion happens at
random angles (this is the case if the BH spin and the gas
supply have no prior knowledge of one another), then the
average tilt angle is 60°. This is only 5° shy of the tilt angle
used here, so the accretion mechanisms we have studied may
be quite general.
Another critical parameter is the scale height of the disk.

Thinner disks will be more strongly influenced by a warp, both
for geometric reasons and because their efficient cooling makes
them more compressible. So, if we increase the aspect ratio of
our disk, the disk will be harder to tear, and warps may be less
efficient at driving accretion. It is possible then that the
mechanisms discussed in this work are corrections to the
accretion process rather than than being the primary drivers of
accretion. The scale height is generally set by the Eddington
ratio (the ratio of the mass accretion rate of the BH to its
Eddington luminosity for a given radiative efficiency), which
provides us a more “astrophysical” scale for examining the
aspect ratio of the disk. Disks at Eddingtion ratios of ∼0.1%–

10% generally cool efficiently and thus lead to thinner disks. At
higher Eddington ratios, radiation pressure begins dominating,
puffing the disk up. At lower Eddington ratios, cooling

Figure 9. Dissipation at the tearing radius causes the formation of low-angular
momentum streams of gas (“streamers”) that plunge onto the inner subdisk,
causing it to rapidly reduce in size. Panel (a): we depict a time series of the
specific angular momentum of gas accreted at the tear (ℓaccr, Equation (18))
normalized to the specific angular momentum of a circular orbit at the tearing
radius (ℓc, Equation (7)). At all times during the depicted tearing cycle,
ℓaccr < ℓc, indicating that the gas will try to circularize at smaller and smaller
radii. Panel (b): we show a time series of the mass of the inner subdisk (Mdisk),
the mass accreted by the BH (∫dMBH, Equation (17)), and the mass accreted by
the inner subdisk from the tear (∫dMtear, Equation (15)). Each is normalized to
the initial mass of the inner subdisk during the depicted phase (Mdisk,0). At
t ≈ 83000 rg/c, there is a transition, when low-angular momentum gas from
the tear fully replenishes the initial mass of the inner subdisk. Panel (c): here,
we plot a corresponding spacetime diagram of the tilt angle. The tear is
delineated by the discontinuity between red and blue regions. By t ≈ 77500 rg/
c, the inner subdisk fully aligns with BH spin. The inner subdisk is consumed
by the BH at the end of the depicted phase and is quickly replaced by outer disk
material that has tilt angle ≈60° − 65°. Panel (d): we show a spacetime
diagram of the shell-integrated dissipation rate (∫QdAθj). There is generally
dissipation at the tear and at radii r  5 − 6 rg, where streamers crash into the
inner subdisk. Dissipation in these regions is correlated, since dissipation in the
tear is associated with an increased formation rate of streamers.
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becomes inefficient, also puffing the disk up. So, the degree to
which warps can affect accretion can also be taken as a function
of Eddington ratio.

A particularly interesting laboratory for our accretion
mechanisms may be TDE debris disks. This is for a few
reasons. First, TDEs have randomly oriented inclinations (and
thus an average tilt angle of ∼60°). Second, debris disks are
formed from material supplied between the stream self-
intersection point and the periastron of the tidal disruption,
making them much smaller in radial extent than AGNs or
XRBs (Dai et al. 2018; Andalman et al. 2022). Third, although
the accretion rate is initially highly super-Eddington, it falls off
as ∝t−5/3 after its peak, leading to a sharp drop in the scale
height (Shen & Matzner 2014; Tchekhovskoy et al. 2014; Piran
et al. 2015). These considerations suggest that warps may be a
primary driver of accretion in TDE debris disks, meriting
further study.

5.2. Observational Implications

The accretion structure and mechanisms that we have
described in the preceding sections will necessarily alter the
emission of accreting BHs. One of the most interesting effects
of tearing and warp-driven accretion is the resulting variability.
While the fractional (say, ∼20%–40%) broadband variability
of accretion disks (Gaskell 2004; Uttley et al. 2005; Uttley &
McHardy 2005) can occur between viscous and dynamical
timescales (by, for instance, a stochastic dynamo action; e.g.,
Hogg & Reynolds 2016), larger structural changes in an
accretion disk are typically expected to occur on a viscous
timescale. This is, in turn, limited by the value of α, which is
thought to be 0.1–1 in standard Novikov & Thorne (1973)
disks. However, there is a growing sample of observations of
AGNs that exhibit extreme luminosity variations on timescales
of months to years, while the viscous timescale can be
hundreds to thousands of years. This extreme variability is also
not rare; it is exhibited in an estimated ∼30%–50% of quasars
(Rumbaugh et al. 2018). These so-called “changing-look”
AGNs (CL AGNs; Matt et al. 2003; see also “quasiperiodic
eruptions”; Miniutti et al. 2019) are difficult to reconcile with
theory, leading some to proclaim a “viscosity crisis” in AGN
disks (Lawrence 2018). To explain CL AGNs, it is thought that
there must be some instability that leads to the catastrophic and
rapid destruction of the inner accretion flow. Currently
proposed theories generally invoke a radiation pressure
instability (Lightman & Eardley 1974) acting on the inner
disk (Janiuk et al. 2002; Sniegowska et al. 2020; Śniegowska
et al. 2022a, 2022b), but others have suggested it is the result of
a sudden magnetic flux inversion in the disk (Scepi et al. 2021).
We argue that the accretion mechanisms presented here may be
a natural way of producing CL AGNs. First, as demonstrated in
Figure 5, accretion in our simulation happens on timescales that
are at least 10–100 times shorter than the usual viscous
timescale. The repeated depletion of the inner subdisk will also
cause a precipitous drop in the luminosity. This supports the
tantalizing hypothesis that some CL AGNs may be the
observational result of the tearing process (see also Nixon
et al. 2012; Raj et al. 2021). We plan to perform a dedicated
comparison of GRMHD disk tearing to CL AGNs in an
upcoming work.

Quasiperiodic oscillations (QPOs) form another commonly
observed, yet poorly understood, class of accretion disk
variability. QPOs are variable signals usually observed in the

power spectra of XRBs (van der Klis et al. 1985; Mucciarelli
et al. 2006; Gierliński et al. 2008), but have also been observed
in TDEs and AGNs as well (Pasham et al. 2019; Smith et al.
2021). The underlying cause of the various kinds of QPOs
remains elusive, but possible explanations include the LT
precession of tilted disks (Stella & Vietri 1998; Stella et al.
1999; Fragile et al. 2016) or trapped modes excited by warped
or eccentric disks (Okazaki et al. 1987; Kato 2004; Ferreira &
Ogilvie 2008, 2009; Dewberry et al. 2020a, 2020b). A recent
work in our collaboration, Musoke et al. (2022), has performed
a separate analysis on this same simulation and has found
evidence of both low-frequency (LF) and high-frequency (HF)
QPOs. The HFQPOs were associated with radial epicyclic
oscillations of the inner subdisk (which were not analyzed in
this work), and the LFQPOs were associated with geometric
effects due to the precession of the inner subdisk. The
variability associated with QPOs is related to, but separate
from, any longer-term variability due to the recurrent depletion
of the inner subdisk due to streamers from the tear.
Another consideration is the emission produced by

streamers. Streamers naturally produce hot, low-density
features that surround the inner subdisk (Figure 4). This is
reminiscent of the usual accretion disk corona and may result in
enhanced hard X-ray emission due to the up-scattering of
thermal photons emitted by the inner subdisk. This may help
explain the rapid evolution of the X-ray corona observed in
some CL AGNs (e.g., Ricci et al. 2020) or contribute to the
hard emission observed in XRB state transitions (Esin et al.
1997; Remillard & McClintock 2006), which merits a
dedicated study of coronal emission during tearing events.

5.3. Summary

We have performed an analysis of a 3D GRMHD simulation
of a highly tilted accretion disk around a rapidly rotating BH,
performed at extremely high resolution. We have focused
mainly on how the warping and subsequent tearing of the
accretion disk impact its geometry and introduce new
dissipation mechanisms that drive rapid accretion. Our main
findings in this work are as follows:

1. Warped accretion disks drive structural oscillations both
vertically and radially. The vertical oscillations manifest
as extreme expansions and compressions of the scale
height twice an orbit (Section 3.2). The radial oscillations
manifest as eccentric streamlines above and below the
midplane of the disk. The argument of periapsis for fluid
parcels above and below the disk midplane is out of
phase by ≈180°. This oscillating solution precesses
rigidly with the disk at larger distances (10− 20 rg), but
becomes twisted in the rapidly evolving inner subdisk.

2. The oscillating scale height of the disk results in nozzle
shocks twice an orbit, dissipating orbital energy and
driving rapid accretion. Extreme compressions can shock
the gas, leading to enhanced dissipation (Section 4.2). We
refer to these as “nozzle shocks,” as they are similar to
those usually studied in TDEs. These nozzle shocks can
lead to rapid accretion, with αeff∼ 10− 100, well in
excess of that predicted in standard thin disk models,
where it is thought that α 0.1− 1.

3. Disk tearing results in the formation of low-angular
momentum streamers, which rain down on the inner
subdisk and drive further accretion. When the disk tears,
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it can lead to the rapid accretion of the inner subdisk at
the tearing radius (Section 4.3). We have attributed this to
the cancellation of misaligned angular momentum. This
causes low-angular momentum “streamers” to form at the
tear and rain down on the inner subdisk. The addition of
low-angular momentum gas to the inner subdisk causes it
shrink to conserve total angular momentum. This can
result in high accretion rates, even in the absence of
nozzle shocks or a warped inner disk.

There are several future directions that we would like to
consider before concluding. First, the evolution of warped disks
is governed by torques acting on both the parallel and
perpendicular components of angular momenta, which are
mainly determined by the local dissipation mechanisms in the
disk. While we have demonstrated that novel dissipation
mechanisms (nozzle shocks, tearing, and streamers) play an
important role in driving the evolution of our disk, we have
done so for a single simulation, and it is unknown how these
mechanisms depend on parameters such as the initial tilt and
thickness of the disk. Insight could be provided by performing
more simulations across the relevant parameter space and by
the expansion of existing analytic models to include these
dissipation mechanisms. A major frontier to explore is also
radiation physics. In this work, we use a predefined cooling
function, which simplifies the thermodynamics of the disk. This
merits the inclusion of dedicated radiation schemes, which we
do in L23. Finally, it is ultimately most important to be able to
connect our results to observations, which can be accomplished
by producing synthetic observations from simulation results
such as those presented here.
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Appendix
Analyzing Misaligned Accretion Disks

The complicated geometry of warped accretion disks can
make them difficult to visualize and analyze. To alleviate this,
we perform conversions from “true” (r, θ, j) to “tilted”
( q j¢ ¢r, , ) coordinates. There are two parts to this conversion.
First, we have to convert the grid itself. To do this, we calculate
radial profiles of the local angular momentum vector and use its
orientation to determine the corresponding tilt and precession
angles, following Fragile & Anninos (2005). Then, we rotate a
θ− j grid at each radius such that the precession angle is at
j¢ = 0 and the tilt angle is =0° (i.e., the disk midplane is at
q p¢ = 2). We then interpolate all relevant quantities to the
rotated grid. This is visualized for the fluid frame gas density ρ
in Figure 10. In the top row, we can see that an x− y slice in
true coordinates becomes a face-down image of the disk in
tilted coordinates. In the bottom row, we see that a θ− j slice
in true coordinates shows an annulus rocking up and down due
to its tilt angle, while in tilted coordinates the annulus is
flattened.
The second part of this conversion is the coordinate

transformation of four-vectors from true to tilted coordinates,
which for instance reads =m c

c
m¢ ¶

¶

m

m

¢

u u for the four-velocity. The
specific matrix elements of the transformation are

    
 

    

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( )

c
c

¶
¶

=
- -

-

m

m

¢
1 0 0 0
0 cos cos cos sin sin
0 sin cos 0
0 sin cos sin sin cos

A1

where  and  are the tilt and precession angles, respectively.
This is a purely Newtonian rotation that leaves the time
component of our four-vectors unchanged. In tilted coordi-
nates, the azimuthal velocity j¢u is aligned with the rotation of
its annulus in an average sense. Correspondingly, the vertical
velocity q¢u averaged over an annulus is approximately zero.
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