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Abstract

General relativistic magnetohydrodynamic (GRMHD) simulations have revolutionized our understanding of black
hole accretion. Here, we present a GPU-accelerated GRMHD code H-AMR with multifaceted optimizations that,
collectively, accelerate computation by 2–5 orders of magnitude for a wide range of applications. First, it
introduces a spherical grid with 3D adaptive mesh refinement that operates in each of the three dimensions
independently. This allows us to circumvent the Courant condition near the polar singularity, which otherwise
cripples high-resolution computational performance. Second, we demonstrate that local adaptive time stepping on a
logarithmic spherical-polar grid accelerates computation by a factor of10 compared to traditional hierarchical
time-stepping approaches. Jointly, these unique features lead to an effective speed of ∼109 zone cycles per second
per node on 5400 NVIDIA V100 GPUs (i.e., 900 nodes of the OLCF Summit supercomputer). We illustrate
H-AMRʼs computational performance by presenting the first GRMHD simulation of a tilted thin accretion disk
threaded by a toroidal magnetic field around a rapidly spinning black hole. With an effective resolution of
13,440× 4608× 8092 cells and a total of22 billion cells and∼0.65× 108 time steps, it is among the largest
astrophysical simulations ever performed. We find that frame dragging by the black hole tears up the disk into two
independently precessing subdisks. The innermost subdisk rotation axis intermittently aligns with the black hole
spin, demonstrating for the first time that such long-sought alignment is possible in the absence of large-scale
poloidal magnetic fields.

Unified Astronomy Thesaurus concepts: Black hole physics (159); High energy astrophysics (739);
Magnetohydrodynamical simulations (1966)

Supporting material: animation

1. Introduction

GRMHD simulations in conjunction with radiative transfer
calculations provide arguably the most direct link between the
physical laws describing the motion of gas and magnetic fields
near black holes and the observed phenomenology of accretion
disks and jets in astrophysical black hole systems. Initially, the
numerical work focused on the geometrically thick, radiatively
inefficient accretion flows (RIAFs, e.g., Narayan & Yi 1994,
1995), with the accretion typically proceeding in the equatorial
plane of a spinning black hole (e.g., De Villiers et al. 2003;
Hirose et al. 2004; McKinney & Gammie 2004; McKinney
2005; Hawley & Krolik 2006; Beckwith et al. 2008a, 2008b).
Geometrically thin accretion disks (Shakura & Sunyaev 1973)
are many orders of magnitude more luminous than RIAFs
(e.g., Sikora et al. 2007; Jones et al. 2016) and thought to be
responsible for most of the black hole growth. Over time, it
became possible for the simulations to resolve not only the
small thickness of thin disks but also the smaller length scales
generated by the magnetized turbulence (Shafee et al. 2008;
Penna et al. 2010; Noble et al. 2010), which is powered by the
magnetorotational instability (MRI; Balbus & Hawley 1991).

However, recently, evidence has emerged that much higher
resolutions than currently achievable by state-of-the-art simula-
tions (e.g., Nr×Nθ× Nj = 2563 cells, where Ni is the number
of cells in the ith direction) are needed to properly resolve disk
turbulence in global simulations of magnetized black hole
accretion. Namely, a key GRMHD code comparison project
(Porth et al. 2019) found that even the resolution of 3843 cells
is insufficient to reach convergence in the critical parameters
such as the value of the effective α-viscosity generated by the
magnetized turbulence. To make matters worse, typically the
timescales covered by GRMHD simulations fall short by order
(s) of magnitude compared to observationally interesting
timescales, e.g., the timescale to generate and advect large-
scale poloidal magnetic fields from large radii (Liska et al.
2020), to propagate active galactic nucleus (AGN) jets to
galaxy scales (e.g McKinney 2006; Chatterjee et al. 2019;
Lalakos et al. 2022), and to evolve tidal disruption events for a
fallback time (e.g., Shiokawa et al. 2015; Curd & Narayan
2019; Andalman et al. 2022).
Observations and theoretical arguments furthermore suggest

that accretion systems lack symmetries often taken for granted
in GRMHD simulations. For instance, an accretion disk is
typically misaligned with respect to the black hole spin axis
(e.g., Hjellming & Rupen 1995; Greene et al. 2001; Volonteri
et al. 2005; King et al. 2005; Caproni et al. 2006, 2007), but
this is often not taken into account for expedience. Such a tilt
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will, however, significantly change the disk dynamics and the
black hole spin evolution (e.g., Bardeen & Petterson 1975;
Papaloizou & Pringle 1983; Ivanov & Illarionov 1997; Ogilvie
1999; Lubow et al. 2002; Nixon et al. 2012). In fact, the
dragging of inertial frames by the spinning black holes causes
tilted disks to precess, which can lead to interesting periodic
time variability (e.g., Fragile & Anninos 2005; Fragile et al.
2007; Lodato & Price 2010; Nixon et al. 2012; Nealon et al.
2015). To understand its potential connection to quasiperiodic
oscillations (QPOs; Stella & Vietri 1998; Ingram et al. 2009,
2016; Kalamkar et al. 2016; Miller-Jones et al. 2019) observed
in the light curves of X-ray binaries (XRBs; e.g., van der Klis
et al. 1985; van der Klis 2006), and whether similar variability
can be present in AGNs, requires even costlier simulations with
even longer runtimes. If such simulations were possible, QPOs
could possibly be exploited to independently verify black hole
spin measurements and provide unique constraints on the disk
geometry (e.g., Fragile et al. 2007; Nixon et al. 2012; Liska
et al. 2021).

Indeed, the extremely high resolution and long runtime
required to tackle these problems is prohibitive, limiting our
ability to understand black hole accretion and its effect, or
feedback, on the surrounding ambient medium. The simulation
cost scales very steeply with the thickness of the disk, as
( )-h r 5 with an adaptive mesh (and as ( )-h r 6 without an
adaptive mesh; Section 3.4). For example, to go from a typical
thick, h/r∼ 0.3, low-luminosity accretion disk (Narayan &
Yi 1994) to a typical thin, luminous quasar disk that is about an
order of magnitude thinner, h/r∼ 0.03 (Shakura & Sunyaev
1973), and misaligned relative to the black hole by a typical
angle of 1 rad, would require an order-of-magnitude increase in
resolution in every dimension to fully capture the three-
dimensional structure of MRI turbulence. This would, without
adaptive and static mesh refinement (SMR; Section 3.3),
require a factor∼ 103 more cells and a factor ∼30 more time
steps (Section 3.5) to run the simulation for the same amount of
time. However, the simulation would need to be run for ∼100
times longer to capture the viscous time, ( ) )µ -t h rvisc

2 , of the
very thin accretion disk (Shakura & Sunyaev 1973). All
together, a thin, titled disk would increase the cost of a
simulation by a factor of 105–106, requiring orders of
magnitude more computational power than currently feasible.
It is therefore one of the most urgent challenges to improve the
performance of GRMHD codes and adaptive mesh refinement
(AMR) frameworks to bridge this performance gap.

One interesting way of accelerating MHD simulations is to
use special hardware such as graphics processing units (GPUs).
Since GPUs dedicate a much larger fraction of their transistors
to raw floating point power compared to central processing
units (CPUs), they can be much faster. However, writing
efficient code on GPUs is challenging because GPUs require a
high level of parallelism and have relatively small caches and
low memory bandwidth compared to CPUs. In recent years
several groups have utilized GPU acceleration in astrophysical
MHD codes. For example, K-ATHENA (Grete et al. 2021), a
GPU-accelerated version of Athena++ (Stone et al. 2020),
achieves a factor ∼10 speedup on an NVIDIA V100 GPU
compared to a 20-core Intel Skylake CPU. The same authors
have also demonstrated excellent scalability on OLCF Summit,
the largest GPU cluster in production at the time of writing.
Similar speedups (factor ∼10) were obtained by the GAMER-2
MHD code (Schive et al. 2018) and the HORIZON (Zink 2011)

and cuHARM (Bégué et al. 2022) GRMHD codes. While a
factor ∼10 speedup makes existing simulations faster, it is
insufficient to attack black hole accretion in the challenging
regimes discussed above.
To tackle this problem, we adopt a multifaceted approach

that uses (i) a highly optimized code capable of running on both
CPUs and GPUs and (ii) a custom-built advanced AMR
framework. Namely, we describe various optimizations that we
implemented in our new GRMHD code H-AMR (pronounced
“hammer”) that speed up GRMHD simulations by 2–5 orders
of magnitude for the especially challenging problems discussed
above. In Section 2 we introduce our code, and in Section 3 we
describe our algorithmic advances—3D AMR framework and
local adaptive time stepping (LAT)—that provide the bulk of
H-AMRʼs algorithmic speedup. In Section 3 we describe
hardware-specific optimizations on both CPUs and GPUs. In
Section 4 we show benchmarks for various generations of
CPUs and GPUs, and in Section 4 we present the largest-ever
3D GRMHD simulation, including the scaling tests, run on
OLCF Summit. We summarize our results and provide an
outlook for the future development of H-AMR in Section 8.

2. Numerical Scheme

H-AMR originally branched out from an open-source
HARMPI code (Tchekhovskoy 2019), which derives from
the publicly available HARM2D code (Gammie et al. 2003;
Noble et al. 2006). H-AMR solves the ideal GRMHD equations
in the conservative form. These do not explicitly include any
resistive or viscous terms. Instead, H-AMR relies on numerical
dissipation from Riemann solvers to arrive at a physical
solution when dissipation is necessary. This is a reasonable
approximation since dissipation typically occurs on spatial
scales much smaller than what can be resolved numerically in
global GRMHD simulations.
Recently, H-AMR has also incorporated a radiation module

(e.g., Liska et al. 2022) that uses the M1 approximation (e.g.,
Levermore 1984; McKinney et al. 2013) and can take into
account thermal decoupling between ions and electrons (e.g.,
Ressler et al. 2015). We leave the description and validation of
our radiation module to a future publication.

2.1. Riemann Solvers, Spatial Reconstruction, and Time
Integration

H-AMR uses a finite-volume shock-capturing Godunov-
based HLLE Riemann solver (Harten et al. 1983). To calculate
the HLLE fluxes, we use an approximation for the fast-wave
speed, vf (e.g., Gammie et al. 2003). This overestimates vf by
up to a factor 2 in rare circumstances, which results in
additional numerical dissipation, but allows for an analytic
solution. Although H-AMR has the option to solve for the full
dispersion relation, we do not describe this feature here since it
did not significantly increase the accuracy. In addition to the
two-wave HLLE solver, we have implemented the three-wave
HLLC (Mignone & Bodo 2005, 2006) and five-wave HLLD
(Mignone et al. 2009) solvers by transforming the Riemann
problem into a locally flat Minkowski frame (Pons et al. 1998;
Antón et al. 2006; White et al. 2016). However, since these less
diffusive solvers can produce numerical artifacts in highly
magnetized regions, we will report on their implementation
once these issues are fully resolved.
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If intercell fluxes are treated as Riemann problems without
any spatial reconstruction, this leads to first-order spatial
accuracy. However, in smooth flows it is possible to
reconstruct the left and right states of the Riemann problem
to achieve a higher order of convergence. In H-AMR we use
piecewise parabolic, second-order-accurate spatial reconstruc-
tion of “primitive” cell variables (PPM; Colella & Woodward
1984) on cell faces with an optional shock flattener. Our
implementation of PPM does not take into account nonuniform
grid spacing (e.g., Mignone 2014), but we are considering this
for future work. In the GRMHD community-wide code
comparison project (Porth et al. 2019) we found PPM to be
significantly more accurate than other second-order reconstruc-
tion schemes (MINMOD and MC; LeVeque 2002).
The conserved quantities (U) are evolved in time by

advancing their state from t n to t n+1/2 in a predictor step and
then using the fluxes calculated at t n+1/2 to advance the state
from t n to t n+1 in a corrector (full) step. The time step for our
midpoint method is limited by the fast-wave speed in the
coordinate frame through the Courant et al. (1928) condition. We
set Δt = C0/(1/Δt1+ 1/Δt2+ 1/Δt3). Here Δt i =Δx i/vf is
the time it takes a fast wave to cross a cell of size Δx i in the ith
direction and C0 is the Courant factor that we typically set to
C0∼ 0.7–0.9. Our time integration is similar to the VL2 scheme
described in Stone & Gardiner (2009), but we use spatial
reconstruction of variables for both the predictor and corrector
steps. This formally does not guarantee that the scheme is total
variation diminishing (TVD), but in practice it produces more
accurate results. In the future, we plan to explore higher-order
time integration schemes that are strong stability preserving,
including third- and fourth-order Runge–Kutta schemes. These
might provide additional stability that will be necessary for less
diffusive Riemann solvers (e.g., Mignone et al. 2009) and
higher-order spatial reconstruction schemes (e.g Tchekhovskoy
et al. 2007).

2.2. Coordinate System and Metric

Since H-AMR solves equations of motion in a covariant form,
any smoothly varying coordinate system (and metric) can be
chosen. In this work the grid is uniform in modified spherical
coordinates that are defined as qº º ºx t x r x, log ,0 1 2 ,
x3≡j. This grid extends from an inner spherical radius Rin,
which is located just inside the event horizon, out to an outer
radius Rout. We choose Rin such that there are at least5 cells
between Rin and the event horizon and usually set Rout = 104rg
or larger. This ensures that both of the radial boundaries do not
affect the physical evolution of the system.

The warping of spacetime is described in H-AMR by a
metric tensor gμν with lapse a = -g1 00 , shift β i = g0 i,
and determinant ( )= mng gDet . We use (μ, ν) as indices for four-
dimensional objects and (i,j) as indices for three-dimensional
objects. Γ = − uμnμ = αut is the Lorentz factor corresponding
to 4-velocity uμ as measured by the zero angular momentum
observer (ZAMO) with 4-velocity nμ = (−α, 0, 0, 0). The spatial
projection tensor gn

m is defined as g = +n
m

n
m m

ng n n , and the
four-dimensional Levi-Civita symbol is òμνλδ.

In this work we use a Kerr spacetime (unless stated
otherwise). We first calculate the Kerr metric tensor analyti-
cally in Kerr–Schild coordinates and then transform it
numerically to give gμν in internal coordinates. The corresp-
onding Christoffel symbols, Gmn

z , are calculated numerically by
taking finite differences of the metric in internal coordinates.

2.3. Primitive Variables

We express the conservation laws that H-AMR evolves
(Section 2.4) in terms of fluid-frame gas density ρ, internal
energy density ug, gas pressure pg, fluid-frame magnetic
4-vector bμ, and fluid 4-velocity uμ. These relate to the
primitive variables ρ, ug, relative 4-velocity ũi, and coordinate
frame magnetic field B i as follows (e.g., Noble et al. 2006):

( )=
+

b
B b u

u
1i

i t i

0

( )= m
mb g B u 2t

i
i

˜ ( )g
b
a

= = + Gm
mu u u . 3i i i

i

The relative 4-velocity ũi is numerically convenient because
it guarantees that uμuμ=− 1 for any value of ũi. In H-AMR
we store the primitive variables at cell centers. In this
manuscript we adopt an ideal gas equation of state with
pg= (γ− 1)ug and Lorentz–Heaviside units, G=M= c= 1.
The stress energy tensor n

mT , Faraday tensor mn , dual of the
Faraday tensor mn* , and entropy tracer κ are given by

⎛
⎝

⎞
⎠

( ) ( )r= + + + + -n
m m

n n
m m

nT u p u u g p b b b
1

2
4g g g

2

( )= - -mn mnld
l d g u b 5

( )= -mn m n n m* b u b u 6

( )k
r

=
g

p
. 7

g

The coordinate frame magnetic field B i and electric field E i

are related to the (dual of the) Faraday tensor as follows:

( )= *B 8i it

( )= E . 9i it

2.4. Conservation Laws

H-AMR evolves the mass (Equation (10)), energy
(Equation (11)), momentum (Equation (12)), induction
(Equation (13)), and entropy (Equation (14)) equations. The
derivation of these equations from the relativistic Boltzmann
equation can be found in standard textbooks, including Misner
et al. (1973) and Rezzolla & Zanotti (2013). Here we express
these equations in covariant form where∇μ denotes a covariant
derivative:

( ) ( )r =m
mu 0 10

( ) ( ) =m
mT 0 11t

( ) ( ) =m
mT 0 12i

( ) ( ) =m
mn* 0 13

( ) ( )kr =m
mu 0. 14

For numerical reasons, we subtract the mass conservation
equation from the energy equation, i.e., H-AMR actually
evolves ( )r + =m

m mT u 0t instead of Equation (11).

2.5. Discretization

Figure 1 shows how we evolve the conservation laws
(Equations (10)–(14)) on a numerical grid with cell indices (i, j,
k) and uniform cell sizes of (Δx1, Δx2, Δx3). We absorb a

3
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geometric factor, -g , into the definitions for the volume-
integrated conserved state ¯ = -U U g , volume-integrated
source terms ¯ = -Q Q g , and area-integrated fluxes in the
jth direction ¯ = -F F gj j . This factor is calculated at the
center of each cell for cell-centered quantities and at the center
of each face for face-centered quantities in internal coordinates.
This is an easy and fast method but slightly less accurate (albeit
still second-order) than explicitly integrating the volume and
area over each cell to account for nonuniform grid spacing
(e.g., Porth et al. 2017).
In H-AMR, the vector ( )r kr=U u T T B u, , , ,t

t
t

i
t i t is calcu-

lated directly at cell centers from the primitive variables, while
( )r r kr= + -F u T u T b u b u u, , , ,j j

t
j t

i
j j i i j j is calculated at

cell faces from the reconstructed primitive variables using a
Riemann solver. The equations of motion take the conservative
form + =¶

¶
¶
¶

QU

t

F

x

j

j . With these definitions we can write down
the equations of motion in conservative form for the full time
step:

( ¯ ¯ )

( ¯ ) ( ¯ ) ( ¯ ) ( ¯ )

( ¯ ) ( ¯ ) ¯

( )

-

D
=

-
-

D
-

-

D

-
-

D
+

+

+
+

-
+

+
+

-
+

+
+

-
+

+

U U

t

F F

x

F F

x

F F

x
Q .

15

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

, ,
1

, ,

1
1 2, ,
1 2 1

1 2, ,
1 2

1

2
, 1 2,

1 2 2
, 1 2,

1 2

2

3
, , 1 2

1 2 3
, , 1 2

1 2

3 , ,
1 2

In the simplest case, the source term Q̄ accounts for the warping
of the spacetime and grid (e.g., ¯ = G -n

z
z
nQ T gi i for the

momentum equation), but it may also include physical
processes such as nuclear heating, gas–radiation interactions,
and Coulomb coupling (e.g., Liska et al. 2022).

According to Stokes’s theorem, to guarantee the divergence-
free evolution of the magnetic field, the induction equation is
evolved on a staggered mesh (e.g., Evans & Hawley 1988).
Here, the face-centered magnetic field is advanced in time by
taking finite differences in space of the edge-centered electric
fields, as we show in Figure 1:

( ¯ ) ( ¯ )

( ¯ ) ( ¯ )

( ¯ ) ( ¯ )
( )

-

D

=
-

D

-
-

D

-
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-

- +
+

- -
+

- +
+

- -
+

B B

t
E E

x
E E

x
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n
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n
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3
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1 2 3
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1

1
, 1 2, 1 2
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i j k
n
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n
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n

i j k
n
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, , 1 2

1
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We approximate the edge-centered electric field by taking the
average of the face-centered HLL fluxes ( ¯ ( ) )= -*F B F gj i ji

over four neighboring cells:

( ¯ ) [ ¯ ( ) ¯ ( )
¯ ( ) ¯ ( ) ]

( )

= +

- -
- - - - -

- - -

E F B F B

F B F B

0.25

19

i j k i j k i j k
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1
, 1 2, 1 2

3 2
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3 2
, 1, 1 2

2 3
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2 3
, 1 2,

( ¯ ) [ ¯ ( ) ¯ ( )
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2
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3
1 2, 1 2,

2 1
1, 1 2,

2 1
, 1 2,

1 2
1 2, ,

1 2
1 2, 1,

In addition, H-AMR upwinds these electric fields to add extra
dissipation, which prevents unphysical oscillations in multi-
dimensional flows (e.g., Gardiner & Stone 2005; White et al.
2016).
To convert the face-centered magnetic field components to

cell-centered magnetic field components, we take volume-
weighted averages in internal coordinates:

( ¯ )
( ¯ ) ( ¯ )

( )=
+- +

B
B B

2
22i j k

i j k i j k1
, ,

1
1 2, ,

1
1 2, ,

( ¯ )
( ¯ ) ( ¯ )

( )=
+- +

B
B B

2
23i j k

i j k i j k2
, ,

2
, 1 2,

2
, 1 2,

Figure 1. An illustration of a cell in the (x1, x2)-plane in H-AMR. The
conserved quantities U are stored at cell centers, the fluxes F1,2 and staggered
magnetic field components B1,2 are stored at cell faces, and the electric fields E3

are stored at cell edges. The corresponding metric components gμν are stored
for cell centers, cell faces, and cell corners. The conserved states are calculated
directly from the primitive variables. The fluxes are calculated from the
reconstructed primitive variables in a Riemann solver. The electric fields are
calculated (in their simplest form) by taking an average of the neighboring
fluxes. Typically, H-AMR modifies the calculation of the electric fields with a
velocity upwinding routine as described in Gardiner & Stone (2005).
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( ¯ )
( ¯ ) ( ¯ )

( )=
+- +

B
B B

2
. 24i j k

i j k i j k3
, ,

3
, , 1 2

3
, , 1 2

2.6. Variable Inversion

In H-AMR, the conversion of conserved variables U to
primitive variables p is performed using a two-dimensional
Newton–Raphson root-finding method (Noble et al. 2006) or
Aitken acceleration scheme (Hamlin & Newman 2013; Newman
& Hamlin 2014). To provide a backup inversion method for
primitive variable recovery if the energy-based inversion
method(s) fail, H-AMR also evolves the entropy equation
(Equation (14)), which is then used in place of the energy
equation (Equation (11)) to recover the primitive variables
(Noble et al. 2009). To our experience, most of the inversion
failures occur in highly magnetized regions such as jets,
where the lack of shock heating and magnetic reconnection
does not have significant effects on the dynamics since ug is
subdominant (e.g., Chatterjee et al. 2019). In fact, evolving
the entropy gives us the conservative (lower limit) estimate of
the internal energy. Note that since the total entropy per
particle is given by k=

g-
S ln1

1
, evolving U= κρu t instead

of U= Sρu t does not conserve entropy to machine precision.
However, it avoids numerical issues (e.g., Sadowski et al.
2016) associated with evolving logarithms, which, to our
experience, makes the scheme more robust.

2.7. Density and Internal Energy Floors

Magnetic field lines in the polar regions (those that thread the
black hole’s event horizon) become devoid of matter: the gas is
either expelled outward or consumed by the black hole.
Because GRMHD equations are vacuum-phobic, H-AMR
artificially injects mass and internal energy in the drift frame
of the jet if the density or internal energy drops below a certain
threshold (Ressler et al. 2017). This avoids both a runaway in
velocity, which can occur when mass is inserted in the fluid
frame, and a drag on the field lines, which can occur when mass is
inserted in a ZAMO frame (McKinney et al. 2012). For this
particular work we enforce b2/ρ< 50, b2/ug< 750, ρ> 10−7/r2,
and ug> 10−9/r10/3 for the gas density ρ and internal energy ug.

3. Numerical Optimizations

H-AMR is written in C and triple parallelized: (i) CUDA or
OpenCL does most of the computations on GPUs or AVX-
accelerated CPUs, (ii) OpenMP routines handle communication
and gridding, and (iii) nonblocking MPI handles the transfer of
boundary cells between nodes. NVLINK is used for transfers
between GPUs on a single node and GPU-DIRECT for MPI
transfers between GPUs on different nodes. We found that this
improves the performance by up to 20% on large GPU clusters.

H-AMR employs limited communication–computation over-
lap by (un)packing the data into send/receive buffers and
applying boundary conditions in parallel with (nonblocking)
MPI send/receive calls for other SMR/AMR blocks. This is
made possible by using a separate CUDA stream for each
block. H-AMR also features fully nonblocking MPI-paralle-
lized input/output (I/O), allowing substantial overlap between
computation and data transfer. Data are stored in binary format.
Since individual dump files can reach 102–103 GB in size, we
use OpenMP parallelized C kernels coupled to a Python script

to postprocess the data. These analysis tools also allow the user
to load in data at reduced resolutions for postprocessing.
Memory to store all variables (primitive, conserved, fluxes,

etc.) is dynamically allocated on both the CPU and GPU at the
start of each run. During each (de)refinement and load-
balancing step, C pointers are used to keep track of the
physical location in memory of each SMR/AMR block. This
avoids needing to allocate and deallocate large chunks of
memory.

3.1. GPU Acceleration in CUDA

H-AMR is the first GPU-accelerated GRMHD code that has
run on thousands of GPUs. While CPUs spend the largest
portion of their silicon on control logic and caches, GPUs
spend most of their silicon on floating-point power. This
presents unique challenges in optimizing complex MHD
codes (e.g., Grete et al. 2021). Hence, H-AMR follows the
philosophy of keeping the code as simple as possible, avoiding
abstract concepts such as classes, extra function layers, and
three-dimensional arrays, which makes it easy for the CUDA
compiler to generate highly efficient code. In comparison to the
GPU-accelerated (GR)MHD codes KHARMA (B. Prather et al
2022, in preparation) and K-ATHENA (Grete et al. 2021),
which use KOKKOS (Carter Edwards et al. 2014), we chose to
implement the GRMHD equations directly into NVIDIA’s
CUDA. KOKKOS is a performance portability toolkit that can
compile existing C code on various architectures. While
KOKKOS increases the performance portability of a code
across various architectures, it is unlikely to be able to match
the performance of a highly optimized CUDA code that makes
extensive use of NVIDIA-specific optimizations.
It was challenging to develop the GPU version of H-AMR

owing to the large code size (over 40,000 lines of C code and
10,000 lines of CUDA kernel code). This made it difficult to fit
all necessary instructions and variables into the GPU’s register
space. Failing to fit the code into the available register space
would slow down the performance by an order of magnitude,
because the GPU would need to use the much slower GPU
RAM to read and store temporary data. Kernels in many
conventional codes are rather small and do not fill up the GPU
register space easily. GRMHD codes, however, need to store
metric components of curved spacetime of a black hole and
require nonlinear root finding to convert conserved to primitive
quantities (e.g., Noble et al. 2006). For this reason, fitting the
GRMHD equations required many profiler-informed optimiza-
tions based on an iterative trial-and-error approach. It was, for
example, beneficial to split the code into extra kernels to
recalculate certain quantities instead of storing them in
temporary variables using register space. This profiler-based
optimization strategy has substantially increased the perfor-
mance of H-AMR since 2016. The first 2016 version of
H-AMR was memory bandwidth limited because of significant
register spillover to global memory. Eventually we reduced the
required memory bandwidth and increased H-AMRʼs perfor-
mance fivefold by rewriting various functions to fit into the
available register space. We do not make extensive use of
shared memory (e.g., Bégué et al. 2022), as we found that this
slows down computation compared to a more efficient use of
register space. Shared memory is only used in H-AMR to
calculate the minimum time step in each mesh-block through
parallel reduction.
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There exists a trade-off, different for each GPU generation,
between making GPU kernels too big and complex to fit into
the available register space and having too many small kernels
with the added overhead. On the previous generation of GPUs
(NVIDIA Kepler architecture) it was, for example, beneficial to
split the code into extra kernels to recalculate certain quantities
instead of storing them in temporary variables using register
space. On the present generation of GPUs (NVIDIA Pascal/
Volta/Ampere architectures) it is beneficial to make some
kernels a bit bigger, due to the larger register space. We achieve
best performance when we split a time step into ∼7 separate
kernels.

All functions necessary to evolve the state of a cell from t n to
t n+1 are GPU accelerated. These include reconstruction
routines, calculation of HLL fluxes, conserved-to-primitive
variable inversion, setting of density/internal energy floors,
and exchange of boundary/ghost cells. The CPU handles all
the necessary logic to manage the transfer of boundary cells,
fluxes, and electric fields between the neighboring blocks and
performs the (de)refinement and load-balancing steps, including
the divergence-free prolongation and restriction of magnetic
fields (Balsara 2001). We have summarized the parallelization
strategy of H-AMR in a code diagram (Figure 2).

3.2. AVX Acceleration in OpenCL

In addition to the “normal” OpenMP+MPI C-based CPU
code and GPU-accelerated CUDA code, H-AMR maintains a
legacy OpenCL branch that can make use of AVX vectoriza-
tion on CPUs. This effectively leverages the 512-bit-wide AVX
vector registers in the latest generation of Intel Skylake CPUs.
Without any CPU-specific optimizations to our GPU kernels
(e.g., with the CUDA kernels only ported to OpenCL), H-AMR
achieves ∼12% saturation of the CPU’s (16 Core AVX-512
2.8 GHz Skylake) theoretical FP64 throughput and gains a
factor ∼3 speedup compared to standard OpenMP code.

3.3. Adaptive Mesh Refinement

AMR (see Berger & Colella 1989; Balsara 2001) allows
H-AMR to focus the resolution on regions of interest. While
not bringing significant advantages for simulating thick
accretion disks, which span most of the computational domain,
AMR can speed up computations requiring high resolution of
small-scale features that fill a small fraction of the computa-
tional volume. For instance, for problems such as thin accretion
disks (Figure 3), tidal disruption events, and large-scale
collimated jets, AMR can reduce the number of required cells
by orders of magnitude.

AMR can also speed up the calculations in another way: by
reducing the spatial resolution in the blocks closest to the black
hole and thereby increasing the time step. Such a reduction in
resolution is feasible, because GRMHD modeling has con-
sistently shown that logarithmically spaced spherical grids
typically sufficiently resolve the turbulence closest to the black
hole (e.g., within two event horizon radii), while resolving the
outer regions in the accretion disk and relativistic jets remains a
challenge (e.g., McKinney 2006; Liska et al. 2019a; Porth et al.
2019).

We designed the AMR framework in H-AMR from the
ground up for performance and scalability. We make use of an
oct-tree-based approach, where any parent block can be split
into two, four, six, or eight child blocks (see Section 3.4).

Compared to a patch-based AMR approach, we do not need to
evolve the underlying parent blocks for each refined layer and,
instead, can directly transfer boundary cells from neighboring
coarse to fine layers of the grid (and vice versa). This drastically
reduces the required internode MPI bandwidth, which presents
the main performance bottleneck for our simulations. Since the
relative internode MPI bandwidth is expected to decrease for the
next generation of GPU clusters, oct-tree-based AMR is an
attractive approach for the next generation(s) of supercomputers.
Since every problem is different, H-AMR allows the user to

implement an arbitrary refinement criterion. For example, Liska
et al. (2019a, 2021) used a cutoff on the maximum density in
each block as the refinement criterion. Blocks satisfying the
chosen refinement criterion will be refined to the highest AMR
level allowed for a problem. Neighboring blocks (adjacent
along the faces and edges) for each refined block, which do not
satisfy the refinement criterion, are refined to one AMR level
below that of the refined block. These nesting conditions
prevent resolution jumps by factors greater than 2 along block
faces and edges.
We use prolongation and restriction operators similar to

those described in Berger & Oliger (1984) and Berger &
Colella (1989) for cell-centered variables and Balsara (2001)
for face-centered variables. These operators upscale/downscale
the resolution of the grid during (de)refinement steps and
reconstruct primitive variables in ghost cells at coarse–fine
boundaries. During prolongation, we use MINMOD-limited
gradients calculated on the coarse mesh to upscale the
resolution of the variables to a finer mesh. By using a more
diffusive MINMOD limiter, we prevent numerical issues at
refinement boundaries associated with applying a 1D recon-
struction scheme to a 3D stencil (see also Stone et al. 2020).
During restriction, we take the volume- or area-weighted
averages on the fine mesh to reduce the resolution of the
variables on the coarse mesh. Prolongation and restriction can
be performed on either the primitive variables or conserved
quantities. The former is faster and more robust (e.g., does not
lead to states with v> c), while the latter is energy and angular
momentum conserving up to machine precision. In general, if
the refinement criterion is set such that no (de)refinement

Figure 2. A code diagram of H-AMR. On the left (blue) are all tasks that are
performed using OpenMP parallelized C functions. On the right (orange) are all
tasks that are performed using GPU-accelerated CUDA kernels. Practically all
of the computation is GPU accelerated, and the nonaccelerated parts in H-AMR
typically do not form a performance bottleneck.
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happens in the area of interest, we recommend performing
prolongation and restriction directly on the primitive variables.

In addition, as described in Berger & Colella (1989), we
replace at the end of a time step the fluxes on the coarser mesh
with the area-averaged fine mesh fluxes and edge-averaged
electric fields. This is necessary since the sum of the fluxes on
the fine mesh might not match to machine precision the flux on
the coarse mesh. This refluxing guarantees conservation of
mass, energy, and angular momentum, in addition to the
divergence-free evolution of magnetic fields. While refluxing
of cell-centered quantities only involves six faces, refluxing of
the edge-centered electric fields involves, in addition to the six
faces, 12 cell edges. In general, we pick the cell edge at the
highest refinement and time-stepping level as being “domi-
nant.” The electric fields on neighboring edges are subse-
quently synchronized with the “dominant” edge. To make sure
that this constrained-transport algorithm is implemented
correctly, we periodically verify consistency up to machine
precision between the staggered magnetic field components at
cell boundaries of neighboring meshblocks.

3.4. Handling of the Polar Region

Spherical grids are perhaps the most natural and efficient
grids to study accretion disks. They naturally follow the
geometry of the disk rotating around the black hole. The
spherical shape of the event horizon in the Kerr–Schild
foliation naturally matches that of the grid’s inner boundary,
r = Rin. In addition, spherical grids support a logarithmic
spacing in the radial coordinate, naturally providing high
resolutions close to the black hole where the timescales are
short, and lowering the resolution progressively as one moves

out and the timescales become longer. This is advantageous
compared to, for example, Cartesian grids, as one does not need
to use many AMR layers to get the typically required 2-to-5-
order-of-magnitude scale separation between inner and outer
boundary of the grid. This in turn allows for the use of
relatively large AMR block sizes, minimizing the number of
boundary cell transfers and leading to excellent parallel scaling
(Section 4).
A drawback of spherical grids is the polar coordinate

singularity, which requires special treatment. We have
implemented transmissive boundary conditions across the
singularity to minimize dissipation and verified that the grid
is robust for the study of tilted accretion disks and jets (see the
Appendix of Liska et al. 2018 for details). Even with these
improvements, spherical grids still suffer from cell “squeezing”
near the pole in the azimuthal direction. This causes the
Courant et al. (1928) condition (which limits the time step to
the wave-crossing time of a single cell) to limit the global time
step more than for a Cartesian with an equivalent resolution.
Since close to the polar singularity the cell aspect ratio

( ) ( )q q j j pD D D = j
-r r Nsin 21 increases proportion-

ally to the azimuthal resolution, the time step for a spherical
grid will, empirically, be a factor∼ Nj/(2π) times smaller than
that for a Cartesian grid with the same effective resolution.5 As
a result, in 3D the cost of simulations on a spherical grid
increases as∝ N5 instead of the typical∝N4 for Cartesian

Figure 3. GRMHD simulation of a thin accretion disk of aspect ratio h/r = 0.02 initially threaded by a purely toroidal magnetic field and tilted by 65° relative to the
(horizontal) equatorial plane of the black hole. The frame dragging by the spinning black hole rips the accretion disk apart into inner and outer subdisks as can be seen
in the rendering of density isocontours in the left panel. The black hole spin points along the positive z-direction. The right panel shows a vertical slice through the
density. The top left zoom-in inset shows that the inner regions of the accretion flow reorient themselves parallel to the black hole midplane as it undergoes Bardeen–
Petterson (Bardeen & Petterson 1975) alignment, the first demonstration of this effect in GRMHD in the absence of large-scale poloidal magnetic field (see also Liska
et al. 2019a, 2021), solving a 40 yr old problem (Bardeen & Petterson 1975). The bottom right inset illustrates that the small-scale turbulent structure of the accretion
flow is very well resolved. An animation of this figure is available online. A higher-resolution version is also available as a YouTube movie (www.youtube.com/
watch?v=rIOjKUfzcvI). The animation runs from t ∼ 10,000 rg/c to t ∼ 138,000 rg/c and has a real-time duration of 104 s.

(An animation of this figure is available.)

5 More precisely, the reduction factor will be 3 times smaller, since the time
step in H-AMR is set as the harmonic mean of the time steps in each of the
three dimensions, 1/Δt = 1/Δt1 + 1/Δt2 + 1/Δt3. Hence, for cubical cells,
Δt ≈ (1/3)Δt1 ≈ (1/3)Δt2 ≈ (1/3)Δt3.
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grids, making high-resolution (GR)MHD simulations on
spherical grids particularly expensive.

There are three popular approaches to avoiding the
squeezing of the cells in the j-direction. One is the use of
Cartesian grids (e.g Porth et al. 2019). The advantage of this
method is that it is symmetry agnostic. Disadvantages include
the added computational cost because the grid does not
conform to the shape of the black hole or the orbital motion of
the gas. Such grids can also require many AMR levels (e.g.,
eight AMR levels; Davelaar et al. 2019), which can reduce
parallel scaling efficiency, a point of concern especially for
GPU-based systems with a low ratio of MPI interconnect
bandwidth to computation power. The second approach (e.g
Stone et al. 2020) is to use SMR to derefine the grid near the
pole in all three dimensions, (r, θ, j). The lower polar
resolution reduces the computational cost and is excellent for
applications focused on the physics of the equatorial accretion
flow. However, the larger cell size in the r- and θ-directions
also makes it more difficult to resolve polar structures such as
jets or tilted disks. Currently, most GRMHD codes use a third
strategy that involves enlarging the innermost few cells in the
θ-direction (Tchekhovskoy et al. 2011). While this approach
works well at low resolutions, it becomes ineffective at higher
resolutions since the relative size of the innermost cells
increases proportionally to the f-resolution. For example, at
the grid resolution of 1283 cells the innermost cell needs to be
enlarged by a factor ∼10, while at the resolution of 10243 cells
it would need to be enlarged by a factor ∼100. This makes grid
cylindrification unsuitable for high resolutions.

3.4.1. External SMR

In H-AMR, we attempted to combine the best aspects of
both of the above approaches. We use SMR to avoid the
squeezing of cells in the j-direction (Liska et al. 2018). For
this, H-AMR derefines the base layer of the grid in the j-
direction within 30° of the pole. This maintains the full
resolution in the r- and θ-directions, leading to a uniform cell
aspect ratio (within a factor of 2) across radial shells (Figure 4).
As an example, our fiducial simulation (which uses base grid
with, effectively, 1728× 576× 1024 cells; Section 4) has a j-
resolution of 256 cells for 0° < θ< 15°, 512 cells for
15° < θ< 30°, and the full 1024 cells for 30° < θ< 90°. We
refer to this approach as “external SMR,” to distinguish it from
“internal SMR” discussed below (see Section 3.4.2).
A similar approach to reduce the resolution near the pole is

utilized in the radiation hydrodynamics FORNAX code
(Skinner et al. 2019). However, to our knowledge, H-AMR
is unique among (GR)MHD codes in its ability to combine one-
dimensional SMR with three-dimensional AMR. When refined
with AMR, all parent blocks in our SMR-enhanced base grid
are split into eight child blocks, except the blocks touching the
polar axis. These blocks are split into six child blocks, where
the two child blocks along the pole maintain their parent’s j-
resolution and the four child blocks farther away from the pole
are refined in all three dimensions. This way the cells near the
pole are kept approximately cubic by the (effective) addition of
a derefinement layer in the j-direction for each additional
AMR layer.

3.4.2. Internal SMR

Typically, H-AMR uses external SMR to reduce the j-
resolution down to Nj∼ 64–256 cells near the pole. Bringing
down the j-resolution to Nj∼ 16 cells would require two to
four extra refinement layers featuring exceedingly small block
sizes. This would oversaturate the available memory and MPI
interconnect bandwidth, leading to a serious performance
bottleneck on GPU clusters. To remedy this limitation, H-AMR
also implements j-derefinement internally on the block level,
which we refer to as internal SMR. Depending on the distance
of a cell from the pole, internal SMR spatially averages the
fluxes and conserved quantities of the cell over 2n cells in the
j-direction within -2n nmax cells from the pole such that the cell
aspect ratio remains close to unity. Here n is the internal SMR
level and nmax is the number of internal SMR levels. This can
reduce the j-resolution by an additional factor 4–16, which is
sufficient to completely eliminate cell “squeezing” near the
pole while exploiting the computational advantages of larger-
sized blocks. To maintain higher-order spatial accuracy, the
spatial reconstruction method is modified accordingly to
compensate for the (effectively) increased cell spacing, making
internal SMR equivalent to external SMR.

3.5. Local Adaptive Time Stepping

H-AMR features an LAT. The typical approach for this in
AMR codes is to use smaller time steps for higher-level AMR
layers (aka hierarchical time stepping). In addition, H-AMR
exploits the fact that on a logarithmic grid cell size increases
with radius, even without any spatial refinement layers. Based
on the local Courant et al. (1928) condition, LAT allows
H-AMR to determine the time step size (in steps of a factor of
2) for each block (this includes the block’s ghost cells)
independently from the block’s spatial refinement level. To
guarantee second-order convergence in time, we typically
evolve the coarser grid first such that we can estimate (by linear
interpolation in time) the ghost cell variables on the fine grid.
Subsequently, in a flux correction step (see also Section 3.3),
the flux difference between the fine and course grid is applied
to the coarse grid.

Figure 4. As previously presented in Liska et al. (2018), the spherical “base”
grid in H-AMR has a varying number of blocks in j. This prevents cell
squeezing near the pole, speeding up high-resolution GRMHD simulations by
up to 2 orders of magnitude without any loss in accuracy. AMR can increase
the resolution of all blocks in this grid, including those adjacent to the
polar axis.

8

The Astrophysical Journal Supplement Series, 263:26 (17pp), 2022 December Liska et al.



LAT leads to a factor of 3–10 reduction in the number of
time steps, depending on the structure of the adaptive grid. This
manifests itself as a factor 2−3 speedup due to extra overhead
associated with parallel scaling (see Section 3.6). In general,
grids with many refinement layers farther away from the black
hole achieve the most benefit from LAT, while grids with no
AMR only manage to reduce the number of time steps by a
factor ∼few. In contrast, using hierarchical time stepping,
which couples the time step to the spatial refinement level,
would lead to a smaller speedup of 10%–30% since for most
problems most blocks reside at the highest spatial refinement
level. In addition to speeding up computations, LAT also
increases the numerical accuracy by reducing the number of
conserved-to-primitive variable inversions in the outer grid and
thereby reducing the noise generated by the inversions (see the
Appendix in Chatterjee et al. 2019). This is especially
pronounced in large-scale jets, where the calculations due to
the large difference between the magnetic energy density and
rest mass energy density are prone to inversion errors.

3.6. Load Balancing

We use a z-order space-filling curve for load balancing in
order to keep neighboring blocks in the grid physically close to
each other on a cluster (e.g., on the same or neighboring
nodes). Depending on the problem specifics (such as the
number of spatial and temporal refinement levels) and the
architecture of the cluster (fat-tree or 3D-torus), we found that
changing the fastest-moving index in the space-filling curve or
switching to a row-major order at the zeroth level may
significantly improve performance. AMR (de)refinement is
performed every 103–104 time steps. This is similar to one
orbital period at the black hole event horizon and hence
sufficient to capture the dynamical evolution of the accretion
disk and jet.

We note that LAT brings about two technical difficulties.
First, it significantly complicates load balancing. If one were to
keep the number of time steps per GPU equal and naively
follow the space-filling curve, a huge imbalance in memory
consumption could occur, causing some GPUs to run out of
memory. Second, it makes the synchronization of fluxes
between different time levels more difficult: at every time step
the conserved fluxes and electric fields need to be synchronized
between the fine and coarse time levels on block faces and
edges to guarantee energy/momentum conservation and the
divergence-free evolution of magnetic fields (Balsara 2001).
For this, by the end of each full time step the flux difference
between the fine and coarse layers is added as a correction to
the coarse block’s boundary cells, and thus an additional
conserved-to-primitive variable inversion needs to be per-
formed for these boundary cells. This tightly couples the fine
and coarse layers, potentially leading to an unbalanced load
that slows down computation. We now discuss how we
alleviate both of the issues.

To prevent an imbalance in memory consumption between
GPUs, H-AMR uses a load-balancing strategy that attempts to
keep both the number of time steps and the number of blocks at
each time level per GPU constant, while adhering as closely as
possible to the utilized space-filling curve. This can be
achieved by loading in on every GPU a similar number of
computationally intensive (with many time steps) and non-
intensive (with few time steps) blocks by load-balancing the
grid separately for each time level and using the next time level

to “fill” up the imbalance created during load balancing of the
previous time level. To prevent GPUs from running out of
memory during, e.g., (de)refinement steps (each 16 GB GPU
can only fit a grid of approximately∼ 2563 cells), H-AMR may
in rare cases also perform intermediate load-balancing steps or
may reduce the number of time levels (if it determines that this
indeed reduces the internode memory imbalance).

4. Performance Measurements

In this section, we describe the physical and numerical setup
of the GRMHD simulation we used as a benchmark. This
simulation is illustrated using volume rendering and a
transverse slice through density in Figure 3. It ran in 2019 on
then the world’s most powerful supercomputer, OLCF Summit,
which is powered primarily by 27,648 NVIDIA V100 GPUs,
each with 16 GB of HBM2 RAM. We also discuss how we
measure the performance and determine the scaling efficiency
of H-AMR.

4.1. Physical Setup

We consider a thin accretion disk with scale height
h/r= 0.02 around a spinning black hole of spin a= 0.94
tilted by 65°. Our previous work initialized the accretion disk
with a poloidal magnetic flux loop (Liska et al. 2019a, 2021).
In contrast, here the disk is threaded by a toroidal magnetic
field with an approximately uniform plasma β∼ 10 (Musoke
et al. 2022). To our knowledge, this is the first GRMHD
simulation of a thin disk in the absence of initial poloidal
magnetic flux, making it extra challenging since a toroidal
magnetic field needs a much higher resolution to be properly
resolved (Liska et al. 2020). Such a magnetic field topology is
thought to be responsible for most of the luminous black hole
systems in our universe, since most of such systems lack a jet,
while a poloidal magnetic field guarantees the production of a
jet. We discuss the physical implications of the simulation in
Section 8.2.

4.2. Numerical Grid

The numerical grid stretches from the inner boundary just inside
the event horizon, at∼rg, to the outer boundary at∼105rg. It has a
total effective resolution of 13,440× 4608× 8096 in the disk
beyond∼10rg. The resolution gradually drops to the base-grid
resolution of 1728× 576× 1024 at r∼ 4rg (this increases the time
step by about an order of magnitude; Section 3.3). The cell sizes at
r = (1.5, 8, 20, 50)rg are |Δr|∼ |Δθ|∼ |Δf|∼ (0.0082, 0.011,
0.011, 0.034). The grid has (0.9–1.4)× 105 blocks of size
48× 48× 64 cells and a total of∼12–22 billion cells. The
number of blocks and cells varies throughout the evolution as
AMR creates and destroys blocks to focus the resolution on the
disk body as it moves through the grid. For this problem, we use
four levels of AMR (Section 3.3), two external (Section 3.4.1) and
four internal (Section 3.4.2) layers of SMR, and five levels of LAT
(Section 3.5).
Total-resolution-wise, this advanced grid improves by more

than an order of magnitude on our previous simulations of
0.25–1.5 billion cells carried out on the NCSA Blue Waters
supercomputer (e.g., Liska et al. 2021). Consequently, this
improves the resolution of the disk to 25–30 cells, up from
7–14 cells per scale height. Typically around 4–5 scale heights
of the disk reside in the highest refinement level, ensuring
uniform resolution of the magnetized turbulence not only near
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the midplane of the disk but also farther away from the
midplane.

4.3. Performance Measurements

The speed of GRMHD codes is usually expressed in zone
cycles per second. Each zone cycle represents an operation that
advances a single cell in the grid for one full time step. The
computational cost in terms of memory bandwidth and number
of double-precision floating pointing operations is de facto
constant for each zone cycle and was measured on a single
GPU with NVPROF. Thus, it is trivial to calculate those
metrics for our fiducial run on OLCF Summit based on the
achieved zone cycles per second. Similarly, the total memory
consumption can be calculated by measuring the size of a
single block and multiplying this number by the total number
of blocks in the grid. In addition, we calculate the MPI
bandwidth by counting the number cell transfers between
AMR/SMR blocks on different nodes.

The grid described in Section 4.2 is used for the largest of
our weak scaling tests, which uses 5400 V100 GPUs and
requires over 25 TB of GPU RAM. We use fewer blocks of the
same size (48× 48× 64) for the smaller scaling tests. In other
words, we keep the number of blocks/GPU constant by
preventing H-AMR from refining beyond a certain number of
blocks (this can potentially reduce the number of AMR levels).
Note that since the grid for the smaller weak scaling tests
becomes smaller and may have fewer AMR layers, the problem
is not exactly the same, and thus these benchmarks merely
serve as an indication of what performance might look like for
a hypothetical simulation using a smaller grid with similar
characteristics. The plotted efficiency is accurate, though, for
our fiducial simulation and represents the average performance
of our code, which includes the entire application performance
including I/O.

We express in Section 4 our numerical efficiency as the
achieved zone cycles s−1 GPU−1 relative to the maximum
value devised from single GPU benchmarks with a 1503 block
size (Section 4.4). Similarly, we express the weak scaling
efficiency as the achieved zone cycles s−1 node−1 compared to
this value achieved for a single node (six V100 GPUs) using
the respective grid (∼20 blocks of size 48× 48× 64 per GPU).

4.4. Limitations on Scaling

As long as the grid has a resolution of1253 per GPU, we
find that the numerical efficiency remains excellent for a wide
range of problems. Lowering the resolution to 503 per GPU
without LAT or to∼1003 per GPU with LAT gives us
only∼40% of the GPU’s maximum performance in zone
cycles per second. The per-GPU resolution limitation arises
because a GPU needs to keep∼105 CUDA threads occupied,
which is not possible for smaller grids, especially when LAT
reduces the total number of time steps by a factor of ∼10. To
allow for efficient load balancing, this grid needs to be divided
such that there are at least15 blocks per GPU. Using7
blocks per GPU leads to a factor 2–3 performance decrease.
Another constraint comes from the block size, which needs to
exceed503 cells, such that internode MPI transfers do not
become prohibiting. For block sizes of∼503 cells we find that
on average ∼25% of the MPI interconnect bandwidth is
saturated for our fiducial run (Table 1). However, since some
nodes can be more MPI-intensive than others, this number can

be much higher for certain nodes and makes the MPI
bandwidth the main performance bottleneck for our fiducial
run. Reducing the block size to∼263 while keeping the total
number of cells constant decreases the performance by a factor
2–3. Furthermore, the available HBM2 RAM on each 16 GB
GPU can only fit a 2563 grid.
These constraints make it imperative that every grid has

to be fine-tuned to the respective system. In our case the
simulation has run∼10% of the time on 3600 V100 GPUs,
which is the minimum amount of GPUs we need owing to
RAM constraints, and∼90% of the time on 5400 V100
GPUs, above which there are not enough blocks to effectively
load-balance the grid. We find that within this range the
number of zone cycles per second per GPU remains constant
to within 10%.

5. Performance Results

In this section we demonstrate excellent single GPU
performance, time-to-solution, scalability, and peak performance
for the thin accretion disk problem presented in Section 4.

5.1. Single CPU/GPU Benchmarks

Figure 5 compares the computational performance in zone
cycles per second of H-AMR on various GPU and CPU
architectures for a simple test configuration without using
AMR, SMR, or LAT and block size of 1503. On a single
NVIDIA V100 GPU H-AMR attains∼1, 0× 108 zone cycles
s–1, which corresponds to a factor ∼5 speedup compared to a
28-core Intel W3175X Skylake CPU (clocked at 2.8 GHz with
16 cores active), which attains 10× 105 zone cycles s–1 per
core using AVX-512 vectorization. Note that a zone cycle
includes the predictor and corrector steps in our second-order-
accurate time-stepping routine. We profiled our code using
NVPROF on a single GPU and manage to saturate 25% of
FP64 throughput and 57% of memory bandwidth without any
register spillover on a single NVIDIA V100 GPU for a 1503

block. We consider this a remarkable result, especially since
H-AMR contains more than 10,000 lines of CUDA ker-
nel code.

5.2. Peak Performance

From the total number of zone cycles per second achieved in
our fiducial run we can easily calculate the peak performance
on 5400 V100 GPUs as described in Section 4.3. The results
are summarized in Table 1, which shows that H-AMR uses a
significant fraction of the FP64 power, GPU memory

Table 1
Time-averaged Absolute and Relative Performance of H-AMR

Abs. Perf. Rel. Perf.

FP64 rate 2.2 PFLOP s–1 5.3%

GPU DRAM bandwidth 588 TB s–1 12.1%

GPU DRAM consumption 25 TB 28%

MPI bandwidth 5.5 TB s–1 24%

Note. Floating-point power (FP64), GPU DRAM bandwidth, GPU DRAM
consumption, and MPI bandwidth for our fiducial un on 5400 V100 GPUs of
the OLCF Summit supercomputer. This demonstrates that H-AMR does not
have a “single” bottleneck resource, making efficient use of OLCF Summit.
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bandwidth, GPU memory size, and MPI bandwidth. This leads
us to conclude that H-AMR is very well optimized across the
board and makes efficient use of the resources available on
OLCF Summit. Furthermore, it shows that while the MPI and
GPU memory bandwidths are the current bottlenecks, imple-
mentation of new floating point heavy physics such as radiation

into H-AMR may cause the floating point capacity to become
the bottleneck resource in the future.

6. Performance Summary

In this article we have presented H-AMRʼs performance under
a scenario of extreme complexity featuring an unusually high cell
count, AMR, SMR, and thousands of GPUs. In Table 2 we
summarize H-AMRʼs performance spanning a range of complex-
ity. These range from a typical∼1923 GRMHD simulation
(EHT-192) of a geometrically thick accretion disk that we ran on
a single GPU during the GRMHD code comparison (Porth et al.
2019) to the very thin disk (TD-4608) considered in this work.
We also summarize H-AMRʼs performance in a mid-resolution
GRMHD simulation of a thin accretion disk (TD-1728) with
AMR on 128 GPUs (Liska et al. 2022) and in a 23043 GRMHD
simulation of a geometrically thick accretion disk (EHT-2304)
without AMR on 6000 GPUs (Ripperda et al. 2022).
In Table 2 we calculate the speedup compared to H-AMRʼs

performance on a 20-core Intel Skylake CPU without any advanced
features (AMR, SMR, LAT, GPUs). We assume that the time step
is not limited by the Courant condition in the j-direction until a
resolution of Nj= 128 owing to cylindrification of the grid

Figure 5. The computational performance of H-AMR in zone cycles per
second on a 1503 uniform grid for various generations of Intel CPUs (Haswell
and Skylake) and NVIDIA GPUs (Pascal, Volta, and Ampere). HT indicates
that we make use of HyperThreading on Intel CPUs. A zone cycle includes
both the predictor and corrector step in our second-order-accurate time-
stepping routine.

Table 2
Performance Metrics of H-AMR in Four Astrophysical Scenarios

TD-4608 TD-1728 EHT-192 EHT-2304

Base resolution 1680 × 576 × 1024 1020 × 432 × 288 304 × 192 × 192 5376 × 2304 × 2304

Effective resolution 13440 × 4608 × 8192 4080 × 1728 × 1152 304 × 192 × 192 5376 × 2304 × 2304

Block size 48 × 46 × 64 102 × 36 × 36 76 × 32 × 48 64 × 44 × 64

Grid outer radius 105rg 2000rg 150rg 2000rg

Physical duration 1.5 × 105rg/c 105rg/c 104rg/c 104rg/c

Hardware computational cost 3.8 × 106 GPU hr 3.3 × 104 GPU hr 18 GPU hr 1.1 × 106 GPU hr

System scale 5400 V100 GPUs 128 V100 GPUs 1 V100 GPU 6000 V100 GPUs

Number of cells (12–22) × 109 0.44 × 109 9.2 × 106 22 × 109

Number of real zone cycles 1.7 × 1017 5.2 × 1015 0.64 × 1013 0.88 × 1017

Number of effective zone cycles 1.5 × 1018 1.8 × 1016 1.6 × 1013 4.4 × 1017

Effective zone cycles s−1 1.1 × 108 GPU–1 1.5 × 108 GPU–1 2.5 × 108 GPU–1 1.1 × 108 GPU–1

LAT × GPU speedup 31 43 71 31

SMR speedup (#Time steps) 3.3 1.42 1.17 6.7

AMR speedup (#Cells) 35 18 1 1

AMR speedup (#Time steps) 53 20.7 1 1

Total speedup 1.9 × 105 2.3 × 104 83 208

Note. TD-4608 is the fiducial run of a tilted thin accretion disk described in this article, which makes use of three levels of AMR. TD-1728 is an aligned thin accretion
disk that makes use of three levels of AMR (Liska et al. 2022). EHT-192 is a geometrically thick accretion disk that does not use AMR (Porth et al. 2019). It represents
a typical medium-resolution GRMHD simulation part of the Event Horizon Telescope Collaboration (EHTC) GRMHD simulation library. EHT-2304 is a similar
simulation of a geometrically thick accretion, but performed at an extremely high resolution without AMR (Ripperda et al. 2022). The effective number of zone cycles
and zone cycles s−1 assumes that all cells are evolved at the highest LAT level. Thus, the ratio between the number of effective and real zone cycles equals the factor
by which LAT reduces the number of time steps. The LAT × GPU speedup gives the factor by which LAT and GPUs speed up H-AMR. We compare against a 20-
core Skylake CPU, on which the non-AVX-vectorized version of H-AMR has a performance of ∼3.5 × 106 zone cycles s−1. SMR/AMR speedup (#Time steps)
gives the cost reduction factor in the number of time steps compared to a spherical grid without SMR that uses cylindrification (Tchekhovskoy et al. 2011) around the

polar axis such that it is not limited by the Courant condition in the j-direction up to a resolution of Nj = 128. For Nj > 128 we assume that D = D
j

t t
N

3 128 2 and

calculate the time step as Δt ∝ 1/(1/Δt1 + 1/Δt2 + 1/Δt3) (Section 2). AMR speedup (#Cells) similarly gives the reduction factor in the number of cells, which is
defined as the ratio between the true number of cells in the grid and the number of cells in a unigrid at the effective resolution. Multiplying all of these factors gives the
total speedup.
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(Tchekhovskoy et al. 2011). A more detailed explanation of how
these speedup factors are calculated is given in the caption of
Table 2. Under these assumptions, the attained speedup ranges
from a factor ∼80 for EHT-192 to a factor∼1.9× 105 for TD-
4608, since TD-4608 benefits a lot from SMR and AMR.
However, as the performance of EHT-2304 demonstrates, even
in the absence of any AMR, the speedup can exceed a
factor200 at higher resolution where squeezing of cells near
the pole makes the simulation significantly more expensive
without SMR (Section 3.4).

6.1. Scalability

The simulation presented in Section 4 scales up to 900
OLCF Summit nodes and 5400 V100 GPUs. Each GPU on
average contains 20 blocks, each of 48× 48× 64 ∼503 cells.
The green dashed line in Figure 6 shows that with the use of
SMR, AMR, and LAT we obtain what might seem like a
disappointing numerical efficiency (with the baseline set by the
number of zone cycles per second on a single GPU for a 1503

block) of∼18% and a weak scaling efficiency (using a single
six-GPU node as a baseline with a grid containing 120 blocks
of size 48× 48× 64) of∼35% at 900 Summit nodes. One
reason for the seemingly low parallel scaling efficiency is the
difficulty of load balancing that arrives with LAT: without LAT,
the weak scaling efficiency increases to a respectable∼60%.
However, by decreasing the number of time steps, LAT speeds
up the simulations by factors of ∼4 (on a single V100 GPU) to
∼9 (on 5400 V100 GPUs): this effectively brings the parallel
numerical efficiency to∼200% at 900 Summit nodes= 5400
V100 GPUs, as shown by the solid blue line in Figure 6. This
corresponds to (effectively)∼1.175× 108 zone cycles s–1

GPU–1. Thus, the net result of LAT is a substantial increase in
effective performance and parallel scaling efficiency.

The other reason for lower numerical efficiency in our
fiducial problem compared to simpler test problems is the
smaller block size. For illustration, consider an idealized weak
scaling test, with a much larger block size of 1503 cells per
GPU; we disable SMR, AMR, and LAT for this test. The
orange dashed–dotted line in Figure 6 shows that this leads to
an excellent parallel weak scaling efficiency of∼80% at 900

Summit nodes, primarily because inefficiencies in load
balancing related to LAT go away (Section 3.5), and the MPI
interconnect bandwidth is not anymore the main bottleneck
owing to the larger block size and therefore smaller fraction of
boundary cells. Note that we would not be able to use such
large blocks of 1503 cells for our fiducial problem, as there
would be an insufficient number of blocks per GPU to
effectively load-balance the grid and the blocks would be too
big to properly focus on the very thin h/r= 0.02 disk.

7. Code Validation

For the purpose of code development and validation,
H-AMR maintains an independently developed and maintained
OpenMP and MPI-parallelized C version running on CPUs.
More specifically, we usually develop new features in the C
version and, after extensive testing, port them to the CUDA/
OpenCL version. Subsequently, we verify that the output of
both versions agrees up to machine precision for various
scenarios. We refer the reader to Porth et al. (2019) for code
validation of H-AMR against its peer codes, performed in the
context of a community-wide GRMHD code comparison
project, and to the Appendix of Liska et al. (2018) for
validation of H-AMR for tilted accretion flows evolved on a
spherical grid. We supplement these tests in this article with a
suite of linear and nonlinear wave tests and two off-center
spherical explosions.

7.1. Linear Wave Tests

To verify second-order convergence of the boundary
conditions between coarse and fine layers in H-AMR, we have
performed a variety of 3D dimensional linear wave tests (with
an O(10−5)) amplitude), which include the fast, slow, Alfvén,
and entropy waves (e.g., Gammie et al. 2003). We rotate the
wavevector by 45° with respect to the x-, y-, and z-axes on a
Cartesian grid and force these waves to propagate through a
grid refinement boundary, which also features a jump in time
stepping (top panels of Figure 7). We evolve each respective
wave for two periods and then compute the L1 error, which is
defined as the absolute value of the finite difference between
the initial and final states for the primitive variables. In the
bottom panel of Figure 7 we demonstrate that H-AMR, as
expected, converges at second order for all waves.

7.2. Nonlinear Wave Tests

To verify the ability of H-AMR to capture shock waves
under challenging conditions, we perform a series of relativistic
shock tube tests as described in Komissarov (1999). We evolve
the shock tubes on a 1D Cartesian grid in Minkowskian space
with no refinement and consider both a MINMOD and PPM
slope limiter (without contact steepener or shock flattener). We
use a Courant factor Cf= 0.8 except for the fast shock, for
which we use Cf= 0.2. We compare in Figure 8 an extremely
high resolution shock tube (Δx= 1.1× 10−3) to a lower-
resolution shock tube (Δx= 2.2× 10−2). The shock fronts in
the low-resolution shock tube are, as expected, less resolved.
While the very diffusive MINMOD limiter does not produce
spurious oscillations near shock fronts, some relatively small
spurious oscillations are detectable with the less diffusive PPM
limiter. This is a well-known disadvantage of PPM limiters that
can be addressed with an optional shock flattener implemented
in H-AMR, which reduces the order of reconstruction near

Figure 6. H-AMR shows excellent weak scaling for both simple and complex
grids. For simple grids, it shows ∼80% numerical efficiency on 900 OLCF
Summit nodes = 5400 GPUs for a single block of 1503 cells per GPU, without
using AMR, SMR, or LAT (dashed–dotted orange line). For more complex
grids, which use AMR and SMR, with 20 blocks of size 48 × 48 × 64 ∼ 503

cells per GPU, the efficiency at 900 nodes drops to ∼60% (not shown for
brevity). While using LAT decreases the raw parallel efficiency to ∼35%
(dashed green line), it also effectively speeds up the simulations by a factor of 4
(on one GPU) to 9 (on 5400 GPUs; solid blue line), leading to an effective
numerical efficiency of nearly ∼200% on 5400 GPUs.
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shock fronts (Colella & Woodward 1984). These tests verify
the robustness and stability of the shock-capturing scheme in
H-AMR when handling shocks in relativistic plasma.

7.3. Off-center Spherical Explosion

To quantify numerical errors associated with gas passing
through the polar singularity and internal/external SMR layers,
we perform an off-center explosion that propagates through the
poles. During this test, we use one layer of external SMR, two
layers of internal SMR, and four levels of LAT. The test is
performed on a logarithmically spaced spherical grid instead of
a Cartesian grid to also validate the correct implementation of
the geometric source terms. The total resolution is
300× 240× 240. The initial pressure and density are set to a
constant p= 3× 10−5 and ρ= 10−4 within a sphere of radius
rs= 2rg that is centered at (x0, y0, z0)= (3, 0, 10)rg. We use an
exponential cutoff to make the transition between the sphere
and ambient medium smoother. In addition to the hydro-
dynamic explosion, we perform a similar test where the
explosion is threaded by a magnetic field described by vector
potential ( ( ) ( ) ( ) )µ - - + - + -fA r x x y y z zs 0

2
0

2
0

2

for r< rs and Af= 0 for r> rs. The magnetic field is
subsequently normalized such that b = =p p 10g b

max max max .
Here pg

max and pb
max are the maximum gas and magnetic

pressure in the grid, respectively.
The results of these off-center explosions are illustrated in

the left (hydrodynamic explosion) and right (magnetized
explosion) panels of Figure 9. Both explosions manage to
maintain their circular shape when passing through the polar
axis. The minor distortions around the polar singularity are
similar to those observed in other GRMHD codes that use
transmissive boundary conditions (e.g Mewes et al. 2018,
2020). This demonstrates that H-AMR is capable of accurately

evolving plasma around the pole and can even maintain some
form of convergence when the gas passes directly through the
polar singularity.
To avoid repeated passage of, for example, a kink-unstable

jet through the polar singularity, H-AMR has the ability to
“rotate” the setup with respect to the spherical grid such that the
jet propagates along the equatorial plane instead (e.g., Gottlieb
et al. 2022a, 2022b, 2022c). The physical equivalence between
rotated and nonrotated setups was demonstrated in the
Appendix of Liska et al. (2018).

8. Discussion

8.1. Advancements in Computational Methods

The extensive optimizations presented in this paper bring
state-of-the-art GRMHD simulations to the exascale level, e.g.,
to clusters with more than 1018 FLOP s–1 of FP64 performance,
using a highly efficient grid capable of tackling problems with
many orders of magnitude in scale separation. We carried out
scaling tests up to 5400 NVIDIA V100 GPUs on OLCF
Summit, culminating in our fiducial simulation: the largest
GRMHD simulation to date that utilizes four AMR levels, with
the block size of 48× 64× 64 cells, and achieves an
astonishingly high effective resolution in the disk of
13,440× 4608× 8096 cells. The simulation cost is around 4

Figure 8. Relativistic shock tubes taken from Komissarov (1999) with density
(ρ) in the left panels and velocity (u x) in the right panels. Reconstruction with
the MINMOD limiter is shown in black and with the PPM limiter in red. The
low-resolution shock tubes with Δx = 2.2 × 10−2 (solid lines) are less sharp
than the high-resolution shock tubes with Δx = 1.1 × 10−3 (dashed lines);
however, they converge to the same solution. This verifies the ability of
H-AMR to handle shock waves in relativistic plasma.

Figure 7. Top panels: a density isocontour rendering at two different times for
a fast wave. Block boundaries are illustrated using white lines. For our wave
tests we start with a grid that has 3 × 3 × 3 blocks and refine the innermost
block. Bottom panel: a plot of the L1 error as a function of the linear resolution
Nx. H-AMR achieves second-order convergence for all waves irrespective of
refinement boundaries.
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million NVIDIA V100 GPU hr, which corresponds to roughly
800 million Skylake CPU core hours (Section 4.4).

H-AMR features a set of optimizations that collectively
boost the performance of GRMHD simulations by at least 2
orders of magnitude for simple problems that do not benefit
from an adaptive mesh. This increases to 5 orders of magnitude
for problems requiring adaptive meshes and very high
resolutions in the polar region (see Section 4.2). This speedup
is attained by the following means. An NVIDIA V100 GPU
typically provides a factor of ∼40 speedup compared to a non-
AVX-vectorized version of H-AMR running on 16 Intel
Skylake cores (AVX vectorization improves the performance
by a factor ∼3). Large gains also come from the advanced
treatment of the polar region during SMR/AMR, which
provides a typical factor 5–20 reduction in the number of time
steps, depending on the resolution. LAT reduces the number of
time steps by another factor of ∼3–10 depending on the
resolution of the grid. Finally, AMR can reduce the number of
cells in the grid by a factor of ∼10–100 for many complex
problems such as thin accretion disks and large-scale jets.

This paves the way for a next generation of GRMHD
simulations with unprecedented resolutions and record-break-
ing simulated timescales, substantially advancing the under-
standing of accreting black holes. For example, H-AMR made
it possible to simulate even the most challenging accretion disk
configurations naturally expected in nature (i.e., thin and tilted)
over timescales that are relevant to astronomical observations
(Liska et al. 2019a, 2019b, 2021). Liska et al. (2019a)
demonstrated, for the first time in GRMHD, that tilted thin
magnetized disks align with the black hole midplane as
theoretically predicted (Bardeen & Petterson 1975), solving a
40 yr old problem in astrophysical disk dynamics. Further, not
only this article but also Liska et al. (2021) and Musoke et al.
(2022) simulated disk tearing in highly tilted thin disks
(Figure 3), potentially explaining some types of QPOs

observed in XRBs (e.g., Kalamkar et al. 2016), as well as
holding important consequences for galactic evolution (e.g.,
King et al. 2005). Using H-AMR, Chatterjee et al. (2019)
simulated the longest extent (in both temporal and spatial
dimensions) relativistic jets from an accreting black hole in 2D
GRMHD, making it possible to follow the jet over a range
of5 orders of magnitude in distance and enable the study of
the jet’s deceleration process as it carves out its path through
the environment. Following this line of study, H-AMR would
finally make it possible to simulate black-hole-launched jets
and connect distances from the event horizon up to
extragalactic distances, closing the gap between GRMHD and
cosmological simulations of galaxy evolution.
H-AMR also played an important role in interpreting (e.g.,

Porth et al. 2019; Chatterjee et al. 2020; Ripperda et al. 2022;
Event Horizon Telescope Collaboration et al. 2022a) the black
hole images from Event Horizon Telescope (EHT) observa-
tions of the supermassive black holes M87* (e.g., Event
Horizon Telescope Collaboration et al. 2019a, 2019b, 2021)
and Sagittarius A* (e.g., Event Horizon Telescope Collabora-
tion et al. 2022b, 2022c). In particular, H-AMR enabled the
first study of how general relativity warps jets (and their
accretion disks) that are misaligned with the black hole spin
axis, ultimately affecting the near-event horizon image of a
black hole (Liska et al. 2019a; Chatterjee et al. 2020). The
ability to carry out the simulations at extremely high
resolutions enables H-AMR to attain in global simulations
(Ripperda et al. 2022) the resolutions typically associated with
local simulations. Such global modeling has already enabled a
significant improvement in our understanding of how black
holes consume and eject gas. It has been thought that the
formation of relativistic jets by an accreting black hole requires
the presence of large-scale vertical magnetic flux to begin with,
and that absent such a field—e.g., if only a purely toroidal
magnetic field is present—the simulations do not produce jets

Figure 9. Left panel: the ratio between internal energy (ug) and rest mass density (ρ) during a spherical off-center explosion that passes through two internal and one
external SMR layer in addition to the polar axis. The different meshblocks are separated by white lines. Black lines illustrate the distance from the center of the
explosion in steps of 1rg. The front of the shock wave becomes less resolved at larger radii owing to the logarithmic spacing of the grid. Right panel: the ratio between
the magnetic energy (b2) and rest mass density (ρ) during a magnetized off-center explosion that passes through two internal and one external SMR layer in addition to
the polar axis. When the explosion passes through the polar singularity, only minor artifacts in the internal energy and magnetic field strength are detected, which is
consistent with other (GR)MHD codes that utilize similar (transmissive) boundary conditions (e.g., Mewes et al. 2018, 2020).
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(Beckwith et al. 2008a; McKinney et al. 2012). However, our
simulations have revealed that such configurations are actually
capable of generating large-scale vertical magnetic flux and
forming relativistic jets (Liska et al. 2020).

Summing up, H-AMR is in a prime position to address
important questions about the dynamic nature of accretion
disks and jets such as the hitherto-unexplained trigger behind
the observed change in disk geometry from thick to thin (e.g.,

Belloni 2010; Liska et al. 2022), the evolution of jet
morphologies (known as the FR I/II dichotomy; Fanaroff &
Riley 1974), and the origins of particle acceleration in both
disks and jets (Sironi et al. 2015; Ripperda et al. 2022). The
high speed of H-AMR makes it attractive to account for
departures from ideal MHD physics such as radiation (e.g.,
Sadowski et al. 2013; Ryan et al. 2017; Foucart 2018) and
synchrotron cooling of electrons (e.g., Fragile & Meier 2009;

Figure 10. A 3D isocontour rendering of density at different times in our simulation, showing a single tearing cycle of the disk: at the initial time shown,
t = 42,500rg/c (top left panel), the disk is intact. However, at t = 47,500rg/c, the inner disk of size ∼ 20rg tears off from the outer disk and starts to precess
independently of the outer disk. Eventually, the inner precessing disk gets consumed by the black hole, and the entire disk appears intact again at the last time shown,
t = 82,500rg/c (bottom right panel). During each tearing cycle, the torque from the spinning black hole overcomes the viscous torques holding the disk together, and
the disk tears apart. This results in a rapidly precessing inner subdisk physically detached from the outer disk. This subdisk can sustain several precession periods
before it shrinks and disappears into the black hole and the tearing cycle repeats. Disk tearing and precession is an attractive model to explain type C QPOs in the light
curves of XRBs (e.g., van der Klis 2006).

15

The Astrophysical Journal Supplement Series, 263:26 (17pp), 2022 December Liska et al.



Dibi et al. 2012; Drappeau et al. 2013; Yoon et al. 2020),
resistivity (e.g., Ripperda et al. 2019a, 2019b; Mignone et al.
2019), and two-temperature thermodynamics (e.g., Ressler et al.
2015; Chael et al. 2017; Ryan et al. 2018; Liska et al. 2022),
which may lead to important insights into many of the
abovementioned problems. Currently, H-AMRʼs speed is
only (MPI bandwidth) limited by waiting times for internode
communication, which leaves time for extra computations.
Therefore, more complex physics can be implemented
(almost) free of charge. Such numerical experiments are
expected to scale well on exascale systems, even if those
systems feature slower internode communication than in the
simulations presented here and conducted at OLCF Summit.

8.2. Scientific Results

For the scaling tests presented in this article we have used a
real-world problem involving a highly tilted (by 65°) very thin
(h/r= 0.02) accretion disk threaded by a strong toroidal
magnetic field (β∼ 10) around a rapidly spinning black hole
(a∼ 0.94). These simulations are more extensively described in
Musoke et al. (2022). Interestingly, unlike thick disks threaded
with toroidal magnetic field that tend to develop large-scale
poloidal magnetic flux through a dynamo process and
associated relativistic jets (Liska et al. 2020), our thin disk
did not produce any jets, as seen in Figure 3. In fact, due to the
complete absence of jets, the outcome resembles the high/soft
state in XRBs, and as such this is the first GRMHD simulation
to reach this exceptionally challenging jet-less regime, in the
complete absence of initial poloidal magnetic flux. While in
previous work we needed to seed the accretion disk with a
rather strong poloidal magnetic field as is only expected in the
intermediate states (Liska et al. 2019a, 2019b, 2021), the
powerful NVIDIA V100 GPUs of OLCF Summit allowed us to
resolve the weak toroidal magnetic field with20 cells per
MRI wavelength and the disk scale height with 25−30 cells.

As illustrated in Figures 3 and 10 and in the accompanying
movie,6 we find that tilted thin accretion disks, initially
threaded with a purely toroidal magnetic field (i.e., containing
no poloidal magnetic flux to begin with), can tear apart into
multiple precessing subdisks. We also find that, even in the
absence of a Blandford & Znajek (1977) jet, the inner regions
of a magnetized accretion disk can sporadically align with the
black hole midplane, as predicted more than four decades ago
by Bardeen & Petterson (1975) and seen in such disks for the
first time (see Figure 3). The movie6 of the simulation shows
multiple (4) cycles of such tearing events that result in the
formation of a precessing inner subdisk of about the same size.
The emission from such precessing subdisks is expected to be
quasiperiodic. Thus, the tearing of tilted disks is an attractive
mechanism for producing coherent QPOs, now testable via
GRMHD simulations for the first time (e.g., Musoke et al.
2022). Improved understanding of the evolution of QPO
frequency and amplitude during XRB outbursts may lead to
unique constraints on black hole spin magnitude and/or disk
geometry (e.g., Ingram et al. 2009; Motta et al. 2015) and
provide new insights into the physics driving XRB spectral
state transitions (e.g., Ferreira et al. 2006; Begelman &
Armitage 2014; Marcel et al. 2018a, 2018b; Liska et al.
2019a, 2020).
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