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AbstractÐDistribution grids are challenged by rapid voltage
fluctuations induced by variable power injections from dis-
tributed energy resources (DERs). To regulate voltage, the IEEE
Standard 1547 recommends each DER inject reactive power
according to piecewise-affine Volt/VAR control rules. Although
the standard suggests a default shape, the rule can be customized
per bus. This task of optimal rule design (ORD) is challenging as
Volt/VAR rules introduce nonlinear dynamics, and lurk trade-offs
between stability and steady-state voltage profiles. ORD is formu-
lated as a mixed-integer nonlinear program (MINLP), but scales
unfavorably with the problem size. Towards a more efficient
solution, we reformulate ORD as a deep learning problem. The
idea is to design a DNN that emulates Volt/VAR dynamics. The
DNN takes grid scenarios as inputs, rule parameters as weights,
and outputs equilibrium voltages. Optimal rule parameters can
be found by training the DNN so its output approaches unity
for various scenarios. The DNN is only used to optimize rules
and is never employed in the field. While dealing with ORD, we
also review and expand on stability conditions and convergence
rates for Volt/VAR dynamics on single- and multi-phase feeders.
Tests showcase the merit of DNN-based ORD by benchmarking
it against its MINLP counterpart.

Index TermsÐIEEE 1547.8 Standard, linearized distribution
flow model, multiphase feeders, gradient backpropagation.

I. INTRODUCTION

DERs such as solar photovoltaics, are being advocated as

a means to battle climate change, shave peak demand, and

improve reliability. Despite the obvious benefits, the operation

of distribution grids is nowadays challenged by undesirable

voltage excursions induced by power injections from DERs.

Traditional voltage regulation apparatus (e.g., regulators and

capacitors) is deemed ineffective as responding to rapid and

frequent voltage fluctuations can significantly shorten the life-

time of such equipment. Fortunately, the inverters interfacing

DERs to the feeder can assist in regulating voltage by injecting

reactive power. To this end, the IEEE Std. 1547 provisions that

each DER should act autonomously, read its local voltage,

and compute its reactive injection based on a Volt/VAR curve.

This work aims to design these Volt/VAR curves optimally
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and customize them per bus according to the anticipated grid

loading conditions every few hours or so.

Ideally, the reactive power setpoints of DERs can be op-

timally selected by solving an optimal power flow (OPF)

given the current grid conditions [1]±[3]. Such centralized

schemes, however, involve high communication and computa-

tional overhead, privacy issues, and can introduce details. On

the other hand, local voltage regulation schemes for DERs

entail calculating control setpoints solely based on locally

collected data, such as load, solar generation, and voltage

measurements at the grid interface. The Std. 1547 prescribes

a local control scheme whereby DER setpoints are produced

by control rules taking the form of piecewise linear functions

of local measurements [4]. Local rules, though, are known to

produce sub-optimal setpoints [5], [6]. Nevertheless, autonomy

and simplicity are lucrative features of local schemes for

real-time DER control. Focusing on Volt/VAR control, this

work delves into the study and optimal design of local rules.

Since voltages are affected by reactive setpoints, Volt/VAR

rules give rise to closed-loop dynamics, which can become

unstable under control rules with steep slopes [7]±[9]. While

the aforementioned works study the convergence and stability

of Volt/VAR control rules, they do not address how to design

such rules, i.e., how to select their exact shape, in the first

place. Prior efforts on designing DER rules either resort

to heuristics [10]±[12], deal with non-dynamic Watt/VAR

rules [13]; or restrict themselves to affine Volt/VAR rules [14];

or ignore the deadband [15]. A recent work designs optimal

IEEE 1547-type rules, using mixed integer programs, which

are then solved using relaxation heuristics [16]. However,

discussions on the stability and convergence of the control

rules are omitted.

Similarly, there is a recent line of works that integrate

Volt/VAR and Watt/VAR rules into an OPF formulation, and

co-optimize rules and inverter setpoints for a single grid

loading scenario [17]±[20]. Optimizing rules at the same

timescale with setpoints may defy the intention of the IEEE

Standard 1547 to have DERs either operating autonomously

by running localized rules, or following centrally computed

OPF setpoints. Regardless, references [17], [18] co-optimize

rules and setpoints via a nonlinear non-convex program, which

may lack global optimality guarantees. In pursuit of global

optimality, subsequent reference [19] devised a mixed-integer

second-order cone program (MISOCP), which could scale

unfavorably with the network size (no running times were

reported) and is limited to single-phase radial grids. Extending

it to multiphase feeders under the exact AC grid model would

call for computationally costly mixed-integer semidefinite
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programs (MISDP). As a remedy, reference [20] adopts a

linearized grid model to co-optimize rules and setpoints under

the multiphase setting. Piecewise-affine rules are captured

via binary variables selecting segments of voltages. Products

of binary-continuous (voltage) variables are handled through

the standard big-M trick to arrive at a mixed-integer linear

program (MILP). However, the aforesaid works ignore linear

inequality constraints on rule parameters required by IEEE

Std. 1547 and do not ensure the rules are stable. Dealing

with these two requirements requires keeping the native rule

parameters (deadband, slope, saturation, reference voltage) as

the optimization variables. Unfortunately, such parameteriza-

tion of the problem introduces products between continuous

variables, whose big-M reformulations are known not to be

exact. This, in turn, gives rise to mixed-integer nonlinear

programs (MINLP). Reference [21] develops another MINLP

formulation for ORD, which nonetheless, ignores voltage

deadband, fixes kVAR saturation at the kVAR capacity of the

inverter, does not enforce the constraints required by the IEEE

Std. 1547, and is limited to single-phase grids.

Unlike above, our recent work in [22] formulates a bilevel

optimization to design the slopes, deadband, saturation, and

reference voltages for the Volt/VAR rules as the IEEE 1547.8

Standard prescribes. The bilevel optimization considers mul-

tiple grid scenarios to capture uncertainty. Upon leveraging

the properties of the system at equilibrium, it finds stationary

points using projected gradient descent iterates.

Our present work extends [22], and improves upon the

previously cited literature in four directions:

c1) Most of the existing works focus on simplified single-

phase distribution grid models. We extend the analysis of [9],

and provide conditions to ensure the stability of the IEEE

1547 Volt/VAR rules for the more practically relevant setup

of multiphase feeders;

c2) We cast the problem of finding optimal Volt/VAR

rules as a DNN training task. The training process involves

stochastic projected gradient updates (SPGD) that leverage

efficient, off-the-shelf Python libraries;

c3) We genuinely design the DNN to emulate Volt/VAR

dynamics: It accepts grid conditions as input, the parameters

of the Volt/VAR rule as weights, and computes approximate

equilibrium voltages at its output. Based on the convergence

rate of Volt/VAR dynamics, we determine the minimum depth

this DNN should have to approximate equilibrium voltages to

the desired level of accuracy;

c4) Leveraging the bilevel structure of ORD, we also refor-

mulate ORD as a mixed-integer nonlinear program (MINLP).

This MINLP-based approach does not scale favorably with the

number of DERs and grid scenarios. Nonetheless, it serves as

a benchmark for comparison to better assess the optimality

and computational speed of our DNN-based ORD approach.

We next expound upon how our work differs from prior

works utilizing machine learning and/or reinforcement learn-

ing for smart inverter control. DNNs have been extensively

employed before for optimal DER control under OPF formu-

lations, with the objective of minimizing energy losses and

energy costs; see e.g., [23]±[26]. Support vector machines

and Gaussian processes have also been suggested for reactive

power control using smart inverters [27], [28]. However, none

of the above references aim at modeling the IEEE 1547-

type piecewise linear, local, Volt/VAR rules. Furthermore, the

existing problem formulations preclude the presence of closed-

loop dynamics and are not nuanced by stability concerns as

in the present work. In terms of using a DNN to model

piecewise linear control rules, our work bears some simi-

larities with references [29]±[31]. References [29] and [31]

model piecewise linear control rule using a NN with a single

hidden layer, and do not capture Volt/VAR dynamics over

time using a neural network architecture. Furthermore, they

focus on optimal control of transient dynamics. In contrast,

the present work aims to design control rules that produce

equilibrium voltages close to unity across many scenarios. This

is achieved via efficient training of a recurrent neural network

(RNN) whose training coincides with ORD. While the recent

work [30] does leverage RNNs to design rules, it does so for

controlling frequency transients. Moreover, references [29]±

[31] do not discuss other topics covered in this work such as

the IEEE 1547-type Volt/VAR rules, their convergence speed

and depth of the resulting RNNs, as well as the implications

of Volt/VAR control in multiphase feeders. Parallel work

[32] designs a stable Volt/VAR control mechanism wherein

each DER decides its reactive injections via a single-layer

DNN driven by local data. Different from our approach, the

suggested control rule does not comply with IEEE 1547 and

training that DNN requires solving several OPF instances

beforehand to generate labels. Finally, reference [32] does not

cover multiphase feeders.

II. FEEDER MODELING PRELIMINARIES

Consider a feeder rooted at the substation. Although the

feeder can be single-phase or multiphase, it features a tree

(radial) structure in terms of buses. For multiphase feeders, a

bus may serve one to three phases; a valid pair of bus and

phase will be referred to as a node. For single-phase feeders,

the terms bus and node will be used interchangeably. The

substation is indexed by 0 and is considered balanced; all

remaining nodes are indexed by n ∈ N := {1, . . . , N}. All

DERs are assumed to be single-phase and be able to provide

reactive power control. For simplicity, each node is assumed

to host a DER; we briefly discuss the minor modifications to

deal with the more practical setting where not all nodes host

DERs. Our numerical tests evaluate the latter setting.

To study the effect of power injections on voltage mag-

nitudes, we use an approximate linearized grid model. Let

the active/reactive power injections and voltage magnitudes

(henceforth simply voltages) at the non-substation nodes be

collected into the N -length vectors p, q, and v, respectively.

The linearized grid model relates these quantities as [33]

v ≃ Rp+Xq+ v01 (1)

where v0 is the substation voltage, and real-valued matrices

R and X depend on line impedances and feeder topology.

If pg and pℓ denote the active power generated by DERs

and that consumed by the loads accordingly, then p = pg −
pℓ. Reactive power injections can be decomposed similarly as
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Fig. 1. The piecewise linear Volt/VAR control rule f(v) provisioned by
the IEEE 1547 standard [4]. The x-axis corresponds to the local voltage
magnitude and the y-axis to the inverter setpoint for reactive power injection.

q = qg − qℓ. Supposing p and qℓ are uncontrolled and vary

with time, reactive power compensation entails adjusting qg

to maintain v around one per unit (pu). To isolate the effect

of DER reactive injections on voltages, rearrange (1) as

v = Xqg + ṽ = Xq+ ṽ (2)

where the notation is slightly abused by denoting qg as q for

simplicity. The uncontrolled quantities are captured in vector

ṽ := R(pg −pℓ)−Xqℓ+ v01, where ṽ models voltages had

it not been for reactive power compensation. Vector ṽ will be

henceforth termed the vector of grid conditions.

Given its importance in Volt/VAR control, let us summarize

some properties of the sensitivity matrix X appearing in (2).

For single-phase feeders, matrix X is known to be symmetric,

positive definite, and with positive entries; see e.g., [34], [7].

For multiphase feeders, however, matrix X is non-symmetric

and has positive as well as negative entries [35]. Nonetheless,

under conditions typically met in practice [35], matrix X

remains positive definite for multiphase feeders in the sense

z⊤Xz > 0 for all z ̸= 0. These nuances of X call for

relatively different treatments of Volt/VAR control between

single- (Sections III±IV) and multi-phase feeders (Section VI).

III. CONTROL RULES FOR SINGLE-PHASE FEEDERS

The IEEE 1547.8 standard provisions four modes of reactive

power control [4]: constant power, constant power factor,

Watt/VAR, and Volt/VAR. We focus on the last one as being

the most grid-adaptive. This mode enables the inverters to

respond to local voltage deviations via a piecewise linear

control curve f(v), like the one depicted in Fig. 1. The curve

consists of a deadband of length 2δ centered around v̄; two

affine regions; and two regions wherein reactive injections

saturate at ±q̄. The IEEE standard constraints the curve

parameters as follows (see Table 8 of [4])

0.95 ≤ v̄ ≤ 1.05 (3a)

0 ≤ δ ≤ 0.03 (3b)

δ + 0.02 ≤ σ ≤ 0.18 (3c)

0 ≤ q ≤ q̂. (3d)

Per (3d), the saturation value q̄ can be equal to the reactive

power capability q̂ of the inverter, but also smaller than that.

The rule of Fig. 1 is parameterized by (v̄, δ, σ, q̄), which

can be customized per bus n as (v̄n, δn, σn, q̄n). The rule can

be alternatively parameterized by (v̄n, αn, δn, q̄n), where αn

is the negative slope of the affine segment and is defined as

αn =
qn

σn − δn
> 0. (4)

Let vectors (v̄,α, δ, q̄) collect (v̄n, αn, δn, q̄n) for all n ∈ N ;

and stack such vectors together in vector z := (v̄,α, δ, q̄).
The interaction of Volt/VAR-controlled DERs with the grid

results in the non-linear discrete-time dynamics

vt = Xqt + ṽ (5a)

qt+1 = fz(v
t) (5b)

where vector function fz(v
t) represents the action of Volt/VAR

rules across all nodes and is parameterized by z.

References [9], [36] guarantee that Volt/VAR dynamics are

stable if ∥ dg(α)X∥2 < 1, where dg(α) is a diagonal matrix

having α on its diagonal. To be satisfied as a strict inequality,

the condition can be strengthened as ∥ dg(α)X∥2 ≤ 1− ϵ for

some ϵ ∈ (0, 1).

Definition 1. Volt/VAR rules satisfying ∥ dg(α)X∥2 ≤ 1− ϵ
for ϵ ∈ (0, 1) will be henceforth termed ϵ-stable.

To avoid the spectral norm condition ∥ dg(α)X∥2 ≤ 1− ϵ,
we have previously proposed the polytopic restriction [22]:

Xα ≤ (1− ϵ)1 (6a)

αn ≤
1− ϵ

∑

m∈N Xnm

, ∀n ∈ N . (6b)

If stable, the dynamics in (5) enjoy an equilibrium under

any grid condition ṽ [7]. In fact, the inverter setpoints at

equilibrium coincide with the unique minimizer of the convex

program [7]

q∗(z, ṽ) := argmin
−q̄≤q≤q̄

F (q) (7)

where the objective function is defined as

F (q) := 1
2q

⊤Xq+ q⊤(ṽ − v̄)
︸ ︷︷ ︸

:=V (q)

+
∑

n∈N

1
2αn

q2n + δn|qn|

︸ ︷︷ ︸

:=C(q)

.

Component V (q) can be equivalently expressed as [7]

V (q) =
1

2
(v − v̄)⊤X−1(v − v̄) + constants. (8)

Because X ≻ 0, function V (q) is an ℓ2-norm of (v − v̄).
Hence, minimizing V (q) aims at bringing voltages close to

reference voltages. Nonetheless, problem (7) involves also

C(q) in its cost. Hence, to best regulate voltages, one would

try setting α to infinity and δ to zero so C(q) = 0 and

the equilibrium setpoints minimize only V (q). This course

of action however would violate the stability condition of

∥ dg(α)X∥2 ≤ 1.

The next section develops methods for selecting the

Volt/VAR rule parameters z so that a voltage regulation

objective is minimized for a set of grid scenarios. For single-

phase feeders, Section IV reformulates (ORD) as the problem

of training a neural network, while Section V tackles ORD as

a mixed-integer nonlinear program. For multiphase feeders,

solving ORD is dealt with in Section VI.
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IV. ORD FOR 1ϕ FEEDERS VIA DEEP LEARNING

Because Volt/VAR rules are used so inverters can operate

autonomously, it is reasonable to assume that rule parameters

z are updated infrequently, say every 2 hours. Then, rules z

should be optimized while considering the possibly diverse

loading conditions the feeder may experience over those 2

hours. To account for such conditions, suppose we are given a

set of S load/solar scenarios {(pg
s ,p

ℓ
s,q

ℓ
s)}

S
s=1. Each scenario

is related to grid condition vector [see (1)]

ṽs := R(pg
s − pℓ

s)−Xqℓ
s.

Let q∗(z, ṽs) or simply q∗
s(z) denote the equilibrium setpoints

reached by stable Volt/VAR rules parameterized by z under

grid conditions ṽs. Unfortunately, setpoints q∗
s(z) cannot be

expressed as in closed form. They can be computed by

either iterating (5), or as the minimizer of (7). The related

equilibrium voltage is v∗
s(z) := Xq∗

s(z) + ṽs from (1).

We pose the ORD task as a minimization problem over z:

min
z

1

2S

S∑

s=1

∥Xq∗
s(z) + ṽs − 1∥22 (9)

s.to (3), (6)

to minimize the Euclidean distance of equilibrium voltages

from unity, averaged across scenarios. Constraints (3) and (6)

ensure rules are stable and compliant with the IEEE 1547.

It is worth iterating that the ORD is solved centrally by

the utility operator, but only every two hours or so. Once

decided, the optimal rule parameters z are communicated to

the DERs, which can operate autonomously for the next two

hours. The frequency at which the operator chooses to re-

optimize the rules or the number of scenarios S used, do not

alter the proposed methodology per se. Increasing S increases

the running time to some moderate extent as demonstrated in

the numerical tests. Re-optimizing the rules more frequently

(say every one instead of every two hours) would apparently

yield better grid performance. Nonetheless, it would raise

the communication and computational cost for the utility. If

the operator is willing to communicate with the DERs every

15 minutes or less, it may be more meaningful to solve a

(stochastic) OPF and communicate direct setpoints rather than

rules to DERs.

An additional important observation here is that (9) aims

at minimizing voltage deviations from unity averaged across

buses and scenarios S. Interestingly, the conference offshoot

of this work shows how the proposed ORD methodology can

be extended to design rules that minimize ohmic losses subject

to voltages lying within the desired range [37]. To account for

uncertainty, losses are averaged over scenarios, and voltage

ranges are enforced as chance constraints.

One may wonder why we are not satisfied with the fact

that any stable rule z settles at the minimizer of (7), which

is seemingly a meaningful equilibrium. Such equilibrium may

be insufficient due to three reasons: i) The term V (q) is a

rotated ℓ2-norm of (v − v̄), so that voltage deviations are

weighted unequally across buses; ii) If DERs are sited only

on a subset G ⊂ N of nodes, the cost V (q) gets modified

as VG(qG) = 1
2 (vG − v̄G)

⊤X−1
GG(vG − v̄G), where subscript

Fig. 2. Volt/VAR rule f(v) expressed as a sum of ReLUs.

G denotes the subvectors/submatrix obtained by keeping the

rows/columns corresponding to G; see [22]. Such cost may

not be representative of ∥v − v̄∥22; and iii) As discussed

earlier, stability limitations do not allow us to set α to

infinity although it seems desirable from a voltage regulation

standpoint. The aforementioned reasons motivate the need to

optimally design z so the induced equilibrium voltages v∗
s(z)

are better regulated.

Albeit simply stated, problem (9) is computationally chal-

lenging as q∗
s(z) is the solution of the inner minimization

problem (7), which is parameterized by z. Thereby, the ORD

task is a bilevel optimization over z: The outer problem (9)

depends on S inner problems of the form (7), one per scenario.

Our first strategy towards tackling (9) is to replace the

inner problem with a DNN that simulates the Volt/VAR

dynamics. This DNN has z as weights, accepts ṽs as input, and

outputs the equilibrium voltages v∗
s(z). Let the DNN output

be denoted by Φ(ṽs; z). The key idea is that if Φ(ṽs; z) are the

equilibrium voltages for rule z over scenario s, then problem

(9) becomes the supervised training task:

min
z

L(z) :=
1

2S

S∑

s=1

∥Φ (ṽs; z)− 1∥22 (10)

s.to (3), (6).

To draw a useful analogy, scenarios ṽs are analogous to

feature vectors in regression problems; equilibrium voltages

v∗
s = Φ(ṽs; z) are the predictions for feature vectors; and 1 is

the (constant) target label for the prediction. Formulating (9)

as (10) allows us to leverage efficient DNN libraries for

optimizing z. With this motivation in mind, we next design

the DNN, and then describe the steps to train it.

A. Designing a Digital Twin of Volt/VAR Dynamics

The Volt/VAR curve of Fig. 1 can be interpreted as a

superposition of four piecewise-linear functions, each with a

single breakpoint, as shown in Fig. 2. These functions can be

thought of as the outputs of rectified linear units (ReLU) ρ(x),
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Fig. 3. Volt/VAR rule f(v) model using a NN with 1 hidden layer.

which return x for x > 0; and 0 otherwise. To get the different

breakpoints and slopes as in Figure 2, the ReLU units need

the appropriate inputs and scaling. The required mathematical

operations can be implemented through the DNN of Fig. 3,

which takes vtn as input and computes the setpoint qt+1
n at

its output. The input and output layers have one neuron each.

The hidden layer consists of four neurons. The weights of the

hidden layer are fixed to [1, 1,−1,−1]⊤, but its bias vector is

trainable and given by [−(v̄ + δ),−(v̄ + σ), v̄ − δ, v̄ − σ]⊤.

Each of the four neurons in the hidden layer is equipped with

a ReLU unit. The output layer has a trainable weight vector

[−α, α, α,−α]⊤ and the bias is fixed at 0.

Heed that the NN of Fig. 3 implements the Volt/VAR curve

for a single inverter and a single time step as qt+1
n = fn(v

t
n).

To simulate the entire Volt/VAR network dynamics of (5), we

will treat the NN of Fig. 3 as a building block and replicate it

across inverters and time. Let VCn represent the NN module

running a single time step for inverter n. This module is

parameterized by (v̄n, αn, σn, δn). With a slight abuse of

terminology, let the collection of VCn’s for all inverters be

labeled as a single layer. These modules are stacked vertically,

as shown in Fig. 4. Each one of these layers implements

(5b) by receiving vt as input and producing setpoints qt+1 as

output at time t. The setpoints qt+1 in turn produce voltages

vt+1 = Xqt+1 + ṽ per the grid model (5a). To simulate

the dynamics over time, the new voltages vt+1 are passed

to the next layer corresponding to time t+ 1. The process is

repeated for T steps. Structurally, these interactions result in

a larger DNN with T repeating layers, one layer per iteration

of the dynamics in (5), as shown in Figure 4. The simulation

of dynamics over T iterations is equivalent to performing a

forward pass through the larger DNN with ṽ as the input. To

implement (5a), the input ṽ (grid scenario) is also propagated

to the inner layers via so-called skip connections.

It is worth stressing that each module VCn is replicated

horizontally across the T times. This implies significant weight

sharing across the T layers. Therefore, the number of trainable

parameters ẑ := (v̄,α, δ,σ) remains fixed at 4N , irrespective

of the DNN depth T . This weight-sharing aspect results

in computational and memory-related efficiencies for DNN

storing, prediction, and training, and has been instrumental

in the success of architectures such as recurrent (RNN),

convolutional (CNN), or graph (GNN) neural networks. In

fact, it is possible to obtain a recurrent ‘rolled’ representation

of the larger DNN of Fig. 4, as shown in Fig. 5, allowing one

to utilize RNN-specific functionalities in DNN libraries.

In a nutshell, the DNN of Fig. 4 simulates Volt/VAR

dynamics across T times. In other words, once fed with

a grid condition vector ṽs, its output will approximate the

equilibrium voltages v∗
s reached by Volt/VAR dynamics under

rule z. As a result, optimizing over z by training the DNN so

that equilibrium voltages {v∗
s(z)}

S
s=1 come close to one pu,

serves the purposes of ORD. Surrogating Volt/VAR dynamics

by the DNN is effective only if the DNN depth T is sufficiently

large. How deep should the DNN be so that its output Φ (ṽs; ẑ)
is close to v∗

s? Because a DNN of depth T simulates exactly

the Volt/VAR dynamics up to time T , the answer for selecting

T is apparently the settling time of the Volt/VAR dynamics as

detailed next and shown in the appendix.

Proposition 1. Suppose ϵ-stable Volt/VAR rules are described

by z. The depth T of the DNN in Fig. 4 required to ensure

∥Φ (ṽ; z)− v∗(z)∥2 ≤ ϵ1 for all grid conditions ṽ is

T ≥
log 2∥X∥2∥q̂∥2

ϵ1

log(1− ϵ)−1
.

The result implies that the minimum depth T grows log-

arithmically with the desired accuracy ϵ1 and the stability

margin ϵ. Plugging in the typical values ϵ1 = 10−4, ∥X∥2 =
4.63 · 10−1 for IEEE 37-bus feeder, ∥q̂∥2 = 0.1, and ϵ = 0.3,

the bound yields a comfortably small number of T ≥ 20
layers. For ϵ1 = 10−6, the number of layers T increases to

32, demonstrating the scalability of the approach.

To recapitulate, the Volt/VAR rule for each DER is described

by four parameters (v̄n, σn, δn, αn). These parameters appear

as weights of the single-layer neural network shown in Fig. 3.

This building block is indicated as a yellow block and termed

VCn in the RNN of Figure 4. Each VCn is repeated at each

layer t of the RNN. Although the RNN may have T layers,

there is significant weight sharing and only 4N parameters to

be trained, 4 per inverter.

B. DNN Training

With rule parameters ẑ embedded as DNN weights and

biases, the optimal Volt/VAR curves are obtained by training

Φ (ṽs; ẑ). Conventional DNN training uses stochastic gradient

descent (SGD) to update the DNN parameters and eventually

minimize the loss function in (10). However, parameters ẑ

should satisfy constraints (3) and (6). Plain SGD may fail to

return a feasible z. This can be circumvented by using pro-

jected stochastic gradient (PSGD) updates. PSGD updates first

compute an intermediate quantity x̂i+1 via gradient descent

x̂i+1 = ẑi −
µ

2B
∇ẑi

(
∑

s∈Bi

∥Φ(ṽs; ẑ)− 1∥22

)

(11)

where µ > 0 is the step size; set Bi is a batch of B scenarios (a

subset of the original S scenarios); and ∇ẑi(·) is the gradient

of the loss function with respect to ẑ evaluated at ẑ = ẑi.
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Fig. 4. DNN-based digital twin for the Volt/VAR dynamics of (5). The DNN is structured so that T time steps are arranged horizontally. The modules VCn’s
implementing the Volt/VAR curves for each one of the N inverters are stacked vertically. Skip connections propagate the input vector (grid scenario) ṽ to
each time instant to implement vt+1 = Xqt+1 + ṽ.

Fig. 5. Recurrent representation (RNN) of the digital twin of Fig. 4.

The gradient term in (11) is calculated efficiently thanks to

gradient back-propagation.

The second step for PSGD updates entails projecting x̂i+1

into the feasible space defined by (3) and (6). To this end,

we first transform x̂i+1 from parameter space (v̄,α, δ,σ) to

space (v̄, c, δ,σ), where vector c has entries cn := 1/αn.

Variable x̂i+1 transformed in the new space is called x̃i+1.

The transformation is a one-to-one mapping between the two

spaces and is used so that the feasibility set induced by (3)

and (6) is convex, and so it is easy to project onto it. We

proposed this transformation in [22]. We review it here for

completeness. Using (4), constraint (3d) is expressed as

0 ≤ σ − δ ≤ c⊙ q̂ (12)

where ⊙ means element-wise multiplication. Constraints (6)

can be expressed in terms of c instead of α as [22]

c ≥
1

1− ϵ
X1 (13a)

Xa ≤ (1− ϵ) · 1 (13b)

a⊙ c ≥ 1, ∀ n ∈ N (13c)

where a is an auxiliary variable. Constraint (13c) can be

rewritten as a second-order cone. In [22], we show how (13)

is equivalent to (6). The quantity x̃i+1 can now be projected

onto the feasible space via the convex minimization

z̃i+1 = argmin
z

∥x̃i+1 − z∥22 (14)

s.to (3a) − (3c), (12), (13).

The PSGD update is completed by transforming z̃i+1 from

space (v̄, c, δ,σ) back to space (v̄,α, δ,σ) to get ẑi+1.

The proposed DNN training can be implemented in Python

using DNN libraries such as PyTorch. Step (11) is the standard

SGD update pertaining to the loss function of (10) over the

batch of training labels {ṽs, 1}Bi
. As with standard DNN

training, adaptive moment-based algorithms such as Adam can

enable fast convergence and avoid saddle points. The DNN

weights and biases are transformed between the parameter

spaces and then passed to a convex optimization module

to implement the projection step of (14). In the last step,

DNN weights and biases are updated with the new projected

parameters, upon transformation to the original space. The

steps are repeated for several epochs.

V. ORD FOR 1ϕ FEEDERS AS AN MINLP

A second approach towards solving the bilevel program

in (9) is to replace each inner problem with its first-order op-

timality conditions and append these conditions as constraints

to the outer problem. To capture complementary slackness,

we will introduce binary variables and use the so-termed big-

M trick to eventually express the outer problem as a mixed-

integer nonlinear program (MINLP). The process is delineated

next. Although this MINLP approach does not scale gracefully

with the number of DERs and/or scenarios, it serves as a

benchmark for the DNN-based ORD.

We first transform (7) to a differentiable form as

min
q,w

1

2
q⊤ (X+ dg(c))q+ q⊤(ṽs − v̄) + δ⊤w (15a)

s.to −w ≤ q ≤ w : (λ,λ) (15b)

− q̄ ≤ q ≤ q̄ : (µ,µ) (15c)

where vector c has entries cn := 1/αn, and variable w

has been introduced to deal with the non-differentiable terms

|qn| in (7). Slightly abusing notation, denote the optimal

primal/dual variables of (15) by (q,w;λ,λ,µ,µ). Although

the variables vary per scenario, we suppress subscript s for

simplicity. These variables satisfy the optimality conditions

(X+ dg(c))q+ ṽs − v̄ − λ+ λ− µ+ µ = 0 (16a)

δ − λ− λ = 0 (16b)

−w ≤ q ≤ w (16c)

−q̄ ≤ q ≤ q̄ (16d)

λ,λ,µ,µ ≥ 0 (16e)

λ⊙ (q−w) = 0 (16f)

λ⊙ (−q−w) = 0 (16g)

µ⊙ (q− q̄) = 0 (16h)

µ⊙ (−q− q̄) = 0. (16i)
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Equalities (16a)±(16b) follow from Lagrangian optimality; and

inequalities (16c)±(16e) from primal/dual feasibility. Inequal-

ities (16f)±(16i) are complementary slackness conditions.

The bilevel problem in (9) can be now reduced to a

single-level formulation upon appending conditions (16) as

constraints to (9) per scenario s. Such constraints ensure that

q∗
s(z) is indeed the minimizer of (7). Nonetheless, constraint

(16a) and the complementary conditions introduce bilinear

terms. Bilinearity can be partially addressed by handling

complementary slackness conditions through the big-M trick.

For example, condition (16f) can be expressed as

0 ≤ λ ≤ M1b (17a)

0 ≤ q−w ≤ M2(1− b) (17b)

where b is an N -dimensional binary variable, and (M1,M2)
are large positive constants. The latter can be selected as

M2 = 2q̄, while the former can be set to a numerically

estimated upper bound of the corresponding dual variables

λ. Although complementarity constraints can be reformulated

to linear ones, that is not true for the bilinear term dg(c)q
between two continuous variables appearing in (16a). This

term gives rise to a mixed-integer nonlinear program rather

than a mixed-integer linear program.

Since (16)±(17) contain c and q̄, the constraints (3) and (6)

need to be rewritten in terms of c and q̄ as well. To this end,

we chose the parameterization z̃ := (v̄, c, δ, q̄). In this new

parameterization, constraint (3c) is replaced by

0.02 · 1 ≤ c⊙ q̄ ≤ 0.18 · 1− δ (18)

which introduces bilinear terms too. Stability constraints (6)

have already been transformed from α to c in (13).

Putting everything together, the bilevel ORD problem of (9)

can be solved as the MINLP:

z̃∗ = argmin
z̃

1

2S

S∑

s=1

∥Xqs + ṽs − 1∥22 (19a)

over z̃ := (v̄, c, δ, q̄) (19b)

s.to (3a), (3b), (3d), (13), (18) (19c)

(16a) − (16e) ∀ s (19d)

(16f) − (16i) as in (17) ∀ s. (19e)

The bilinear terms in (16a) and (18), and the binary variables

in (19e) increase with the number of inverters and scenarios.

Remark 1. The Volt/VAR curve of Fig. 1 has four degrees

of freedom that control the center, deadband, slope, and

saturation of the curve. These degrees of freedom are amenable

to different equivalent parameterizations, such as (v̄,α, δ,σ)
and (v̄, c, δ,σ) that we used in Sec. IV; (v̄,α, δ, q̄); or

(v̄, c, δ, q̄). We used the last one in (19b) as it yielded

significantly shorter solution times during our tests.

Although the MINLP can solve ORD to near-global opti-

mality (modulo the bilinear terms left to be handled internally

by the solver), it was found to scale unfavorably with the

number of DERs and/or scenarios of Section VII.

VI. ORD FOR 3ϕ FEEDERS VIA DEEP LEARNING

Under transposed lines and balanced injections, one could

deal with ORD using the single-phase formulations discussed

earlier. Under imbalance conditions, however, a linearized

multiphase feeder model would be a better approximation.

DERs would still implement local Volt/VAR rules, yet sen-

sitivity matrix X now has different properties as discussed in

(1). For the multiphase case, we were not able to come up with

an optimization problem whose minimizer coincides with the

equilibrium q∗ similar to (7). Nonetheless, we show in the

appendix that the Volt/VAR rules of Fig. 1 do converge to a

unique equilibrium under the following polytopic conditions,

which form a restriction of ∥ dg(α)X∥2 ≤ 1− ϵ.

Proposition 2. Consider the Volt/VAR dynamics of (5) oper-

ating over a multiphase feeder modeled by (1). If the Volt/VAR

slope vector α satisfies

|X|⊤α ≤ (1− ϵ1) · 1 (20a)

0 ≤ αn ≤
1− ϵ2

∑

m∈N |Xnm|
, ∀n ∈ N (20b)

for some ϵ1, ϵ2, and ϵ ∈ (0, 1) with (1−ϵ1)(1−ϵ2) ≤ (1−ϵ)2,

the dynamics in (5) exhibit a unique equilibrium q∗ to which

they converge exponentially fast as

∥qt − q∗∥2 ≤ 2∥q̂∥2 · (1− ϵ)t. (20c)

The absolute value |X| applies entry-wise. The result gen-

eralizes (6) and [9, Th. 3] to multiphase feeders, wherein X is

non-symmetric and with some of its entries being negative. It

provides linear constraints on α to ensure stability. Although

ϵ1 and ϵ2 could be selected to reduce conservatism of the

restriction, they were henceforth set equal as ϵ1 = ϵ2 = ϵ.
The ORD task for multiphase feeders can be formulated

as in (7) with the appropriate modification of the sensitivity

matrix X. Since equilibrium setpoints cannot be expressed as

the minimizer of an inner optimization, the MINLP approach

of Section V cannot be adopted here. Alternatively, one may

pursue an MINLP formulation along the lines of [38], though

scalability is still expected to be an issue. Fortunately, the

DNN-based approach for ORD remains applicable with the

next minor modifications: i) Sensitivity matrices are modified

accordingly; ii) Every layer now consists of 3N building

modules corresponding to bus/phase (node) combinations; and

iii) Use the stability constraints of (20) instead of (6).

Proposition 1 on minimum depth T of DNNs for Volt/VAR

rules in single-phase feeders carries over to multiphase feeders.

This is easily confirmed by applying the steps from the proof

of Proposition 1 to the results from Proposition 2.

Remark 2. The conditions of Prop. 2 are general enough to

ensure the stability of Volt/VAR rules in any type of distribution

network, single-phase or multi-phase; radial or meshed.

VII. NUMERICAL TESTS

The proposed ORD methods were evaluated on single- and

multi-phase feeders. Real-world data of active load and solar

generation at one-minute frequency was sourced from the

Smart* project on April 2, 2011 [39]. The set consists of
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active loads from 444 homes and generation from 43 solar

panels. Loads from multiple homes were averaged to better

simulate loads at buses of the primary distribution network.

Each averaged load was normalized so its peak value during

the day coincided with the nominal active power load of its

hosting node. For each time interval, reactive loads were added

by randomly sampling lagging power factors within [0.9, 1].
Similarly to loads, each solar generation signal was normalized

so its peak value was twice that of the nominal active load of

the hosting bus. Apparent power limits for inverters were set

to 1.1 times the peak active generation.

Control rules were designed and evaluated in Python on a

2.4 GHz 8-Core Intel Core i9 processor laptop with 64 GB

RAM. Pytorch was selected as the library to design and train

DNNs, as it implements computation graphs dynamically. That

is quite important for our purposes, as dynamic computation

graphs imply that the number of layers T does not need to

be fixed beforehand. It is rather decided on the fly based

on the convergence of rules for the given ṽt. This flexibility

enables limiting the DNN to lower depths. Convergence was

determined based on the change in objective value by adding

a layer: The rules were assumed to have converged if the

objective changed by less than 1 · 10−7 within consecutive

layers. The batch size B was set to the maximum of the

integer part of S/10 and 1. The step size µ was determined

individually for each network such that the proposed design

approach worked for various times of the day. All DNNs were

trained using the Adam optimizer.

The projection step (14) was performed by solving a

SOCP using the CVXPY library in Python with GUROBI.

The MINLP (19) was implemented in MATLAB using

YALMIP [40] with GUROBI, and used to benchmark the re-

sults for optimality and runtime. Other details such as learning

rates for DNN training, initialization of design parameters,

load and solar panel assignments, and time period for scenario

sampling are presented along with the corresponding results.

A. Tests on Single-Phase Feeder

The first set of tests was conducted on the single-phase

equivalent of the IEEE 37-bus feeder. Homes with IDs 20-369
were averaged 10 at a time and successively added as active

loads to buses 2 − 26 as shown in Fig. 6. Active generation

from solar panels was also added, as per the mapping in

Fig. 6. Additionally, buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25}
were equipped with DERs capable of reactive power control.

The DNN-based rules were optimized using 80 grid scenar-

ios sampled from the high-solar period 3:00-4:20 pm, and were

trained using the learning rate µ = 0.003 over 200 epochs. The

design parameters z := (v̄, δ,σ,α) were initialized at the

feasible point (v̄n, δn, σn, αn) = (0.95, 0.1, 0.3, 1.5) for all n.

Figure 7 shows the convergence of Volt/VAR rule parameters

for DERs at nodes {12, 22, 29}, for ϵ = 0.5, during training.

To accommodate different ranges of magnitudes, all plots are

normalized with respect to their initial values.

Figure 8 highlights the efficacy of the optimized Volt/VAR

rules in improving the voltage profile across the feeder.

Voltages across buses are plotted under three setups: voltages

Fig. 6. The IEEE 37-bus feeder used for the tests. Node number-
ing follows the format node number {panel ID}. DERs at nodes
{6, 9, 11, 12, 15, 16, 20, 22, 24, 25} provide reactive power control; the rest
operate at unit power factor.

Fig. 7. Convergence of PGD iterations (11)±(14) for Volt/VAR rules with
ϵ = 0.5. Values of rule parameters for DERs 12, 22, and 29 are plotted against
training epochs. Plots have been normalized with respect to their initial values.

without DER reactive power support, voltages under the de-

fault settings (v̄n, δn, σ, qn) = (1, 0.02, 0.08, q̂n) from IEEE

1547.8 [4]; and voltages under control rules with optimal

z. For each bus, voltages for all S = 80 scenarios have

been marked. The default control rules were found only

marginally to improve voltage profiles. On the other hand,

optimally designed control rules successfully lowered voltages

and brought them close to unity on all buses.

We next studied the impact of the stability margin ϵ on the

optimal cost L(z) of (10) under Volt/VAR rules. Recall that

ϵ determines the feasible space of design parameters via (6).

The larger the ϵ, the more restricted problem (9) is. Table I

confirms this by presenting the objectives during training for

a range of ϵ values. Table I also lists the chosen initial value

for α, represented by αinit, that renders the initial z feasible

for the corresponding value of ϵ. The objective converged to

the highest value for ϵ = 0.9 and the lowest for ϵ = 0.5. Note
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Fig. 8. Voltage profiles across different scenarios and control options: This
plot shows the voltage magnitude across all buses. Each point corresponds
to a different grid loading scenario. The three colors correspond to different
control options: Red denotes no reactive power compensation by DERs (unit
power factor): Blue denotes Volt/VAR rules with the default rule parameters
suggested by the IEEE Std. 1547; and Green denotes optimized Volt/VAR
rules.

TABLE I
TEST RESULTS CAPTURING THE EFFECT OF ϵ ON THE OPTIMAL OBJECTIVE

VALUE FOR VOLT/VAR CONTROL RULES. THE SMALLER THE ϵ, THE

LARGER THE FEASIBLE REGION FOR RULE PARAMETERS IS, AND SO

LOWER VOLTAGE REGULATION VALUES CAN BE ATTAINED.

ϵ αinit Objective (p.u.)

0.9 0.4 2.22 · 10−3

0.8 0.5 1.37 · 10−3

0.7 1 1.06 · 10−3

0.6 1.5 9.73 · 10−4

0.5 1.5 8.50 · 10−4

that for the studied scenarios, reducing ϵ below 0.5 did not

impact the optimal value of the objective, which indicates that

the feasible space for ϵ = 0.5 contains the optimizers for all

ϵ ≤ 0.5 as well. Consequently, ϵ has been fixed at 0.5 for the

subsequent results on the 37-bus feeder.

We also studied the performance of control rules on sce-

narios other than those used for designing the rules. To obtain

different loading conditions over time, we scaled the overall

solar generation by 0.8. Then two sets of control rules were

designed. The first set of rules was designed using S = 60
samples drawn between 2:00-3:00 pm and is referred to as the

in-sample sample rules. The second set of rules was designed

using S = 60 samples drawn between 1:00-2:00 pm and is

referred to as the out-of-sample control rules. Both sets of

rules were then evaluated on the samples drawn between 2:00-

3:00 pm. Figure 9 illustrates the voltage experienced on each

bus and across all S = 60 scenarios for the two sets of control

rules. The voltages experienced with no Volt/VAR control are

also plotted for comparison. Both sets of rules improved the

voltage profile over the no Volt/VAR control option, yet out-of-

sample exhibited a somewhat inferior performance compared

to the in-sample rules as expected.

While rules were designed using the linearized grid model,

their performance on the accurate AC grid model was also

evaluated. For this purpose, the in-sample control rules de-

TABLE II
TESTS COMPARING THE MINLP WITH THE DNN-BASED ORD FOR

DIFFERENT NUMBERS OF SCENARIOS S , WITH NG = 5 SMART DERS.

S
MINLP DNN

Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

10 Yes 2.45 9.82 · 10−4 18.16 9.82 · 10−4

20 Yes 3.64 1.57 · 10−3 20.08 1.58 · 10−3

40 Yes 123.32 2.78 · 10−3 20.63 2.78 · 10−3

80 No 300 2.68 · 10−3 22.17 2.62 · 10−3

Fig. 9. Bus voltages of the IEEE 37-feeder across S = 60 scenarios during
2:00-3:00 pm. In-sample rules were designed and validated using the same
S = 60 scenarios drawn between 2:00-3:00 pm. Out-of-sample rules were
designed using S = 60 scenarios from 1:00-2:00 pm, and validated using
the S = 60 scenarios drawn from 2:00-3:00 pm. Voltages experienced during
2:00±3:00 pm with no Volt/VAR control are also shown for comparison. As
expected, the performance of the rules degrades when rules are designed based
on non-representative scenarios.

signed in the previous paragraph for 2:00±3:00 pm were

applied and ran until equilibrium, under the linearized and AC

power flow models. Then for each bus and scenario, a percent-

age error was calculated by taking the difference between the

linearized and corresponding AC equilibrium voltage, divided

by the AC equilibrium voltage. The results are illustrated as

a box plot in Fig. 10. Evidently, the linearization error at

equilibrium is consistently less than 0.1% or approximately

0.001 per unit, which verifies that control rules are effective

over the AC grid model too.

The last test on the IEEE 37-bus feeder intended to provide

some intuition on the shape of the control rules designed

across different periods of the day. To this end, we sampled

three sets of S = 80 scenarios at three different hours of the

day: 9 am, 3 pm, and 6 pm. For each set, we quantified the

experienced voltage profiles by a single number given by the

objective of (9), before voltage regulation. We fixed the design

parameters v̄ and δ to 0.95 and 0.01, respectively, hence

localizing the impact of the control rule design process to σ

and α. The resulting Volt/VAR rules for Bus 5 are presented

in Figure 11. The legend for each rule captures the starting

time for drawing S = 80 consecutive samples. The value of

the objective of (9) for prior voltages is also presented for each

rule. Figure 11 shows that as the grid voltages move further

away from 1 pu, both α and σ increase, resulting in steeper
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Fig. 10. Comparison of equilibrium voltages under the linearized and the
exact AC grid models. Control rules were designed over the 2:00±3:00 pm
window using the linearized model and then ran until reaching equilibrium
using the linearized and AC models. Errors between the equilibrium voltages,
captured in the percentage of AC equilibrium voltage, were found to be small
enough to validate the proposed approach for designing control rules.

Fig. 11. Volt/VAR rules obtained for Bus 5. Three sets of voltage scenarios
were sampled. The deviation from the nominal 1 pu is captured by the value
for Obj for each of the sets. The Volt/VAR rules become steeper with higher
saturation limits as the grid voltages worsen.

curves with higher saturation limits. Such a design enables

the curves to provide more voltage regulation as grid voltages

worsen.

To verify the optimality and scalability of DNN-based ORD,

we benchmarked them against the MINLP formulation of (19).

The MINLP was allowed to run until completion or till 300
seconds, whichever happened earlier. Scaling with respect to

both the number of scenarios as well as DERs was studied.

Table II reports the results for the case when the number of

smart DERs was fixed to NG = 5 and scenarios were increased

from S = 10 to 80. As evident from Table II, the DNN-

based ORD scaled much better than the MINLP for larger

S, as expected. Furthermore, the DNN-based ORD achieved

the same objective as the MINLP across all tested values of

S. This is remarkable since SGD for non-convex problems

can only guarantee convergence to stationary points. Similar

TABLE III
COMPARING MINLP WITH THE DNN-BASED APPROACH

FOR DIFFERENT NG AND S = 80.

NG

MINLP DNN
Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

2 Yes 3.90 3.62 · 10−3 14.12 3.62 · 10−3

4 No 300 3.22 · 10−3 17.96 3.18 · 10−3

6 No 300 2.77 · 10−3 21.95 2.35 · 10−3

8 No 300 1.40 · 10−3 33.42 1.16 · 10−3

10 No 300 1.20 · 10−3 39.76 8.50 · 10−4

Fig. 12. Inverter siting on the IEEE 123-bus distribution feeder.

conclusions can be drawn from Table III where we fixed S =
80 and varied NG from 2 to 10. The MINLP was faster than

the DNN-based approach for NG = 2, but could not be solved

within 300 seconds if more inverters were added. On the other

hand, the DNN-based ORD scaled gracefully with the NG and

achieved lower objectives for all NG ≥ 4.

The scalability of the DNN-based control rules was also

confirmed by implementing them for the larger IEEE 123-bus

feeder of Fig. 12. Active load data was generated by averaging

homes with IDs 20-386, three at a time, and were serially

assigned to buses 2-123. Solar generation from 10 panels

with IDs {106, 116, 119, 296, 372, 650, 734, 841, 933, 1574}
was added to buses {17, 29, 32, 39, 50, 71, 78, 96, 100, 114},

respectively. All solar buses were equipped with smart DERs

for reactive power support. The DNNs for Volt/VAR rules

were trained with the learning rate µ = 0.01, with ϵ set to

0.5. The design parameters z := (v̄, δ,σ,α) were initialized

at the feasible point (1.05, 0.1, 0.3, 1.5), and µ was set as

0.01. With NG and S fixed at 10 and 80, respectively, the

DNN-based ORD was compared to the MINLP one. For this

larger network, the MINLP solver was allowed to run until

500 seconds. To ensure repeatability, the results were repeated

across several time periods between 1− 6 PM, and have been

compiled in Table IV. For all time periods, the DNN-based

solver scaled well in terms of the DNN training time. The

MINLP solver could not converge within 500 seconds and

was outperformed by the DNN-based solver in terms of final

objective values across all setups.
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TABLE IV
TEST RESULTS COMPARING THE MINLP WITH THE DNN-BASED ORD

APPROACH FOR THE SINGLE-PHASE IEEE 123-BUS FEEDER, ACROSS

DIFFERENT TIME PERIODS FOR NG = 10 DERS AND S = 80 SCENARIOS.

Time
MINLP DNN

Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm No 500 9.26 · 10−4 28.6 8.95 · 10−4

2 pm No 500 6.69 · 10−4 30.18 6.40 · 10−4

3 pm No 500 4.17 · 10−4 27.55 3.92 · 10−4

4 pm No 500 2.17 · 10−4 29.83 2.09 · 10−4

5 pm No 500 2.98 · 10−3 27.53 2.87 · 10−4

Fig. 13. The three-phase IEEE 13-bus distribution feeder system.

B. Tests on a Multiphase Feeder

The DNN-based control rules were also tested on the

multiphase IEEE 13-bus feeder. Active loads from homes with

IDs 20-379 were averaged ten homes at a time. The resulting

36 averaged loads were added to buses 1-12, allocating all

three phases for a bus before moving on to the next one. Solar

generation was added to nodes per the panel assignments in

Fig. 13. Values in red, green, and blue correspond to panel

IDs assigned to Phases A, B, and C, respectively. Reactive

power compensation was provided by nine inverters added

across phases, and bus indices, as shown in Fig 13, with the

colors indicating the corresponding phase.

The learning rate for DNN-based control rules was set

to µ = 0.1, with the design parameters z := (v̄, δ,σ,α)
initialized to feasible values (0.95, 0.01, 0.3, 1.5). In the ab-

sence of an MINLP solver, the optimized DNN-based control

rules were benchmarked against control rules with the default

settings from the IEEE 1547.8 standard. Table V collects the

values for the objective (9) for S = 80 scenarios, across

different windows of time from 1− 5 pm, under three control

schemes± no reactive power compensation, optimized control

rules, and default control rules. The default control rules did

not manage to significantly reduce the objective (9), as the

grid conditions ṽ were observed to fall in the deadband of

the default control rules frequently. In contrast, the optimized

control rules took the grid conditions ṽ into consideration

while designing the deadband, and hence improved voltage

profiles considerably.

TABLE V
TEST RESULTS ON THE MULTIPHASE IEEE 13-BUS FEEDER FOR NG = 9

INVERTERS AND S = 80 SCENARIOS. COMPARING THE OBJECTIVE (9)
UNDER THREE SCENARIOS: NO REACTIVE POWER COMPENSATION,

OPTIMIZED CONTROL RULES, AND THE DEFAULT RULES PER IEEE 1547.

Time q = 0 Optimized Default

1 pm 2.51 · 10−3 1.15 · 10−3 2.31 · 10−3

2 pm 1.48 · 10−3 6.89 · 10−4 1.42 · 10−4

3 pm 6.89 · 10−4 4.94 · 10−4 6.89 · 10−4

4 pm 8.03 · 10−4 5.26 · 10−4 8.03 · 10−4

5 pm 5.51 · 10−4 4.11 · 10−4 5.51 · 10−4

VIII. CONCLUSIONS

This work has genuinely reformulated the ORD problem to

train a DNN using grid scenarios as training data, unit voltages

as desired targets for equilibrium voltages, and Volt/VAR

rule parameters as weights. The proposed DNN-based ORD

framework is general enough to accommodate Volt/VAR rules

on single- and multi-phase feeders. We have also reviewed

and extended results on the stability and convergence rates of

Volt/VAR control rules. For benchmarking purposes, we have

also developed a MINLP approach to ORD. The suggested

approaches have been validated using real-world data on

IEEE test feeders. The tests show that DNN-based ORD

outperforms the MINLP approach in terms of optimality under

time budgets and that optimized ORD curves outperform the

default values. Our findings form the foundations for exciting

research directions, such as: d1) Can the DNN-based ORD

framework be extended to designing incremental Volt/VAR

control rules with favorable stability characteristics? d2) What

are the appropriate Volt/VAR control rules for three-phase

(probably large-scale utility-owned) DERs?

APPENDIX

Proof of Proposition 1: By a contraction mapping argument,

reference [9] proves that as long as stable, the Volt/VAR

dynamics qt enjoy exponential convergence to the equilibrium

q∗. That means that if ∥ dg(α)X∥2 < 1, then

∥qt − q∗∥2 ≤ ∥dg(α)X∥2 · ∥q
t−1 − q∗∥2.

Propagating the previous claim across time and for ϵ-stable

rules ∥ dg(α)X∥2 ≤ 1− ϵ, we get that

∥qt − q∗∥2 ≤ ∥q0 − q∗∥2 · (1− ϵ)t ≤ 2∥q̂∥2 · (1− ϵ)t

since the initial distance to the equilibrium can be upper

bounded by ∥q0 − q∗∥2 ≤ 2∥q̂∥2. Because v = Xq + ṽ,

translate injection distances to voltage distances

∥vt − v∗∥2 ≤ 2∥X∥2∥q̂∥2(1− ϵ)t.

To ensure the voltage approximation error at time T is smaller

than ϵ1, or ∥vT −v∗∥2 ≤ 2∥X∥2∥q̂∥2(1−ϵ)T ≤ ϵ1, it suffices

to select T as

T log(1− ϵ) ≤ log
ϵ1

2∥X∥2∥q̂∥2
.

The claim follows by noticing that log(1− ϵ) < 0.
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Proof of Proposition 2: Reference [9, Th. 3] shows that

the Volt/VAR rules of f(·) are Lipschitz continuous in q with

∥ dg(α)X∥2 as the Lipschitz constant, that is

∥f(q)− f(q′)∥2 ≤ ∥dg(α)X∥2 · ∥q− q′∥2 (21)

for any q and q′ obeying (3d). From HÈolder’s inequality for

matrix norms, it holds that

∥ dg(α)X∥22 ≤ ∥dg(α)X∥1 · ∥ dg(α)X∥∞

= ∥ dg(α)|X|∥1 · ∥ dg(α)|X|∥∞

where ∥ · ∥1 and ∥ · ∥∞ are defined as the maximum absolute

sums column-wise and row-wise, respectively. The equality

holds because α has positive entries. It is easy to check that

∥ dg(α)|X|∥1 is the maximum entry of vector |X|⊤α, and

∥ dg(α)|X|∥∞ is the maximum entry of vector dg(|X|1)α.

Consequently, enforcing (20) results in ∥ dg(α)X∥2 ≤ (1−ϵ).
Substituting ∥ dg(α)X∥2 < (1− ϵ) in (21) yields

∥f(q)− f(q′)∥2 ≤ (1− ϵ)∥q− q′∥2 (22)

Since ϵ ∈ (0, 1), the above relation is a contraction mapping

over the space q ∈ [−q̄, q̄] with respect to the ℓ2-norm. The

latter establishes the existence and uniqueness of the equi-

librium, as well as the exponential convergence of Volt/VAR

dynamics. To explicitly derive the convergence result (20c),

note that qt = f
(
qt−1

)
and q∗ = f (q∗). From (22), we get

∥qt − q∗∥2 ≤ (1− ϵ)∥qt−1 − q∗∥2 ≤ (1− ϵ)t∥q0 − q∗∥2.

The claim follows as ∥q0 − q∗∥2 ≤ 2∥q̂∥2.
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