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Abstract—Autonomous vehicles are gradually entering the
transportation system. The traffic will become more heteroge-
neous since both autonomous and human-driven vehicles will
share the roads. Cooperative driving, by promoting synchronized
actions and shared situational awareness among vehicles, can
significantly enhance driving safety. On the other hand, under-
standing human drivers is a pivotal step for cooperative driving
in such mixed traffic environments, which facilitates effective
interaction between human drivers and their vehicles. This
paper presents a testbed that can be used to conduct research
in intelligent and cooperative driving. The testbed consists of
driving simulators, custom-designed copilots with an Artificial
Intelligence engine, an optimization server, and a cloud database.
The copilot is capable of sensing and understanding the human
driver, the vehicle and the traffic. It can assist the driver by
providing timely alerts on potential risks. Most importantly, it
can communicate with other nearby vehicles for cooperative
driving. Two case studies are presented to validate and evaluate
the testbed. The first case study demonstrates the performance of
the copilot in human distraction detection and driving assistance.
The second case study focuses on cooperative driving between one
human-driven vehicle and two connected autonomous vehicles
in a lane-changing scenario. We expect this research testbed to
be used in various research projects that involve human-driven
vehicles and connected autonomous vehicles.

Index Terms—Cooperative Driving, Model Predictive Control,
Convolutional Neural Network

I. INTRODUCTION

THE autonomous vehicle (AV) market is growing rapidly,
with an expected size of 60 billion dollars in 2026 [1].

With the rapid advancement in computer hardware and Arti-
ficial Intelligence (AI) technologies [2], AVs are attracting a
significant amount of interest from both industry and academia
[3], [4]. Because of the prospective huge market of commercial
AVs, self-driving technologies have been developed by both
traditional car manufacturers and non-traditional technology
companies. For example, Google introduced the first self-
driving car on real-world roads [5]. Ford Motor Company
developed self-driving cars for less friendly environments [6].
As more and more intelligent vehicles are introduced into
the transportation system, the traffic will inevitably become
more heterogeneous since both emerging vehicles with various
levels of driving automation [7] and legacy human-driven
vehicles with different Advanced Driver-Assistance Systems
(ADAS) will co-exist on the roads.
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Ensuring the safety of such a complex mixed transportation
system is not trivial, which should leverage the differences
between machines and humans in sensing, analytics and
control, therefore calling for a human-centered perspective
to understand human driving behaviors and their impact on
driving safety. To achieve this, there is a need to introduce
an intelligent copilot that can observe and understand the
human driver, vehicle and traffic while providing driving
advice when necessary. Comprehending and modeling human
behavior is the initial and most critical step in developing a
Human-in-the-Loop (HITL) system, which not only facilitates
effective human-vehicle interaction but also enhances vehicle-
to-vehicle (V2V) communication. Subsequently, through V2V
communication and collaborative decision making, coopera-
tive driving among vehicles can significantly reduce the risk of
collision and increase the traffic throughput [8]. However, past
research mainly focused on cooperative driving of automated
vehicles, such as the PATH project [8] and, most recently,
the Cooperative Automation Research Mobility Applications
(CARMA) project by Department of Transportation (DoT)
Federal Highway Administration (FHWA) [9], among many
others [10]–[12]. Several projects approached the cooperative
driving problem in mixed traffic from the perspective of Con-
nected Autonomous Vehicles (CAVs) only, such as [13]–[17],
which allowed CAVs to accommodate nearby human-driven
vehicles but did not actively involve the latter in cooperative
driving. It is our belief that the benefit of cooperative driving
cannot be fully exploited in mixed traffic if legacy manned
vehicles are excluded from cooperative driving. Therefore it
would be highly desirable to develop cooperative driving that
encompasses both emerging CAVs and legacy human-driven
vehicles.

However, conducting research in intelligent and cooperative
driving using real vehicles in real traffic is not only dangerous
but also costly. Simulation with driving simulators is an
alternative to test the algorithms before they are deployed
into the real world. With the rapid progress in computer
simulation technology, modeling vehicles’ dynamics and re-
alizing it in computers is feasible and has gained much
attention in recent years.. Although there has been a significant
amount of research in intelligent vehicles that use driving
simulators, there is very limited work in developing simulation
testbeds that can be used for cooperative driving between
human-driven vehicles and CAVs. To bridge this gap, the
Human-in-the-Loop (HITL) methodology emerges as a critical
tool. By monitoring driver behaviors and incorporating their
decision making process, HITL provides a more detailed and
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accurate assessment of cooperative driving dynamics in mixed
traffic environments, surpassing the traditional simulations.
Developing such a testbed consists of the following tasks:
1) developing an intelligent copilot, an enhanced ADAS, for
monitoring and driving assistance; 2) integrating the copilot
into the driver simulator to facilitate cooperative driving with
other simulated vehicles; 3) incorporating reliable human
driver behavior models to understand human drivers; and 4)
developing a reliable agent for real-time optimization and
decision-making in cooperative driving.

This paper aims to develop such a simulation testbed. The
main contributions of this paper are as follows. First, this
research develops a copilot for human-driven vehicles, which
collects various data regarding the driver, vehicle, and traffic
to evaluate the potential risk during driving. Compared to
traditional ADAS, the copilot is able to communicate with
adjacent vehicles and facilitate cooperative driving with them.
Second, utilizing the AI engine in the copilot, driving behavior
monitoring is developed that recognizes eight different driving
behaviors. Third, the mathematical formulation for a multi-
vehicle lane merging involving both autonomous and human-
driven vehicles is proposed. Fourth, the performance of the
testbed is experimentally evaluated through two case studies:
driver monitoring in standalone driving and 3-vehicle lane
merging in cooperative driving.

This paper is organized as follows. Section II introduces
the related work. Section III describes the overall hardware
architecture of the simulation testbed. The software frame-
work is introduced in Section IV. Section V formulates the
methodologies for the two case studies: driver monitoring in
standalone driving and 3-vehicle lane merging in cooperative
driving. Section VI presents the experiments and results for the
above two case studies. We conclude the paper and outline the
future research in Section VII.

II. RELATED WORK

A. Cooperative Driving of Automated Vehicles

In recent years, cooperative driving of automated vehicles
has been studied in multiple research projects, such as the
California PATH project [8] that allowed multiple automated
vehicles to conduct platooning in an Intelligent Vehicle High-
way System, the CHAUFFEUR project [10] that implemented
the Automated Highway Systems on European motorways, the
SARTRE project [11] that realized the platooning of trucks and
cars, and the Energy ITS project [18] that improved the energy
efficiency of fully-automated trucks. With a goal of improving
safety, mobility, and environment sustainability through V2V
or vehicle to infrastructure (V2I) communication, the CARMA
platform enables research on Cooperative Driving Automation
(CDA) which leverages emerging capabilities in automation
and cooperation to advance Transportation Systems Man-
agement and Operations (TSMO) strategies [9]. Jang et al.
presented a V2I communication framework to improve the
decision-making process in autonomous driving through a
machine to machine based cooperative driving protocol [19].
Cao et al. proposed a consensus framework for cooperative au-
tonomous driving that utilizes V2V communication to enhance

the overall driving performance [20]. Yuan et al. introduced
a stable and efficient Reinforced Cooperative CAV Collision
Avoidance framework, in which a deep learning approach was
implemented in order to effectively avoid collision among the
CAVs [21]. Liu et al. proposed a distributed model predictive
control (DMPC) approach for cooperative and flexible vehicle
platooning in order to ensure safety and stability of the
platoon [22]. Cui et al. introduced Coopernaut, an end-to-
end learning framework for vision-based cooperative driving
that transmited LiDAR information between vehicles [23]. Jie
et al. proposed a cooperative lane change control strategy
for intelligent connected vehicles to improve traffic flow,
reduce energy consumption, and enhance driving safety [24].
They used V2V communication to coordinate lane changes.
Simulations show that the strategy can reduce congestion and
energy consumption while maintaining safe driving conditions.

These existing projects significantly improved the perfor-
mance of CAVs in cooperative driving. However, they did
not consider the scenarios that involve human-driven vehicles,
mainly because cooperation between human-driven vehicles
and CAVs is more complicated due to the uncertainty and
unpredictability of human driving behaviors.

B. Cooperative Driving Among Heterogeneous Vehicles

Cooperative driving among CAVs and human-driven vehi-
cles began to receive attention in recent years. For example,
Xie et al. developed two cooperative driving strategies for
CAVs in heterogeneous traffic to stabilize the traffic flow
[25]. They believed that further research regarding developing
cooperative driving strategies based on the prediction for
human-driven vehicles is needed. Valiente et al. developed
a Multi-agent Reinforcement Learning (MARL) algorithm
with a decentralized framework and a reward function to
enable CAVs to learn from human-driven vehicles [26]. In
order to tackle the conflicts caused by the difference between
the intention of CAVs and human-driven vehicles in mixed
traffic, Li et al. presented an indirect shared control method
to improve the driving performance [27]. Mosharafian et al.
introduced a Cooperative Adaptive Cruise Control (CACC)
system with a hybrid stochastic predictive approach for lane
changing in mixed traffic [28] [29]. Liu et al. extended the
CACC modeling framework to describe interactions between
CACC and manually driven vehicles in mixed traffic, which
enhanced lane changing rules and implemented automated
speed control involving realistic freeway dynamics [30]. A
human driver model was used to update the position and speed
of the manually driven vehicles in their simulation. Hu et
al. presented a simulation platform for evaluating CACC in
urban settings, focusing on the interaction between human-
driven vehicles and CACC systems [31]. In their simulation,
they created a model that emulates human control, mimicking
how a human driver would maneuver a vehicle. Xiao et
al. investigated the impact of CACC systems on highway
bottleneck areas, focusing on the effects of CACC deactivation
and switch to the human-driven mode under certain conditions
[32]. A modified version of the Intelligent Driver Model (IDM)
was utilized to simulate the manually human driver. Zhou et
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al. demonstrated the potential of multi-agent reinforcement
learning for cooperative lane changing of CAVs in mixed
traffic environments, highlighting its ability to improve traffic
efficiency and safety [33].

Overall, cooperative driving involving both CAVs and
human-driven vehicles is still in its infancy. The existing work
mainly focused on the control of the CAVs while the human-
driven vehicles were not actively involved in cooperative
driving. In addition, most cooperative driving systems for
mixed traffic assumed that human-driven vehicles follow a
constant driving behavior, which is not realistic [33]. In order
to facilitate their active participation, it is necessary to equip
the human-driven vehicles with intelligent driving assistance
systems and V2V communication capabilities, justifying an
HITL-based system instead of only simulated human-driven
vehicles.

C. Simulation Testbed

Developing and testing cooperative driving involving mul-
tiple vehicles is both risky and costly. Simulations provide
an alternative approach. Recent years have seen several sim-
ulation testbeds developed for intelligent and autonomous
vehicle research. CARLA [34] is an open-source simulator
that integrates Unreal Engine [35] to provide a highly realistic
3D environment for simulating a variety of driving scenarios,
allowing for the testing of autonomous driving algorithms and
related technologies in a safe environment. With a client-server
architecture, CARLA allows multiple human-driven vehicles
to be controlled by multiple drivers. V2V communication is
achievable with a python API interface that CARLA provides.
While CARLA is a powerful and flexible platform for re-
search and development in autonomous driving, it has some
limitations. CARLA’s performance degrades when simulating
large-scale scenarios with a large number of vehicles. Its
computational requirements also limit its ability to efficiently
handle highly dynamic and congested environments. The
National Advanced Driving Simulator (NADS) [36] offers a
tool for research in transportation safety and driver behavior
analysis, with a realistic driving experience for the driver
and the ability to collect physiological data. However, the
NADS equipment is costly and has very limited scalability
for cooperative driving. SimNet [37] is a simulation software
developed for training and evaluating military equipment and
operations in a distributed fashion. It can simulate different
scenarios and equipment and can test the interactions between
different vehicles and systems in real-time. However, its high
cost and complexity make it difficult to acquire and use for
researchers with limited resources.

Therefore it is crucial to develop a driving simulation
testbed for cooperative driving in mixed traffic scenarios,
which offers a highly customizable and realistic environment
for testing and evaluation with low computational demand and
good scalability.

III. HARDWARE ARCHITECTURE OF SIMULATION TESTBED

We developed a simulation testbed for cooperative driving
that features low computational cost, reconfigurability and

Fig. 1: The architecture of the simulation testbed.

scalability. The overall architecture of the testbed is shown
in Figure 1 and the testbed setup is shown in Figure 2. The
testbed is developed based on the Carnetsoft driving simulator
[38], which offers a realistic driving experience. A copilot is
developed to offer driving assistance to human-driven vehicles.
The copilot consists of a Raspberry Pi, a Jetson Nano, and
various peripheral sensors for driver and vehicle monitoring.
In this setup, the Raspberry Pi is responsible for scheduling
tasks while the Jetson Nano is utilized for on-demand ma-
chine learning tasks, therefore enhancing the modularity and
practicality of the copilot. The copilot communicates with the
Carnetsoft simulator through the provided APIs, enabling it
to receive the vehicle data such as speed, acceleration, and
location. A driving simulator equipped with a copilot simulates
an intelligent human vehicle (IHV). The testbed supports
multiple vehicles, including both IHVs and CAVs, therefore
enabling the simulation of various traffic scenarios and a wide
range of vehicle interactions. To facilitate cooperative driving
control, all copilots are connected to a central Gurobi server
[39] for solving the optimization problems. In addition, all
copilots are connected to a Web server for data logging and
viewing.

A. Carnetsoft Simulator

The Carnetsoft simulation software runs on a desktop Win-
dows computer equipped with an Intel Core-i7 4790 CPU
and an NVIDIA GTX 970 GPU. There are a steering wheel,
a shifter, pedals, and three monitors that provide a large
in-vehicle view. Carnetsoft defines a programmable script
language for controlling the objects and the events in the
driving scenario. In the script, vehicles are registered as objects
with pre-defined attributes, including driving data variable and
configurations. Additionally, pedestrians may also be added as
objects. The script incorporates multiple “scenario” functions,
which serve as interrupt functions and are invoked under user-
defined circumstance. In the beginning of the script, a local
map of the driving scenario is loaded. Carnetsoft provides a
tool for creating maps with various elements, including roads,
intersections, buildings, and traffic lights.

To enable scalability and collaboration, each driving simu-
lator can accommodate multiple CAVs while simulating one
human-driven vehicle. The simulators exchange the data of
vehicles with each other. The data includes information about
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Fig. 2: The cooperative driving testbed setup.

the vehicles’ position, speed, heading, and lateral position.
Upon receiving the information, each simulator can accurately
represent and display the other vehicles, thereby simulating
the interactions between the ego human-driven vehicle and
other vehicles. The interconnected setup and the data exchange
mechanism allow the driving simulators to collaboratively
simulate scenarios involving both human-driven vehicles and
CAVs. With this arrangement, scalability is achieved as mul-
tiple simulators can efficiently share data and coordinate their
simulations. Consequently, a comprehensive and realistic envi-
ronment is created for testing and evaluating the performance
of the cooperative driving in mixed traffic.

B. Copilot

As shown in Figure 3, the copilot is an in-vehicle intelligent
system mounted near the dashboard, serving as a driving assis-
tant and facilitating cooperative driving. It consists of a Rasp-
berry Pi as the main controller, an NVIDIA Jetson Nano as
the AI engine, a microphone, a camera, a speaker and a touch
screen. To distribute the computational tasks, we separate
the software into two parts. The communication/scheduling
software runs on the Raspberry Pi. The Jetson Nano, as an
AI engine, runs the machine learning services to monitor
the driver and the vehicle, which is usually computationally
intensive. In the future, a forward facing camera can be used
to capture the traffic scenes and the AI engine can analyze the
data for traffic monitoring and external risk analysis.

IV. SOFTWARE OF SIMULATION TESTBED

As shown in Figure 4, the software of the cooperative
driving testbed runs in a client-server architecture. The com-
munication/scheduling packages run in the Raspberry Pi of
the corresponding copilot. The machine learning modules in
the Jetson Nano provide driver monitoring services, such as
drowsiness detection, distraction detection, etc. The Gurobi
server running on the server computer provides mathematical
optimization services for cooperative driving to the copilot.
Finally, the database stores the real time data sent by the
copilots, and the website displays the experimental data to
viewers. The Robot Operating System (ROS) [40] is adopted

Fig. 3: The prototype of the copilot.

in the design of the software. ROS is a flexible framework
for developing robot software that offers tools for hardware
abstraction, low-level device control, and message-passing
between processes, making it widely popular in robotics and
automation. Its modular architecture and open-source nature
facilitate easy development and sharing of robotic applications.

A. Copilot software
The copilot software running on the Raspberry Pi consists

of a backend and a front end. The backend has several ROS
nodes for a variety of tasks, including: 1) a V2V node that
communicates with the driving simulator and other vehicles’
copilots; 2) a driver understanding node that periodically
analyzes the drivers’ status with the help of the Jetson Nano;
3) a data logging node that sends vehicle and driver status to
the database; 4) a solver request node that communicates with
the Gurobi server; and 5) a vehicle interface node that sends
vehicle control commands to the simulator.

The front end running on the Raspberry Pi interfaces the
speaker, the touch screen, and the microphone. Normally, it
displays an animated face until receiving the advice sent by
the backend. The advice consists of two parts: voice advice
and visual advice. When a visual advice is received, for
example, the interface will display a circular chart, similar
to the speed gauge on the dashboard, except that it displays
both the current speed and the optimal speed. Voice advice
will also be announced through the speaker at the same time.
In addition, the front end can be easily moved to a mobile
device, such as a smart phone or a mobile tablet.

The copilot can run in two different modes: the standalone
mode and the cooperative driving mode. In the standalone
mode, the driver monitor node periodically receives the driver
status data from the Jetson Nano. When the status is abnormal,
such as distraction and drowsiness, the driver monitor node
will alarm the driver through the front end, typically in the
form of a voice reminder. In the cooperative driving mode,
the solver request node collects the vehicles’ status and sends
them to the Gurobi server which analyzes the situation and
generates an optimized coordination solution. Upon receiving
the solution, the solver request node sends the advice to the
driver through the front end. Both the standalone mode and
the cooperative driving mode can run at the same time.
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Fig. 4: The system architecture of the simulation testbed.

B. Data Logging on Server

A Flask web server runs on the server computer to collect
and display the data generated by the simulated vehicles during
the experiments, which makes debugging and testing easier.
The logged data consists of the following: 1) vehicle ID; 2)
vehicle velocity; 3) vehicle location (longitudinal and lateral
position); 4) time; 5) pedal percentage; 6) steering wheel
angle; 7) driver drowsiness; 8) driver ID. The stored data can
be sorted and displayed in a web browser. The data can also
be downloaded as a whole file to any device. A screenshot of
the displayed data is shown in Figure 5.

Fig. 5: A screen shot of the data display.

V. INTELLIGENT AND COOPERATIVE DRIVING

To evaluate the performance of the testbed for intelligent
and cooperative driving, we conduct two case studies: one
is standalone driving in which the copilot alerts the driver
upon detection of distraction; the other is cooperative driving
in which multiple vehicles cooperate to accomplish a lane
merging maneuver. The first case study, illustrating intelligent
driving, showcases human-vehicle interaction within our sim-
ulation testbed, while the second case study focuses on IHV-
CAV cooperation.

A. Distraction Detection in Standalone Driving

Distraction detection plays a significant role in ensuring
driving safety on the roads. The rise of smartphone usage
and other distracting activities while driving has inevitably

led to an increased risk of accidents. The recognition of brake
light activation in leading vehicles, indicative of deceleration
or braking, has emerged as a prevalent theme within vehicle
market [41]. However, for human-driven vehicles, the primary
factor leading to accidents after their leading vehicles’ sudden
braking is the level of driver distraction [42], [43]. Recogniz-
ing the need to address this issue, we develop a robust method
for real-time distraction detection to mitigate the potential
hazards.

Connected with a camera, the Jetson Nano in the copilot
is capable of capturing images and processing them in real
time. The camera view is mainly focused on the human
driver’s head. As shown in Figure 6a, the driver is attentively
driving, with his eyes focused on the road ahead, exhibiting
a responsible and focused driving behavior. Figure 6f shows
the driver using his right hand to hold the phone and talking
on it, which exemplifies a scenario of driver distraction, as the
driver’s attention is divided between the conversation and the
task of driving. By analyzing such images, the Jetson Nano
can accurately identify and classify the driver’s state.

A 50-layer convolutional neural network (Residual Net-
work, ResNet-50) is trained with more than 60,000 images
collected by the copilot’s camera on the simulation testbed.
As shown in Table I, the architecture of the ResNet-50 model
[44] makes it capable of learning complex patterns in the
data efficiently. However, the depth of ResNet-50 does bring
about increased computational demand. We found that with
the Jetson Nano, the enhanced feature detection capabilities
of ResNet-50 justified its selection, despite the higher compu-
tational cost.

The image classification algorithm considered 8 behaviors,
which consist of 1 normal driving behavior and 7 distracted
driving behaviors:

• c0: safe driving
• c1: playing the phone with head down
• c2: talking on the phone using the left hand
• c3: talking on the phone using the right hand
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(a) safe driving

(b) talking on the phone using
the left hand

(c) drinking/eating

(d) talking to the passenger

(e) playing the phone

(f) talking on the phone using
the right hand

(g) reaching behind

(h) doing hair and makeup

Fig. 6: Original images of the driver for the neural network
model before resizing and cropping.

TABLE I: ResNet-50 model architecture

layer name output size 50-layer
conv1 112× 112 7× 7, 64

conv2 x 56× 56
3× 3,max pool 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 x 28× 28

1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4 x 14× 14

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

conv5 x 7× 7

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1 average pool,8-d fc,softmax

• c4: drinking/eating
• c5: reaching behind
• c6: talking to the passenger
• c7: doing hair and makeup

During driving, the copilot backend sends a request for the
driver’s driving status through a ROS message. Upon receiving
the request, the AI engine invokes the camera, continuously
captures the image, and classifies it with the trained ResNet-50
model. The result is sent back to the copilot backend. Once
a distraction behavior is detected, the copilot checks if the
vehicle is in a critical situation where a potential collision

could occur and the driver does not pay attention to it. If
yes, a reminder is generated by the copilot backend by saying
”focus on driving” through the speaker. One example of such
critical situations is when the human-driven vehicle is driving
behind another vehicle which is quickly slowing down.

B. Lane Merging in Cooperative Driving

As a case study of cooperative driving, we explore the
coordination between CAVs and IHVs for lane merging. The
copilot installed in the IHV communicates and collaborates
with other vehicles to accomplish cooperative driving. In order
to ensure a safe and efficient merge, it’s critical to arrive at
the necessary safe longitudinal space between the vehicles
as soon as possible. The control inputs can directly control
the motion of a CAV, while the human driver controls the
motion of the IHV. The driver’s actions may be affected by
the copilot’s advisory directives. To coordinate the movements
of the vehicles, we formulate a stochastic model predictive
control (MPC) problem with state and control constraints.
The solution to this problem provides the IHVs and CAVs
with optimal advisory instructions and autonomous controls,
respectively.

System modeling
We consider the following linear dynamic model of a CAV

xr
k+1 = Arx

r
k +Bru

r
k, (1)

where k ∈ Z+ is the discrete-time index, xr
k ∈ R2 contains the

longitudinal position and velocity with respect to the origin,
Ar and Br are matrices of suitable dimensions that define the
vehicle dynamics, and ur ∈ R is the input (acceleration) to
the CAV.

For the IHV, the dynamics of the system depends on the
driver’s compliance with the advised directives. As a result,
the dynamics of the IHV alternate between two dynamic
systems depending on a binary decision variable xB

k ∈ {0, 1}:
(1) following the advisory command when the IHV is under
advisory control (xB

k = 1), and (2) not following the advisory
command, which denotes that the IHV is under human control
(xB

k = 0).

IHV under human control: xh
k+1 = Ahx

h
k +Bhf

h
k (2)

IHV under advisory control: xh
k+1 = Ahx

h
k +Bhu

a
k, (3)

where Ah and Bh are matrices defining the IHV dynamics,
and we assume that fh

k is available through a driver monitoring
system and ua

k ∈ R is the advisory commands for the IHV.
One can deduce the solution to xk as follows:

xr
k = Ak

rx
r
0 +

k−1∑
j=0

Ak−j−1
r Bru

r
j , (4)

xh
k = Ak

hx
h
0 +

k−1∑
j=0

Ak−j−1
h Bhf

h
j +

k−1∑
j=0

Ak−j−1
h Bhz

u
j (5)

where zuk = xB
k (u

a
k − fh

k ).
We use a stochastic finite state machine (sFSM) to model

the stochastic transitions of the binary human state xB
k follow-

ing [45]. The detailed formulation is shown in Appendix.
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System Constraints
The following four sets of constraints are taken into account

for each pair of vehicles while coordinating the movements of
the vehicles.

1) sFSM transition constraints: The stochastic human state
transitions of the IHV formulated by the sFSM are
enforced using this set of constraints.

2) State constraints: The new state zuk = xB
k (u

a
k − fh

k )
formulates the transition of different inputs to the system
based on xB

k . This transition is modeled in the state
constraints.Additionally, the state limits are enforced in
these constraints.

3) Merging constraints: The longitudinal position differ-
ence between a pair of vehicles must be greater than
a threshold sk in order to avoid a collision during
lane merging. The value of sk depends on the relative
position of the merging vehicle with respect to the other
vehicle. To ensure the longitudinal distance between
a CAV and an IHV is larger than sk, the following
constraint is considered:

|xr
k,1 − xh

k,1| ≥ sk (6)

where xk,1 denotes the position state.
4) Chance constraints: Chance constraints are used to reject

trajectories that only occur with a small probability from
the set of possible solutions.

All the above constraints can be combined in the form,

Gkθk ≤ gk, (7)

where θk ∈ Rnt is the vector of decision variables, Gk ∈
Rnc×nt and gk ∈ Rnc×1 where nc is the total number of
constraints. The total number of decision variables is denoted
by nt.

Cost function
We take into account five goals in the cost function:
1) Minimize the control inputs to the CAVs and IHVs based

on their respective weights. This is a quadratic function
of θk;

2) Minimize the time to reach the desired longitudinal
merging distance.

3) Maximize both vehicles’ speeds within a speed limit.
This is a linear function of θk;

4) Minimize the number of advisory actions so that the
merge can occur with fewer advisory actions. This is a
linear function of θk;

5) Maximize the probability of the stochastic events and
human input stochasticity. This is a linear function of
θk

The objective function of the MPC is the sum of the afore-
mentioned five functions weighted by user preference, which
can be represented as

J(θk) = θ⊤k Qθk + c⊤θk, (8)

where Q ∈ Rnt×nt and c ∈ R1×nt are the designed objective
weights for the system.

Optimization problem

Assuming the human state xB
k is a known parameter, the

optimization problem can be formulated as

min
θk

J(θk), s.t. Gkθk ≤ gk. (9)

Applying this optimization algorithm in a receding horizon
fashion with the constraints and defined objective, we get the
MPC solution, which consists of the control inputs applied to
the CAVs and the advisory commands communicated to the
IHVs at each time step.

VI. CASE STUDY AND RESULTS

This section presents the results of the two case studies:
distraction detection in standalone driving and lane merging
in cooperative driving.

A. Distraction Detection

The dataset consists of 50,000 images and is divided into
training, evaluation, and testing subsets with a 8:1:1 ratio.
The data collection involves 14 volunteers. To construct the
evaluation subset and the test subset, we select the data
from two specific volunteers as the primary components.
Subsequently, we randomly sample images from the remaining
12 volunteers and allocate them to both the evaluation and
test datasets, ensuring an 8:1:1 ratio. This division allocates
40,000 images for training. The evaluation subset has 5,000
images and is used to examine the performance of the model
during training. At the end, the testing subset, also containing
5,000 images, serves as the independent evaluation to measure
the model’s generalization ability on unseen data. The testing
result is shown in the confusion matrix in Figure 7. One can
notice that the overall accuracy of the classification reaches
95%.

Fig. 7: Confusion matrix.

We also conducted experiments on the simulation testbed
to assess the AI engine’s ability to detect distractions in real
time. In the experiment, a distracted human driver drove an
IHV which followed a CAV with an initial distance of 35
meters. Initially, the CAV was driving at the same speed with
the IHV before it quickly slowed down to be 5 meters/second
slower than the IHV, which invoked the copilot to monitor
the potential collision and request the AI engine to detect
the driver’s status. At that moment, the human driver had a
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distracted driving behavior as he was talking to a passenger,
without noticing the slowing down of the CAV. The copilot
recognized the driver’s distraction behavior and was aware of
the short distance between the two vehicles, which prompted
it to remind the driver to ‘focus on driving’. Comparative tests
were conducted where the AI engine was not running and the
copilot did not remind the driver. 6 volunteers conducted 30
tests with reminding and 20 tests without reminding.

As an example of a test conducted with the AI engine on,
Figure 8a shows the speed of both vehicles and Figure 8b
shows the distance between the vehicles, with time point 0 in
x axis representing the moment when the CAV quickly slowed
down. The AI engine alerted the driver by saying ”focus on
driving” when the distance between the vehicles was less than
30 meters. The human driver reacted and pressed the brake
pedal, thereby successfully maintaining the safe distance and
avoiding a collision. Conversely, Figure 8c depicts the speed
of both vehicles in an experiment without the advising of the
copilot, and Figure 8d shows the distance between the two
cars. One can notice that without the AI engine advising, the
distracted human driver kept the same speed and a collision
happened after the 6th second.

(a) Vehicles’ speed without AI
engine reminding.

(b) Distance between vehicles
without AI engine reminding.

(c) Vehicles’ speed with remind-
ing.

(d) Distance between vehicles
with reminding.

Fig. 8: Vehicles’ speed and distance between vehicles.

Based on the analysis of the experimental results, we learned
that when reminders were provided, the average shortest
distance between the IHV and the CAV was 11.045 meters.
In contrast, in tests without reminders, the average shortest
distance between them reduced to 5.023 meters, leading to
collisions. Furthermore, in tests with reminders, the average
reaction time, measured from the moment when the distance
between the CAV and the IHV fell below 30 meters and
the copilot detected driver distraction, to the point when the
human driver successfully followed the advice and decelerated
the IHV to a speed slower than the CAV to ensure safety,
was found to be 4.133 seconds. In contrast, in tests without
reminders, the average reaction time, beginning at the same

time point but ending with the occurrence of a collision, was
4.938 seconds.

B. 3-vehicle Lane Merging

To showcase the effectiveness of the proposed cooperative
driving testbed, experiments were conducted involving 3-
vehicle lane-merging scenarios. Four scenarios were consid-
ered, each featuring distinct initial location settings. In all
scenarios, a human-driven vehicle Va located in the right lane
was required to merge into the left lane, where CAVs Vb and
Vc were present. Figure 11 shows the in-vehicle view of the
IHV during the 3-vehicle lane merging. The top view window,
situated at the bottom left on the central monitor, provides the
locations of the CAVs Vb and Vc.

With the connection between the copilots and the simulator,
the copilot backend publishes vehicle data as a ROS message
to all vehicles immediately after receiving the corresponding
vehicle data from the driving simulator. Once the merging
intention is detected, the backend requests the Gurobi server
to optimize the cooperative driving as an mixed integer op-
timization problem. For each time step of 0.8 seconds, the
backend transmits its vehicle data, including speed, location,
and acceleration, to the Gurobi server, which is deployed on
a remote powerful computer. After receiving data, the Gurobi
server needs approximately 0.3 to 0.5 seconds to compute the
optimal vehicle acceleration control commands. The optimized
accelerations are then transmitted to each corresponding copi-
lot. For the copilot connecting with the CAV, the acceleration
is conveyed to the simulator as the control command. On the
human-driven vehicle, the copilot utilizes voice and visual cues
to remind the driver to either speed up or brake as necessary.

For the first scenario, as shown in Figure 9a, initially the
human-driven vehicle is in front of both CAVs regarding
longitudinal location. As an example of the first scenario,
Figure 10a shows three vehicles’ speed and their relative
location, assuming the human-driven vehicle’s location is 0m
at each time step. In the figure, the green curve represents
data related to the human-driven vehicle Va, while the blue
and the red curves correspond to data related to the CAVs Vb
and Vc, respectively. Notably, time 0 is the time when the
merging intention is detected, and all curves conclude at the
point when a safe distance is established for the merging to
start.

It is evident that the Gurobi server obtained the optimal
solution in which the human-driven vehicle speeds up and both
CAVs slow down. As depicted in Figure 12, which illustrates
the advised and actual acceleration of the human-driven vehi-
cle, each data point represents the average acceleration over
the past 0.8 sec. Although the maneuver control conducted by
the human driver was not as proficient as that of the CAVs,
which followed commands 100 percent of the time, the “speed
up” maneuver control was performed correctly.

As shown in Figure 9b, the human-driven vehicle Va is
behind both CAVs in the second scenario. Similarly, Figure
10b demonstrates speed for the three vehicles and their relative
location. In this scenario, since the human-driven vehicle
is in behind, one can simply imagine the optimal solution
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(a) IHV-Front (b) IHV-Behind (c) IHV-Middle (d) Natural

Fig. 9: Different scenarios of lane merging. Vehicle A is an IHV. Vehicle B and Vehicle C are CAVs.

(a) IHV-Front (b) IHV-Behind (c) IHV-Middle (d) Natural

Fig. 10: Vehicles’ speed and relative location.

Fig. 11: In-vehicle perspective of IHV’s 3-monitor view during the 3-vehicle lane merging.

Fig. 12: Acceleration for the human-driven vehicle
in the first scenario.

Fig. 13: Comparison of completion times across scenarios. The
completion time is the duration from detecting the merging
intention to establishing a safe merging distance.
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would be the human-driven vehicle slowing down while CAVs
accelerate. The Gurobi server obtained a similar optimal
solution for the IHV, and then successfully controlled both
CAVs and advised the human driver to complete the process
of establishing the safety distance.

In the third scenario, the human-driven vehicle is in the
middle of the CAVs regarding longitudinal distance, as shown
in Figure 9c. According to Figure 10c, which shows the three
vehicles’ speed and relative location, we observe that the
Gurobi server decides to let the CAV Vb speed up and let
the CAV Vc slow down, while the human driver is advised to
speed up slightly. This approach enabled a safe distance to be
promptly established between vehicles Vb and Vc.

As a comparison, in the fourth scenario that featured the
same initial location setting as the third scenario, the Gurobi
server is turning off, resulting in both CAVs maintaining
the same speed while the human driver took charge of the
merging process. As indicated by the experimental results
shown in Figure 10d, the process took a longer duration of
time and potentially made more impact on the surrounding
traffic system, given that the human-driven vehicle accelerated
substantially.

Six volunteers, possessing recent and proficient driving
experience, conducted the tests. For every volunteer, all four
scenarios were performed 5 times in a randomized order. Fig-
ure 13 illustrates the comparative analysis of completion times
across different scenarios. The completion time refers to the
duration from detecting the merging intention to establishing
a safe merging distance. In the figure, the boxes indicate the
interquartile range of the data, with the median represented
by a line inside each box. It can be observed that the test is
completed notably faster with the model assisting the human
driver and controlling the CAV.

VII. CONCLUSION AND FUTURE WORK

In order to address the cooperative driving problem in
mixed traffic of CAVs and human-driven vehicles, this paper
introduced a simulation testbed that features a copliot to assist
human drivers. Two case studies were conducted to assess
the performance of the testbed in intelligent and cooperative
driving. The first case study focused on validating the effec-
tiveness of the AI engine in the context of intelligent driving.
The specific scenario addressed involved detecting driver dis-
traction and alerting the driver to reduce the risk of collision
with adjacent vehicles. Experimental data indicates that with
copilot assistance, the average time from the initiation of a
hazardous situation to its resolution is about 4.13 seconds.
The second case study tested the performance of an MPC
algorithm in facilitating cooperation between three vehicles,
thereby enabling effective coordination and cooperation among
these vehicles. Experimental results show that with copilot
assistance, the time required to establish a safe distance and
complete lane merging is significantly decreased. Therefore,
experimental results demonstrate that the proposed testbed is
effective as a platform for developing and testing algorithms
related to intelligent and cooperative driving.

Further research will be carried out to explore the challenges
of human driver modeling, aiming to thoroughly investigate

the HITL problem within the context of cooperative driving
in mixed traffic. Particularly we will improve the performance
of human-vehicle interaction by better understanding human
driving behaviors and utilizing reinforcement learning for
effective advising. Additionally, we will address the issues
related to V2V communication, with emphasis on reducing
data latency and minimizing redundant data transmissions.
More comprehensive driving scenarios will also be consid-
ered, including the study of cooperative driving that involves
interactions between multiple IHVs and CAVs. We will also
investigate the modeling of the adjacent traditional human-
driven vehicles that have no AI assistance and incorporating
them into the cooperative driving system. Finally, we will
extend the research to study the cooperative driving that
involves the interactions between IHVs and CAVs themselves.
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APPENDIX

A. State constraints
The new state equation zuk = xB

k (u
a
k − fh

k ) is enforced as
constraints in the following form:

zuk ≤ (Mu − fh
k )x

B
k , zuk ≥ (mu − fh

k )x
B
k (10)

zuk ≤ (ua
k − fh

k )− (mu − fh
k )(1− xB

k ) (11)

zuk ≥ (ua
k − fh

k )− (Mu − fh
k )(1− xB

k ) (12)

where Mu and mu are the upper and lower limit of the input.
The following constraints can be used to enforce the state

limits of CAVs and IHVs:

xr
k ≤ M, xr

k ≥ m, (13)

xh
k ≤ M, xh

k ≥ m, (14)

for some upper limit M and lower limit m.

B. sFSM transition constraints
Let uB

k ∈ {0, 1} denote the on/off of an advisory control at
time step k. Based on the first-order Markov assumption, we
prescribe the transition probability of xB

k+1 given xB
k and uB

k .
Therefore, there are 8 different possibilities for transitions [46].
We introduce a binary variable wi ∈ {0, 1} (an uncontrollable
event) for each transition and constrain wi = 1 if and only if
the i th transition occurs. The 8 transitions and the definitions
of wi

k are given below:

(xB
k+1 = 0|xB

k = 0, uB
k = 1) ↔ w1

k = 1

(xB
k+1 = 1|xB

k = 0, uB
k = 1) ↔ w2

k = 1

(xB
k+1 = 0|xB

k = 0, uB
k = 0) ↔ w3

k = 1

(xB
k+1 = 1|xB

k = 0, uB
k = 0) ↔ w4

k = 1

(xB
k+1 = 0|xB

k = 1, uB
k = 1) ↔ w5

k = 1

(xB
k+1 = 1|xB

k = 1, uB
k = 1) ↔ w6

k = 1

(xB
k+1 = 0|xB

k = 1, uB
k = 0) ↔ w7

k = 1

(xB
k+1 = 1|xB

k = 1, uB
k = 0) ↔ w8

k = 1.

(15)
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The probability of each event p[wi
k] needs to be specified.

In particular, we let p[w2
k] = pt, which is the probability of

transitioning to an advisory action. We also let p[w6
k] = pf

which is the probability of continuously following the advisory
control. We set p[w3

k] = 1, p[w4
k] = 0, p[w7

k] = 1, p[w8
k] = 0.

Note that p[wi
k] + p[wi+1

k ] = 1, i = 1, 3, 5, 7. The pt and
pf may be learned from human-in-the-loop experiments. Let
δ1k = xB

k u
B
k . Then the possible transitions of the sFSM can be

enforced using the following constraints:

w1
k + w2

k ≤ uB
k − δ1k, w1

k + w2
k ≥ uB

k − δ1k, (16)

w5
k + w6

k ≤ δ1k, w5
k + w6

k ≥ δ1k, (17)

−xB
k + δ1k ≤ 0, − uB

k + δ1k ≤ 0, (18)

uB
k + xB

k ≤ 1 + δ1k, (19)

xB
k =

k−1∑
j=0

uB
j + C

k−1∑
j=0

wj , ∀k ≥ 1 (20)

where C = [−1 0 − 1 0].

C. Merging constraints

Let binary variables frh
k and fhr

k denote the relative position
of a vehicle with respect to another vehicle. If CAV is in front
of IHV, then frh

k = 1 and fhr
k = 0. Otherwise frh

k = 0 and
fhr
k = 1. This relationship forms the following inequalities.

xr
k,1 − xh

k,1 ≥ −M̄fhr
k , (21)

xr
k,1 − xh

k,1 ≤ −ϵ+ (M̄ + ϵ)frh
k , (22)

frh
k + fhr

k = 1, (23)

where M̄ is a sufficiently large positive number and ϵ is a
small positive number.

Define binary variables mr
k and mh

k to indicate the merging
vehicle. If the CAV is merging, mr

k = 1 and mh
k = 0. If the

IHV is merging, then mr
k = 0 and mh

k = 1. We also define
binary variables lrhk ∈ {0, 1} to indicate if the CAV and IHV
are in the same lane. If they are in the same lane then lrhk = 1
otherwise lrhk = 0. Let the safe following distance be df . For
safe merging, we also consider additional rear clearance dr
while merging. The safe merging distance sk can be calculated
using the following equation:

sk = (1− lrhk )(df +mr
kf

rh
k dr +mh

kf
hr
k dr) + lrhk df . (24)

Here, sk is the longitudinal distance threshold that the two
vehicles should maintain right before a safe merging. If the
CAV is merging from behind, we have mr

k = 1, mh
k = 0,

lrhk = 0, frh
k = 0, and fhr

k = 1. From (24), sk = (1−0)(df +
1 × 0 × dr) + 0 × df = df . If the CAV is merging to the
front of the IHV, frh

k = 1, fhr
k = 0, and the rest would be the

same. Then sk = df + dr. Similarly, if the IHV is merging
from behind, we obtain from (24) sk = df , and if the IHV
is merging from the front, sk = df + dr. Thus, (24) allows
incorporation of an additional clearance dr while merging in
front of a vehicle. If the two vehicles are in the same lane,
they will keep a following distance as sk = df .

Following (6), the safe distance while merging can be
enforced using the following inequalities:

xr
k,1 − xh

k,1 ≤ −sk + M̄b1,k, (25)

xr
k,1 − xh

k,1 ≥ sk − M̄b2,k, (26)

where xk,1 denotes the position state. We introduced two
binary variables b1,k and b2,k with a sufficiently large M̄ .
When b1,k = 0 and b2,k = 1, (25) becomes xr

k,1−xh
k,1 ≤ −sk

and (26) becomes xr
k,1 − xh

k,1 ≥ sk − M̄ , which holds
trivially. Similarly, when b1,k = 1 and b2,k = 0, (26) becomes
xr
k,1 − xh

k,1 ≥ sk and (25) becomes xr
k,1 − xh

k,1 ≤ −sk + M̄ ,
which holds trivially. Thus, b1,k + b2,k = 1 ensures that the
safe distance is satisfied at each time step k.

To reduce the time to reach the condition in (6), we
introduce a constraint

b1,k + b2,k ≥ 1, (27)

and minimize b1,k + b2,k (among other objectives) in the
objective function.

D. Chance constraint

In our Discrete Hybrid Stochastic Automata (DHSA) formu-
lation, the possible human state transition events are given by
wk =

[
w1

k w2
k w5

k w6
k

]⊤
and the transition probabilities

are p =
[
p[w1

k] p[w2
k] p[w5

k] p[w6
k]
]⊤

. Following [45], the
probability of the state trajectory can be computed as π0

...
πK−1

 =

 w⊤
0
...

w⊤
K−1

 p, (28)

where K is the look-ahead window in the MPC. At step k, the
πk indicates the likelihood of taking the transition described
by wk. The probability of the whole w trajectory, π(w), is
given by

π(w) = π(w0, w1, . . . , wk) =
K−1∏
k=0

πk. (29)

Then the chance constraint can be defined as

π(w) ≥ p̃w (30)

with p̃w ∈ [0, 1] being a probability bound. This chance
constraint (30) enforces that w realizes with at least p̃w
probability. From (30), for our system, we can compute the
constraint as

lnπ(w) =
K−1∑
k=0

∑
i=1,2,5,6

wi
k ln(p[w

i
k]) ≥ ln(p̃w). (31)

E. Decision variables

For a look ahead window of K, the decision vari-
ables are summarized as θk ∈ Rnt in the form θk =
[ur

k ua
k z̄k uB

k wk δ1k bk frhk fhrk ] where ur
k =[

ur
k, ur

k+1, · · · , ur
k+K−1

]
and all the other decision vari-

ables are defined similarly. The total number of decision
variables is denoted by nt. The continuous variables are ur

k,
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ua
k, and zuk while the rest are binary. Note that among all these

decision variables, the CAV input ur
k and the IHV advisory

commands ua
k along with the advisory state uB

k are the control
inputs entering the system dynamics.
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