
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024 10695

Rateless Coded Blockchain for
Dynamic IoT Networks

Changlin Yang , Member, IEEE, Alexei Ashikhmin, Fellow, IEEE, Xiaodong Wang , Fellow, IEEE,
and Zibin Zheng , Fellow, IEEE

Abstract—A key constraint that limits the implementation
of blockchain in Internet of Things (IoT) is its large storage
requirement resulting from the fact that each blockchain node
has to store the entire blockchain. This increases the burden
on blockchain nodes, and increases the communication overhead
for new nodes joining the network since they have to copy
the entire blockchain. In order to reduce storage requirements
without compromising on system security and integrity, coded
blockchains, based on error correcting codes with fixed rates and
lengths, have been recently proposed. This approach, however,
does not fit well with dynamic IoT networks in which nodes
actively leave and join. In such dynamic blockchains, the existing
coded blockchain approaches lead to high-communication over-
heads for new joining nodes and may have high-decoding failure
probability. This article proposes a rateless coded blockchain with
coding parameters adjusted to network conditions. Our goals are
to minimize both the storage requirement at each blockchain
node and the communication overhead for each new joining node,
subject to a target decoding failure probability. We evaluate the
proposed scheme in the context of real-world Bitcoin blockchain
and show that both storage and communication overhead are
reduced by 99.6% with a maximum 10−12 decoding failure
probability.

Index Terms—Coded blockchain, decoding failure probability,
dynamic Internet of Things (IoT) networks, rateless code, storage
reduction.

I. INTRODUCTION

THE BLOCKCHAIN technology has found wide applica-
tions in Internet of Things (IoT) [1] due to its distributive,

secure and integrated properties [2]. One of the key challenges
that restricts the implementation of blockchain in IoT devices
is the high-storage requirements for their users [3]. For
example, a Bitcoin blockchain needs 380-GB hard-disk space
in 2022 [4] and takes several days to download for a fully

Manuscript received 29 August 2023; revised 23 September 2023; accepted
20 October 2023. Date of publication 8 November 2023; date of current
version 7 March 2024. This work was supported in part by the National Key
Research and Development Program of China under Grant 2023YFB2703600;
in part by the National Natural Science Foundation of China under
Grant 62032025; and in part by the Natural Science Foundation of
Guangdong Province under Grant 2023A1515011474. (Corresponding author:
Zibin Zheng.)

Changlin Yang and Zibin Zheng are with the School of Software
Engineering, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
(e-mail: yangchlin6@mail.sysu.edu.cn; zhzibin@mail.sysu.edu.cn).

Alexei Ashikhmin is with the Communications and Statistical Sciences
Research Department, Nokia Bell Laboratories, Murray Hill, NJ 07974 USA
(e-mail: alexei.ashikhmin@nokia-bell-labs.com).

Xiaodong Wang is with the Electrical Engineering Department, Columbia
University, New York, NY 10027 USA (e-mail: wangx@ee.columbia.edu).

Digital Object Identifier 10.1109/JIOT.2023.3328648

functional Bitcoin core client [5]. This makes it hard for
portable devices, such as smart phones and laptops, to serve
as full nodes in a blockchain, which weakens the distributive
property.

There are several ways to reduce the blockchain storage
requirements, including simplified payment verification (SPV),
pruning, and sharding [6]. An SPV client only stores the block
headers and relies on the full nodes to verify transactions. The
pruning scheme prunes old information that is not needed for
verifying new blocks. However, the deleted information will
eventually be inaccessible if all nodes employ pruning. The
sharding approach divides nodes into groups and each group
maintains a portion of the entire blockchain. However, the
security level of the sharding approach is directly related to
the group size [7]. Hence, all these solutions compromise on
blockchain security or/and integrity.

Recently, coded blockchains have been proposed to reduce
the blockchain storage requirements without loss of security
and integrity [8], [9], [10], [11], [12]. They can also improve
block propagation efficiency [13], [14], [15], [16]. In addi-
tion to storage and transmission cost reduction, the coded
blockchains can improve the security of existing SPV client via
fraud proofs [17], [18] or coded Merkle trees [19], [20], [21],
and also the security of sharding solutions via coded
shards [22], [23], [24], etc. In such blockchains, nodes encode
the data of blocks using fixed rate error correction codes,
such as Reed–Solomon codes [25], low-density parity-check
(LDPC) codes [26], and polar codes [27], and distributively
store the encoded blocks. In particular, a group of k blocks are
encoded into n encoded blocks using an [n, k] code. Then the
storage at nodes reduces to about 1/k that of the replicated
blockchain. When the data of a particular block is needed by
a node, it can be recovered by collecting slightly more than
k encoded blocks from other nodes and running a decoder of
the error correction code. Nodes can encode only old blocks
that are not needed for “mining,” which resembles the old
block pruning approach, but without any loss of security and
integrity.

In practice, an IoT blockchain network is dynamic and
nodes frequently join or leave the network. Although for most
of the time, the numbers of nodes joining and leaving are
steady, sharp changes may occur sometimes. For example,
the number of Bitcoin nodes dropped by 24% in September
2020 [28]. The encoding schemes in [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
and [24] are designed for networks with fixed number of

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1352-7429
https://orcid.org/0000-0002-2945-9240
https://orcid.org/0000-0001-7872-7718

10696 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

nodes, but some nodes can be temporarily unavailable. These
encoding schemes are not well-suited for dynamic networks
with the following reasons.

1) In a dynamic network, the number of nodes may rapidly
change. Thus, using an [n, k] code of a fixed length n
becomes very inconvenient. In contrast, rateless codes
is a natural solution for this scenario.

2) The nodes in a dynamic network often permanently
leave the network. Thus, if we use a fixed length [n, k]
code, but many of the n nodes, that were available at the
time of encoding, permanently leave, then other nodes
will not be able to reconstruct these k blocks.

3) One possible way of using fixed length codes in a
dynamic network is to use an [N, k] code with length N
significantly larger than the number of network nodes n.
So, when a new node, say node n+1, joins the network
it can compute its own parity check symbol. However, in
this approach, the new node first has to download more
than k encoded blocks from other nodes to decode the k
original blocks, which means very large communication
overhead and high-decoding complexity. This problem
does not exist in the proposed rateless coded blockchain.

Rateless Luby transform (LT) codes [29] were used to
encode the blockchains in [30], [31], [32], and [33]. Moreover,
an attempt of raptor code is discussed in [34]. However, the
parameter k is fixed in these works and as a result these
schemes do not well fit dynamical blockchains. In addition,
most of these works use nonsystematic LT codes. This forces
a new joining node first to decode all previously generated
codewords. The number of these codewords can be very large
since they contain almost entire blockchain and decoding of
even a single codeword takes visible computational resources.
Thus, this approach results in very large computational and
communication resources needed for new nodes.

In this work, we use rateless raptor codes [35]. These codes
have a low-decoding failure probability than LT codes [35]. We
use systematic rateless codes such that the original blocks are
also stored at some nodes in the network. Thus, when a node
joins the network, it only needs to collect a few original blocks
and encode its own parity check (or original) blocks for each
group of previously encoded blocks. We adjust parameter k
based on the network condition, which allows us to find a good
tradeoff between storage efficiency and blockchain reliability.
We propose to use novel enhanced blocks to store the coding
parameters of each group of encoded blocks. We evaluate the
proposed rateless coded blockchain in the Bitcoin network.
The results show that by ensuring a less than 10−12 decoding
failure probability, the node storage and the communication
overheads needed by a new joining node both reduce to 0.4%
as compared with the replicated blockchain.

This article addresses a critical challenge that has not
been considered by previous coded blockchain studies: how
to ensure successful decoding when the number of nodes
in the network changes. In particular, all existing coded
blockchain works use a predetermined information symbol
length k. If sufficiently many nodes involved in encoding a
particular codeword eventually leave the network, and this
is a very possible event, it will be impossible to recover

these k information symbols. As a result, many blocks will be
lost, which is not acceptable in most blockchain applications.
Existing works do not have mechanism to update k. In this
respect, this article makes the following contributions.

1) This article proposes a novel enhanced block structure
that is built on top of a traditional block. Such enhanced
block ensures the coded blockchain parameters, e.g., k,
reach consensus in the system.

2) This article presents a network maintenance algorithm
(NMA) for new joining nodes, to ensure the coded
blocks stored in the system are sufficient for decoding.

3) This article proposes a novel method to update parameter
k to ensure successful decoding in a dynamic blockchain
network.

4) This article performs numerical simulations to show
that the proposed scheme reduces the size of Bitcoin
blockchain by 99.6% with a maximum 10−12 decoding
failure probability.

The remainder of this article is organized as follows.
Section II presents the background on coded blockchains and
rateless codes. Section III gives an overview of the proposed
rateless coded blockchain. Section IV presents the structure
of our novel enhanced blocks. Sections V and VI present the
protocol for a new node joining the network and our algorithm
for choosing parameter k, respectively. Simulation results are
given in Section VII. Finally, Section VIII concludes this
article.

II. BACKGROUND ON CODED BLOCKCHAIN

AND RATELESS CODE

A. Background on Coded Blockchain

In this section, we briefly describe how coded blockchains
are organized in [9] and [10]. We will generalize this approach
for the case of using rateless codes later in our work.

We use B to denote a block. Let W be the index of the last
block, and BW be the data of this block (that is the Wth block
without its header). Slightly abusing notation, in what follows
we will be calling by block both entire block (data + header)
and its data part Bw. Let α be a sufficiently large integer
such that with high-probability blocks 0, 1, . . . , W − α do
not contain forks that would grow. These blocks are called
confirmed blocks. In a coded blockchain the confirmed blocks
are partitioned into M groups, each of which has been encoded
by the fixed rate code, as it is shown in Fig. 1. Each group
consists of k blocks and each block Bw is divided into s
symbols over the finite field Fq, denoted by bw. Assuming that
the mth group has blocks with indices {w1, w2, . . . , wk}, this
group can be represented by a matrix with k columns, denoted
by bwi , and each column forms the corresponding original
block of the group

⎡
⎢⎢⎢⎣

bw1,1 bw2,1 . . . bwk,1
bw1,2 bw2,2 . . . bwk,2

...
...

...
...

bw1,s bw2,s . . . bwk,s

⎤
⎥⎥⎥⎦. (1)

The k entries of each row of (1) are information symbols.
Each information symbol is denoted by bwi,j, where 1 ≤ i ≤ k

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RATELESS CODED BLOCKCHAIN FOR DYNAMIC IoT NETWORKS 10697

Fig. 1. Blocks are encoded by groups. Each group consists of k blocks. Each
block is divided into s symbols.

and 1 ≤ j ≤ s. So, each row of (1) is encoded into n coded
symbols using a [n, k]q linear code over Fq, where q = 2p

and p is the number of bits in each symbol bwi,j, with a k× n
generator matrix G. The code length n is typically equal to the
number of nodes in the network at the moment of encoding.
The encoding is conducted by multiplication of each row of (1)
by G. As a result we obtain the encoding vector of the hth
row of (1) as

[
u1,h, . . . , un,h

] = [
bw1,h, . . . bwk,h

]
G. (2)

Thus, after encoding all rows of (1), we obtain the matrix
⎡
⎢⎢⎢⎣

u1,1 u2,1 . . . uk,1 . . . un,1
u1,2 u2,2 . . . uk,2 . . . un,2
...

...
...

...
...

...

u1,s u2,s . . . uk,s . . . un,s

⎤
⎥⎥⎥⎦. (3)

Each node stores only one column of (3), which greatly
reduces the needed storage. We will denote the ith column
of (3) by ui.

It is convenient to use systematic G, such that the first k
columns of G form the identity matrix Ik. In this case we have
ui = bwi , i = 1, . . . , k. If a node, say node j, needs block ui,
for example for verifying a transaction, it broadcasts a request
and obtains ui. If the node that stores ui is not available, then
node j collects a few other columns of (3) and use a decoder
of the [n, k]q code to repair ui [10]. On the other hand, when
repairing in [10] fails or G is a nonsystematic generator matrix,
as in [9], node j needs to collect (1 + ε)k columns of (3)
from other nodes and to decode all the information symbols
bw1 = u1, . . . , bwk = uk. Here, ε is the decoding overhead
that varies for different codes.

B. Background on Rateless Codes

We now briefly review the rateless codes and their variances.
By using the rateless codes, the transmitter uses n information
symbols to generate potentially unlimited number of coded
symbols, and sends them to one or more receivers. As soon as
a receiver collects any (1+ ε)n coded symbols, it can decode,
with a high probability of success, the n information symbols.

1) LT Code [29]: Let {u1, . . . , un} be n information sym-
bols over Fq, q = 2p. The reason why we use the same
notation ui, that we used for coded symbols in the previous
section, is that later we are going to combine a linear
[k, n] code and [N, n] LT code to get a raptor code for our
blockchain. The summation ⊕ of such symbols is conducted
by bitwise XOR operation. Note that since q = 2p, the

Fig. 2. LT encoding: Four information symbols (circles) are encoded into
five coded symbols (squares) with degrees d = 1, 2, 3, 2, 2, respectively.

subtraction � coincides with ⊕. With an LT code, one
generates each coded symbol vj as follows. It first chooses
a degree d from a generator degree distribution �(d). It
then randomly chooses d information symbols {ui1 , . . . , uid }
from {u1, . . . , un} with equal probability. These d information
symbols are neighbors of vj. We denote the set of indices of
these neighbors by

N (
vj

) = {i1, . . . , id}. (4)

Finally, the coded symbol is calculated via the XOR operation

vj =
∑

i∈N (vj)

ui = ui1 ⊕ . . .⊕ uid . (5)

The coded symbol vj is the edge of the information symbols
{ui1, . . . , uid }. The set of all edges of ui is denoted by

E(ui) = { j : i ∈ N (
vj

)}. (6)

An information symbol ui can be calculated using an
edge coded symbol and its other neighboring information
symbols as

ui = vj ⊕
∑

h∈N (vj)\{i}
uh, for any j ∈ E(ui). (7)

An example of encoding four information symbols into five
LT coded symbols is shown in Fig. 2. In this example we have
N (v1) = {u1}, N (v2) = {u1, u3}, N (v3) = {u2, u3, u4} and so
on; and E(u1) = {v1}, E(u2) = {v3, v4}, and so on.

The receiver can start decoding when it receives (1 + ε)n
coded symbols. The decoding of the LT code is a “peeling”
process. First, the decoder finds a coded symbol of degree one,
that is vj with |N (vj)| = 1. This coded symbol in fact is an
information symbol with index {i} = N (vj). Having decoded
the information symbol ui, the decoder removes ui from the
set of neighbors of all coded symbols from E(ui), updates
these coded symbols, and also decreases by 1 their degrees.
For example, if j′ ∈ E(ui), then vj′ and its set of neighbors are
updated as follows:

vj′ ← vj′ ⊕ ui, N (
vj′

)← N (
vj′

)\{i}. (8)

The decoder continues finding coded symbols of degree one
and peeling the information symbols until no coded symbol
of degree one left or all information symbols are successfully
decoded. If there are still undecoded information symbols, the
receiver collects more coded symbols and restart the peeling
process. For example, as shown in Fig. 3, for the LT code
in Fig. 2, the decoder can successfully decode information
symbols {u1, u3} after it receives {v1, v2, v3, v4}. However, it

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

10698 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

Fig. 3. LT decoding: Dashed circles indicate decoded information symbols.
Dashed squares indicate coded symbols with zero degree. Dashed lines
indicate the subtracted degree.

needs to collect one more coded symbol v5 to successfully
decode {u2, u4}.

An issue with the LT code is the error floor [36], [37].
The error floor means that the decoding failure rate does
not drop sufficiently fast with more received coded symbols.
This happens because the neighbors of coded symbols are
uniformly chosen between {1, . . . , n}, and thus, there is a
nonzero probability that an information symbol is not the
neighbor of any received coded symbol, i.e., its edge is an
empty set.

2) Raptor Code [35]: In order to address the error floor
issue and to reduce the encoding/decoding complexity of
the LT code, a raptor code first precodes the information
symbols using a fixed rate outer code, such as LDPC, Reed–
Solomon, or another linear code. The precoded symbols are
called the intermediate symbols, which are then encoded
into coded LT symbols. The raptor codes have very low-
decoding failure probabilities, and thus they fit well with
the stringent security requirement of blockchains. Moreover,
the encoding and decoding complexity of raptor codes are
O(k log(1/ε)) [35], which is approximately a linear function
of k. In what follows, we use raptor codes for our coded
blockchains.

III. OVERVIEW OF PROPOSED RATELESS

CODED BLOCKCHAIN

We first define the dynamic IoT blockchain network as
follows. Time is divided into time epochs. We assume that
the blockchain grows at a consistent rate of β blocks per time
epoch. We further assume that in each time epoch t, lt nodes
leave and et nodes join the network, where lt and et are Poisson
distributed with means λl and λe, respectively. Moreover,
we assume that IoT blockchain nodes have significantly
lower storage capability than traditional blockchain nodes,
e.g., servers and desktops. Let Vt denote the set of nodes
available in the network in the tth time epoch. Each node
in the network can send “get address” message recursively
to find all reachable nodes in the network to obtain Vt [38].
Moreover, an address can be considered as valid only if it
holds valid UTXOs to prevent Sybil attack. We next present
the encoding and decoding procedures of the proposed rateless
coded blockchain.

A. Encoding Procedure

We divide each block Bw into s symbols over Fq and form
groups as in Fig. 1. Thus, for each group we obtain a matrix

Fig. 4. Example of block coding graph using systematic raptor code.

in the form of (1). For each group we encode s rows of (1)
into s code vectors using the same raptor code for each row.
The number of blocks in each group varies depending on the
network condition (detailed in Section VI). We use Gm to
denote the set of blocks in the mth group and km = |Gm|. In
general km is large if the number of active nodes in the network
is large, and nodes do not actively leave the network. We
encode the blocks in each group Gm using a systematic raptor
code [35] with an [nm, km] precode with a generator matrix
Gm. We assume that the code rate r = km/nm of the precode
is the same for all groups and time epochs. The encoding
and decoding procedures are the same for all groups, thus we
sometimes may omit the subscript m to simplify the notation.

Since the same encoding and decoding is used for each
row of (1), and therefore each row of (3), we will write
bi, i = 1, . . . , k, and ui, i = 1, . . . , n, meaning any row of (1)
and (3), respectively. Similarly for the matrix (9) presented
below, we will write vi, i = 1, . . . , N, meaning any row
of (9). The information symbols {bi} are first encoded into
intermediate symbols {ui} using (1)–(3). We call each column
of (1), denoted by bi, an original block; and each column
of (3), denoted by ui, an intermediate block. We assume that
Gm is in the systematic form, and therefore {u1, . . . , uk} =
{b1, . . . , bk}.

The intermediate symbols of each row of (3) are then
encoded into coded symbols using a systematic LT code with
a degree distribution �(d). As a result we obtain the matrix

⎡
⎢⎢⎢⎣

v1,1 v2,1 . . . vk,1 . . . vn,1 . . . vN,1
v1,2 v2,2 . . . vk,2 . . . vn,2 . . . vN,2
...

...
...

...
...

...
...

...

v1,s v2,s . . . vk,s . . . vn,s . . . vN,s

⎤
⎥⎥⎥⎦. (9)

Here, N is the number of network nodes at the moment of
encoding. Each column j of (9) is a coded block denoted by
vj. We will use E(ui) to denote the set of edges for symbols
{ui} and N (vi) to denote the set of neighbors for symbols {vi},
respectively. We assume systematic encoding and therefore we
have systematic coded blocks {v1, . . . , vn} = {u1, . . . , un} and
nonsystematic coded blocks {vn+1, . . . , vN}. A coding graph
from k original symbols {bi} to n intermediate symbols {ui}
and then the N coded symbols {vj} is shown in Fig. 4. Each
node stores only one coded block for each group. Note that,
the indices of the coded block that a node stores for different
groups may be different. For example, a node may store va

for the mth group and vb for the m′th group with a 	= b.
However, to make our description simple, we assume that all

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RATELESS CODED BLOCKCHAIN FOR DYNAMIC IoT NETWORKS 10699

nodes are enumerated by integers and that node j stores vm
j

for all groups m = 1, . . . , ., M, where M is the total number
of groups. In the proposed rateless coded blockchain, we use
a degree distribution �(d) with �(1) = 0. An example will
be considered in Section VII.

B. Decoding Procedure

When an original block bi from group m is needed by
a node j, node j broadcasts a request to all nodes in the
network. Then node i sends vi from group m (note that vi =
bi) to node j. However, the blockchain network is dynamic
and node i may leave the network or be disconnected. When
this happens, node j can “repair” the needed block using
the procedure that will be presented in Section V-B. Briefly,
node j “repairs” the needed block using (7) by obtaining
some other coded blocks from active nodes. If it fails, node j
decodes all blocks in group m. To do this, the node j collects
(1 + ε)k distinct coded blocks from other nodes, which are
the columns of (9). Since the nonsystematic coded blocks
{vn+1, . . . , vN} have a random number of neighbors and the
neighbors are randomly chosen, with a very high-probability
arbitrary (1 + ε)k coded blocks are distinct. The decoder
first runs the LT decoding as described in Section II-B1 to
decode the intermediate blocks. It then runs a decoder of the
precode to obtain the original blocks. Since each row of (1)
is encoded into the corresponding row of (9) according to
the same generator matrix of the precode and the same LT
encoding procedure, the decoder can successfully decode all
original blocks if it can decode the first row of (1).

We would like to note that since we use an LT code, all
nodes store distinct coded blocks with very high probability,
even if the number of nodes N keeps growing. This reduces
the chance that multiple nodes store the same coded block.
Moreover, the LT encoding procedure is much simpler than
the design of a k × N generator matrix need for usual (not
rateless) linear codes, especially when N is large and not
known in advance. When a new node joins the system, it
only needs to collect on average E[�(d)] systematic coded
blocks to encode its own coded block to store for each group,
see the details in Section V. This significantly reduces the
communication overhead as compared with [30]. The code
length km is calculated based on the network condition. If we
expect that the network conditions are going to deteriorate (for
example, we expect that many nodes may leave the network),
then we can decode and further re-encode all previously
encoded groups with small value km. All nodes in the network
must have a consensus on the blocks included into group m
and the generator matrix Gm of the precode. To provide such
consensus, we propose a novel enhanced block in Section IV
that can be easily embedded into the current blockchain.

An overview of the proposed coded blockchain is shown in
Fig. 5(a) and (b). In Fig. 5(a), data and headers of the blocks
that form the mth group are shown, together with the mth
enhanced block that stores coding parameters for group m.
The mth enhanced block is always generated later than any
blocks in the mth group. Details on how enhanced blocks are
organized and how we determine the group size km are given

(a)

(b)

Fig. 5. Overview of the proposed rateless coded blockchain. (a) Rateless
coded blockchain. (b) New joining node calculates coded block it needs to
store.

in Sections IV and VI, respectively. When a new node joins the
network in Fig. 5(b), it only needs to collect a small number
of coded blocks from other nodes to calculate the coded block
to store. Details of the new node joining procedure will be
given in Section V.

Remark 1: The proposed encoding scheme is visibly dif-
ferent from the standard raptor code encoding, for instance
presented in [35]. In the standard scenario one simply produces
a semi-infinite sequence of parity symbols, since systematic
(information) symbols are always available and never erased.
In our case, however, systematic symbols may become unavail-
able if some systematic nodes leave the network. This results
in significant changes of the encoding procedure, which takes
into account possible absence of some systematic symbols (see
Section V). This also results in that new (joining) nodes gener-
ate code symbols according to a different degree distribution,
compared to the degree distribution used at the first instance
of encoding a particular codeword (see Lemma 1). Up to the
best of our knowledge raptor codes in such regimes have not
been studied yet. Since our encoding and the effective erasure
channel are substantially different from the standard ones, the
standard analysis of the code performance, see [35], becomes
inapplicable. For this reason we proposed a different approach
for estimation of the code performance, see Section VI.

IV. ENHANCED BLOCK

In the existing coded blockchain system, see for exam-
ple [10], the value of k is fixed for all groups. However, in
our scheme, the group size varies according to the network
condition and all nodes must have a consensus on coding
parameters used for a particular group. Therefore, in this
section, we present an enhanced block, which consists of
a traditional block and some extra fields in the header to
store the coding parameters. The block structure, mining and
verification of the enhanced block is slightly different from
traditional blocks.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

10700 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

Fig. 6. Enhanced block header structure.

A. Enhanced Block Structure

The data of enhanced blocks is organized in the same way
as in usual (not enhanced) blocks. However, the enhanced
block header contains four additional fields compared with the
header of a usual block, see Fig. 6. These new fields are as
follows.

1) Group Sequence Number: This field is the sequence
number of the enhanced block, which is independent of
the block sequence number.

2) Group Indices: This field contains the block sequence
numbers of the blocks to be encoded, i.e., Gm =
{w1, . . . , wk}. Note that km = |Gm| and nm = km/r.

3) Generator Matrix: This field contains the generator
matrix Gm. It should be noted that this field can be
omitted if the blockchain system uses a predefined
generator matrix calculation algorithm. For example, if
we use an LDPC code to encode the intermediate blocks,
the code can be generated with progressive edge-growth
(PEG) algorithm [39] and therefore it is enough to store
values for km and nm in the group indices field.

4) Hash Values: This field contains the hash values of
the nonsystematic intermediate blocks {uk+1, . . . , un}.
When a new node joins the network, it needs systematic
and sometimes nonsystematic intermediate blocks in
order to generate its own coded block. The integrity of
the systematic intermediate blocks, which are in fact
the original blocks, can be verified via their Merkle
tree roots in the corresponding block headers. The hash
values field ensures that the new node can also validate
the integrity of the nonsystematic intermediate blocks.

B. Mining

Recall that we employ the PoW protocol in which all nodes
competitively “mine” new blocks. The “mining” procedure
for the traditional blocks is the same as that in the existing
blockchain. However, mining an enhanced block needs some
more effort. Let M be the total number of “mined” enhanced
blocks. All nodes in the network use the same algorithm to
compute the value kM+1, i.e., the size of the next group (see
Section VI). Each node j also maintains a block pool Pj, which
contains confirmed, but not yet encoded blocks, see Fig. 7.
A node j starts to mine the (M + 1)th enhanced block when
|Pj| ≥ kM+1. This includes the following steps.

Fig. 7. Coded blockchain with block pool.

1) The “miner” first chooses transactions to include into
the enhanced block and calculates the Merkle tree root.
It then fulfills the fields of version, hash of previous
block, timestamp and difficulty. So this part is similar
to mining a traditional block.

2) The miner forms the set GM+1 ⊂ Pj with size |GM+1| =
kM+1.

3) The miner then forms an kM+1×nM+1 generator matrix
GM+1.

4) Next, the miner calculates the intermediate blocks
{u1, . . . , unM+1} using (2) and their hash values.

5) Finally, similar to mining a traditional block, the miner
finds the nonce such that the hash value of the enhanced
block header is less than the difficulty level.

After the above procedure, the miner produces an enhanced
block with the header structure described in Section IV-A. We
see that steps 2-4 are not present in the mining of a traditional
block. However, the computational complexity of these steps
is negligible compared with finding the nonce. Hence, the
incentive for mining an enhanced block is the same as that for
mining a traditional block.

C. Verification

When a node receives a new mined enhanced block with
sequence number M+1, the node verifies this block. If the new
enhanced block is valid, the node attaches it to its chain and
terminates its own mining process of the (M+ 1)th enhanced
block. Otherwise, it continues its own mining process. In
particular, the verification at node j′ should include, but not
limited to, the following steps.

1) The enhanced block is correctly formed, including block
data and block header structure. This step can include
the same verification process for traditional blocks, such
as checking nonce and target, size of each field, chain
to the previous block, etc.

2) The block pool size of the verifying node j′ is larger
than or equal to kM+1, i.e.,

∣∣Pj′
∣∣ ≥ kM+1. (10)

3) All blocks in the encoding group are within the block
pool, i.e.,

GM+1 ⊂ Pj′ . (11)

4) Calculating {ukM+1+1, . . . , unM+1} using (2) and GM+1
and verifying their hash values.

We recall that when mining an enhanced block, a node needs
slightly more resources, because it has to find kM+1 and GM+1.
Though this extra resources are much smaller than resources
needed for finding a nonce, still some nodes may continue
mining traditional blocks instead of an enhanced block. To
prevent this, we propose to use a punishment mechanism. For

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RATELESS CODED BLOCKCHAIN FOR DYNAMIC IoT NETWORKS 10701

example, nodes may follow the rule that if a node has a block
pool size satisfying (10), then it accepts a new block if and
only if this is an enhanced block.

D. Block Pool Update

After a node j mined or validated the new (M + 1)th
enhanced block, its block pool is updated as

Pj ← Pj\GM+1. (12)

However, it should be noted that the blocks from GM+1 are
not yet ready for encoding since the depth of the (M +
1)th enhanced block is less than α, i.e., this enhanced block
is not confirmed. It could happen that the blockchain splits
into several branches, and that different candidate (M + 1)th
enhanced blocks are mined in more than one branch. In this
case, node j will maintain pools P f

j for each branch f that
contains a candidate (M + 1)th enhanced block. As soon as
one of these candidate enhanced blocks is confirmed, say in
branch f ∗, the node j assigns Pj = P f ∗

j and discards the block
pools in other branches. In this way the node keeps the pool
of available blocks associated with the longest branch.

E. Decentralized Systematic Raptor Code Encoding

After the mth enhanced block is confirmed, all nodes
start to encode the blocks in Gm according to the procedure
described in Section III-A, but in a distributive manner. We
note that, because of network propagation delays and different
processing speeds, at a given time moment t different nodes
typically have different values of W. Let B̂(m) be the block
sequence number of the mth enhanced block. Let us assume
that any node j has W such that W − α = B̂(m). Let us
denote by

Cm
j =

{
i : ∃j′,N

(
vm

j′
)
= {i}

}
(13)

the set of intermediate blocks that are stored by some node at
a given moment t. We describe the way how node j gets Cm

j
later in this section. Note that it is possible that Cm

j = ∅. It
is also possible that sets Cm

j are different for different nodes.
Let us also define

Sm
j = {1, . . . , n}\Cm

j (14)

the set of intermediate blocks that are not stored by any nodes.
As soon as W − α = B̂(m), node j starts encoding its own

coded block for the mth group as follows.
1) Node j first checks Sm

j . If Sm
j = ∅, then the node

generates dj from the generator degree distribution �(d),
and a set N (vm

j), and computes vm
j according to (5). If

Sm
j 	= ∅, the node takes any ij ∈ Sm

j , assigns N (vm
j) =

{ij}, and broadcasts the message “I store intermediate
block um

ij
with a timestamp tj” across the network.

2) Upon receiving this message, each node, say node j′,
updates its Cm

j′ ← Cm
j′ ∪ {i} and Sm

j′ . However, if node j
receives ij′ = ij from node j′ with timestamp tj′ < tj, this
means node j′ decided to store um

ij
earlier than node j.

In this case node j updates Sm
j and Cm

j , and starts the
encoding process from scratch.

All network nodes follow the above procedure. As a result,
this procedure ensures that each systematic coded block
{vm

1 , . . . , vm
n } = {um

1 , . . . , um
n } is stored at one and only one

node. Moreover, this procedure also ensures that the degree
distribution of the nonsystematic coded blocks {vm

n+1, . . . , vm
n′ }

follow the given degree distribution �(d). It is possible that
some nodes storing the systematic coded block leave the
network. Moreover, it is possible that malicious nodes pretend
to have such systematic blocks, but cannot provide them to
honest nodes. In the next section, we present a repair procedure
to dynamically maintain the systematic property.

V. NETWORK MAINTENANCE ALGORITHM

In this section, we present our NMA. When a new node j
joins the network, it first attempts to encode a new nonsystem-
atic coded block by obtaining intermediate blocks from other
nodes in the network. If it fails, i.e., one or more intermediate
blocks are not stored by any node in the network, node j then
tries to repair and store a missing intermediate block.

A. Encoding Nonsystematic Coded Block

Let M be the set of enhanced blocks such that all groups
of blocks Gm ∀m ∈M are encoded. When a new node j joins
the network, it first copies the original uncoded blocks from
other nodes. It then calculates the coded block vm

j to store for
each m ∈M. In particular, for each group m ∈M, the node
j generates a degree dm

j from �(d) and forms N (vm
j). It then

broadcasts across the network a request for blocks with indices
from N (vm

j). Upon receiving this request, a node j′ will send
to node j an index i if N (vm

j′) = {i} for any i ∈ N (vm
j), to

inform node j that the intermediate block um
i . Node j then

assigns φ(um
i) = 1 to indicate the availability of um

i , otherwise
φ(um

i) = 0. Hence, for each group m ∈M, node j is able to
construct a set Rm

j of missing intermediate blocks

Rm
j =

{
i : φ

(
um

i

) = 0, i ∈ N
(

vm
j

)}
. (15)

If Rm
j = ∅, then node j can obtain all blocks from N (vm

j)

from other nodes and then it calculates and stores the coded
block vm

j according to (5). Otherwise, if Rm
j 	= ∅ due to nodes

storing the systematic coded blocks leaving the network or
having bad network connection, node j will try to repair a
block in Rm

j . It starts by trying to repair one block from Rm
j .

During the process of repairing, the set Rm
j can be expanded

with other missing intermediate blocks, as it is described in
the next Section.

B. Intermediate Block Repair

Node j chooses random i ∈ Rm
j and tries to repair um

i using
an edge coded block vm

j′ , where j′ ∈ E(um
i), and vm

j′ ’s other
neighboring intermediate blocks N (vm

j′)\{i} similar to (7), i.e.,

um
i = vm

j′ ⊕
∑

h∈N
(

vm
j′
)
\{i}

um
h , for any j′ ∈ E(

um
i

)
. (16)

However, the set of edges E(um
i) and the set of neighbors

N (vm
j′) for any j′ ∈ E(um

i) are not known by node j. For this

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

10702 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

Fig. 8. Example of expanded tanner graph with d = 4 rooted at um
1 .

Solid/dash circles denote available/missing information symbols, solid/dash
squares denote available/missing parity check symbols.

reason, node j tries to form a subset Ê(um
i) ⊆ E(um

i). Initially,
it sets up Ê(um

i) = ∅ and broadcasts i across the network.
When another node x receives this message, it will reply to
node j with N (vm

x) if i ∈ N (vm
x). Then node j adds x into the

set Ê(um
i). Note that, if a node j′ ∈ E(um

i) has bad network
connection and not replies to j, then node j′ is considered as
missing and we have j′ ∈ E(um

i)\Ê(um
i). After obtaining the

set Ê(um
i), node j checks the availabilities of the intermediate

blocks N (vm
j′)\{i} for each j′ ∈ Ê(um

i). If there is j′ ∈ Ê(um
i)

such that all blocks from N (vm
j′)\{i} are available, then um

i
can be repaired according to (16). Otherwise, node j adds the
missing intermediate blocks into Rm

j , i.e.,

Rm
j ← Rm

j ∪
{

i′ : φ
(
um

i′
) = 0, i′ ∈ N

(
vm

j′
)∖{i},

j′ ∈ Ê(
um

i

)}
(17)

and also adds the index i of um
i to the set Qm

j of not repairable
symbols. Next node j tries to repair a block from Rm

j \Qm
j .

Fig. 8 illustrates the intermediate block repair process
through an example, where we assume that node j generates
N (vm

j) and notices that {1} ∈ N (vm
j), but um

1 is not available,
while other blocks from N (vm

j) are available. Node j then
forms Rm

j = {1}. Next it contacts other nodes and constructs

the set Ê(um
1) = {A, B, C}. However, the intermediate blocks

with indices {2} ∈ N (vm
A), {3} ∈ N (vm

B) and {4} ∈ N (vm
C)

are not available. Hence, node j updates Rm
j ← {1} ∪ {2, 3, 4}

and constructs the set Qm
j = {1}. Next, node j attempts to

repair any of the intermediate block um
2 , um

3 , and um
4 . In this

example, it successfully repairs um
3 and stores the coded block

vm
j = um

3 . Hence, the subsequent joining nodes can obtain um
3

from node j to repair um
4 .

If Qm
j = Rm

j , this means that node j is not able to repair an
intermediate block in the current network. Then node j collects
coded blocks from (1+ ε)km different nodes and decodes the
original blocks using the procedure described in Section III.
After that, it stores one intermediate block vm

j = um
i for any

i ∈ Rm
j .

It should be noted that in the above proposed NMA
algorithm, new nodes generate degrees d with distribution
�∗(d) 	= �(d). The distribution �∗(d) depends on the history

of the network changes from the moment of encoding group
m and up to the moment of a new node joining. Recall that
nm is the number of intermediate blocks at the moment of
encoding group m (see Section III-A). Let n∗m be the number
of nodes storing unique intermediate block for the mth group
at the moment when a new node j joins the network. Then
�∗(d) is given by the following lemma.

Lemma 1: The actual distribution �∗(d) resulted from the
NMA algorithm is

�∗(d) =
{

�(d)g
(
n∗m, d

)
, for d ≥ 2∑d′=nm

d′=2 �
(
d′

)(
1− g

(
n∗m, d′

))
, for d = 1

(18)

where

g
(
n∗m, d

) =
(

n∗m
d

)/(
nm

d

)
. (19)

Proof: A new node j generates degree d with probability
�(d) and chooses d nodes among nm nodes according to the
uniform distribution. The probability that these d nodes are
among the available n∗m nodes is

Pr(d nodes are available) =
(

n∗m
d

)/(
nm

d

)
. (20)

Thus, we get the first line of (18).
The probability that at least one of the chosen d nodes is

not available is

Pr(some of d nodes are not available)

= 1−
(

n∗m
d

)/(
nm

d

)
. (21)

In this case, node j starts repairing/decoding and further stores
an intermediate block, which means that it stores a block of
degree 1. Thus, we obtain the second line of (18).

We now examine the computational complexity of the
encoding, repairing and decoding procedures. If the new
joining node successfully obtains the needed d ∼ �(d)

intermediate blocks, the expected encoding complexity is
O(E[�(d)]). If the new node needs to repair a missing
intermediate block by using (16) with a coded block vm

j ,
the computational complexity is O(|N (vm

j)|). The number
of neighbors |N (vm

j)|, which is the degree of vm
j , fol-

lows the actual distribution �∗(d). From Lemma 1, we
see that

�∗(d) ≤ �(d) ∀d ≥ 2. (22)

Hence, the expected computational complexity for repairing
is O(E[�∗(d)]) ≤ O(E[�(d)]). When the new node needs
to decode all blocks in the mth group, the computational
complexity is O(km) [35]. Note that the decoding complexity
is typically significantly larger than the complexity of encoding
and repairing. For example in our simulations, encoding and
repairing typically involve dozens of blocks, while decoding
involves thousands of blocks depending on the group size.
Hence, it is computationally expensive if all new joining
nodes have to decode all groups, as is the case in [30].
On the other hand, by using our approach, the probability
that a new joining node has to decode one group, rather
than simply encode or repair, is less than 6.3 × 10−5, based

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RATELESS CODED BLOCKCHAIN FOR DYNAMIC IoT NETWORKS 10703

on simulation results in the Bitcoin blockchain network (see
Section VII-C).

VI. DETERMINING GROUP SIZE km

Recall that km is the number of blocks in the mth group.
When a miner is mining the mth enhanced block, see
Section IV-B, it needs to determine km to ensure the decoding
failure probability of this group is less than a target failure
probability ζ for all future γ time epochs. To do this, the
miner first obtains the current number of nodes |Vt| at current
time epoch tm. It then calculates km using a function of |Vt|, ζ

and γ . Details of finding such a function will be discussed in
this section. Note that, the time epoch tm is the current time
and is not by chosen or adjusted.

As will be explained later, our goal is to choose km as large
as possible, but so that after γ time epochs the original blocks
from Gm can be restored with a decoding failure probability
less than ζ . A reliable system typically requires the failure
probability be less than 10−9 [40]. In our proposed rateless
coded blockchain with a set of M encoded groups, each node
stores only |M| coded blocks and the blocks that have not
been encoded yet. The extra storage for the enhanced block
headers, i.e., the hash values of the nonsystematic intermediate
blocks, is negligible.1 Hence, we define the storage reduction
coefficient as follows.

Definition 1: The storage reduction coefficient Rs is defined
as the ratio of the space needed by an individual node in
the proposed rateless coded blockchain over such space in a
replicated blockchain, i.e.,

Rs = W −∑
m∈M km + |M|

W
. (23)

The total number of encoded blocks is
∑

m∈M km. Hence,
the larger are km’s, the smaller is |M|, and therefore the
smaller is the storage reduction coefficient. Thus, we would
like km’s to be large. On the other hand, if km is too large and
some nodes leave the network, we may not be able to recover
(decode) some groups. To find a good tradeoff, we define the
decoding failure probability as follows.

Definition 2: Given the degree distribution �(d), the rate of
nodes leaving and joining the network λl and λe, respectively,
and initial number of nodes N, the decoding failure probability
f (k, N;�(d), λl, λe, γ) is the probability that a node fails to
decode a group of blocks after γ time epochs since the group
encoding.

Let p(G,�∗(d), ε) be the probability that the raptor code
fails to decode at least one information symbol with precode
matrix G, coded symbol degree distribution �∗(d) and over-
head ε. Let us assume that p(G,�∗(d), ε) is known to us, for
example it can be derived using an analysis similar to that
in [35], or it can be obtained via simulations. Then we have
the following result.

Lemma 2: The decoding failure probability is given
by (26).

1For example, when a group has k = 10 000 blocks and r = 0.8, there are
2500 hash values to store in the enhanced block header and needs 0.076 MB,
which is negligible as compared with more than 9.76-GB space saving when
all blocks are 1 Mb.

Proof: It is not difficult to see that

f (k, N;�(d), λl, λe, γ)

=
∫ ∞

0
p
(
G,�∗(d), ε

)
Pr

(
N +
γ = (1+ ε)k

)
dε (24)

where
γ is the sum of two Poisson processes that follows a
Skellam distribution [41], i.e.,

Pr
(

γ = s

)

= e−γ (λl+λe)

(
λl

λe

) s
2
∞∑

X=0

1

X!(X + s)!

(
γ
√

λlλe

)2X+s
. (25)

Hence, by substituting (25) into (24), we obtain

f (k, N;�(d), λl, λe, γ)

=
∫ ∞

0
p
(
G,�∗(d), ε

)
e−γ (λl+λe)

(
λl

λe

) (1+ε)k−N
2

×
∞∑

X=0

1

X!(X + (1+ ε)k − N)!

(
γ
√

λlλe

)2X+(1+ε)k−N
dε.

(26)

As we explain below, for finding an appropriate value
of km we use the function f (k, N;�(d), λl, λe, γ), which
can be obtained in several possible ways. One way is to
use analysis similar to the one presented in [35] for first
obtaining values p(G,�∗(d), ε) and next using Lemma 2.
Another way is to obtain f (k, N;�(d), λl, λe, γ) via sim-
ulations, which requires some efforts since obtaining small
values of f (k, N;�(d), λl, λe, γ) may take too long sim-
ulation time. Several methods for resolving this problem
have been proposed by the coding theory community, see
for example [42] and references therein. The main goal
of our work is not coding theory, however, but design of
new blockchain. For this reason, in this work, we simply
assume that f (k, N;�(d), λl, λe, γ) is available to us. For
our numerical examples considered in the next Section, we
generate f (k, N;�(d), λl, λe, γ) by simulating it up to 10−4

and extrapolating it further for smaller values. For example,
when λl = 12, λe = 4, N = 3000, γ = 100, and �(d) follows
the generator degree distribution in Section VII, the decoding
failure probability is shown in Fig. 9.

Recall that our goal is to determine km at time epoch tm
when the number of nodes in the network is |Vtm |, so that the
decoding failure probability after γ time epoch when network
changes to |Vtm+γ | as a result of nodes leaving and joining
the network, is no higher than ζ . It should be noted that
f (k, N;�(d), λl, λe, γ) becomes a function of (k/N) when
N →∞. For finite N, the probability f (k, N;�(d), λl, λe, γ)

increases as N decreases with a fixed ratio of (k/N), see
simulation results in Fig. 10(b). It should be also noted that
the blocks in group Gm will be encoded after the mth enhanced
block is confirmed. Recall that β is the number of blocks
generated in each time interval, which is a constant on average,
and α is the required depth for a block to be confirmed.
Therefore, we calculate km by table lookup according to the
following:

f

(
km, |Vtm |;�(d), λl, λe, γ + α

β

)
= ζ (27)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

10704 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

Fig. 9. Decoding failure probability of f (k, 3000;�(d), 12, 4, 100). Solid
line indicates the failure probability from simulation and dashed line indicates
the predicted failure probability.

where (α/β) is the number of time epochs needed for the mth
enhanced block to be confirmed, and ζ is the target failure
probability.

If at a moment t′ ≥ tm + γ we have that |Vt′ | < |Vtm |, then
we cannot guarantee that at time t′ +γ we will have decoding
failure probability smaller than ζ . In this case each node j puts
the blocks in Gm back to the pool Pj, and proceeds further
in the standard way with one exception—if node j mines the
next enhanced block, it assigns to it the sequence number m,
instead of M + 1. This new mth enhanced block overwrites
the old one and its mining and verification processes are the
same as those for a new mined enhanced block. Thus, if more
than one enhanced blocks have the same sequence number,
only the latest one is valid. If malicious nodes deliberately
“remine” an enhanced block with sequence number m∗ that
not need to be “remined,” all honest nodes will not accept
this enhanced block since the blocks Gm∗ are not in their
block pools. The new joining node runs the NMA algorithm
in the backward direction—from the latest enhanced block in
the longest blockchain branch toward to the genesis block. If
the new node bumps to an enhanced block with a sequence
number, say m, that it already met earlier in this backward
process, then the new node simply ignores this enhanced
block.

In a situation where malicious nodes exist. The altered
coded block sent from malicious nodes can be detected and/or
corrected via the error correction feature, also see discussion
in [9]. The number of tolerable malicious nodes can be
considered as node leave the network, since their coded block
are unavailable for decoding. Note that this article provides
an upper bound of the storage reduction when no malicious
nodes occur. By considering malicious nodes, one can simply
reduce the number of available nodes |V| in the network when
calculating (26).

It should be noted that our scheme increases communication
overhead when an enhanced block miner needs to estimate the
number of nodes in the network. In order to obtain the number
of nodes, we can employ the “ping” and “pong” mechanism
used in the existing blockchains for checking whether a node is
alive [43]. We can only count the nodes that recently broadcast

honest messages, such as valid blocks or transactions, to avoid
fake connections. Each node can broadcast an alive message
every 24 h, which should be enough since in the modern
blockchains the number of nodes typically varies quite slowly.
For instance, in the Bitcoin network, the average number
of joining and leaving nodes per day are 42.18 and 43.16,
respectively, see Section VII-C. Hence, the percentagewise the
increased communication overhead for estimating network size
is much smaller compared to the typical network load.2

VII. SIMULATION RESULTS

Our simulations are conducted using MATLAB 2020b on a
laptop with an Intel Core i7 eight-core CPU @ 2.2 GHz. In
our simulations, we implemented the proposed rateless coded
blockchain using the Reed–Solomon code as the precode.
The generator matrix of the Reed–Soloman code is from
MATLAB 2020b Communication Toolbox. The generator
degree distribution �(d) is as follows. Let S = c ln(k/δ)

√
k,

where c and δ are constants, and define

τ(d) =

⎧⎪⎨
⎪⎩

S
ik , for d = 1, . . . , k

S − 1
S ln(S/δ)

k , for d = k
S

0, for d = k
S + 1, . . . , k

(28)

ρ(d) =
{

1
k , for d = 1

1
d(d−1)

, for d = 2, . . . , k.
(29)

In [29] the following degree distribution is proposed for
obtaining LT codes:

μ(d) = τ(d)+ ρ(d)
∑k

j=1

(
τ(j)+ ρ(j)

) . (30)

In our simulations, we set c = 0.1 and δ = 0.5, which
are known to lead to good and stable performance [36]. As
discussed in Section III-A, a new node should use a degree
distribution with �(1) = 0. For this reason we slightly modify
μ(d) in (30) and set

�(d) =
{

0, for d = 1
μ(d)+ μ(1)

k−1 , for d = 2, . . . , k.
(31)

We first compare the LT and raptor codes in the
dynamic network, and show the decoding failure probabilities
f (k, N;�(d), λl, λe, γ) for several network scenarios. Next,
we evaluate the proposed rateless coded blockchain in a
highly dynamic blockchain network where the number of
nodes leaving is much higher than that for joining. Finally,
we show the performance of the proposed scheme in the
real-world Bitcoin network. Note that the performance of
encoding/decoding complexity of the raptor code can be
found in [35]. Moreover, this article focuses on the dynamic
blockchain network, i.e., nodes joining and leaving. We do not
consider the network topology nor how nodes are connected
via wired or wireless links. Therefore, we omit the effect of
propagation delay.

2A typical ping and pong message have 32 byte, which increases network
communication overhead 32×N2/24 bytes per hour. A Bitcoin block has 106

bytes and is generated every 10 min, which results in a typical network load
of 106×N×6 bytes per hour. Hence, the increased communication overhead
is 0.22% when N = 10 000.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RATELESS CODED BLOCKCHAIN FOR DYNAMIC IoT NETWORKS 10705

(a) (b) (c)

Fig. 10. (a) Performance comparison of LT and Raptor codes in dynamic blockchain networks. (b) Decoding failure probability when γ = 100, λl = 12,
λe = {0, 4, 8, 12}. (c) Number of nodes, number of blocks, and communication overhead (Mb) of the new joining node with time epoch growth.

A. Code Performances

We first study the minimum number of nodes needed
for successful decoding by using the LT and raptor codes,
respectively. We set a fixed length blockchain with only one
group with k = 1000, the network initially has N = 3000
nodes, and λl = 50 and λe = 40 nodes per time epoch. We
set the code rate of the precode as r = 0.8. The network
is dynamic using the NMA algorithm. We generated 1000
blockchains and ran them until a new node decoding fails. We
record the numbers of nodes needed in each of these networks
for the latest successful decoding before the failure occur,
and show their densities in Fig. 10(a). We see that the raptor
code significantly outperforms the LT code since it requires
smaller number of nodes for successful decoding. We also see
that sometimes the LT code needs more than 2400 nodes for
decoding, which means that sometimes it needs very large,
ε = 1.4, decoding overhead. This is due to the error floor
issue present in LT codes [36], [37].

We next show the decoding failure probability f (k, N;
�(d), λl, λe, γ) in Fig. 10(b). We fix λl = 12, γ = 100, and
take λe = {0, 4, 8, 12} and N = {2000, 3000}. We keep the
code rate of the precode as r = 0.8. Note that when λe =
0, decoding blocks in the dynamic network is equivalent to
decoding through a binary erasure channel (BEC) since nodes
(symbols) leave the network, i.e., are erased, with uniform
probability, and no repairing occurs. From the result, we can
see that BEC is the worst scenario in the sense that it leads
to the minimum value of k for a given decoding failure
probability. This opens the possibility of obtaining f (.) by
using known methods, see for example [35], for analysis of
raptor codes in BEC. This possibility will be explored in
future works. The results also show that f (.) increases as N
decreases.

B. Rapidly Reducing Network

It is instructive to consider a rapidly reducing network.
We set λl = 12, λe = 4, N = 5000, γ = 98, β = 144,
α = 244, and target decoding failure probability ζ = 10−12.
We assume that initially there are 5000 nodes and 10 000
un-encoded blocks in the blockchain when implementing the
proposed rateless coded blockchain approach. We assume that

Fig. 11. CDF of the number of coded blocks that a new joining node needs
to collect from other nodes in order to generate its parity or intermediate
block for a given group.

all blocks have a constant bit-size of 1 Mb. In order to
clearly demonstrate the group size change, we assume that a
maximum of 1 new enhanced block can be generated at each
time epoch. The network is run through 200 time epochs.

Fig. 10(c) shows the number of network nodes and number
of blockchain blocks at a given time epoch, and the com-
munication overhead needed by a new node for generating
new parity check blocks or repairing intermediate blocks for
previously encoded groups. The communication overhead is
measured in the total number of bits that a new joining
node needs. The communication overhead of the traditional
blockchain is the total bit-size of all blocks and it increases
with the blockchain length. In contrast, the communication
overhead of the rateless coded blockchain is less than 800 Mb
when the total blockchain bit-size exceeds 38 000 Mb. The
communication overhead alternatively increases and decreases
because the blocks are consistently generated, and they are
encoded only when the involved enhanced block is confirmed.
It should be noted that the communication overhead increases
with the number of encoded groups |M|, and thus with the
size W of the blockchain. However, since |M| grows very
slowly, the increment is not noticeable during the presented
200 time epochs.

In this experiment, 26 enhanced blocks are mined. In
particular, the third to 13th enhanced blocks are mined twice
and the first to second enhanced blocks are mined thrice. The

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

10706 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

(a) (b) (c)

Fig. 12. (a) Storage and communication reduction coefficients in real Bitcoin blockchain. (b) Storage and communication overhead bit-sizes in real Bitcoin
blockchain. (c) CDF of the number of coded blocks that a new joining node needs in real Bitcoin blockchain.

TABLE I
ENHANCED BLOCK GENERATION AND km VALUES

reason is that the number of nodes keeps decreasing, thus, the
blocks in these groups need to be regrouped and re-encoded to
ensure the decoding failure probability meets the requirement.
We show the time epochs when these blocks are mined and
their km values in Table I. From Table I, we see that the
enhanced blocks are mined at a near constant interval of 12
time epochs after the initial stage at which there are a large
pool of available blocks. Table I also shows that the enhanced
blocks are regenerated or remined immediately after γ time
epochs and their values of km decreases with the time epoch.
This is because the number of nodes in the network is rapidly
decreasing.

Fig. 11 shows the CDF of the number of coded blocks,
which can be systematic or nonsystematic ones, that a new
joining node needs to collect from other nodes in order to
generate its own parity or intermediate block for a given
group. We can see that with more than 90% probability, the
new joining node only needs to collect ten blocks. This is
significantly lower than other coded blockchains proposed
in [9], [10], and [30]. In these works a new node needs to
collect more than km blocks for group Gm, and as we saw km

is typically much larger than 10.
It should be noted that this section simulates an extreme

scenario where nodes consistently and rapidly leaving the
network. In this case, existing nodes need to re-encode to
ensure the blockchain is decodable, thus, increase the overall
communication overhead. However, in practice, a typical
blockchain network, such as Bitcoin, has a relative static num-
ber of nodes, e.g., the number of nodes in Bitcoin network is
around 10 000 for many years, see in Section VII-C. Moreover,
in practice, we can employ some simple strategies to reduce
the frequency of re-encoding. For instance, we can introduce

an coefficient r < 1 in (27) as f (km, r|Vtm |; .) = ζ . Then rem-
ining an enhanced block will only occur when |Vt′ | < r|Vtm |.
In Bitcoin network, we can set r = 0.7, which means “re-
encoding” a group only occurs when the number of nodes is
reduced by 30%. As far as we know, this has not happened in
Bitcoin history since 2015 [28], and is not expected in future.

C. Performance in Bitcoin Network

We evaluate our rateless coded blockchain using the real-
world Bitcoin data obtained in [38] from 18 November 2018
to 13 November 2020. We assume that our approach was
implemented into the Bitcoin blockchain on 18 November
2018. The initial and the latest blockchain lengths are 551 685
and 656 805 blocks, respectively. We assume that each time
epoch is one day, i.e., 24 h, hence we have β = 144, since
one block is generated per 10 min on average [44]. We then
assume that all blocks are fully loaded with bit-size of 1 Mb.
From [38] we obtain that nodes are leaving and joining the
network as Poisson processes with λl = 42.18 and λe = 43.16,
respectively, and that the average number of nodes is 10 000.
We set α = 144 [45], ζ = 10−12 and γ = 98 (roughly
three months). We omit the bit-size of block headers (latest
about 50 Mb), which is negligible as compared with the total
block data. We define the communication reduction coefficient
as the ratio of the communication overheads of the proposed
rateless coded blockchain and the traditional blockchain.

We show the month average storage reduction coefficient
defined in (23) and the communication reduction coefficient
in Fig. 12(a). We see that both storage and communication
reduction coefficients shrink to around 0.4% and remain
constants after December 2018. This is because during the
initial stage of the implementation, there are a very large
number of original blocks that should be encoded into the
coded blocks. Thus, the storage and communication reduction
coefficients are both high at the beginning.

In Fig. 12(b), we show the bit-size in Mb of the average
storage at each node and the average communication overhead
for each new joining node over a month. Recall that for
the traditional replicated blockchain, both storage and com-
munication overheads increase from 540 to 640 Gb. So one
can see the dramatic reduction by using the rateless coded
blockchain. Even though the blockchain size has increased by

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RATELESS CODED BLOCKCHAIN FOR DYNAMIC IoT NETWORKS 10707

100 Gb from December 2018 to November 2020, the average
storage and communication overheads have increased by only
400 and 700 Mb, respectively. The trends of storage and
communication overheads in Fig. 12(b) are similar to those in
Fig. 12(a) because the Bitcoin blockchain length increases at
a constant rate of 144 blocks per day.

Fig. 12(c) shows the CDF of the number of coded blocks,
either systematic or nonsystematic ones, that a new node
collects. With very high probability, i.e., 99%, the new joining
node only needs to obtain 70 coded blocks from other nodes
per group, while on average there are 10 000× 0.337 = 3370
blocks in each group. The number of blocks collected by a new
node is slightly higher than that in Fig. 11 in Section VII-B.
This is because there are more nodes in the Bitcoin network—
10 000 as opposed to 5000 assumed in Section VII-B. Hence,
the size of the groups and the expected generator degree in the
Bitcoin network are both higher than those in Section VII-B.
Although it is hard to observe in Fig. 12(c), we found that the
probability that a new node has to decode a group Gm, rather
than directly encode or repair, is less than 6.3 × 10−5. The
decoding has relatively large complexity, so it is preferable to
keep this probability low.

In summary, if all Bitcoin blockchain nodes store the
original blocks that are needed for verifying new transactions
(around 5 GB [5]) and encode all other old blocks using
the proposed rateless coded blockchain, then each node needs
a total storage space of around 7 GB. In this way, all old
blocks are recoverable rather than simply deleted. In addition,
when a new Bitcoin node joins the network, it only needs to
download 8 GB of data. These values are significantly lower
than those of the current Bitcoin, which needs to download
and store more than 300 Gb (600 Gb if all blocks are fully
loaded).

VIII. CONCLUSION

We have proposed a rateless coded blockchain to reduce
the node storage requirement and the communication overhead
for new joining nodes in practical dynamic IoT blockchain
networks. It adjusts the coding parameters according to the
network conditions to guarantee that all encoded blocks can
be decoded whenever needed with very high probabilities. We
have also presented novel enhanced blocks, which are embed-
ded into the blockchain, to store the coding parameters, so
that these parameters are immutable and can be shared among
all nodes via the integrated and distributive features of the
blockchain. Extensive simulations have been conducted using
both synthetic data and real-world Bitcoin data. Results show
that both the storage requirement at each node and the com-
munication overhead of each new joining node are reduced by
99.6% as compared with the traditional uncoded blockchain. A
potential future work is to determine coding parameters of rap-
tor code, such as precode rate and degree distribution, to have
a lower decoding failure probability in the context of coded
blockchain. Another future work is to build an IoT blockchain
system with elaborate design that implements the proposed
scheme.

REFERENCES

[1] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things:
A survey,” IEEE Internet Things J., vol. 6, no. 5, pp. 8076–8094,
Oct. 2019.

[2] G. O. Karame and E. Androulaki, Bitcoin and Blockchain Security.
Norwood, MA, USA: Artech House, 2016.

[3] X. Fan, B. Niu, and Z. Liu, “Scalable blockchain storage systems:
Research progress and models,” Computing, vol. 104, no. 6,
pp. 1497–1524, 2022.

[4] “Bitcoin blockchain size.” Blockchain. 2023. [Online]. Available: https://
www.blockchain.com/charts/blocks-size

[5] “Bitcoin core.” 2023. [Online]. Available: https://bitcoincore.org/
[6] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability

of blockchain: A survey,” IEEE Access, vol. 8, pp. 16440–16455,
2020.

[7] S. Das, A. Kolluri, P. Saxena, and H. Yu, “On the security of blockchain
consensus protocols,” in Proc. Int. Conf. Inf. Syst. Security, 2018,
pp. 465–480.

[8] M. Dai, S. Zhang, H. Wang, and S. Jin, “A low storage room requirement
framework for distributed ledger in blockchain,” IEEE Access, vol. 6,
pp. 22970–22975, 2018.

[9] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based
low storage blockchain node,” in Proc. IEEE Int. Conf. Internet Things
(iThings) IEEE Green Comput. Commun. (GreenCom) IEEE Cyber,
Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData), 2018,
pp. 1622–1627.

[10] H. Wu, A. Ashikhmin, X. Wang, C. Li, S. Yang, and L. Zhang,
“Distributed error correction coding scheme for low storage blockchain
systems,” IEEE Internet Things J., vol. 7, no. 8, pp. 7054–7071,
Aug. 2020.

[11] R. K. Raman and L. R. Varshney, “Coding for scalable blockchains via
dynamic distributed storage,” IEEE/ACM Trans. Netw., vol. 29, no. 6,
pp. 2588–2601, Dec. 2021.

[12] C. Yang, X. Wang, and A. Ashikhmin, “Storage and communication
tradeoff for wireless coded blockchains,” IEEE Syst. J., vol. 16, no. 2,
pp. 2911–2922, Jun. 2022.

[13] M. Cebe, B. Kaplan, and K. Akkaya, “A network coding based
information spreading approach for permissioned blockchain in IoT
settings,” in Proc. ACM Mobiquitous, 2018, pp. 470–475.

[14] N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic, and K. S. Candan,
“Velocity: Scalability improvements in block propagation through rate-
less erasure coding,” in Proc. IEEE Int. Conf. Blockchain Cryptocurrency
(ICBC), Seoul, South Korea, 2019, pp. 447–454.

[15] M. Braun, A. Wiesmaier, N. Alnahawi, and J. ßeibler, “On message-
based consensus and network coding,” in Proc. 12th Int. Conf. Netw.
Future (NoF), Coimbra, Portugal, 2021, pp. 1–9.

[16] L. Zhang, T. Wang, and S. C. Liew, “Speeding up block propagation in
Bitcoin network: Uncoded and coded designs,” Comput. Netw., vol. 206,
Apr. 2022, Art. no. 108791.

[17] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud and data availability
proofs: Maximising light client security and scaling blockchains with
dishonest majorities,” 2018, arXiv:1809.09044.

[18] P. Santini, G. Rafaiani, M. Battaglioni, F. Chiaraluce, and M. Baldi,
“Optimization of a Reed-Solomon code-based protocol against
blockchain data availability attacks,” in Proc. IEEE Int. Conf.
Commun. Workshops (ICC Workshops), Seoul, South Korea, 2022,
pp. 31–36.

[19] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and
P. Viswanath, “Coded Merkle tree: Solving data availability attacks in
blockchains,” in Proc. Int. Conf. Financ. Cryptogr. Data Security, 2020,
pp. 114–134.

[20] D. Mitra, L. Tauz, and L. Dolecek, “Overcoming data availability attacks
in blockchain systems: Short code-length LDPC code design for coded
Merkle tree,” IEEE Trans. Commun., vol. 70, no. 9, pp. 5742–5759,
Sep. 2022.

[21] D. Mitra, L. Tauz, and L. Dolecek, “Polar coded Merkle tree:
Improved detection of data availability attacks in blockchain systems,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Espoo, Finland, 2022,
pp. 2583–2588.

[22] S. Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and P. Viswanath,
“PolyShard: Coded sharding achieves linearly scaling efficiency and
security simultaneously,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 249–261, 2020.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

10708 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 6, 15 MARCH 2024

[23] B. Sasidharan and E. Viterbo, “Private data access in blockchain systems
employing coded sharding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2021, pp. 2684–2689.

[24] D. S. Gadiraju, V. Lalitha, and V. Aggarwal, “Secure regener-
ating codes for reducing storage and bootstrap costs in sharded
blockchains,” in Proc. IEEE Int. Conf. Blockchain (Blockchain), 2020,
pp. 229–236.

[25] S. B. Wicker and V. K. Bhargava, Reed–Solomon Codes and Their
Applications. Piscataway, NJ, USA: Wiley-IEEE Press, 1994.

[26] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, 1962.

[27] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans.
Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

[28] “Bitcoin nodes number since 2015.” 2023. [Online]. Available: https://
coin.dance/nodes

[29] M. Luby, “LT codes,” in Proc. 43rd Symp. Found. Comput. Sci., 2002,
pp. 271–280.

[30] S. Kadhe, J. Chung, and K. Ramchandran, “SeF: A secure foun-
tain architecture for slashing storage costs in blockchains,” 2019,
arXiv:1906.12140.

[31] L. Quan and Q. Huang, “Transparent coded blockchain,” in Proc. 15th
Int. Conf. Emerg. Netw. Exp. Technol., New York, NY, USA, 2019,
pp. 12–13.

[32] R. Pal, “Fountain coding for bootstrapping of the blockchain,” in Proc.
IEEE Int. Conf. Commun. Syst. Netw. (COMSNETS), Bengaluru, India,
2020, pp. 1–5.

[33] Q. Huang, L. Quan, and S. Zhang, “Downsampling and transparent
coding for blockchain,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4,
pp. 2139–2149, Jul./Aug. 2022.

[34] A. Tiwari and V. Lalitha, “Secure raptor encoder and decoder for low
storage blockchain,” in Proc. IEEE Int. Conf. Commun. Syst. Netw.
(COMSNETS), Bengaluru, India, Jan. 2021, pp. 161–165.

[35] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[36] D. J. MacKay, “Fountain codes,” IEE Proc. Commun., vol. 152, no. 6,
pp. 1062–1068, 2005.

[37] I. Hussain, M. Xiao, and L. K. Rasmussen, “Error floor analy-
sis of LT codes over the additive white gaussian noise channel,”
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), 2011,
pp. 1–5.

[38] “Bitcoin nodes number,” 2023. [Online]. Available: https://bitnodes.io/
dashboard/?days=730

[39] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[40] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evalua-
tion of memory hardware errors and software system susceptibility,”
in Proc. USENIX Annu. Tech. Conf., Boston, MA, USA, 2010,
pp. 75–88.

[41] D. Karlis and I. Ntzoufras, “Bayesian analysis of the differences of count
data,” Stat. Med., vol. 25, no. 11, pp. 1885–1905, 2006.

[42] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annu.
Allerton Conf. Commun. Control Comput., 2003, pp. 1426–1435.

[43] “Bitcoin P2P network.” 2023. [Online]. Available: https://developer.
bitcoin.org/reference/p2p_networking.html

[44] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin,
Las Vegas, NV, USA, White Paper, 2008.

[45] “Bitcoin Wiki.” 2023. [Online]. Available: https://en.bitcoin.it/wiki/

Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 25,2024 at 14:58:24 UTC from IEEE Xplore. Restrictions apply.

