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A B S T R A C T   

Mapping inundation areas and flood depths is necessary for coastal and riverine management and planning. 
Flood maps help communicate flooding risk to affected communities and vulnerable populations and are 
essential for evaluating flooding impacts. Here, we introduce MatFlood, a computationally efficient static flood 
tool that exploits image-processing algorithm for estimation of flood extension and depth. Features include (a) an 
algorithm that evaluates hydro-connectivity; (b) functionality to calculate spatially varying flood water levels 
and (c) the inclusion of a reduction factor to mimic the effects of physical processes not explicitly resolved. The 
efficiency of the tool is well-suited for simulating numerous flooding maps using different inputs (flood water 
levels or digital elevation models), over large areas, and high spatial resolution. We apply MatFlood to assess the 
flood extent and depth of Hurricane Sandy (2012) in the New York/New Jersey area to illustrate its use. In 
comparison to existing approaches based on geographic information systems, MatFlood performs the same 
calculations six times faster in the Hurricane Sandy study case.   

1. Introduction 

In the United States and around the world, flood maps are used to 
communicate flood risk, set insurance rates, and determine infrastruc
ture policy. The extent and depth of flooding are commonly simulated 
by using either physics-based hydrodynamic models or a more simplistic 
static approach. In addition to models, empirical methods delineate 
historical floods using observations such as on-ground measurements, 
aerial photographs, and satellite imagery. However, the limited avail
ability of observed flooding data and their applicability solely to past 
events are significant limitations of this approach. Empirical methods 
are commonly used to calibrate and validate hydrodynamic models. A 
comprehensive description and comparison of the three methods can be 
found in Teng et al. (2017). 

Physics-based hydrodynamic models allow for an accurate simula
tion of flooding since they include physical parameters such as wind 
speed, atmospheric pressure, bottom friction, etc. Also, hydrodynamic 
models can predict the evolution of a flood event, providing a temporal 

component. The use of these models requires expert skills, specialized 
software, and high-spec computers that often limit their use to special
ized engineering sectors. Furthermore, due to their computational de
mand, they are not suitable for simulating an ensemble of multiple 
flooding conditions such as sea-level rise projections and the corre
sponding uncertainties, storm surge scenarios, and digital elevation 
model realizations (Amante, 2019; Barnard et al., 2019). For the same 
reason, using high-resolution elevation data in hydrodynamic models is 
often limited to small-scale study areas. Coarse spatial resolution is used 
in regional to larger spatial scales, which can lead to inaccuracy in flood 
maps. A coarse resolution tends to average out topo-bathymetry infor
mation, such that some regions are incorrectly modeled as wet or dry; 
this is particularly a problem when coarse resolution prevents hydraulic 
connectivity to a flood-prone region. Previous research has emphasized 
the significance of resolution in achieving accurate simulations of 
inundation events (Williams and Lück-Vogel, 2022). Nevertheless, the 
demand for high spatial scale in inundation modeling poses a substantial 
challenge for hydrodynamic models when applied to relatively large 
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areas. 
An alternative approach for simulating flooding is the use of machine 

learning (ML) algorithms. In recent years, the use of ML has been shown 
promising in the field of flood mapping. ML algorithms have been 
mainly used to delineate the flood during or after its occurrence rather 
than to predict/simulate the flood extent (Bentivoglio et al., 2022). They 
face two significant drawbacks: the requirement for extensive training 
data (recorded flooded events or physics-based hydrodynamic model 
simulations) and, while they can exhibit computational efficiency with 
small datasets, they can also prove computationally demanding. The 
computational intensity of ML hinges on several factors, including the 
size of the training dataset, hyperparameter tuning (which often in
volves numerous iterations), and the model’s architectural complexity, 
such as the number of hidden layers and neurons employed. In addition, 
the multitude of available ML algorithms often leads to the need for 
ensemble techniques, where their outputs are combined to enhance 
predictive accuracy, escalating the computational demand. 

An alternative to computationally costly hydrodynamic models and 
the substantial data demands ML algorithms is the use of static ap
proaches, also known as the “bathtub”, in which all regions below a 
flood water level are considered to be flooded. Overland inundation 
estimates through static methods have traditionally been based on a GIS 
(geographic information systems) framework (e.g., Amante, 2019; Li 
et al., 2009; Torresan et al., 2012; Yunus et al., 2016), often processed in 
ESRI’s ArcGIS (e.g., Breilh et al., 2013; Maloney and Preston, 2014; 
Patrick et al., 2015; Perini et al., 2016; Seenath et al., 2016; Williams 
and Lück-Vogel, 2020; Zachry et al., 2015) and to a lesser extent in QGIS 
software (e.g., de Lima et al., 2021; Paulik et al., 2021; de Leo et al., 
2022). Other static models include the Height Above Nearest Drainage 
(HAND, Nobre et al., 2011), Teng Vaze Dutta (TVD, Teng et al., 2013), 
and Floodwater Depth Estimation Tool (FwDET, Cohen et al., 2018) 
models. HAND is a drainage normalized version of a digital elevation 
model (DEM), where flooding extent and depth are identified as those 
cells that belong to a mutually connecting flow path. The model needs a 
water level and a DEM as input to calculate the flood depth and extent. 
In contrast, TVD and FwDET can simulate flood depth but require an 
input for the flood extent. Teng et al. (2022) offers a comprehensive 
comparison among these three static approaches and compare the re
sults against hydrodynamic models. 

Static approaches are easy to use and computationally very efficient 
in comparison to hydrodynamic models and machine learning algo
rithms. Static models allow the rapid simulation of a large set of re
alizations and they necessitate minimal input data for implementation, 
mainly terrain elevation data, such as DEMs, and a flood water level. 
However, results from static models are expected to be less accurate than 
hydrodynamic models because static methods do not account for the 
physical processes involved in an inundation event, such as bottom 
friction, which effectively reduces the flooding depth and extent. 
Therefore, static methods typically overestimate the inundation (Ram
irez et al., 2016; Teng et al., 2022). Similarly, static methods that 
disregard hydrological connectivity are anticipated to exacerbate flood 
overestimations. This is due to the fact that areas below the flood water 
level, which are not connected to the sea or river, may erroneously be 
identified as flooded regions. 

Another drawback of static approaches is that the flood water level is 
typically assumed to be uniform over the study area, however, water 
level is spatially variable. Some exceptions exist in the literature, where 
a spatially varying water level can be applied in static methods, such as 
in the HAND model. There is an ongoing discussion in the literature on 
the use of static flooding methods. Some authors (Ramirez et al., 2016; 
Seenath et al., 2016) suggested that static models should be avoided 
when computational speed is not of primary concern. Others have 
compared flood extents and depths resulting from physics-based models 
versus static approaches, finding relatively good agreement (Orton 
et al., 2015a). Teng et al. (2017) argues that the disparity between static 
approaches and hydrodynamic models varies depending on the 

topographical complexity. Increased topographical intricacy results in a 
greater level mismatch. On the other hand, hydrodynamic and static 
models exhibit good agreement in clear flow paths. 

Here, we implement a static model to determine the flood extent and 
depth in MATLAB (MatFlood). MatFlood takes into account hydrological 
connectivity and, acknowledging the shortcomings of static methods, 
includes the attenuation of the inundation through a reduction factor 
that accounts for the distance to the source of flooding. The reduction 
factor can be spatially uniform (i.e., constant across the study area) but 
also spatially varying, using an optimal interpolation method. Few 
studies have previously applied static methods using reduction factor, 
but it has been assumed to be constant across the study area (e.g., 
Williams and Lück-Vogel 2020; Ward et al., 2020). In addition, Mat
Flood allows for the calculation of a spatially varying flood water level, 
based on gauge’s observations or model points distributed across the 
study area. The simplicity, minimized data requirements, and compu
tational efficiency of MatFlood set it apart from hydrodynamic models 
and ML algorithms. These characteristics render MatFlood well-suited 
for generating an ensemble of flood simulations and estimating the 
extent of inundation under diverse conditions, including different mean 
sea level scenarios, uncertainties, extreme events, and DEM realizations. 
In addition, MatFlood could be used in flooding emergency systems by 
facilitating the generation of high-resolution flooding maps over 
extensive regions in near real-time. 

Conceptually, MatFlood shares similarities with other static ap
proaches, such as the HAND model, that simulate flooding by account
ing for hydrologic connectivity. In addition, the HAND model 
accommodates spatially varying flood water level, although does not 
include a reduction factor. MatFlood extends the literature by offering a 
MATLAB-based algorithm that incorporates optional features (spatially 
varying reduction factors and flood water levels). MatFlood’s high 
computational efficiency allows for the generation of multiple flood 
maps using different inputs or scenarios, as well as the use of high- 
resolution DEMs. 

In the following sections, we describe the algorithm. We then apply 
MatFlood to assess the flood extent and depth of Hurricane Sandy (2012) 
in the New York/New Jersey area to illustrate its use. Results are 
compared against observed high water marks (HWMs) and a hydrody
namic model. 

2. Algorithm description 

MatFlood comprises two main components. The first component 
maps the flooding depth based on the water level during an inundation 
event. The second component, which is optional, employs a reduction 
factor to attenuate the extent and depth of flooding. A visual workflow of 
MatFlood is provided in Fig. 1. MatFlood requires three primary inputs:  

(1) A digital land elevation model (DEM) in a raster format, including 
the elevation (z) and the coordinates. DEMs include Digital Sur
face Models (DSMs) or Digital Terrain Models (DTMs). Previous 
analyses have demonstrated that the choice between using DSM 
or DTM has a considerable impact on the accuracy of simulated 
flood scenarios (Williams and Lück-Vogel, 2020). As previously 
stated, utilizing a high-resolution DEM is advisable to obtain 
more accurate results. However, it is important to highlight that 
MatFlood is compatible with both DSM and DTM, and it can 
accommodate various resolutions of DEM datasets.  

(2) A flood water level of interest. The flood water level refers to the 
vertical water level producing the inundation and should be 
based on the same geodetic reference frame vertical datum as the 
DEM; and  

(3) A single point which identifies the main water body from which 
flooding occurs, hereinafter referred as lp (location point). We use 
the term “main water body” because MatFlood can be applied to 
any interface of water-land (lakes, rivers, and the ocean). In the 
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following, we will refer to the main water body as “sea”, for 
simplicity. The location point, lp, is a single longitude and lati
tude point, indicated by the user, and located within the sea (the 
sea polygon is referred as the principal water polygon, PPW1 in 
Fig. 2). 

In the following sections we introduce the algorithm for simulating 
inundation (Section 2.1), the description of the additional features to 
obtain spatially varying flood water level (Section 2.2), and to attenuate 
the flood depth and extent by applying a reduction factor (Section 2.3). 
The methodology is illustrated by considering a basic topography z of 
land/sea (Fig. 2), and a flood water level of 1 m. The horizontal reso
lution is 1 square meter (each cell in Fig. 2). Within the sea (the principal 
water polygon, PPW1), there are two polygons that represent land areas 
of different elevations (children polygon in water 1 and 2, CPW1 and 
CPW2). In the land area (PPL1), there are four embedded areas of lower 
elevations (CPL1 to CPL4). 

2.1. Inundation algorithm 

A first estimation of the flooded area is obtained by subtracting the 
flood water level (fwl) from the land elevation (z), obtaining a flooded 
elevation grid (zF) of size Y x. 

zF = z − fwl (1) 

Since both the flood water level (fwl) and the DEM (z) are referred to 
the same vertical datum, positive values in zF represent land/dry areas 
while negative and zero values indicate water. In zF, elevations equal or 
lower than the flood water level are inundated. In the example, the sea 
polygon now includes PPW1, CPL2, CPL3 and CPL4 (Fig. 3). In this step, 
hydrological connectivity has not been considered yet and therefore, zF 
also includes flooded areas not connected to the sea (CPL1 and CPW2 in 

Fig. 3). In order to account for hydro-connectivity, the algorithm must 
pinpoint and separate the sea polygon. To do so, zF is converted into a 
binary black and white matrix of ones (water) and zeros (land), zBW: 

zBW =

{
0, zF > 0
1, zF ≤ 0 (2) 

Producing a binary matrix allows us to identify each polygon of 
water and land, regardless of the elevation. To isolate the polygons in 
zBW, we modify an existing MATLAB image processing function, 

Fig. 1. Workflow of MatFlood.  

Fig. 2. Elevation data, z (in meters), used to illustrate the methodology. Blue 
colors represent the main water polygon or sea, green areas are cells with el
evations of 2 m and therefore above the flood water level (1 m). Yellow (0.5 m) 
and gray cells (1 m) are areas below and equal to the flood water level, 
respectively, and therefore subjected to flooding. The red dot shows the loca
tion point lp, used for delimiting the sea polygon. 
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bwboundaries (Gonzalez et al., 2004), which identifies the outermost 
objects (“parents”) as well as the successive polygons enclosed by them 
(“children”). The modified function, bwboundaries_SFM, enables for a 
faster way to delineate all polygons in zBW. We use bwboundaries_SFM 
accounting for 8-pixel connectivity, i.e., pixels are connected if their 
edges or corners touch either along the horizontal, vertical or diagonal 
direction.  

P = bwboundaries_SFM(zBW)                                                           (3) 

The output, P, is a Y x matrix containing an identification number 
(id) for each polygon detected (Fig. 4). The polygon including the sea 
and the flooded areas, Pmwb,Fl, is identified by the algorithm since it 
embeds lp. The depth of the inundated areas is calculated as the differ
ence between the topography (z) and the flood water level (fwl) for those 
cells within Pmwb,Fl: 

zFHC =

{
z, id ∕= Pmwb,Fl

z − fwl, id = Pmwb,Fl
(4)  

where zFHC (Flooded topography accounting for Hydrological Connec
tivity) is a Y x matrix where only areas below the flood water level and 
hydrologically connected to the sea are flooded (Fig. 5). 

2.2. Spatially varying input water levels 

Typically, in static flood modelling, the flood water level is assumed 
to be spatially uniform over the entire domain (as done in Section 2.1). 
By doing so, the variability of the water level along the shoreline is 
neglected, potentially leading to overestimate or underestimate flooding 
in some areas. Consideration of varying spatial water levels becomes 
particularly pertinent in the simulation of flooding across extensive 
areas, where larger water level variability is anticipated. Conversely, 
smaller areas along the coast may exhibit less pronounced variations in 
water levels, making the distinction between employing a spatially 
uniform versus varying flood water level less significant. 

The spatial variability of the water levels can be captured by a set of 
observed/modeled water levels scattered over the study area. For 
simplicity, we refer to these as monitoring stations; WN

i=1 = {wi,…,wN}, 
being N the number of monitoring stations where water level informa
tion is available. Following Agulles et al. (2020), we apply an optimal 
interpolation method to interpolate the water level (W) information at 
the monitoring stations over the entire study area. The resulting 
spatially varying flood water level (Ûwl) consists of a linear combination 
of the water levels at the monitoring stations (W) and a background field 
(i.e., first guess), with weights determined from the covariances of W 
and the background. In our case, the background is determined as the 
average between the water levels contained in W. In other words, Ûwl is 
a 2-dimensional grid containing water level anomalies above/below the 
average, where cells tend to values similar to the closest monitoring 
station. Cells far from the monitoring station tend to the average of W. 
Fig. 6 shows the spatially varying flood water level for the illustrating 
example. Note that the topography, and therefore the flood path, is not 
considered when calculating the spatially varying water level. The 
original optimal interpolation algorithm formulation can be found 
elsewhere (e.g., see Bretherton et al., 1976; Daley, 1993); here, only the 
major features of the algorithm are summarized. 

Ûwl, of size Y x, is obtained by: 

Ûwl = BK + ST • D−1 • d (5)  

where BK is a Y x matrix containing the background information. S is a 
M x N matrix containing the covariance of the Euclidean distances be
tween the digital elevation model and the monitoring stations (W), 
which are then modeled using a Gaussian function: 

Fig. 3. zF: z flooded before accounting for hydro-connectivity. Blue colors 
indicate areas below the flood water level and therefore, flooded. The sea has 
extended from PPW1 to also include CPL2, CPL3, and CPL4 areas. Note that 
hydrological connections have not been taken into account yet; therefore, 
CPW2 and CPL1 are flooded despite not being to the sea. 

Fig. 4. Polygons (parents and children) found in zBW. Five different polygons 
were identified: parent polygons are id = 1, 2. Inside the parent polygons, two 
children polygons (id = 3, 5) are located within the sea polygon, Pmwb,Fl, and 
one children polygon is in the main land area (id = 4). Red dot shows the 
location point, lp. 

Fig. 5. Flood map accounting for hydro-connectivity, zFHC. Blue colors are 
inundated areas. Because CPL3 polygon is originally 1 m above the ground 
(Fig. 1), CPL3 is 0 m while CPL4 is −0.5 m since the topography in that area is 
0.5 m of elevation. Areas with elevations below the flood water level (1 m) but 
not connected to the sea (CPL1 and CPW2, in yellow) are not inundated as well 
as areas above the flood water level (CPW1 and PPL1, in green). Areas not 
flooded take z values. 
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PS = e
−d12

ij/2L2 (6) 

d1ij is the distance between each j point of the digital elevation model 
and each monitoring station contained in W. 

L is the spatial correlation length scale. Smaller values of L result in a 
lower spatial variability of flood water levels, constraining the influence 
of each individual water level value to the vicinity of the corresponding 
monitoring station. Simultaneously, smaller values of L better preserve 
the water level magnitude at the monitoring station. In contrast, higher 
values of L generate a broader spatial footprint for each individual flood 
water level. However, the water levels at the monitoring stations 
become slightly smoothed out when using higher values of L. The 
objective of using the optimal interpolation method is to simulate a 
spatially varying flood water level that accurately represents the 
maximum variability across the study area while still preserving the 
flood water level data at the monitoring stations. Therefore, the algo
rithm estimates the optimal value of L as the maximum value of the ratio 
between the standard deviation of the interpolated flood water level 
(STD(Ûwl)) and the mean difference between the interpolated grid 
water level at the monitoring stations and the flood water level recorded 
by the monitoring stations (Ûwlw − W): 

L = max
(

STD(Ûwl)
Ûwlw − W

)

(7) 

Values of L from 0.5 to 100 with 0.5 increments are tested. 
D* is a N x N matrix containing the covariance of the Euclidean 

distances across W. Again, D* is modeled using a Gaussian function: 

D∗ = e
−d22

ij/2L2 (8)  

In this case, d2ij is the distance between the monitoring stations i and j. 
We assume that the water levels (from simulations or observations) are 
perfect; however, water level gauge data and model outputs each have 
uncertainties. We include an error to the covariance matrix D*. ε is a N x 
N diagonal matrix containing an observational error of 0.01. The 
covariance matrix D* is then modified as: 

D∗ = D∗ + ε (9) 

d, in Equation (5), is a N x 1 vector containing the anomalies between 
the water levels at the monitoring stations (W) and the background: 

d = W − BK (10) 

The area flooded by a spatially varying water level (zFHC,V) is 

obtained by applying the method outlined in Section 2.1 using the 
spatially varying water level instead of a uniform flood water level. 

Following the example from Section 2.1, Fig. 6 shows the resulting 
spatially varying flood water level obtained from five different moni
toring stations, in meters, W = {0.2,0.7,1,0.7,0.7,0.5}. Fig. 7 shows the 
resulting flood map when using the spatially varying flood water level 
(zFHC,V). Note, both flood depth and extent are reduced in comparison to 
using a uniform flood water level (zFHC). Compared to Fig. 5, the use of a 
spatially variable water surface has prevented flooding of the CPL3 re
gion and therefore, CPL4. Also, closer cells to the W = 0.2 m (Fig. 6), are 
not inundated, since those grid cells have an elevation of 0.5 m. 

2.3. Applying a reduction factor 

The static approach neglects the hydrodynamics of flooding, and 
effectively assumes that all potentially flooded regions will be instan
taneously flooded when a flood reaches its peak water level. However, a 
combination of hydraulic controls, form drag, and hydraulic roughness 
impedes flood currents, and imposes a timescale for flooding to occur at 
each point. Thus, a static approach can greatly overestimate the extent 
and the depth of flooding, as mentioned in the Introduction. 

To address the expected overestimation of the inundation, and 
following previous studies (Ward et al., 2020; Williams and Lück-Vogel, 
2020), MatFlood incorporates a reduction factor that diminishes both 
the flood depth (representing the amount of water in the vertical axis) 
and the flood extent (referring to the flooded area). The attenuation of 
the inundation depends on the distance to the coast and a user-defined 
rate, so it can be adjusted to the particularities of the study area. The 
reduction of the flood is applied as a post-processing step after gener
ating the flood map (Fig. 1). It should be noted that the use of the 
reduction factor is optional. Additionally, the reduction factor can be 
either spatially uniform or spatially varying, depending on the specific 
requirements of the analysis. Detailed explanations are provided in the 
subsequent sections. 

The methodology consists of (a) delineating the shoreline, (b) 
calculate the distance of each point in the elevation data (DEM) to the 
shoreline and, (c) applying the user-defined rate. In this study, the 
shoreline refers to the intersection between the sea and land under calm 
conditions, representing the pre-flooding state. 

To delineate the shoreline, we use the MATLAB function edge, which 
takes a binary image as input and returns a binary image of the same 
size, with 1’s where the edge is found and 0’s elsewhere. Note, the 
shoreline is identified using the initial elevation data (z) and not the 
flood map. The input binary matrix (zBW0) is defined to take values of 1 
for the cells located in the sea and 0 otherwise. In order to obtain zBW0, 
Equations (1)–(3) are applied to z using a uniform flood water level of 0 

Fig. 6. Spatially varying flood water level (m) obtained from applying the 
optimal interpolation method to five individual water levels; W = {0.2, 0.7, 1,

0.7, 0.7, 0.5} in meters. Triangle’s face colors indicate the individual water 
levels. Polygon’s labels are included in the figure for reference purposes. 

Fig. 7. Flooded map after using a spatially varying flood water level (Fig. 5). 
Blue areas represent flooded cells. Areas not flooded take z values. Note that the 
values in the sea keep the original elevation (Section 2.1). 
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m. Then, Equation (4) is modified to: 

zBW0 =

{
0, id ∕= Pmwb,Fl
1, id = Pmwb,Fl

(11) 

Then edge is applied to zBW0: 

SH = edge(zBW0) (12) 

SH contains the coordinates of the shoreline. 
The user-defined flood reduction rate (RF) is defined as the vertical 

water depth reduced (vrwd) over a horizontal distance (hd): 

RF = vrwd/hd
(13) 

This rate is then applied to the flooded map (zFHC) as: 

zF,R = zFHC + (RF × D∗) (14) 

D* contains the covariance of the Euclidean distances between each 
point in the computational grid and the shoreline. This calculation can 
be computationally expensive in large areas or when using high spatial 
resolution. To improve the computational demand, the distances are 
calculated over a reduced-resolution computational grid and then 
interpolated back again to the original resolution. Note that only the 
distances are calculated over a reduced-resolution grid, the flooded map 
retains its original resolution so the accuracy of the flooding maps is not 
impacted. Areas that are no longer flooded due to the application of the 
reduction factor take values of the initial elevation data (z): 

zF,R =

{
zF,R, zF,R ≤ 0

z, zF,R > 0 (15) 

Therefore, based on Equation (14), the amount of flooding attenu
ated by the reduction factor depends on the distance to the coast and the 
flood depth, which is ultimately determined by topography elevation. In 
some instances, the hydraulic connectivity might not hold after applying 
the reduction factor. Hydrological connectivity is enforced by running 
the static flooding algorithm again (Section 2.1) using a flood water 
level of 0 m. By doing so, we obtain the flood depth and extent atten
uated by the reduction factor and accounting for hydro-connectivity 
(noted as zFHC,R). Note, in this case we have applied the reduction fac
tor to the map flooded by a uniform flood water level (zFHC), since we 
have showed that the spatially varying flood water level already reduces 
the extent and depth of the inundation. However, the map flooded by a 
spatially varying flood water level can be used instead. 

Following the optimal interpolation method used to obtain spatially 
varying flood water levels (Section 2.2), the algorithm allows for the 
calculation of a spatially varying reduction factor given a set of reduc
tion factors distributed over the study area. The approach follows the 
same steps as in Section 2.2 using a set of user-defined flood reduction 
rates instead of flood water levels. 

For demonstration proposes, we have employed a rate of 0.0417 to 
the previously simulated flooding area. Note, this value is chosen to 
illustrate the methodology but it has no physical meaning. In this 
example, 0.0417 reduces the flood depth by 0.5 m every 12 m in the 
horizontal. Fig. 8 shows the results after accounting for water connec
tivity. The flood depth and extent have been attenuated as can be seen 
when comparing the flood map before (Fig. 5) and after (Fig. 8) applying 
the reduction factor: CPL3 and CPL4 are not flooded anymore. In 
addition, the flood depth was reduced by 0.5 m in the landward area in 
CPL2. 

3. Case study 

We use MatFlood to assess the flood depth and extent of Superstorm 
Sandy, which caused an extensive storm surge in the states of New York 
and New Jersey on October 30th, 2012, resulting $50 billion in damages 
and 147 direct deaths (NWS, 2013). The results of MatFlood are 
compared to observed high water marks (HWMs) and to a physics-based 

hydrodynamic model (referred as PBM for simplicity). 

3.1. Data 

MatFlood’s flooding simulation is performed using the Continuously 
Updated Digital Elevation Model elevation data, referenced to NAVD88 
(NCEI, 2022). The spatial resolution of the elevation data is 1/9 of an 
arc-second (~3.43 m). The study area covers the southwestern part of 
the state of New York and the eastern part of New Jersey (Fig. 8). The 
elevation data (and therefore computational grid, see Section 2.1), 
contains 24,312 (Y) × 16,212 (X) cells. Maximum water levels (above 
NAVD88) from 29/October 30, 2012 are retrieved from 6 tide gauges 
(monitoring stations) from NOAA and the USGS: Bergen Point, Jamaica 
Bay at Inwood, Kings Point, Newark Bay, Rockaway Inlet, and The 
Battery. 

A total of 312 HWMs are retrieved from the U.S. Geological Survey 
Short-Term Network Data Portal (USGS, 2022). HWMs consist of flood 
depth measurements (above NAVD88) based on, for instance, debris and 
mud washed ashore, stain lines, and seed lines. Generally, HWMs are 
situated at the inland boundary of the flood. However, this may not be 
the case for all observations. 

The PBM consisted in the coupled ADvanced CIRCulation (ADCIRC)/ 
Simulating Waves Nearshore (SWAN) models, which include the effect 
of storm tides and significant wave heights. The model used the US 
FEMA Region II operational unstructured numerical grid, where the 
smallest distance between nodes was 70 m. It should be noted that the 
ADCIRC model was edited to “close the tide gates” in order to improve 
the results. The simulations used wind and atmospheric pressure rean
alysis from OceanWeather, Inc. Details on the numerical modeling can 
be found in Brandon et al. (2016) and the Superstorm Sandy simulation 
is described in Orton et al. (2015b). In order to compare the PBM with 
MatFlood, the flood depths from the PBM where gridded and interpo
lated to the MatFlood resolution (we recall that the PBM was run on an 
unstructured computational grid). 

Fig. 9 shows the study area, including the topography, the locations 
of the tide gauges and HWMs. Water level observations reveal limited 
variability (Fig. 10): three tide gauges, located on the western study 
area, show higher than average water level (from 3.4 to 3.6 m) while the 
other three tide gauges, on the eastern, show lower water level (from 
3.08 to 3.2 m). 

3.2. Model setups and tests 

We compare the area flooded under different model setups: 

Fig. 8. Flood map after applying the reduction factor. In this case, we use a 
uniform flood water level, but spatially varying flood water levels can also be 
used. Blue colors indicate flooded areas and the sea. Areas not flooded take 
z values. 
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(1) Neglecting hydrological connectivity. In this case, the inundation 
is calculated six times, one for each tide gauge water level. For 
each of this simulations, the flood water level is spatially uniform.  

(2) Accounting for water connectivity. As in 1), the inundation is 
calculated six times, one for each tide gauge water level and the 
flood water level is spatially uniform. 

(3) MatFlood using a spatially varying flood water level. Observa
tions from the six tide gauges are utilized to obtain the varying 
flood water level, as in Section 2.2. The resulting spatially flood 
water level is shown in Fig. 10.  

(4) Applying the reduction factor: the inundation resulting from 3) is 
reduced by a 3.75 × 10−4 rate.  

(5) Applying a spatially varying reduction factor: the inundation 
resulting from 3) is reduced by a rate spatially varying from 0 to 
3.75 × 10−4. 

MatFlood results are compared against the PBM and HWMs using 
three metrics: the percentage of coverage, the root mean square error 
(RMSE) and the critical success index (CSI). The percentage of coverage 
indicates the number of HWMs that fall within the simulated flood area, 
out of the total of the 312 HWMs. The root mean square error (RMSE) 
shows the mean difference in flood depth between the HWMs and the 
simulated area, in meters. Finally, the critical success index shows the 
overall overlap between MatFlood and the PBM, accounting for both 
under and over prediction being 0 = no skill and 1 = perfect skill. The 
critical success index is calculated as follow: 

CSI =
cw

fd + fw + cw
(16) 

Being cw the correct simulations of wet points, fd the false dry sim
ulations and fw false wet grid simulations. 

3.3. Results 

Table 1 presents the results obtained from comparing MatFlood, 
HWMs, and the PBM, including the respective flooded areas for each 
model setup. Setups 1 and 2 provide the mean values derived from six 
simulations, along with the minimum and maximum values indicated 
within brackets. The PBM model exhibits a percentage of coverage of 
47.32%, accompanied by a root mean square error (RMSE) of 1.09 m. 
This percentage of coverage is consistently lower than MatFlood (from 
77.29 to 78.55%). Also, the RMSE is larger than using MatFlood (from 
0.73 to 0.75 m). 

As anticipated, neglecting hydrological connectivity leads to larger 
flooded areas (from 298.24 to 364.80 km2) than when hydrological 
connectivity is considered (ranging from 279.75 to 354.94 km2). Due to 
the reduced flooded area, the percentage of coverage also decreases 
when accounting for hydrological connectivity, from 77.55% to 76.39%. 
On average, the critical success index improves by 0.01 when hydro
logical connectivity is considered, and substantial differences are 
observed when examining the minimum and maximum values (Table 1). 
By employing spatially varying flood water levels (model setup 3), the 
flooded area increases in comparison to using a uniform flood water 
level as well as the percentage of coverage. The critical success index 
reduces by 0.01 m. The utilization of a spatially uniform reduction factor 
significantly attenuates the inundation to 287.52 km2 and improves the 
RMSE by 0.02 m. The spatially varying reduction factor produces a 
larger attenuation of the inundation, to 209.35 km2. However, this 
reduction also results in a decrease in the critical success index to 0.45. 
The spatially varying reduction factor improves the RMSE by 0.01. 

Fig. 9. Elevation topography of the study case (z, in meters). Tide gauge lo
cations are indicated by triangles and high water marks (HWMs) are depicted 
by black dots. 

Fig. 10. Spatially varying flood water levels over the study area at the time of 
maximum water level during Superstorm Sandy. Tide gauges (monitoring sta
tions) are indicated by magenta triangles and the coastline by a black solid line. 
Red colors indicate areas where the flood water level is higher than the average 
while blue areas are lower than the average. Contour lines for 3.1, 3.2, 3.3, 3.4, 
3.5, and 3.6 m of flood water levels are shown in thin black lines. 
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The flood depth obtained from MatFlood using a spatially varying 
flood water level and a uniform reduction factor of 3.75 × 10−4 (model 
setup 3) is shown in Fig. 11. Fig. 12 compares the flood extent of Mat
Flood (model setup 3) and the PBM. The differences in flood depth be
tween MatFlood, the PBM and the HWMs are shown in Fig. 13. The PBM 
generally result in higher flood depths than those observed by the HWMs 
(Fig. 13a), particularly along enclosed areas (Fig. 13d). However flood 
depths are larger in the PBM at the open coast. The distribution of the 
differences between MatFlood and observations are more centered to
ward 0 (Fig. 13b). Similarly to the PBM, MatFlood tends to underesti
mate the flood depth in comparison with HWMs, especially in the 
enclosed areas (blue dots in Fig. 13e). For completeness, we include a 
comparison between MatFlood and the PBM at the HWM’s locations 
(Fig. 13c and f). MatFlood tends to overestimate flood depth in com
parison to the PBM (Fig. 13c) although not spatial coherence is found 

(Fig. 13f). 

4. Computational efficiency 

The main advantage of static methods against numerical models is 
the computation efficiency. The computational cost of MatFlood is 

Table 1 
Comparison between the modeled and observed flood depth and extent for different model setups (fwl is the flood water level, HC is hydrological connection, MF 
MatFlood, and RF reduction factor). Brackets indicate the minimum and maximum value using each of the six tide gauge observations.   

1. No HC 2. Uniform fwl 3. Varying fwl 4. Uniform RF 5. Varying RF 

HWMs within MF 77.55 [71.92,83.28] 76.39 [70.66,83.28] 78.55 76.03 77.29 
HWMs outside MF 22.45 [16.72,28.08] 23.61 [16.72,29.34] 21.45 23.97 22.71 
HWMs within PBM 47.32 47.32 47.32 47.32 47.32 
HWMs outside 52.68 52.68 52.68 52.68 52.68 
CSI 0.43 [0.41,0.44] 0.44 [0.42,0.46] 0.43 0.47 0.45 
Area flooded 330.71 [298.24,364.80] 317.33 [279.75,354.94] 332.67 287.52 209.35 
RMSE MF vs HWMs 0.75 [0.66,0.88] 0.75 [0.66,0.88] 0.75 0.73 0.74 
RMSE PBM vs HWMs 1.09 1.09 1.09 1.09 1.09  

Fig. 11. Flood depth (m), using spatially varying water level and applying a 
reduction factor of 3.75 × 10−4. 

Fig. 12. Comparison of the extent of the inundation obtained from the physics- 
based model (PBM) in red, and MatFlood in blue. MatFlood simulation includes 
a spatially varying water level as well as the application of a reduction factor. 
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evaluated against a static flooding method performed on a GIS frame
work, since this is one of the most widely used approach. The GIS 
simulation is processed in the ArcGIS Pro software. The approach fol
lowed in ArcGIS Pro mimics the methodology in MatFlood. Both, GIS- 
based and MatFlood static simulations were performed using the same 
DEM (Section 3.2) and flood water level. Both models account for hy
drological connection, using a uniform varying water level and not 
applying the reduction factor (further details in how the GIS-model was 
implemented in ArcGIS Pro are provided in the Supplementary 
Information). 

We run the tool using an AMD Ryzen 9 5950X machine with a 16- 
Core Processor of 3.40 GHz and 128 GB of RAM. When using the most 
generic set up (i.e., without calculating the spatially varying flood water 
level and without applying the reduction factor, Section 2.1) the 
calculation takes 28.1 s for this case study. Obtaining a spatially varying 
flood water level and applying the reduction factor takes longer: 5.5 and 
5.9 min, respectively. Note, the computational cost when applying the 
reduction factor mainly results from the calculation of the distances to 
the shoreline (Section 2.3). Thus, once the distances are calculated, 
several values of reduction factor can be tested with little computational 
cost (in the order of seconds). 

We simulate the flood area by applying a GIS-based inundation 
routine through ArcGIS Pro 2.0.0. We use a uniform flood water level of 
2 m both in ArcGIS and MatFlood. Williams and Lück-Vogel (2020) 
developed an external ArcGIS tool aimed at reducing the flood area 
using a roughness coefficient to the flooded area. However, the imple
mentation of this roughness coefficient greatly differs from the reduc
tion factor applied in the present work. Therefore, we limit this analysis 
to the most common GIS-based setup, which does not include any 
reduction factor of the inundation. Likewise, obtaining a spatially 
varying flood water level is not possible in ArcGIS, and is therefore not 
included in MatFlood for this example. The resulting computational time 
in ArcGIS Pro 2.0.0 is 3.2 min on average (standard deviation of 0.73 

min). Using the same initial conditions, MatFlood takes 26.27 s on 
average (standard deviation of 0.63 s). The steps taken in ArcGIS Pro 
2.0.0 to obtain the flood depth are outlined in the Supplementary 
Information. 

5. Conclusions and discussion section 

This study presents a rapid and user-friendly MATLAB-based algo
rithm, MatFlood, designed for mapping flood depth and extent, which 
improves on the widely used GIS-based static models. MatFlood con
siders water connectivity and includes a reduction factor, in order to 
more realistically represent flooding conditions. In addition, MatFlood 
allows for spatially varying flood water level. This feature might 
improve the representation of the flood water levels along the coast, 
particularly in larger areas, where larger variability across water levels 
is expected. Results show that using a spatially varying flood water level 
impacts the flood depth and extent in comparison to using a spatially 
uniform flood water level, as it is typically done when using static ap
proaches to assess flooding. MatFlood was compared with a GIS-based 
system using ArcGIS Pro 2.0.0. Results showed that MatFlood is 
computationally nearly an order of magnitude more efficient than 
traditional GIS algorithms. 

After describing the algorithm, we applied MatFlood to assess the 
inundation of Superstorm Sandy in the New Jersey/New York area. The 
simulation of flood depths was conducted using various model config
urations, all of which demonstrated comparable performance metrics 
when compared to High Water Marks (HWMs) and a physics-based 
numerical model (PBM). However, additional analyses are required to 
assess the model’s capabilities since the performance of models can be 
influenced by the quality of the observations they are compared against, 
the magnitude of the flood event, the complexity of the topography, and 
the resolution of the DEM (Teng et al., 2017, 2022). Also, the model’ 
performance should be further analyzed in larger study areas, where the 

Fig. 13. Differences in flood depth (m) between high water marks (HWMs) observations and the physics-based numerical model (PBM) (a. And d.), between HWMs 
and MatFlood (b. And e.), and between MatFlood and the PBM at HWM’s locations (c. And f.). 
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significance of flood water level variability may exert a more substantial 
influence on the results. 

In the context of this specific study case, MatFlood results in a better 
agreement with HWMs observations; from 76.03 to 78.55% of the 
HWMs fall within the MatFlood simulated flooded area while 54.68% of 
the HWMs are located in the PBM flooded zone. The root mean square 
error (RMSE) also shows slightly better results when comparing with 
MatFlood (0.73–0.75 m) than to the PBM (1.09 m). The obtained results 
do not imply superior or inferior performance of MatFlood in flood 
simulation, but rather establish a benchmark for comparison. It is 
imperative to conduct further analyses to compare MatFlood with 
observational data and other numerical models, including hydrody
namic models and static flooding methods such as the Height Above 
Nearest Drainage (HAND) model. The HAND model (Nobre et al., 2011) 
is primarily employed for landscape classification and river-associated 
spatial inundation mapping. It shares commonalities with MatFlood as 
both are static methods ("bathtub”) that consider hydrological connec
tivity and allow for spatially varying floodwater levels. The primary 
distinctions include programming language, and the absence of a 
reduction factor calculation in the HAND model. Furthermore, the 
HAND model references local relative heights, while MatFlood aligns its 
outcomes with the vertical datum of the DEM and flood water level. 

Moreover, this comparative assessment should encompass different 
water level scenarios, varied study area sizes, and varying resolutions of 
topographic data. This comprehensive evaluation will enable an accu
rate assessment of MatFlood’s performance using diverse model setups. 
Furthermore, it is important to consider other factors that may impact 
the results. For example, the PBM was interpolated to a higher resolu
tion, which could introduce additional errors into the analysis. It is 
crucial to evaluate the intrinsic errors associated with both the HWMs 
and the PBM when comparing them to each other and to observations. 
These considerations will contribute to a comprehensive assessment of 
the models’ performance and enhance the validity of the results. 

The flood was simulated using a spatially varying flood water level, 
which was subsequently attenuated using a reduction factor. This 
attenuation process resulted in a reduction of both the flooded area and 
the flood depth, decreasing the RMSE. The reduction factor is deter
mined by the distance from the coast and a user-defined reduction rate. 
We hypothesize that the reasonable range of the reduction rate value 
depends on the storm itself (peak of flood water level and the spatial 
variability of it), the spatial resolution of the digital elevation model, 
and the study area (including the size and the land cover). Further an
alyses are required to find the optimal value of the reduction rate for 
other regions as well as to elucidate to what extent these three elements 
influence the value of the reduction factor. It is important to recall that 
the reduction factor should not be interpreted as a friction coefficient, as 
it does not correspond to any physical process and therefore, it shouldn’t 
be compared with friction coefficients obtained in previous studies. The 
reduction rate can be applied uniformly or vary spatially, allowing for 
consideration of topographic differences. In the presented study case, 
there were no significant differences observed in the simulated inun
dation when employing a uniform or varying reduction factor. However, 
this feature can prove advantageous in other conditions, particularly 
when dealing with large study areas. 

Extreme and non-extreme flooding events already have significant 
impacts on coastal and riverine populations and flooding impacts are 
expected to be further exacerbated in the near future due to climate 
change. Mapping flood depth and extent under different input condi
tions (varying water levels, topography and land use/infrastructure 
changes, sea level rise scenarios, etc.) is particularly important for risk 
assessment and coastal adaptation. The computationally intensive and 
time-consuming nature of hydrodynamic models restricts their usage in 
supporting emergency response activities (Longenecker et al., 2020) and 
they are often only accessible by experts in hydrodynamic modelling. On 
the contrary, rapid assessment techniques allow planners and re
searchers to evaluate the effectiveness of a variety of measures against 

flooding. 

Software availability 
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License: Creative Commons Attribution 4.0 International. 
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