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Mapping inundation areas and flood depths is necessary for coastal and riverine management and planning.
Flood maps help communicate flooding risk to affected communities and vulnerable populations and are
essential for evaluating flooding impacts. Here, we introduce MatFlood, a computationally efficient static flood
tool that exploits image-processing algorithm for estimation of flood extension and depth. Features include (a) an
algorithm that evaluates hydro-connectivity; (b) functionality to calculate spatially varying flood water levels
and (c) the inclusion of a reduction factor to mimic the effects of physical processes not explicitly resolved. The
efficiency of the tool is well-suited for simulating numerous flooding maps using different inputs (flood water

levels or digital elevation models), over large areas, and high spatial resolution. We apply MatFlood to assess the
flood extent and depth of Hurricane Sandy (2012) in the New York/New Jersey area to illustrate its use. In
comparison to existing approaches based on geographic information systems, MatFlood performs the same
calculations six times faster in the Hurricane Sandy study case.

1. Introduction

In the United States and around the world, flood maps are used to
communicate flood risk, set insurance rates, and determine infrastruc-
ture policy. The extent and depth of flooding are commonly simulated
by using either physics-based hydrodynamic models or a more simplistic
static approach. In addition to models, empirical methods delineate
historical floods using observations such as on-ground measurements,
aerial photographs, and satellite imagery. However, the limited avail-
ability of observed flooding data and their applicability solely to past
events are significant limitations of this approach. Empirical methods
are commonly used to calibrate and validate hydrodynamic models. A
comprehensive description and comparison of the three methods can be
found in Teng et al. (2017).

Physics-based hydrodynamic models allow for an accurate simula-
tion of flooding since they include physical parameters such as wind
speed, atmospheric pressure, bottom friction, etc. Also, hydrodynamic
models can predict the evolution of a flood event, providing a temporal
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component. The use of these models requires expert skills, specialized
software, and high-spec computers that often limit their use to special-
ized engineering sectors. Furthermore, due to their computational de-
mand, they are not suitable for simulating an ensemble of multiple
flooding conditions such as sea-level rise projections and the corre-
sponding uncertainties, storm surge scenarios, and digital elevation
model realizations (Amante, 2019; Barnard et al., 2019). For the same
reason, using high-resolution elevation data in hydrodynamic models is
often limited to small-scale study areas. Coarse spatial resolution is used
in regional to larger spatial scales, which can lead to inaccuracy in flood
maps. A coarse resolution tends to average out topo-bathymetry infor-
mation, such that some regions are incorrectly modeled as wet or dry;
this is particularly a problem when coarse resolution prevents hydraulic
connectivity to a flood-prone region. Previous research has emphasized
the significance of resolution in achieving accurate simulations of
inundation events (Williams and Liick-Vogel, 2022). Nevertheless, the
demand for high spatial scale in inundation modeling poses a substantial
challenge for hydrodynamic models when applied to relatively large
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areas.

An alternative approach for simulating flooding is the use of machine
learning (ML) algorithms. In recent years, the use of ML has been shown
promising in the field of flood mapping. ML algorithms have been
mainly used to delineate the flood during or after its occurrence rather
than to predict/simulate the flood extent (Bentivoglio et al., 2022). They
face two significant drawbacks: the requirement for extensive training
data (recorded flooded events or physics-based hydrodynamic model
simulations) and, while they can exhibit computational efficiency with
small datasets, they can also prove computationally demanding. The
computational intensity of ML hinges on several factors, including the
size of the training dataset, hyperparameter tuning (which often in-
volves numerous iterations), and the model’s architectural complexity,
such as the number of hidden layers and neurons employed. In addition,
the multitude of available ML algorithms often leads to the need for
ensemble techniques, where their outputs are combined to enhance
predictive accuracy, escalating the computational demand.

An alternative to computationally costly hydrodynamic models and
the substantial data demands ML algorithms is the use of static ap-
proaches, also known as the “bathtub”, in which all regions below a
flood water level are considered to be flooded. Overland inundation
estimates through static methods have traditionally been based on a GIS
(geographic information systems) framework (e.g., Amante, 2019; Li
etal., 2009; Torresan et al., 2012; Yunus et al., 2016), often processed in
ESRI's ArcGIS (e.g., Breilh et al., 2013; Maloney and Preston, 2014;
Patrick et al., 2015; Perini et al., 2016; Seenath et al., 2016; Williams
and Liick-Vogel, 2020; Zachry et al., 2015) and to a lesser extent in QGIS
software (e.g., de Lima et al., 2021; Paulik et al., 2021; de Leo et al.,
2022). Other static models include the Height Above Nearest Drainage
(HAND, Nobre et al., 2011), Teng Vaze Dutta (TVD, Teng et al., 2013),
and Floodwater Depth Estimation Tool (FWDET, Cohen et al., 2018)
models. HAND is a drainage normalized version of a digital elevation
model (DEM), where flooding extent and depth are identified as those
cells that belong to a mutually connecting flow path. The model needs a
water level and a DEM as input to calculate the flood depth and extent.
In contrast, TVD and FWDET can simulate flood depth but require an
input for the flood extent. Teng et al. (2022) offers a comprehensive
comparison among these three static approaches and compare the re-
sults against hydrodynamic models.

Static approaches are easy to use and computationally very efficient
in comparison to hydrodynamic models and machine learning algo-
rithms. Static models allow the rapid simulation of a large set of re-
alizations and they necessitate minimal input data for implementation,
mainly terrain elevation data, such as DEMs, and a flood water level.
However, results from static models are expected to be less accurate than
hydrodynamic models because static methods do not account for the
physical processes involved in an inundation event, such as bottom
friction, which effectively reduces the flooding depth and extent.
Therefore, static methods typically overestimate the inundation (Ram-
irez et al.,, 2016; Teng et al., 2022). Similarly, static methods that
disregard hydrological connectivity are anticipated to exacerbate flood
overestimations. This is due to the fact that areas below the flood water
level, which are not connected to the sea or river, may erroneously be
identified as flooded regions.

Another drawback of static approaches is that the flood water level is
typically assumed to be uniform over the study area, however, water
level is spatially variable. Some exceptions exist in the literature, where
a spatially varying water level can be applied in static methods, such as
in the HAND model. There is an ongoing discussion in the literature on
the use of static flooding methods. Some authors (Ramirez et al., 2016;
Seenath et al., 2016) suggested that static models should be avoided
when computational speed is not of primary concern. Others have
compared flood extents and depths resulting from physics-based models
versus static approaches, finding relatively good agreement (Orton
etal., 2015a). Teng et al. (2017) argues that the disparity between static
approaches and hydrodynamic models varies depending on the
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topographical complexity. Increased topographical intricacy results in a
greater level mismatch. On the other hand, hydrodynamic and static
models exhibit good agreement in clear flow paths.

Here, we implement a static model to determine the flood extent and
depth in MATLAB (MatFlood). MatFlood takes into account hydrological
connectivity and, acknowledging the shortcomings of static methods,
includes the attenuation of the inundation through a reduction factor
that accounts for the distance to the source of flooding. The reduction
factor can be spatially uniform (i.e., constant across the study area) but
also spatially varying, using an optimal interpolation method. Few
studies have previously applied static methods using reduction factor,
but it has been assumed to be constant across the study area (e.g.,
Williams and Liick-Vogel 2020; Ward et al., 2020). In addition, Mat-
Flood allows for the calculation of a spatially varying flood water level,
based on gauge’s observations or model points distributed across the
study area. The simplicity, minimized data requirements, and compu-
tational efficiency of MatFlood set it apart from hydrodynamic models
and ML algorithms. These characteristics render MatFlood well-suited
for generating an ensemble of flood simulations and estimating the
extent of inundation under diverse conditions, including different mean
sea level scenarios, uncertainties, extreme events, and DEM realizations.
In addition, MatFlood could be used in flooding emergency systems by
facilitating the generation of high-resolution flooding maps over
extensive regions in near real-time.

Conceptually, MatFlood shares similarities with other static ap-
proaches, such as the HAND model, that simulate flooding by account-
ing for hydrologic connectivity. In addition, the HAND model
accommodates spatially varying flood water level, although does not
include a reduction factor. MatFlood extends the literature by offering a
MATLAB-based algorithm that incorporates optional features (spatially
varying reduction factors and flood water levels). MatFlood’s high
computational efficiency allows for the generation of multiple flood
maps using different inputs or scenarios, as well as the use of high-
resolution DEMs.

In the following sections, we describe the algorithm. We then apply
MatFlood to assess the flood extent and depth of Hurricane Sandy (2012)
in the New York/New Jersey area to illustrate its use. Results are
compared against observed high water marks (HWMs) and a hydrody-
namic model.

2. Algorithm description

MatFlood comprises two main components. The first component
maps the flooding depth based on the water level during an inundation
event. The second component, which is optional, employs a reduction
factor to attenuate the extent and depth of flooding. A visual workflow of
MatFlood is provided in Fig. 1. MatFlood requires three primary inputs:

(1) Adigitalland elevation model (DEM) in a raster format, including
the elevation (2) and the coordinates. DEMs include Digital Sur-
face Models (DSMs) or Digital Terrain Models (DTMs). Previous
analyses have demonstrated that the choice between using DSM
or DTM has a considerable impact on the accuracy of simulated
flood scenarios (Williams and Liick-Vogel, 2020). As previously
stated, utilizing a high-resolution DEM is advisable to obtain
more accurate results. However, it is important to highlight that
MatFlood is compatible with both DSM and DTM, and it can
accommodate various resolutions of DEM datasets.

(2) A flood water level of interest. The flood water level refers to the
vertical water level producing the inundation and should be
based on the same geodetic reference frame vertical datum as the
DEM; and

(3) A single point which identifies the main water body from which
flooding occurs, hereinafter referred as Ip (location point). We use
the term “main water body” because MatFlood can be applied to
any interface of water-land (lakes, rivers, and the ocean). In the
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Fig. 1. Workflow of MatFlood.

following, we will refer to the main water body as “sea”, for
simplicity. The location point, Ip, is a single longitude and lati-
tude point, indicated by the user, and located within the sea (the
sea polygon is referred as the principal water polygon, PPW1 in
Fig. 2).

In the following sections we introduce the algorithm for simulating
inundation (Section 2.1), the description of the additional features to
obtain spatially varying flood water level (Section 2.2), and to attenuate
the flood depth and extent by applying a reduction factor (Section 2.3).
The methodology is illustrated by considering a basic topography z of
land/sea (Fig. 2), and a flood water level of 1 m. The horizontal reso-
lution is 1 square meter (each cell in Fig. 2). Within the sea (the principal
water polygon, PPW1), there are two polygons that represent land areas
of different elevations (children polygon in water 1 and 2, CPW1 and
CPW2). In the land area (PPL1), there are four embedded areas of lower
elevations (CPL1 to CPL4).

2.1. Inundation algorithm

A first estimation of the flooded area is obtained by subtracting the
flood water level (fwl) from the land elevation (z), obtaining a flooded
elevation grid (zp) of size Y x.

zr =2z —fwl @

Since both the flood water level (fwl) and the DEM (2) are referred to
the same vertical datum, positive values in zr represent land/dry areas
while negative and zero values indicate water. In 25, elevations equal or
lower than the flood water level are inundated. In the example, the sea
polygon now includes PPW1, CPL2, CPL3 and CPL4 (Fig. 3). In this step,
hydrological connectivity has not been considered yet and therefore, zp
also includes flooded areas not connected to the sea (CPL1 and CPW2 in
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Fig. 2. Elevation data, z (in meters), used to illustrate the methodology. Blue
colors represent the main water polygon or sea, green areas are cells with el-
evations of 2 m and therefore above the flood water level (1 m). Yellow (0.5 m)
and gray cells (1 m) are areas below and equal to the flood water level,
respectively, and therefore subjected to flooding. The red dot shows the loca-
tion point Ip, used for delimiting the sea polygon.

Fig. 3). In order to account for hydro-connectivity, the algorithm must
pinpoint and separate the sea polygon. To do so, zr is converted into a
binary black and white matrix of ones (water) and zeros (land), zgw:

_ 0,zr >0
ZBW?{LZFSO (2

Producing a binary matrix allows us to identify each polygon of
water and land, regardless of the elevation. To isolate the polygons in
zpw, we modify an existing MATLAB image processing function,
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Fig. 3. zr 2z flooded before accounting for hydro-connectivity. Blue colors
indicate areas below the flood water level and therefore, flooded. The sea has
extended from PPW1 to also include CPL2, CPL3, and CPL4 areas. Note that
hydrological connections have not been taken into account yet; therefore,
CPW2 and CPL1 are flooded despite not being to the sea.

bwboundaries (Gonzalez et al., 2004), which identifies the outermost
objects (“parents™) as well as the successive polygons enclosed by them
(“children™). The modified function, bwboundaries_.SFM, enables for a
faster way to delineate all polygons in zgy. We use bwboundaries SFM
accounting for 8-pixel connectivity, i.e., pixels are connected if their
edges or corners touch either along the horizontal, vertical or diagonal
direction.

P = bwboundaries_SFM(zgw) 3)

The output, P, is a Y x matrix containing an identification number
(id) for each polygon detected (Fig. 4). The polygon including the sea
and the flooded areas, Ppypp, is identified by the algorithm since it
embeds Ip. The depth of the inundated areas is calculated as the differ-
ence between the topography (z) and the flood water level (fwl) for those
cells within Pyp, p.

_ 2, id % P i
e = { 2 folid = Py )
where zpyc (Flooded topography accounting for Hydrological Connec-
tivity) is a Y x matrix where only areas below the flood water level and
hydrologically connected to the sea are flooded (Fig. 5).
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Fig. 4. Polygons (parents and children) found in zgw. Five different polygons
were identified: parent polygons are id = 1, 2. Inside the parent polygons, two
children polygons (id = 3, 5) are located within the sea polygon, Py, and
one children polygon is in the main land area (id = 4). Red dot shows the
location point, Ip.
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Fig. 5. Flood map accounting for hydro-connectivity, zpyc. Blue colors are
inundated areas. Because CPL3 polygon is originally 1 m above the ground
(Fig. 1), CPL3 is 0 m while CPL4 is —0.5 m since the topography in that area is
0.5 m of elevation. Areas with elevations below the flood water level (1 m) but
not connected to the sea (CPL1 and CPW2, in yellow) are not inundated as well
as areas above the flood water level (CPW1 and PPL1, in green). Areas not
flooded take z values.

2.2. Spatially varying input water levels

Typically, in static flood modelling, the flood water level is assumed
to be spatially uniform over the entire domain (as done in Section 2.1).
By doing so, the variability of the water level along the shoreline is
neglected, potentially leading to overestimate or underestimate flooding
in some areas. Consideration of varying spatial water levels becomes
particularly pertinent in the simulation of flooding across extensive
areas, where larger water level variability is anticipated. Conversely,
smaller areas along the coast may exhibit less pronounced variations in
water levels, making the distinction between employing a spatially
uniform versus varying flood water level less significant.

The spatial variability of the water levels can be captured by a set of
observed/modeled water levels scattered over the study area. For
simplicity, we refer to these as monitoring stations; WY, = {w;,...,wn},
being N the number of monitoring stations where water level informa-
tion is available. Following Agulles et al. (2020), we apply an optimal
interpolation method to interpolate the water level (W) information at
the monitoring stations over the entire study area. The resulting

spatially varying flood water level (Uwl) consists of a linear combination
of the water levels at the monitoring stations (W) and a background field
(i.e., first guess), with weights determined from the covariances of W
and the background. In our case, the background is determined as the

average between the water levels contained in W. In other words, Uwl is
a 2-dimensional grid containing water level anomalies above/below the
average, where cells tend to values similar to the closest monitoring
station. Cells far from the monitoring station tend to the average of W.
Fig. 6 shows the spatially varying flood water level for the illustrating
example. Note that the topography, and therefore the flood path, is not
considered when calculating the spatially varying water level. The
original optimal interpolation algorithm formulation can be found
elsewhere (e.g., see Bretherton et al., 1976; Daley, 1993); here, only the
major features of the algorithm are summarized.

171;1, of size Y x, is obtained by:
Uwl=BK +S" D' od 5)

where BK is a Y x matrix containing the background information. S is a
M x N matrix containing the covariance of the Euclidean distances be-
tween the digital elevation model and the monitoring stations (W),
which are then modeled using a Gaussian function:
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Fig. 6. Spatially varying flood water level (m) obtained from applying the
optimal interpolation method to five individual water levels; W = {0.2,0.7,1,
0.7,0.7,0.5} in meters. Triangle’s face colors indicate the individual water
levels. Polygon’s labels are included in the figure for reference purposes.

pS—¢ /a2 6)

d1; is the distance between each j point of the digital elevation model
and each monitoring station contained in W.

L is the spatial correlation length scale. Smaller values of L result in a
lower spatial variability of flood water levels, constraining the influence
of each individual water level value to the vicinity of the corresponding
monitoring station. Simultaneously, smaller values of L better preserve
the water level magnitude at the monitoring station. In contrast, higher
values of L generate a broader spatial footprint for each individual flood
water level. However, the water levels at the monitoring stations
become slightly smoothed out when using higher values of L. The
objective of using the optimal interpolation method is to simulate a
spatially varying flood water level that accurately represents the
maximum variability across the study area while still preserving the
flood water level data at the monitoring stations. Therefore, the algo-
rithm estimates the optimal value of L as the maximum value of the ratio
between the standard deviation of the interpolated flood water level

(STD( 171471)) and the mean difference between the interpolated grid
water level at the monitoring stations and the flood water level recorded

by the monitoring stations (ﬁv;lw — W)

L =max (M) @)
Uwl,, — W.

Values of L from 0.5 to 100 with 0.5 increments are tested.
D* is a N x N matrix containing the covariance of the Euclidean
distances across W. Again, D* is modeled using a Gaussian function:

2
D = (8)

In this case, d2; is the distance between the monitoring stations i and j.
We assume that the water levels (from simulations or observations) are
perfect; however, water level gauge data and model outputs each have
uncertainties. We include an error to the covariance matrix D*. eisa N x
N diagonal matrix containing an observational error of 0.01. The
covariance matrix D* is then modified as:

D'=D"+¢ (9

d, in Equation (5), is a N x I vector containing the anomalies between
the water levels at the monitoring stations (W) and the background:

d=W — BK (10)

The area flooded by a spatially varying water level (zpycy) is
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obtained by applying the method outlined in Section 2.1 using the
spatially varying water level instead of a uniform flood water level.

Following the example from Section 2.1, Fig. 6 shows the resulting
spatially varying flood water level obtained from five different moni-
toring stations, in meters, W = {0.2,0.7,1,0.7,0.7,0.5}. Fig. 7 shows the
resulting flood map when using the spatially varying flood water level
(zrHc,v)- Note, both flood depth and extent are reduced in comparison to
using a uniform flood water level (zgyc). Compared to Fig. 5, the use of a
spatially variable water surface has prevented flooding of the CPL3 re-
gion and therefore, CPL4. Also, closer cells to the W = 0.2 m (Fig. 6), are
not inundated, since those grid cells have an elevation of 0.5 m.

2.3. Applying a reduction factor

The static approach neglects the hydrodynamics of flooding, and
effectively assumes that all potentially flooded regions will be instan-
taneously flooded when a flood reaches its peak water level. However, a
combination of hydraulic controls, form drag, and hydraulic roughness
impedes flood currents, and imposes a timescale for flooding to occur at
each point. Thus, a static approach can greatly overestimate the extent
and the depth of flooding, as mentioned in the Introduction.

To address the expected overestimation of the inundation, and
following previous studies (Ward et al., 2020; Williams and Liick-Vogel,
2020), MatFlood incorporates a reduction factor that diminishes both
the flood depth (representing the amount of water in the vertical axis)
and the flood extent (referring to the flooded area). The attenuation of
the inundation depends on the distance to the coast and a user-defined
rate, so it can be adjusted to the particularities of the study area. The
reduction of the flood is applied as a post-processing step after gener-
ating the flood map (Fig. 1). It should be noted that the use of the
reduction factor is optional. Additionally, the reduction factor can be
either spatially uniform or spatially varying, depending on the specific
requirements of the analysis. Detailed explanations are provided in the
subsequent sections.

The methodology consists of (a) delineating the shoreline, (b)
calculate the distance of each point in the elevation data (DEM) to the
shoreline and, (c) applying the user-defined rate. In this study, the
shoreline refers to the intersection between the sea and land under calm
conditions, representing the pre-flooding state.

To delineate the shoreline, we use the MATLAB function edge, which
takes a binary image as input and returns a binary image of the same
size, with 1’s where the edge is found and 0’s elsewhere. Note, the
shoreline is identified using the initial elevation data (z) and not the
flood map. The input binary matrix (zpwyo) is defined to take values of 1
for the cells located in the sea and 0 otherwise. In order to obtain zgyy,
Equations (1)-(3) are applied to z using a uniform flood water level of 0

20
18 C) PP é
16
N
14 z
CP} 1 8
12 =
CPL2 &
10
8 o 105
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10
4 : CP W
4 <-0.5

2 4 6 8 10 12 14 16 18 20

Fig. 7. Flooded map after using a spatially varying flood water level (Fig. 5).
Blue areas represent flooded cells. Areas not flooded take z values. Note that the
values in the sea keep the original elevation (Section 2.1).
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m. Then, Equation (4) is modified to:

_ Oa id # meh,F[
Zowo = { Vi an

Then edge is applied to zgwo:
SH = edge(zzwo) a2

SH contains the coordinates of the shoreline.
The user-defined flood reduction rate (RF) is defined as the vertical
water depth reduced (v,q) over a horizontal distance (hg):

RF = Vi, (13)

This rate is then applied to the flooded map (zpy(c) as:
Zrr =2rnc + (RF x D") a4

D* contains the covariance of the Euclidean distances between each
point in the computational grid and the shoreline. This calculation can
be computationally expensive in large areas or when using high spatial
resolution. To improve the computational demand, the distances are
calculated over a reduced-resolution computational grid and then
interpolated back again to the original resolution. Note that only the
distances are calculated over a reduced-resolution grid, the flooded map
retains its original resolution so the accuracy of the flooding maps is not
impacted. Areas that are no longer flooded due to the application of the
reduction factor take values of the initial elevation data (2):

zea={ s 5 as)

Therefore, based on Equation (14), the amount of flooding attenu-
ated by the reduction factor depends on the distance to the coast and the
flood depth, which is ultimately determined by topography elevation. In
some instances, the hydraulic connectivity might not hold after applying
the reduction factor. Hydrological connectivity is enforced by running
the static flooding algorithm again (Section 2.1) using a flood water
level of 0 m. By doing so, we obtain the flood depth and extent atten-
uated by the reduction factor and accounting for hydro-connectivity
(noted as zgrcr). Note, in this case we have applied the reduction fac-
tor to the map flooded by a uniform flood water level (zgy(c), since we
have showed that the spatially varying flood water level already reduces
the extent and depth of the inundation. However, the map flooded by a
spatially varying flood water level can be used instead.

Following the optimal interpolation method used to obtain spatially
varying flood water levels (Section 2.2), the algorithm allows for the
calculation of a spatially varying reduction factor given a set of reduc-
tion factors distributed over the study area. The approach follows the
same steps as in Section 2.2 using a set of user-defined flood reduction
rates instead of flood water levels.

For demonstration proposes, we have employed a rate of 0.0417 to
the previously simulated flooding area. Note, this value is chosen to
illustrate the methodology but it has no physical meaning. In this
example, 0.0417 reduces the flood depth by 0.5 m every 12 m in the
horizontal. Fig. 8 shows the results after accounting for water connec-
tivity. The flood depth and extent have been attenuated as can be seen
when comparing the flood map before (Fig. 5) and after (Fig. 8) applying
the reduction factor: CPL3 and CPL4 are not flooded anymore. In
addition, the flood depth was reduced by 0.5 m in the landward area in
CPL2.

3. Case study

We use MatFlood to assess the flood depth and extent of Superstorm
Sandy, which caused an extensive storm surge in the states of New York
and New Jersey on October 30th, 2012, resulting $50 billion in damages
and 147 direct deaths (NWS, 2013). The results of MatFlood are
compared to observed high water marks (HWMs) and to a physics-based
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Fig. 8. Flood map after applying the reduction factor. In this case, we use a
uniform flood water level, but spatially varying flood water levels can also be
used. Blue colors indicate flooded areas and the sea. Areas not flooded take
z values.

hydrodynamic model (referred as PBM for simplicity).

3.1. Data

MatFlood’s flooding simulation is performed using the Continuously
Updated Digital Elevation Model elevation data, referenced to NAVD88
(NCEIL 2022). The spatial resolution of the elevation data is 1/9 of an
arc-second (~3.43 m). The study area covers the southwestern part of
the state of New York and the eastern part of New Jersey (Fig. 8). The
elevation data (and therefore computational grid, see Section 2.1),
contains 24,312 (Y) x 16,212 (X) cells. Maximum water levels (above
NAVDS88) from 29/October 30, 2012 are retrieved from 6 tide gauges
(monitoring stations) from NOAA and the USGS: Bergen Point, Jamaica
Bay at Inwood, Kings Point, Newark Bay, Rockaway Inlet, and The
Battery.

A total of 312 HWMs are retrieved from the U.S. Geological Survey
Short-Term Network Data Portal (USGS, 2022). HWMs consist of flood
depth measurements (above NAVD88) based on, for instance, debris and
mud washed ashore, stain lines, and seed lines. Generally, HWMs are
situated at the inland boundary of the flood. However, this may not be
the case for all observations.

The PBM consisted in the coupled ADvanced CIRCulation (ADCIRC)/
Simulating Waves Nearshore (SWAN) models, which include the effect
of storm tides and significant wave heights. The model used the US
FEMA Region II operational unstructured numerical grid, where the
smallest distance between nodes was 70 m. It should be noted that the
ADCIRC model was edited to “close the tide gates” in order to improve
the results. The simulations used wind and atmospheric pressure rean-
alysis from OceanWeather, Inc. Details on the numerical modeling can
be found in Brandon et al. (2016) and the Superstorm Sandy simulation
is described in Orton et al. (2015b). In order to compare the PBM with
MatFlood, the flood depths from the PBM where gridded and interpo-
lated to the MatFlood resolution (we recall that the PBM was run on an
unstructured computational grid).

Fig. 9 shows the study area, including the topography, the locations
of the tide gauges and HWMs. Water level observations reveal limited
variability (Fig. 10): three tide gauges, located on the western study
area, show higher than average water level (from 3.4 to 3.6 m) while the
other three tide gauges, on the eastern, show lower water level (from
3.08 to 3.2 m).

3.2. Model setups and tests

We compare the area flooded under different model setups:
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Fig. 9. Elevation topography of the study case (z, in meters). Tide gauge lo-
cations are indicated by triangles and high water marks (HWMs) are depicted
by black dots.

(1) Neglecting hydrological connectivity. In this case, the inundation
is calculated six times, one for each tide gauge water level. For
each of this simulations, the flood water level is spatially uniform.

(2) Accounting for water connectivity. As in 1), the inundation is
calculated six times, one for each tide gauge water level and the
flood water level is spatially uniform.

(3) MatFlood using a spatially varying flood water level. Observa-
tions from the six tide gauges are utilized to obtain the varying
flood water level, as in Section 2.2. The resulting spatially flood
water level is shown in Fig. 10.

(4) Applying the reduction factor: the inundation resulting from 3) is
reduced by a 3.75 x 10~* rate.

(5) Applying a spatially varying reduction factor: the inundation
resulting from 3) is reduced by a rate spatially varying from 0 to
3.75 x 10°*.

MatFlood results are compared against the PBM and HWMs using
three metrics: the percentage of coverage, the root mean square error
(RMSE) and the critical success index (CSI). The percentage of coverage
indicates the number of HWMs that fall within the simulated flood area,
out of the total of the 312 HWMs. The root mean square error (RMSE)
shows the mean difference in flood depth between the HWMs and the
simulated area, in meters. Finally, the critical success index shows the
overall overlap between MatFlood and the PBM, accounting for both
under and over prediction being O = no skill and 1 = perfect skill. The
critical success index is calculated as follow:

cw

CSl=———
fd+fw+cw

(16)

Being cw the correct simulations of wet points, fd the false dry sim-
ulations and fw false wet grid simulations.
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Fig. 10. Spatially varying flood water levels over the study area at the time of
maximum water level during Superstorm Sandy. Tide gauges (monitoring sta-
tions) are indicated by magenta triangles and the coastline by a black solid line.
Red colors indicate areas where the flood water level is higher than the average
while blue areas are lower than the average. Contour lines for 3.1, 3.2, 3.3, 3.4,
3.5, and 3.6 m of flood water levels are shown in thin black lines.

3.3. Results

Table 1 presents the results obtained from comparing MatFlood,
HWMs, and the PBM, including the respective flooded areas for each
model setup. Setups 1 and 2 provide the mean values derived from six
simulations, along with the minimum and maximum values indicated
within brackets. The PBM model exhibits a percentage of coverage of
47.32%, accompanied by a root mean square error (RMSE) of 1.09 m.
This percentage of coverage is consistently lower than MatFlood (from
77.29 to 78.55%). Also, the RMSE is larger than using MatFlood (from
0.73 to 0.75 m).

As anticipated, neglecting hydrological connectivity leads to larger
flooded areas (from 298.24 to 364.80 km?) than when hydrological
connectivity is considered (ranging from 279.75 to 354.94 km?). Due to
the reduced flooded area, the percentage of coverage also decreases
when accounting for hydrological connectivity, from 77.55% to 76.39%.
On average, the critical success index improves by 0.01 when hydro-
logical connectivity is considered, and substantial differences are
observed when examining the minimum and maximum values (Table 1).
By employing spatially varying flood water levels (model setup 3), the
flooded area increases in comparison to using a uniform flood water
level as well as the percentage of coverage. The critical success index
reduces by 0.01 m. The utilization of a spatially uniform reduction factor
significantly attenuates the inundation to 287.52 km? and improves the
RMSE by 0.02 m. The spatially varying reduction factor produces a
larger attenuation of the inundation, to 209.35 km? However, this
reduction also results in a decrease in the critical success index to 0.45.
The spatially varying reduction factor improves the RMSE by 0.01.
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Table 1
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Comparison between the modeled and observed flood depth and extent for different model setups (fwl is the flood water level, HC is hydrological connection, MF
MatFlood, and RF reduction factor). Brackets indicate the minimum and maximum value using each of the six tide gauge observations.

1. No HC 2. Uniform fwl 3. Varying fwl 4. Uniform RF 5. Varying RF
HWMs within MF 77.55 [71.92,83.28] 76.39 [70.66,83.28] 78.55 76.03 77.29
HWMs outside MF 22.45 [16.72,28.08] 23.61 [16.72,29.34] 21.45 23.97 22.71
HWMs within PBM 47.32 47.32 47.32 47.32 47.32
HWMs outside 52.68 52.68 52.68 52.68 52.68
csI 0.43 [0.41,0.44] 0.44 [0.42,0.46] 0.43 0.47 0.45
Area flooded 330.71 [298.24,364.80] 317.33 [279.75,354.94] 332.67 287.52 209.35
RMSE MF vs HWMs 0.75 [0.66,0.88] 0.75 [0.66,0.88] 0.75 0.73 0.74
RMSE PBM vs HWMs 1.09 1.09 1.09 1.09 1.09
The flood depth obtained from MatFlood using a spatially varying
flood water level and a uniform reduction factor of 3.75 x 10~* (model = = { F i F 7

setup 3) is shown in Fig. 11. Fig. 12 compares the flood extent of Mat-
Flood (model setup 3) and the PBM. The differences in flood depth be-
tween MatFlood, the PBM and the HWM s are shown in Fig. 13. The PBM
generally result in higher flood depths than those observed by the HWMs
(Fig. 13a), particularly along enclosed areas (Fig. 13d). However flood
depths are larger in the PBM at the open coast. The distribution of the
differences between MatFlood and observations are more centered to-
ward 0 (Fig. 13b). Similarly to the PBM, MatFlood tends to underesti-
mate the flood depth in comparison with HWMs, especially in the
enclosed areas (blue dots in Fig. 13e). For completeness, we include a
comparison between MatFlood and the PBM at the HWM’s locations
(Fig. 13c and f). MatFlood tends to overestimate flood depth in com-
parison to the PBM (Fig. 13c) although not spatial coherence is found
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Fig. 11. Flood depth (m), using spatially varying water level and applying a
reduction factor of 3.75 x 10™%.
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Fig. 12. Comparison of the extent of the inundation obtained from the physics-
based model (PBM) in red, and MatFlood in blue. MatFlood simulation includes
a spatially varying water level as well as the application of a reduction factor.

(Fig. 13f).
4. Computational efficiency

The main advantage of static methods against numerical models is
the computation efficiency. The computational cost of MatFlood is
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Fig. 13. Differences in flood depth (m) between high water marks (HWMs) observations and the physics-based numerical model (PBM) (a. And d.), between HWMs
and MatFlood (b. And e.), and between MatFlood and the PBM at HWM’s locations (c. And f.).

evaluated against a static flooding method performed on a GIS frame-
work, since this is one of the most widely used approach. The GIS
simulation is processed in the ArcGIS Pro software. The approach fol-
lowed in ArcGIS Pro mimics the methodology in MatFlood. Both, GIS-
based and MatFlood static simulations were performed using the same
DEM (Section 3.2) and flood water level. Both models account for hy-
drological connection, using a uniform varying water level and not
applying the reduction factor (further details in how the GIS-model was
implemented in ArcGIS Pro are provided in the Supplementary
Information).

We run the tool using an AMD Ryzen 9 5950X machine with a 16-
Core Processor of 3.40 GHz and 128 GB of RAM. When using the most
generic set up (i.e., without calculating the spatially varying flood water
level and without applying the reduction factor, Section 2.1) the
calculation takes 28.1 s for this case study. Obtaining a spatially varying
flood water level and applying the reduction factor takes longer: 5.5 and
5.9 min, respectively. Note, the computational cost when applying the
reduction factor mainly results from the calculation of the distances to
the shoreline (Section 2.3). Thus, once the distances are calculated,
several values of reduction factor can be tested with little computational
cost (in the order of seconds).

We simulate the flood area by applying a GIS-based inundation
routine through ArcGIS Pro 2.0.0. We use a uniform flood water level of
2 m both in ArcGIS and MatFlood. Williams and Liick-Vogel (2020)
developed an external ArcGIS tool aimed at reducing the flood area
using a roughness coefficient to the flooded area. However, the imple-
mentation of this roughness coefficient greatly differs from the reduc-
tion factor applied in the present work. Therefore, we limit this analysis
to the most common GIS-based setup, which does not include any
reduction factor of the inundation. Likewise, obtaining a spatially
varying flood water level is not possible in ArcGIS, and is therefore not
included in MatFlood for this example. The resulting computational time
in ArcGIS Pro 2.0.0 is 3.2 min on average (standard deviation of 0.73

min). Using the same initial conditions, MatFlood takes 26.27 s on
average (standard deviation of 0.63 s). The steps taken in ArcGIS Pro
2.0.0 to obtain the flood depth are outlined in the Supplementary
Information.

5. Conclusions and discussion section

This study presents a rapid and user-friendly MATLAB-based algo-
rithm, MatFlood, designed for mapping flood depth and extent, which
improves on the widely used GIS-based static models. MatFlood con-
siders water connectivity and includes a reduction factor, in order to
more realistically represent flooding conditions. In addition, MatFlood
allows for spatially varying flood water level. This feature might
improve the representation of the flood water levels along the coast,
particularly in larger areas, where larger variability across water levels
is expected. Results show that using a spatially varying flood water level
impacts the flood depth and extent in comparison to using a spatially
uniform flood water level, as it is typically done when using static ap-
proaches to assess flooding. MatFlood was compared with a GIS-based
system using ArcGIS Pro 2.0.0. Results showed that MatFlood is
computationally nearly an order of magnitude more efficient than
traditional GIS algorithms.

After describing the algorithm, we applied MatFlood to assess the
inundation of Superstorm Sandy in the New Jersey/New York area. The
simulation of flood depths was conducted using various model config-
urations, all of which demonstrated comparable performance metrics
when compared to High Water Marks (HWMs) and a physics-based
numerical model (PBM). However, additional analyses are required to
assess the model’s capabilities since the performance of models can be
influenced by the quality of the observations they are compared against,
the magnitude of the flood event, the complexity of the topography, and
the resolution of the DEM (Teng et al., 2017, 2022). Also, the model’
performance should be further analyzed in larger study areas, where the
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significance of flood water level variability may exert a more substantial
influence on the results.

In the context of this specific study case, MatFlood results in a better
agreement with HWMs observations; from 76.03 to 78.55% of the
HWNMs fall within the MatFlood simulated flooded area while 54.68% of
the HWMs are located in the PBM flooded zone. The root mean square
error (RMSE) also shows slightly better results when comparing with
MatFlood (0.73-0.75 m) than to the PBM (1.09 m). The obtained results
do not imply superior or inferior performance of MatFlood in flood
simulation, but rather establish a benchmark for comparison. It is
imperative to conduct further analyses to compare MatFlood with
observational data and other numerical models, including hydrody-
namic models and static flooding methods such as the Height Above
Nearest Drainage (HAND) model. The HAND model (Nobre et al., 2011)
is primarily employed for landscape classification and river-associated
spatial inundation mapping. It shares commonalities with MatFlood as
both are static methods ("bathtub™) that consider hydrological connec-
tivity and allow for spatially varying floodwater levels. The primary
distinctions include programming language, and the absence of a
reduction factor calculation in the HAND model. Furthermore, the
HAND model references local relative heights, while MatFlood aligns its
outcomes with the vertical datum of the DEM and flood water level.

Moreover, this comparative assessment should encompass different
water level scenarios, varied study area sizes, and varying resolutions of
topographic data. This comprehensive evaluation will enable an accu-
rate assessment of MatFlood’s performance using diverse model setups.
Furthermore, it is important to consider other factors that may impact
the results. For example, the PBM was interpolated to a higher resolu-
tion, which could introduce additional errors into the analysis. It is
crucial to evaluate the intrinsic errors associated with both the HWMs
and the PBM when comparing them to each other and to observations.
These considerations will contribute to a comprehensive assessment of
the models’ performance and enhance the validity of the results.

The flood was simulated using a spatially varying flood water level,
which was subsequently attenuated using a reduction factor. This
attenuation process resulted in a reduction of both the flooded area and
the flood depth, decreasing the RMSE. The reduction factor is deter-
mined by the distance from the coast and a user-defined reduction rate.
We hypothesize that the reasonable range of the reduction rate value
depends on the storm itself (peak of flood water level and the spatial
variability of it), the spatial resolution of the digital elevation model,
and the study area (including the size and the land cover). Further an-
alyses are required to find the optimal value of the reduction rate for
other regions as well as to elucidate to what extent these three elements
influence the value of the reduction factor. It is important to recall that
the reduction factor should not be interpreted as a friction coefficient, as
it does not correspond to any physical process and therefore, it shouldn’t
be compared with friction coefficients obtained in previous studies. The
reduction rate can be applied uniformly or vary spatially, allowing for
consideration of topographic differences. In the presented study case,
there were no significant differences observed in the simulated inun-
dation when employing a uniform or varying reduction factor. However,
this feature can prove advantageous in other conditions, particularly
when dealing with large study areas.

Extreme and non-extreme flooding events already have significant
impacts on coastal and riverine populations and flooding impacts are
expected to be further exacerbated in the near future due to climate
change. Mapping flood depth and extent under different input condi-
tions (varying water levels, topography and land use/infrastructure
changes, sea level rise scenarios, etc.) is particularly important for risk
assessment and coastal adaptation. The computationally intensive and
time-consuming nature of hydrodynamic models restricts their usage in
supporting emergency response activities (Longenecker et al., 2020) and
they are often only accessible by experts in hydrodynamic modelling. On
the contrary, rapid assessment techniques allow planners and re-
searchers to evaluate the effectiveness of a variety of measures against
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flooding.
Software availability
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License: Creative Commons Attribution 4.0 International.
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