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Abstract 17 

North Atlantic tropical cyclone (TC) activity under a high-emission scenario is projected 18 

using a statistical synthetic storm model coupled with nine Coupled Model Intercomparison 19 

Project Phase 6 (CMIP6) climate models. The ensemble projection shows that the annual 20 

frequency of TCs generated in the basin will decrease from 15.91 (1979-2014) to 12.16 21 

(2075-2100), and TC activity will shift poleward and coast-ward. The mean of lifetime 22 

maximum intensity will increase from 66.50 knots to 75.04 knots. Large discrepancies in TC 23 

frequency and intensity projections are found among the nine CMIP6 climate models. The 24 

uncertainty in the projection of wind shear is the leading cause of the discrepancies in the TC 25 

climatology projection, dominating the uncertainties in the projection of thermodynamic 26 

parameters such as potential intensity and saturation deficit. The uncertainty in the projection 27 

of wind shear may be related to the different projections of horizontal gradient of vertically 28 

integrated temperature in the climate models, which can be induced by different 29 

parameterizations of physical processes including surface process, sea ice, and cloud 30 

feedback. Informed by the uncertainty analysis, a surrogate model is developed to provide 31 

the first-order estimation of TC activity in climate models based on large-scale 32 

environmental features.  33 

1. Introduction 34 

Global warming due to increasing greenhouse gas emissions will more likely than not lead to 35 

changes in tropical cyclone (TC) climatology.  Numerous studies have reported findings 36 

about TC climatology change under climate change, with most of the studies reporting TC 37 

intensity and rainfall to increase (Knutson et al. 2010; Knutson et al. 2020; Woodruff et al. 38 

2013; Sobel et al. 2016); however, previous studies disagree on how TC frequencies will 39 

evolve with climate change (Knutson et al. 2010; Emanuel 2013; Knutson et al. 2020; Lee et 40 

al. 2020; Sobel et al. 2021; Jing et al. 2021, Chand et al. 2022). Specifically for the North 41 

Atlantic basin, according to the review by Knutson et al. (2020), most studies reported a 42 

decrease in North Atlantic TC frequency. I Increases are reported by the downscaling studies 43 

of Emanuel (2013) and a few numerical climate models (e.g. Sugi et al. 2009, Bhatia et al. 44 

2018) and there is no agreement on whether the resolution of the models influences the 45 

changes in TC frequency (Knutson et al. 2020).   46 
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Overall, uncertainties in TC climatology projections are large. As summarized by Knutson et 47 

al. (2020), projected change in TC intensity, as represented by the maximum wind speed, in 48 

the North Atlantic basin ranges from -9.28% to +20%, and projected changes in  North 49 

Atlantic TC frequency are within -80% to +222%. However, these large ranges of changes 50 

were projected by a number of studies using different projection methods (i.e., direct global 51 

climate simulations, regional dynamic climate downscaling, and statistical-dynamic 52 

downscaling), different climate model resolutions (14 km-200 km), and different 53 

environmental forcings (i.e., increase of CO2 only, RCP scenarios in CMIP3 and CMIP5, and 54 

specified sea surface temperature changes). The abovementioned studies merged 55 

uncertainties that originated from multiple sources, including climate simulations and 56 

different downscaling approaches, which prohibited a clearer understanding on how the 57 

uncertainties in the simulated large-scale environmental features from different climate 58 

models influence the uncertainties in TC activity projection. Jing et al. (2021) investigated 59 

the discrepancies between climate projections of TC activity using different projection 60 

methods, including high resolution climate models, statistical-dynamic downscaling, and 61 

statistical downscaling, under the same large-scale environmental forcing. They found that 62 

the statistically downscaled TC activity is less sensitive to climate change compared to the 63 

statistical-dynamic approach and high-resolution numerical simulation. In this study we aim 64 

to investigate the discrepancies/uncertainties in TC climatology projections induced by the 65 

uncertainties in large-scale climate features simulated by different climate models.  66 

To perform such analysis, we use the large-scale environment simulated by each of nine 67 

CMIP6 climate models (CANESM, CESM2, CNRM, ECEARTH, IPSL, MIROC, MPI, 68 

MRI, UKMO) with SSP5 8.5 forcings to drive a statistical synthetic storm model, the 69 

Princeton environment-dependent probabilistic tropical Cyclone model (PepC; Jing and Lin, 70 

2020), to simulate a large number of synthetic TC events in the North Atlantic basin from 71 

1979 to 2100.  We selected these nine CMIP6 models in order to facilitate future studies   to 72 

compare PepC downscaling results with several previous studies (e.g. Emanuel 2021, Xi et 73 

al. 2023) that downscaled these climate models. Consistently focusing on a specific model 74 

subset would allow examination of bias in projections. PepC is a set of statistical models that 75 

simulates TC genesis, movement and intensity evolution based on their statistical 76 

relationships with the large-scale environment. PepC has been validated with historical 77 
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observations (Jing and Lin, 2020), and it has been applied to the analysis of TC climatology 78 

change (Jing et al. 2021) and landfalling TC rainfall hazards (Xi and Lin, 2022). The 79 

advantages of adopting a synthetic storm model are two-fold: (1) the model can be used to 80 

efficiently simulate a large number of TC events to support statistically reliable results; (2) it 81 

is more flexible and straightforward to perform sensitivity tests using the synthetic storm 82 

model than dynamic climate simulations to understand how the uncertainties in the 83 

projections of different large-scale environmental parameters propagate to the projections of 84 

TC activity.  85 

The study is designed as follows. We couple PepC with each of the nine CMIP6 climate 86 

models to perform projections of North Atlantic TC activity; description of the model, 87 

method and data are included in Section 2. We first investigate the ensemble mean of the 88 

nine downscaling projections to understand the overall trend and the causation of TC 89 

climatology changes (Section 3). Then we examine the downscaling results from each 90 

individual climate model. To understand how different environmental parameters influence 91 

the projected TC activity, we perform sensitivity tests by changing only one large-scale 92 

environmental parameter at a time and rerun the simulations (see method and Section 4). 93 

Based on the findings in the sensitivity study, we identify the basic large-scale environmental 94 

parameters that have strong influences on TC activity. We then build a statistical surrogate 95 

model that can be used to provide a first-order estimation of basin-wide TC activity directly 96 

from the basic large-scale environmental features, to facilitate climate model selection in TC 97 

downscaling analysis (Section 5). We summarize the results of the study in Section 6.  98 

2. Data, Models, and Analysis Methods 99 

The monthly environmental parameters required to drive PepC simulations include 100 

atmospheric temperature, humidity, deep layer wind shear, steering wind, low level vorticity, 101 

depth of ocean mixing layer, and below-mixing-layer stratification (see Jing and Lin, 2020 102 

for details). These monthly environmental parameters are obtained from the nine CMIP6 103 

climate models. Two simulations from the CMIP6 models are employed in this study: the 104 

simulations based on historical forcings from 1979-2014 (hereafter control simulation) and 105 

the simulations based on SSP5 8.5 forcings from 2015-2100 (hereafter SSP5 8.5). We 106 

noticed that previous research has reported that SSP5 8.5 scenario is unrealistically high in 107 
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the degree of global warming (Hausfather and Peters, 2020). However, the main point of this 108 

study is to reveal the sensitivity of PepC to climate forcings and examine the propagation of 109 

uncertainty from climate model simulations to the TC activity projections. The SSP5 8.5 110 

scenario can induce larger projected changes and larger differences among climate model 111 

projections, so we select this scenario for analysis in order to facilitate our study. Projection 112 

of TC climatology and hazards under other scenarios are left for future research. To account 113 

for possible biases in climate model projections, we bias correct the simulated large-scale 114 

environmental parameters in each climate model by adding the monthly differences between 115 

reanalysis dataset (ERA5) and the control simulation by the climate models (both averaged 116 

over the period of 1979-2014).  The reason we bias-correct the climate models toward ERA5 117 

is that the PepC model is trained based on the ERA5 reanalysis environment.  118 

PepC consists of three parts: a genesis model, a track model, and an intensity model. PepC 119 

simulates TC genesis using a cluster-Poisson regression model. In PepC, TC geneses are 120 

forced by four parameters: environmental maximum potential intensity (Vp), deep layer wind 121 

shear (Shear, calculated as the wind velocity difference between 200 hPa and 850 hPa), mid-122 

troposphere saturation deficit (also known as entropy deficit, SD), and 850 hPa absolute 123 

vorticity (VO850). The low-level vorticity represents the influence of initial disturbances, 124 

and the other parameters in the genesis model describe how a favorable environment 125 

supports the development of initial disturbances into TCs. The original PepC model in Jing 126 

and Lin (2020) used relative humidity as the atmospheric humidity parameter and they 127 

discussed the possibility of using SD for genesis modeling. Although using relative humidity 128 

in the genesis model yields better performance of PepC in reproducing the interannual 129 

variability of genesis frequency in the historical observations, SD is theoretically related to 130 

the time that an initial vortex takes to evolve into a TC (Emanuel et al. 2008). Thus, in this 131 

study we choose to use SD to represent atmospheric humidity in projecting future TC 132 

genesis. Grids in the Norh Atlantic basins are first clustered based on these environmental 133 

parameters, then in each cluster the monthly genesis frequency is simulated based on a 134 

Poisson regression model. Different from the synthetic storm model developed by Emanuel 135 

et al. (2006) who adopted constant seeding rate, the seeding rate in PepC is related to the 136 

abovementioned environmental parameters.  137 
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After a TC seed is generated, it is moved by the analog-wind track model.  Horizontal wind 138 

in 850 hPa and 200 hPa, as well as the movement of a TC in the previous steps are used to 139 

predict the movement of TCs. Along each simulated track, intensity of the TC is modeled by 140 

an environmental-dependent hidden Markov Chain (Jing and Lin 2019) given Vp, Shear, 141 

relative humidity (RH), and oceanic parameters (OP). The lifetime of a TC is separated into 142 

three states and the transition between different states is modeled as a Markov Chain with the 143 

transition matrix estimated based on the environmental parameters; meanwhile, the intensity 144 

change is predicted using different regression models that link 6-hour intensity change with 145 

environmental parameters for different states. Detailed description of PepC model can be 146 

found in Jing and Lin (2020).  PepC is used to simulate North Atlantic TCs from 1979-2100 147 

forced by bias-corrected environments from the CMIP6 models. For each climate model, 148 

simulations are performed ten times to generate a large sample. The total number of TCs 149 

generated by each CMIP6 climate model is summarized in Table S1.  150 

To investigate how uncertainties in the projection of the large-scale environmental 151 

parameters influence the projection of TC activity, we performed a series of sensitivity 152 

analyses. The sensitivity of TC activity to each individual selected variable is defined in each 153 

CMIP6 model by altering each variable from the 36-year control simulation to the final 36-154 

year SSP5 8.5 simulation (2065-2100) while holding all other variables to their original 155 

(control simulation) values. TC genesis and intensity are projected to have larger changes 156 

under climate change compared to TC track (Section 3), accordingly, we focus on the 157 

sensitivity analysis of TC genesis and intensity. We test the influence from each of the 158 

environmental parameters (Vp, Shear, SD, VO850) on TC genesis using the abovementioned 159 

methodology. For TC intensity, Vp , Shear, OP (calculated from mixing layer depth and 160 

below-mixing-layer stratification) and high-level relative humidity (RH, averaged between 161 

300 and 500 hPa) are used as predictors and are tested following a similar method; the 162 

sensitivity analysis for the intensity is performed based on the tracks simulated from the 163 

control simulation in each climate model.   164 

As will be shown in Section 4, the inter-model differences of projected Shear are important 165 

to the uncertainty in projected TC activity. Because of the dynamic linkage between deep 166 

level wind shear and temperature gradient, we investigate the climate projections of the 167 
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zonally-averaged vertically-integrated temperature (𝑇𝑧𝑝 =  ∫ ∫
𝑇

𝑝
𝑑𝑝𝑑𝜆

𝑝=200

𝑝=850

𝜆=340

𝜆=260
, where 𝜆 168 

represents longitude) and the meridional-averaged vertical-scaled temperature 169 

(𝑇𝑚𝑝 =  ∫ ∫
𝑇

𝑝
𝑑𝑝𝑑𝜙

𝑝=200

𝑝=850

𝜙=35

𝜙=5
, where 𝜙 represents latitude) in different climate models. 170 

The range of integration is selected to be consistent with the domain for the wind shear 171 

analyses detailed further in Section 4.  172 

Inspired by the abovementioned uncertainty analysis and the need to pre-select a subset of 173 

climate models for more reliable downscaling of TC activities in future applications, we 174 

developed a statistical surrogate model based on a single-layer neural network model where 175 

the annual power dissipation index (PDI), a parameter that represents TC activity, is 176 

predicted using basin-averaged environmental parameters including air temperature at 850 177 

hPa, relative humidity at 850 hPa, vorticity at 850 hPa,  and vertical wind shear (wind 178 

difference between 200hPa and 850 hPa). The shallow neural network consists of an input 179 

layer, a 10-neuron hidden layer, and an output layer. Detailed reasons for selecting these 180 

predictors and the model performance can be found in Section 5.  181 

3. Ensemble Projections of North Atlantic TC Activities 182 

First, we examine the ensemble mean projection of TC activity. The ensemble projection 183 

shows a decrease in North Atlantic storm frequency under the SSP5 8.5 scenario (Figure 1a). 184 

In the historical climate (1979-2014), on average 15.91 storms are generated in the North 185 

Atlantic basin per year (historically, on average there are 15.41 storms per year in the 186 

observation, Jing and Lin, 2020), while the number decreases to 12.16 during the last 36 187 

years of the 21st century (2065-2100). The mean genesis frequencies in the two periods are 188 

significantly different at the 5% level based on a two-sample t-test.  In the historical climate, 189 

there are four main regions in which TCs form: west of Africa, north of South America, 190 

northern part of the Gulf of Mexico, and east of Florida Peninsula (Figure 1b). The end-of-191 

century projections indicate that the proportion of storms generated in the northern part of the 192 

Gulf of Mexico and east of Florida Peninsula will increase, while the proportion of storms in 193 

the west of Africa and north of South America will decrease (Figure 1c). Therefore, there 194 

will be proportionately larger number of TCs form close to the US coastlines. These patterns 195 

can also be seen via the track density plot (Figure 1d, 1e), which identifies proportionally 196 
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higher TC activity near the US coastlines by the end of this century even though less storms 197 

are generated across the North Atlantic basin. Additionally, in the future, proportionally more 198 

storms will reach their lifetime maximum intensity (LMI) along the Gulf coast and to the east 199 

of Florida Peninsula (Figure 1f, 1g). Also, storms will become more intense by the end of 200 

this century, with the probability distribution of storm LMI shifting towards higher values 201 

(Figure 1h). In the historical climate, the mean (90-th percentile) of the storm LMI averaged 202 

over 1979-2014 is 66.50 knots (111.47 knots), and it increases to 75.04 knots (125.03 knots) 203 

in 2065-2100 (Figure 1h). The mean LMI in the two periods are significantly different at the 204 

5% level based on a two-sample t-test.   205 
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Figure 1. Ensemble projection of TC activity in the North Atlantic basin. (a) annual storm 207 

frequency in the North Atlantic basin from 1979-2100. (b)(c) annual genesis density 208 

averaged over 1979-2014 and 2065-2100, respectively. (d)(e) annual track density averaged 209 

over 1979-2014 and 2065-2100, respectively. (f)(g) annual frequency of storms achieving 210 

lifetime maximum intensity (LMI) in the 2.5o × 2.5o grid boxes averaged over 1979-2014 and 211 

2065-2100, respectively. In Figure b-g, values are first calculated in 2.5o × 2.5o grid boxes 212 

and then scaled by the summation of the values in all grid points to better show the spatial 213 

pattern. (h) probability density function (PDF) of LMI from 1979-2020.  The black line 214 

shows the mode of the LMI probability distribution (mode is the LMI value at which its 215 

probability density function has the maximum value), the blue line shows the mean of the 216 

LMI, and red line shows the 90-th percentile of LMI. The green dashed line shows the mean 217 

LMI in observation.  218 

The projected changes in TC climatology can be understood by examining the changes of 219 

large-scale parameters that drive the simulation of TC frequency, intensity, and track in PepC 220 

(Figure. 2). Equatorward of 15oN, Vp changes (Figure. 2a-c) are within ±5 kt.  At higher 221 

latitudes (15oN - 35oN), Vp increases are larger, which explains the northward shift of TC 222 

activity in the future. SD increases across the basin (Figure. 2d-f), which is consistent with 223 

previous research (Lee et al., 2020). Over all the locations where TCs primarily form in the 224 

control simulation, the Caribbean Sea north of South America experiences the largest 225 

increase in SD, which corresponds to the largest decrease in TC genesis there (Figure. 1b-c). 226 

Wind shear increases over the Caribbean Sea north of South America (Figure. 2g-i), which 227 

also contributes to the decrease in TC formation over that area (Figure. 1b-c).  The decrease 228 

in wind shear near North America, which has been discussed in several previous research 229 

(Ting et al. 2019, Balaguru et al. 2023), contributes to the increase in TC formation in that 230 

area (Figure. 1b-c). The low-level vorticity (Figure 2j-l) increases slightly through the 231 

Caribbean Islands and in the current main development region (around 10o N west of Africa). 232 

However, the mid-level relative humidity slightly decreases over both the Caribbean and 233 

strongly decreases over the main development region.  Therefore, changes in all variables 234 

favor the northward shift of TC formations (Figure. 1b-c) and tracks (Figure. 1d-e) in the 235 

North Atlantic basin and a general shift toward North America continent. 236 
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Figure 2. Changes of environmental variables that influence TC activity in PepC, averaged 238 

during North Atlantic TC season (July-October) and across the nine CMIP6 models. The first 239 

column shows the variables in the control simulation (1979-2014), the second column shows 240 

the variables in SSP5 8.5 (2065-2100), the third column shows the change (future period 241 

minus historical period). (a)(b)(c). Maximum potential intensity; (d)(e)(f). saturation deficit; 242 

(g)(h)(i). deep layer wind shear; (j)(k)(l). low level vorticity (850 hPa); (m)(n)(o). high level 243 

relative humidity (300 hPa – 500 hPa). The dots in the right column indicate the locations 244 

where the difference passes the two-sample t-test under the 5% significance level. 245 

4. Uncertainties Inherent from Climate Projection 246 

Though the ensemble results show a clear trend of decreasing TC frequency and increasing 247 

TC intensity in the North Atlantic basin, there are discrepancies among different CMIP6 248 

climate models. For example, the ensemble mean defines a decrease in TC genesis 249 

frequency, but the CANESM model projects a slight increase (Figure 1a, Table S2). The 250 

CNRM model projects an increase in TC genesis west of Africa (Figure 3a, 3b) though the 251 

ensemble mean defines a decrease in frequency in that region (Figure 1b, 1c, Figure 3a, 3b).  252 

Differences among models can also be found in track density projections. Although the 253 

ensemble mean projection defines a decrease in TC activity in the west of Africa (Figure 1d, 254 

1e), the CNRM model projects an increase in TC activity in that region (Figure 3c, 3d). 255 

There are also differences among other models (Figures S1, S2), for example, CANESM 256 

model projects relatively more storms generated near US coastline than other models, and 257 

CESM2 model projects the most significant TC activity decrease in the North Atlantic basin 258 

among the nine selected models.  Although the change in locations of LMI does not show 259 

significant differences across the nine climate models (Figure S3), there is a large uncertainty 260 

in the projection of the probability distribution of LMI, including the mean and 90-th 261 

percentile of LMI (Figure 4).  For example, CANESM renders the largest change in LMI 262 

from control to future projection (+17.19 knots), while CESM2 projects the least increase in 263 

LMI (+2.24 knots). Also, some models project larger changes in the thermodynamic 264 

parameters of the environment than others, e.g., the MPI model showing the lowest Vp 265 

increase (Figure 5) and the CANESM model showing the largest SD increase over the largest 266 

spatial extent (Figure 6). The uncertainties in the spatial pattern of change in wind shear, 267 
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low-level vorticity, and relative humidity are also substantial (Figures 7, 8, 9). For example, 268 

MIROC model shows the lowest increase in vertical wind shear in the Caribbean Ocean 269 

(Figure 7), and the increase in low-level vorticity in the MIROC model extends to the 270 

Northeast coast of the US (Figure 8).  271 

 272 

Figure 3. North Atlantic TC genesis density (a, b) and TC track density (c, d) under control 273 

climate and SSP5 8.5 forcings in the CNRM model. 274 
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 275 

Figure 4. Probability density function (PDF) of annual LMI for each CMIP6 climate model. 276 

The black lines show the mode of the LMI probability distribution (mode means the LMI 277 

value at which its probability density function has a maximum value), the blue lines show 278 

mean of the LMI, and the red lines show the 90-th percentile of LMI.  279 

To test how the uncertainties in TC projections are related to the uncertainties in the 280 

simulated large-scale environment, we change the parameters that drive PepC simulations to 281 

their values during 2065-2100 one at a time and keep other parameters unchanged as during 282 

1979-2014, and we perform PepC genesis and intensity simulations for each CMIP6 model. 283 

The changes in these parameters (Vp, SD, VO850, Shear, and RH) are not significantly 284 

correlated with each other (Figure S4). Although some changes appear correlated (e.g., 285 

changes in Vp and Shea r), none of the correlations are statistically significant under the 5% 286 

level so it is reasonable to perform sensitivity tests of each parameter one at a time. 287 
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 288 

Figure 5. Change of maximum potential intensity (Vp) in each climate model (similar to Figure 289 

2c) from 1979-2014 to 2065-2100. The dots indicate the locations that the difference passes the 290 

two-sample t-test under the 5% significance level. 291 
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 292 

Figure 6. Change of saturation deficit (SD) in each climate model (similar to Figure 2f) from 293 

1979-2014 to 2065-2100. The dots indicate the locations that the difference passes the two-294 

sample t-test under the 5% significance level. 295 
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 296 

Figure 7. Change of deep level wind shear in each climate model (similar to Figure 2i) from 297 

1979-2014 to 2065-2100. The dots indicate the locations that the difference passes the two-298 

sample t-test under the 5% significance level. 299 
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 300 

Figure 8. Change of low-level vorticity in each climate model (similar to Figure 2l) from 1979-301 

2014 to 2065-2100. The dots indicate the locations that the difference passes the two-sample t-302 

test under the 5% significance level. 303 
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 304 

Figure 9. Change of relative humidity in each climate model (similar to Figure 2o) from 1979-305 

2014 to 2065-2100. The dots indicate the locations that the difference passes the two-sample t-306 

test under the 5% significance level. 307 

We first examine how TC frequency changes are influenced by the changes in the parameters 308 

that are included in the PepC’s genesis model (Vp, SD, SHR, and VO). For TC genesis, except 309 

the CANESM model, all other selected CMIP6 models project a decrease trend in TC frequency 310 

although the degrees of change are different among the models (black squares in Figure 10). The 311 

Vp change from current to end-of-century values causes TC annual frequency to increase (+0.72 312 

to +2.78) in all models except for the MPI model (-0.80, red dots in Figure 10a, Table S2).  The 313 

change in SD causes a strong decrease in TC frequency (-9.77 to -4.05) and dominates over the 314 

influence from other parameters (blue dots in Figure 10a, Table S2). Impacts from changes in 315 

Shear and VO850 vary among different climate models. Change in shear causes increase in 316 

storm frequency in CANESM (+4.91), IPSL (+0.58), MIROC (+0.21), and ECEARTH (+1.19) 317 

but decrease in other models (-0.49 to -3.46). The VO850 change causes TC frequency to 318 
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increase in CANESM (+2.15), CESM2 (+1.28), IPSL (+0.39), MRI (+0.97), and CNRM (+2.17) 319 

models and decrease in other models (-0.15 to – 0.93, Figure 10a, Table S2). Changes in TC 320 

frequency caused by changes in Shear have the highest correlation with the change in the SSP5 321 

8.5 simulation (Table 1). The standard deviation of Shear-induced change and VO850-induced 322 

change is larger than the mean (Table 1), indicating that the CMIP6 models (coupled with PepC) 323 

differ markedly in their projection of the changes in these parameters and thus their effects on 324 

future TC frequency changes. Overall, the climate models have larger projection 325 

uncertainties/discrepancies in the dynamic parameters (Shear, VO850) than in the 326 

thermodynamic parameters (Vp, SD).  327 

For LMI (Figure 10b, Table 2), we analyze the impact from parameters (Vp, OP, RH, and 328 

SHEAR) that are included in the intensity model of PepC on the mean LMI change. We found 329 

that the change in the ocean parameter has a much smaller influence on LMI change compared to 330 

the atmospheric dynamic and thermodynamic parameters. For the thermodynamic parameters, 331 

climate models (coupled with PepC) have consistent implications for their influences on LMI. 332 

All models indicate that the change in Vp causes an increase in LMI (+1.94 to +11.57), and the 333 

increase dominates compared to other parameters (Figure 10b). For the RH change, all models 334 

indicate that it causes a decrease in LMI (-1.81 to -0.56; Figure 10b). Similar to the response in 335 

TC frequency, the responses in LMI to the change in Shear are different for different models, 336 

with positive influence in CANESM (+5.82), IPSL (+1.02), MPI (+0.74) and ECEARTH (+1.66) 337 

models and negative influence in other models (-7.61 to -0.35; Figure 10b and Table S3). 338 

The analysis above focuses on the parameters that are included in PepC model. Although other 339 

environmental factors (e.g. ventilation index) may also have influence on TC climatology, since 340 

they are not included in the PepC model based on the statistical analysis (Jing et al. 2019, Jing 341 

and Lin 2020), we focus on the parameters that are used by the PepC model.   342 

Table 1. Change in TC Genesis Frequency Caused by Individual Parameter 343 

 

Correlation with SSP5 
8.5 Genesis Change 
across nine CMIP6 

models 

Averaged Change in 
Genesis across nine 

CMIP6 models 

Standard Deviation 
of Change in Genesis 
across nine CMIP6 

models 
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Vp 0.46 1.42 1.04 

SD 0.12 -6.47 1.81 

SHR 0.86 -0.06 2.31 

VO 0.35 0.52 1.19 

 344 

 345 

Figure 10. Climate sensitivity tests of the influence of large-scale environmental parameters 346 

on TC genesis and intensity. (a). Change of North Atlantic TC frequency caused by the 347 

change in each individual parameter.  (b). Same as (a). but for LMI. The dashed line indicates 348 

the level of no change. 349 



 
22 

 

 350 

Table 2. Change in TC Mean LMI Caused by Individual Parameters 351 

 352 

 
Correlation with 
SSP5 8.5 Mean 

LMI Change 

Averaged Change in 
Mean LMI across 

nine CMIP6 models 

Standard Deviation of 
Change in Mean LMI 

across nine CMIP6 models 

Vp 0.89 6.93 2.91 

OP -0.36 0.003 0.01 

RH -0.01 -1.21 0.40 

SHR 0.73 -0.22 3.54 

 353 

The abovementioned analysis implies that the uncertainties in the projection of wind shear across 354 

climate models may have profound impact on the projected TC climatology changes. Averaged 355 

across the region where we see most of TC activity in the North Atlantic basin (from 5 oN to 35 356 

oN and from 100 oW to 20oW), CESM, MPI, MRI, CNRM, and UKMO models project an 357 

increase in wind shear while other models project a decrease (Figure S4). To understand why 358 

there are such large uncertainties across different climate models, we examine the changes in 359 

vertical shear of zonal wind (Figure 11a) and meridional wind (Figure 11b) separately and link 360 

the changes to the zonal and meridional gradient of vertically integrated temperature (Figure 12a, 361 

b). In the tropics, though the large-scale circulation is not in (quasi) geostrophic balance so the 362 

thermal-wind balance does not hold theoretically, the horizontal temperature gradient can still 363 

influence the vertical wind shear. In control simulations, all models show that air is warmer in 364 

the tropics and cooler in the subtropic (Figure 12a) and exhibit the valley-shaped zonal 365 

distribution of the meridionally averaged temperature (Figure 12b). This spatial distribution is 366 
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related to the land-sea contrast. Overall, the air temperature on the west side of the North 367 

Atlantic basin is higher than the east side. Although the differences between climate models in 368 

simulating the air temperature in the control experiment are not large (in terms of both absolute 369 

value and the spatial distributions), the models show large uncertainties in air temperature 370 

change under climate change (see also Figure S6). For some climate models (and the ensemble 371 

average), the tropics are warmed up more than the subtropics while others show more 372 

homogeneous warming (Figure 12c, Figure S6). For example, the CESM2 model shows the 373 

largest tropic-subtropic contrast in air-warming, which explains why it shows the highest 374 

increase in vertical wind shear of zonal wind (Figure 11a). The IPSL, MIROC, MPI models, 375 

however, show less tropic-subtropic contrast in air-warming and less vertical shear of zonal wind 376 

(Figure 11a).  Most of the climate models (and the ensemble average) show more temperature 377 

increase in the east part of the North Atlantic basin, and there are positive changes in the vertical 378 

shear of meridional wind (Figure 11b). Though this analysis may not be applicable to each 379 

individual model (e.g., shear of meridional wind in CESM2) due to the localized temperature 380 

gradient and the non-geostrophic nature of tropical atmosphere, the change in the spatial pattern 381 

of air temperature still explains the overall uncertainties of projected changes in wind shear. The 382 

uncertainties of projected meridional gradient of temperature are reported to be related to the 383 

differences in the parameterization in cloud processes and feedback mechanisms in the climate 384 

system such as the influence of sea ice (Flato et al. 2014, Pithan and Mauritsen, 2014), and the 385 

uncertainties of projected zonal gradient (land-sea contrast) may be related to the different 386 

parameterizations of surface processes and ocean dynamics (Karmalkar et al. 2011). Balaguru et 387 

al. (2023) also suggests that an increase in diabatic heating in the eastern tropical Pacific and the 388 

adjustment of circulation to this forcings are responsible for the decrease in wind shear, and the 389 

inter-model uncertainty related to the wind shear change can be attributed to the diabatic heating.  390 
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 391 

Figure 11.  Change of vertical wind shear components over the North Atlantic basin. (a) 392 

Change of vertical shear of zonal wind. (b) Change of vertical shear of meridional wind. The 393 

dashed blue line indicates the level of no change. The green solid line indicates the averaged 394 

SSP5 8.5 wind shear level, while the black solid line indicates the averaged historical wind 395 

shear level.  396 
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 397 

Figure 12. Temperature distribution in the North Atlantic basin. (a) Zonally-averaged 398 

vertically-integrated temperature ( 𝑇𝑧𝑝 defined in section 2) in different climate models in 399 

the historical period. (b) Meridionally-averaged vertical-integrated temperature (𝑇𝑚𝑝 400 

defined in section 2) in different climate models in the historical period. (c) Change of the 401 

zonally-averaged vertically-integrated temperature. (d) Change of the meridionally-averaged 402 

vertical-integrated temperature.  403 

5. Large-scale Environmental Controls of TC Activity 404 

In this and previous TC climate downscaling studies (e.g., Emanuel 2021), projections are 405 

presented from a subset of climate models selected mainly based on data availability and the 406 

number of models selected are restricted by storage limitations. Thus, the ensemble 407 

projections based on the selected models may be biased because the ensemble mean of the 408 

selected models may overall overestimate or underestimate the TC activity compared to the 409 
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whole CMIP6 dataset. For example, Lockwood et al. (2022) found that the climate models 410 

selected by Gori et al. (2022) to study the rain-surge joint hazard caused by US landfalling 411 

TCs overall project higher global temperature increase so it may overestimate TC activity. 412 

Thus, it is important to investigate which basic large-scale environmental parameters control 413 

modeled TC activity and develop a method for selecting a group of climate models based on 414 

their projection of these parameters to cover the range of TC activity change before 415 

performing climate downscaling. In this section, we aim to develop a statistical model that 416 

can help us predict the degree of changes in TC activities based on simple climate 417 

parameters. 418 

PDI is developed by Emanuel (2005) and is used to represent TC activities and hazards 419 

(Emanuel 2005).  PDI is first developed to represent TC wind hazard (Emanuel 2005), and it 420 

is also found to be a good indicator for TC rainfall hazard (Xi et al. 2023). PDI is the 421 

summation of the cube of storm intensity for each time step of all storms over a year in the 422 

basin, so it is influenced by both the simulated frequency and intensity of TCs. Inspired by 423 

the findings in Section 4, we use the low level (850 hPa) air temperature, high level 424 

(averaged between 300hPa and 500hPa) relative humidity, low level (850 hPa) vorticity and 425 

deep level (200 hPa – 850 hPa) wind shear (averaged during the TC season over the Atlantic 426 

basin) as predictors to the accumulated annual PDI in the Atlantic basin. We use these 427 

parameters because they are directly provided by CMIP6 climate models so that no 428 

additional calculations are needed, which would be required for Vp and SD, and these 429 

parameters cover both the dynamic and thermodynamic features of the climate condition. We 430 

aim to train a statistical surrogate model that links these parameters to the PepC downscaled 431 

TC yearly PDI. The reasons we train the statistical model based on PepC simulation results 432 

rather than historical observations are two-fold. First, as we aim to estimate the accumulated 433 

annual PDI based on the basin-wide averaged environmental field, we will only have less 434 

than 50 data points for historical observation, which is too few to train a neural-network 435 

model. PepC simulation outputs includes 10 Monte Carlo members of TCs downscaled from 436 

nine climate models since 1979 to 2100, the large dataset supports the training of a neural 437 

network model.  Second, the purpose of developing the surrogate model is to help pre-select 438 

climate models before using PepC to downscale TC activities, so it is consistent to train the 439 

surrogate model based on PepC simulations. Researchers using other synthetic storm models 440 
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to study TC climatology may consider training a similar model based on the chosen synthetic 441 

storm model.  442 

While the complex relationship between TC activity and the basic environmental parameters 443 

cannot be captured by a linear model (not shown), we found that a shallow fully connected 444 

neural net is sufficient to predict annual PDI (results from test sets are shown in Figure 13a). 445 

The neural net has only one hidden layer and all nodes are connected with the output layer. 446 

The model is trained based on the 8-year moving average environmental parameters and PDI. 447 

The average window is selected to achieve good performance of the model in terms of 448 

distinguishing the degree of TC activity changes projected by different climate models while 449 

still including enough of the testing and validation data for model evaluation. The trained 450 

surrogate model is then fed with the 36-year averaged environmental parameters in historical 451 

(1979-2014) and future (2065-2100) climates simulated by each climate model.  We show 452 

that the proposed statistical model can reproduce the wide range of projected change of TC 453 

activities shown in PepC simulations (Figure 13b). It may not exhibit good skill in 454 

distinguishing climate models that project relatively moderate change in storm activities, but 455 

it is skillful for finding the climate models that can project drastic or low changes in TC 456 

activity (CESM2, MPI, CANESM). The proposed statistical model thus can aid future 457 

research in TC downscaling by selecting the climate models that represent different degrees 458 

of TC climatology changes. The reason that the selected parameters can be used to 459 

approximately project the basin-wide TC activity is that the air temperature and relative 460 

humidity have strong influence on Vp and SD, which dominate the change of TC intensity 461 

and frequency (Section 4), while the wind shear and low-level vorticity have profound 462 

influences on the uncertainties across different climate models (Section 4).  463 

 464 
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 465 

Figure 13. Approximate projection of basin-wide TC activity using the proposed simple 466 

statistical tool. (a) Estimated yearly (8-year moving averaged) PDI from the neural net 467 

compared with PepC downscaled PDI. The control simulation and SSP5 8.5 simulation from 468 

the nine climate models are used. Among all the available data, 75% of the data are chosen to 469 

train the model while the remaining 25% of the data are used as test set. Only the test set is 470 

plotted and the 𝑅2 = 0.68 . (b) Comparison between neural net estimated PDI change from 471 

1979-2014 to 2065-2100 with PepC downscaled PDI change.    472 

6. Discussions and Conclusions   473 

In this study, we downscaled nine CMIP6 climate models using PepC to project TC activity 474 

change in the North Atlantic basin. We found that on average, TC frequency will decrease in 475 

the North Atlantic basin, consistent with most of previous research (Vecchi and Soden, 2007, 476 

Knutson et al., 2010, Villarini et al., 2011, Murakami et al. 2012) but differ from the 477 

statistical-dynamic downscaling of Emanuel (2021) and high-resolution climate simulation 478 

by Jing et al. (2021). We use saturation deficit as the humidity parameter for TC genesis 479 

prediction, and the results are consistent with the projection using saturation deficit in Lee et 480 

al. (2020). We found that TC intensity will increase in the future, consistent with most of 481 

previous studies (Emanuel 2005, 2013, 2021, Knutson and Tuleya, 2004, Murakami et al., 482 

2012, Jing et al. 2021).  Previous studies have also shown that the TC activity has been 483 

shifting poleward (Kossin et al. 2014) and will be shifting poleward in the future (Murakami 484 

et al. 2015), which is supported by the results of this study. 485 
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An important perspective that this study provides in addition to the projection of North 486 

Atlantic TC climatology is the understanding of why different climate models project 487 

different changes in TC activity. Using a synthetic TC model, we find the climate models 488 

have larger discrepancies/uncertainties in the projected changes in dynamic factors for TC 489 

activity, such as VO850 and Shear, than the projected changes in thermodynamic factors, 490 

such as Vp, SD and RH. In particular, this study emphasizes that the large spread in the 491 

projected Shear trend across models is the leading factor causing uncertainties in statistical 492 

climate projection of future TC activity. The uncertainties in the projection of Shear have 493 

been reported in previous studies and shown that they may be related to the uncertainties in 494 

TC activity projections (Camargo and Wing 2016, Murakami et al. 2017).  This study, 495 

employing more climate models, further emphasizes the importance of understanding the 496 

uncertainties in the projection of wind shear for more reliably projecting future TC activity. 497 

The wide range of different projections of shear change may be related to the different 498 

projections of future meridional and zonal gradient of temperature in the climate models, 499 

which can be induced by the different parameterization of the surface physics, cloud 500 

feedback, and ice physics.  501 

In the future, PepC will be coupled with more climate models under different scenarios 502 

(besides SSP5 8.5 used in this study) to project TC activity change. To better cover the range 503 

of climate projections, as a first attempt, we developed a statistical model that relates the 504 

large-scale environment (averaged air temperature, relative humidity, vorticity and wind 505 

shear) to TC activity (PDI). The developed statistical model can be used as a surrogate for 506 

screening climate models before calculating more complex parameters such as Vp and SD 507 

for downscaling simulations. It should be noted that the statistical surrogate model is built 508 

with TCs simulated by PepC, so it may not be suitable for other downscaling models. 509 

However, the ideas and methods can be easily transplanted to projections based on other 510 

downscaling models. 511 
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