

1 **Uncertainties Inherent from Large-Scale Climate Projections in the Statistical Downscaling**
2 **Projection of North Atlantic Tropical Cyclone Activity**

3 Dazhi Xi^{1,2}, Ning Lin^{1,3}, Renzhi Jing^{4,5}, Patrick Harr⁶, Michael Oppenheimer^{7, 8, 9}

4 1. Department of Civil and Environmental Engineering, Princeton University

5 2. Program in Atmospheric and Oceanic Sciences, Princeton University

6 3. Andlinger Center for Energy and the Environment, Princeton University

7 4. School of Medicine, Stanford University

8 5. Woods Institute of the Environment, Stanford University

9 6. Jupiter Intelligence

10 7. School of Public and International Affairs, Princeton University

11 8. Department of Geosciences, Princeton University

12 9. High Meadows Environmental Institute, Princeton University

15 Corresponding Author: Dazhi Xi (dxi@princeton.edu)

Abstract

North Atlantic tropical cyclone (TC) activity under a high-emission scenario is projected using a statistical synthetic storm model coupled with nine Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. The ensemble projection shows that the annual frequency of TCs generated in the basin will decrease from 15.91 (1979-2014) to 12.16 (2075-2100), and TC activity will shift poleward and coast-ward. The mean of lifetime maximum intensity will increase from 66.50 knots to 75.04 knots. Large discrepancies in TC frequency and intensity projections are found among the nine CMIP6 climate models. The uncertainty in the projection of wind shear is the leading cause of the discrepancies in the TC climatology projection, dominating the uncertainties in the projection of thermodynamic parameters such as potential intensity and saturation deficit. The uncertainty in the projection of wind shear may be related to the different projections of horizontal gradient of vertically integrated temperature in the climate models, which can be induced by different parameterizations of physical processes including surface process, sea ice, and cloud feedback. Informed by the uncertainty analysis, a surrogate model is developed to provide the first-order estimation of TC activity in climate models based on large-scale environmental features.

1. Introduction

Global warming due to increasing greenhouse gas emissions will more likely than not lead to changes in tropical cyclone (TC) climatology. Numerous studies have reported findings about TC climatology change under climate change, with most of the studies reporting TC intensity and rainfall to increase (Knutson et al. 2010; Knutson et al. 2020; Woodruff et al. 2013; Sobel et al. 2016); however, previous studies disagree on how TC frequencies will evolve with climate change (Knutson et al. 2010; Emanuel 2013; Knutson et al. 2020; Lee et al. 2020; Sobel et al. 2021; Jing et al. 2021, Chand et al. 2022). Specifically for the North Atlantic basin, according to the review by Knutson et al. (2020), most studies reported a decrease in North Atlantic TC frequency. Increases are reported by the downscaling studies of Emanuel (2013) and a few numerical climate models (e.g. Sugi et al. 2009, Bhatia et al. 2018) and there is no agreement on whether the resolution of the models influences the changes in TC frequency (Knutson et al. 2020).

47 Overall, uncertainties in TC climatology projections are large. As summarized by Knutson et
48 al. (2020), projected change in TC intensity, as represented by the maximum wind speed, in
49 the North Atlantic basin ranges from -9.28% to +20%, and projected changes in North
50 Atlantic TC frequency are within -80% to +222%. However, these large ranges of changes
51 were projected by a number of studies using different projection methods (i.e., direct global
52 climate simulations, regional dynamic climate downscaling, and statistical-dynamic
53 downscaling), different climate model resolutions (14 km-200 km), and different
54 environmental forcings (i.e., increase of CO₂ only, RCP scenarios in CMIP3 and CMIP5, and
55 specified sea surface temperature changes). The abovementioned studies merged
56 uncertainties that originated from multiple sources, including climate simulations and
57 different downscaling approaches, which prohibited a clearer understanding on how the
58 uncertainties in the simulated large-scale environmental features from different climate
59 models influence the uncertainties in TC activity projection. Jing et al. (2021) investigated
60 the discrepancies between climate projections of TC activity using different projection
61 methods, including high resolution climate models, statistical-dynamic downscaling, and
62 statistical downscaling, under the same large-scale environmental forcing. They found that
63 the statistically downscaled TC activity is less sensitive to climate change compared to the
64 statistical-dynamic approach and high-resolution numerical simulation. In this study we aim
65 to investigate the discrepancies/uncertainties in TC climatology projections induced by the
66 uncertainties in large-scale climate features simulated by different climate models.

67 To perform such analysis, we use the large-scale environment simulated by each of nine
68 CMIP6 climate models (CANESM, CESM2, CNRM, ECEARTH, IPSL, MIROC, MPI,
69 MRI, UKMO) with SSP5 8.5 forcings to drive a statistical synthetic storm model, the
70 Princeton environment-dependent probabilistic tropical Cyclone model (PepC; Jing and Lin,
71 2020), to simulate a large number of synthetic TC events in the North Atlantic basin from
72 1979 to 2100. We selected these nine CMIP6 models in order to facilitate future studies to
73 compare PepC downscaling results with several previous studies (e.g. Emanuel 2021, Xi et
74 al. 2023) that downscaled these climate models. Consistently focusing on a specific model
75 subset would allow examination of bias in projections. PepC is a set of statistical models that
76 simulates TC genesis, movement and intensity evolution based on their statistical
77 relationships with the large-scale environment. PepC has been validated with historical

78 observations (Jing and Lin, 2020), and it has been applied to the analysis of TC climatology
79 change (Jing et al. 2021) and landfalling TC rainfall hazards (Xi and Lin, 2022). The
80 advantages of adopting a synthetic storm model are two-fold: (1) the model can be used to
81 efficiently simulate a large number of TC events to support statistically reliable results; (2) it
82 is more flexible and straightforward to perform sensitivity tests using the synthetic storm
83 model than dynamic climate simulations to understand how the uncertainties in the
84 projections of different large-scale environmental parameters propagate to the projections of
85 TC activity.

86 The study is designed as follows. We couple PepC with each of the nine CMIP6 climate
87 models to perform projections of North Atlantic TC activity; description of the model,
88 method and data are included in Section 2. We first investigate the ensemble mean of the
89 nine downscaling projections to understand the overall trend and the causation of TC
90 climatology changes (Section 3). Then we examine the downscaling results from each
91 individual climate model. To understand how different environmental parameters influence
92 the projected TC activity, we perform sensitivity tests by changing only one large-scale
93 environmental parameter at a time and rerun the simulations (see method and Section 4).
94 Based on the findings in the sensitivity study, we identify the basic large-scale environmental
95 parameters that have strong influences on TC activity. We then build a statistical surrogate
96 model that can be used to provide a first-order estimation of basin-wide TC activity directly
97 from the basic large-scale environmental features, to facilitate climate model selection in TC
98 downscaling analysis (Section 5). We summarize the results of the study in Section 6.

99 **2. Data, Models, and Analysis Methods**

100 The monthly environmental parameters required to drive PepC simulations include
101 atmospheric temperature, humidity, deep layer wind shear, steering wind, low level vorticity,
102 depth of ocean mixing layer, and below-mixing-layer stratification (see Jing and Lin, 2020
103 for details). These monthly environmental parameters are obtained from the nine CMIP6
104 climate models. Two simulations from the CMIP6 models are employed in this study: the
105 simulations based on historical forcings from 1979-2014 (hereafter control simulation) and
106 the simulations based on SSP5 8.5 forcings from 2015-2100 (hereafter SSP5 8.5). We
107 noticed that previous research has reported that SSP5 8.5 scenario is unrealistically high in

108 the degree of global warming (Hausfather and Peters, 2020). However, the main point of this
109 study is to reveal the sensitivity of PepC to climate forcings and examine the propagation of
110 uncertainty from climate model simulations to the TC activity projections. The SSP5 8.5
111 scenario can induce larger projected changes and larger differences among climate model
112 projections, so we select this scenario for analysis in order to facilitate our study. Projection
113 of TC climatology and hazards under other scenarios are left for future research. To account
114 for possible biases in climate model projections, we bias correct the simulated large-scale
115 environmental parameters in each climate model by adding the monthly differences between
116 reanalysis dataset (ERA5) and the control simulation by the climate models (both averaged
117 over the period of 1979-2014). The reason we bias-correct the climate models toward ERA5
118 is that the PepC model is trained based on the ERA5 reanalysis environment.

119 PepC consists of three parts: a genesis model, a track model, and an intensity model. PepC
120 simulates TC genesis using a cluster-Poisson regression model. In PepC, TC geneses are
121 forced by four parameters: environmental maximum potential intensity (V_p), deep layer wind
122 shear (Shear, calculated as the wind velocity difference between 200 hPa and 850 hPa), mid-
123 troposphere saturation deficit (also known as entropy deficit, SD), and 850 hPa absolute
124 vorticity (VO850). The low-level vorticity represents the influence of initial disturbances,
125 and the other parameters in the genesis model describe how a favorable environment
126 supports the development of initial disturbances into TCs. The original PepC model in Jing
127 and Lin (2020) used relative humidity as the atmospheric humidity parameter and they
128 discussed the possibility of using SD for genesis modeling. Although using relative humidity
129 in the genesis model yields better performance of PepC in reproducing the interannual
130 variability of genesis frequency in the historical observations, SD is theoretically related to
131 the time that an initial vortex takes to evolve into a TC (Emanuel et al. 2008). Thus, in this
132 study we choose to use SD to represent atmospheric humidity in projecting future TC
133 genesis. Grids in the North Atlantic basins are first clustered based on these environmental
134 parameters, then in each cluster the monthly genesis frequency is simulated based on a
135 Poisson regression model. Different from the synthetic storm model developed by Emanuel
136 et al. (2006) who adopted constant seeding rate, the seeding rate in PepC is related to the
137 abovementioned environmental parameters.

138 After a TC seed is generated, it is moved by the analog-wind track model. Horizontal wind
139 in 850 hPa and 200 hPa, as well as the movement of a TC in the previous steps are used to
140 predict the movement of TCs. Along each simulated track, intensity of the TC is modeled by
141 an environmental-dependent hidden Markov Chain (Jing and Lin 2019) given Vp, Shear,
142 relative humidity (RH), and oceanic parameters (OP). The lifetime of a TC is separated into
143 three states and the transition between different states is modeled as a Markov Chain with the
144 transition matrix estimated based on the environmental parameters; meanwhile, the intensity
145 change is predicted using different regression models that link 6-hour intensity change with
146 environmental parameters for different states. Detailed description of PepC model can be
147 found in Jing and Lin (2020). PepC is used to simulate North Atlantic TCs from 1979-2100
148 forced by bias-corrected environments from the CMIP6 models. For each climate model,
149 simulations are performed ten times to generate a large sample. The total number of TCs
150 generated by each CMIP6 climate model is summarized in Table S1.

151 To investigate how uncertainties in the projection of the large-scale environmental
152 parameters influence the projection of TC activity, we performed a series of sensitivity
153 analyses. The sensitivity of TC activity to each individual selected variable is defined in each
154 CMIP6 model by altering each variable from the 36-year control simulation to the final 36-
155 year SSP5 8.5 simulation (2065-2100) while holding all other variables to their original
156 (control simulation) values. TC genesis and intensity are projected to have larger changes
157 under climate change compared to TC track (Section 3), accordingly, we focus on the
158 sensitivity analysis of TC genesis and intensity. We test the influence from each of the
159 environmental parameters (Vp, Shear, SD, VO850) on TC genesis using the abovementioned
160 methodology. For TC intensity, Vp, Shear, OP (calculated from mixing layer depth and
161 below-mixing-layer stratification) and high-level relative humidity (RH, averaged between
162 300 and 500 hPa) are used as predictors and are tested following a similar method; the
163 sensitivity analysis for the intensity is performed based on the tracks simulated from the
164 control simulation in each climate model.

165 As will be shown in Section 4, the inter-model differences of projected Shear are important
166 to the uncertainty in projected TC activity. Because of the dynamic linkage between deep
167 level wind shear and temperature gradient, we investigate the climate projections of the

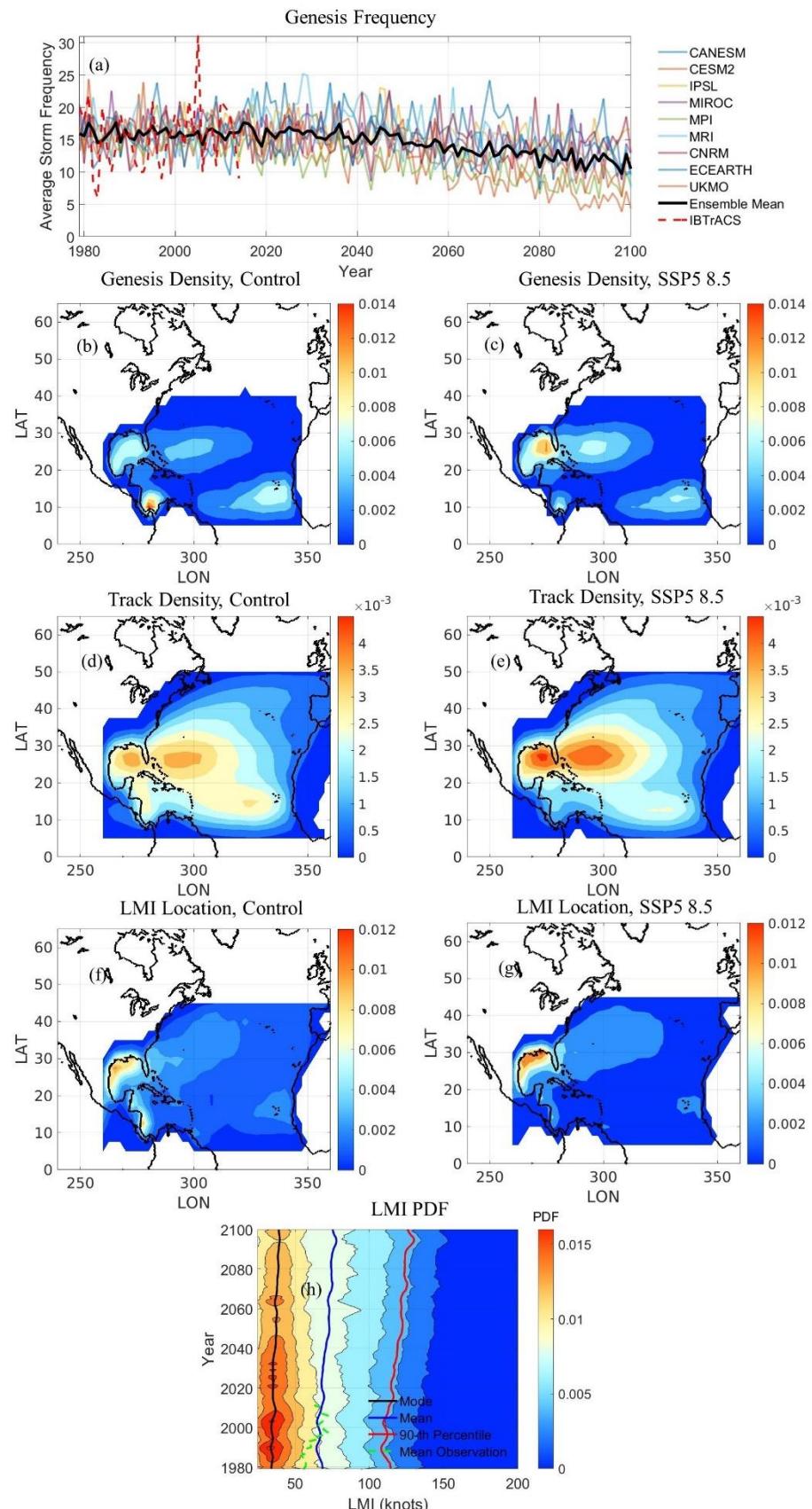
168 zonally-averaged vertically-integrated temperature ($Tzp = \int_{\lambda=260}^{\lambda=340} \int_{p=850}^{p=200} \frac{T}{p} dp d\lambda$, where λ
169 represents longitude) and the meridional-averaged vertical-scaled temperature
170 ($Tmp = \int_{\phi=5}^{\phi=35} \int_{p=850}^{p=200} \frac{T}{p} dp d\phi$, where ϕ represents latitude) in different climate models.
171 The range of integration is selected to be consistent with the domain for the wind shear
172 analyses detailed further in Section 4.

173 Inspired by the abovementioned uncertainty analysis and the need to pre-select a subset of
174 climate models for more reliable downscaling of TC activities in future applications, we
175 developed a statistical surrogate model based on a single-layer neural network model where
176 the annual power dissipation index (PDI), a parameter that represents TC activity, is
177 predicted using basin-averaged environmental parameters including air temperature at 850
178 hPa, relative humidity at 850 hPa, vorticity at 850 hPa, and vertical wind shear (wind
179 difference between 200hPa and 850 hPa). The shallow neural network consists of an input
180 layer, a 10-neuron hidden layer, and an output layer. Detailed reasons for selecting these
181 predictors and the model performance can be found in Section 5.

182 **3. Ensemble Projections of North Atlantic TC Activities**

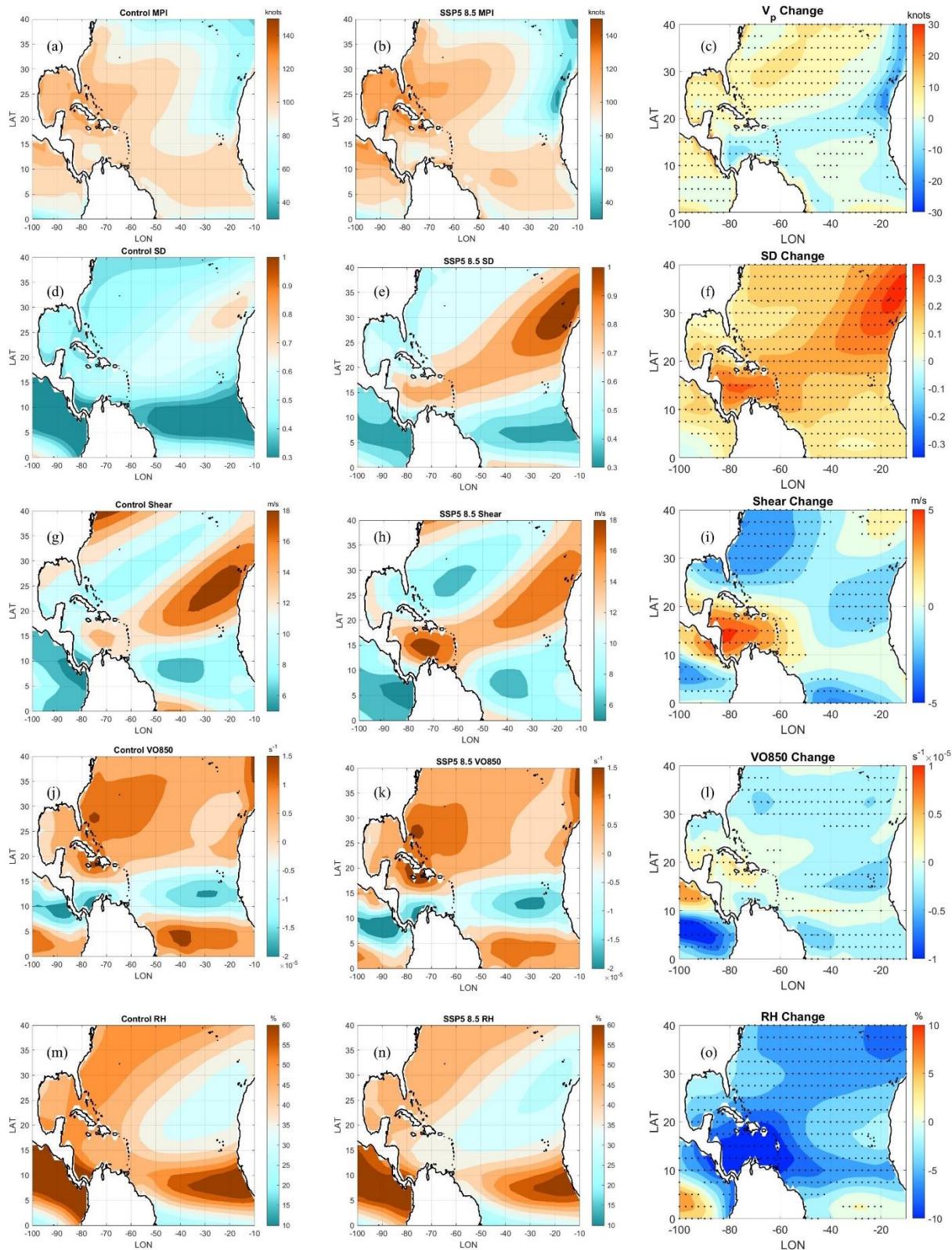
183 First, we examine the ensemble mean projection of TC activity. The ensemble projection
184 shows a decrease in North Atlantic storm frequency under the SSP5 8.5 scenario (Figure 1a).
185 In the historical climate (1979-2014), on average 15.91 storms are generated in the North
186 Atlantic basin per year (historically, on average there are 15.41 storms per year in the
187 observation, Jing and Lin, 2020), while the number decreases to 12.16 during the last 36
188 years of the 21st century (2065-2100). The mean genesis frequencies in the two periods are
189 significantly different at the 5% level based on a two-sample t-test. In the historical climate,
190 there are four main regions in which TCs form: west of Africa, north of South America,
191 northern part of the Gulf of Mexico, and east of Florida Peninsula (Figure 1b). The end-of-
192 century projections indicate that the proportion of storms generated in the northern part of the
193 Gulf of Mexico and east of Florida Peninsula will increase, while the proportion of storms in
194 the west of Africa and north of South America will decrease (Figure 1c). Therefore, there
195 will be proportionately larger number of TCs form close to the US coastlines. These patterns
196 can also be seen via the track density plot (Figure 1d, 1e), which identifies proportionally

197 higher TC activity near the US coastlines by the end of this century even though less storms
198 are generated across the North Atlantic basin. Additionally, in the future, proportionally more
199 storms will reach their lifetime maximum intensity (LMI) along the Gulf coast and to the east
200 of Florida Peninsula (Figure 1f, 1g). Also, storms will become more intense by the end of
201 this century, with the probability distribution of storm LMI shifting towards higher values
202 (Figure 1h). In the historical climate, the mean (90-th percentile) of the storm LMI averaged
203 over 1979-2014 is 66.50 knots (111.47 knots), and it increases to 75.04 knots (125.03 knots)
204 in 2065-2100 (Figure 1h). The mean LMI in the two periods are significantly different at the
205 5% level based on a two-sample t-test.



207 Figure 1. Ensemble projection of TC activity in the North Atlantic basin. (a) annual storm
208 frequency in the North Atlantic basin from 1979-2100. (b)(c) annual genesis density
209 averaged over 1979-2014 and 2065-2100, respectively. (d)(e) annual track density averaged
210 over 1979-2014 and 2065-2100, respectively. (f)(g) annual frequency of storms achieving
211 lifetime maximum intensity (LMI) in the $2.5^{\circ} \times 2.5^{\circ}$ grid boxes averaged over 1979-2014 and
212 2065-2100, respectively. In Figure b-g, values are first calculated in $2.5^{\circ} \times 2.5^{\circ}$ grid boxes
213 and then scaled by the summation of the values in all grid points to better show the spatial
214 pattern. (h) probability density function (PDF) of LMI from 1979-2020. The black line
215 shows the mode of the LMI probability distribution (mode is the LMI value at which its
216 probability density function has the maximum value), the blue line shows the mean of the
217 LMI, and red line shows the 90-th percentile of LMI. The green dashed line shows the mean
218 LMI in observation.

219 The projected changes in TC climatology can be understood by examining the changes of
220 large-scale parameters that drive the simulation of TC frequency, intensity, and track in PepC
221 (Figure. 2). Equatorward of 15°N , Vp changes (Figure. 2a-c) are within ± 5 kt. At higher
222 latitudes (15°N - 35°N), Vp increases are larger, which explains the northward shift of TC
223 activity in the future. SD increases across the basin (Figure. 2d-f), which is consistent with
224 previous research (Lee et al., 2020). Over all the locations where TCs primarily form in the
225 control simulation, the Caribbean Sea north of South America experiences the largest
226 increase in SD, which corresponds to the largest decrease in TC genesis there (Figure. 1b-c).
227 Wind shear increases over the Caribbean Sea north of South America (Figure. 2g-i), which
228 also contributes to the decrease in TC formation over that area (Figure. 1b-c). The decrease
229 in wind shear near North America, which has been discussed in several previous research
230 (Ting et al. 2019, Balaguru et al. 2023), contributes to the increase in TC formation in that
231 area (Figure. 1b-c). The low-level vorticity (Figure 2j-l) increases slightly through the
232 Caribbean Islands and in the current main development region (around 10°N west of Africa).
233 However, the mid-level relative humidity slightly decreases over both the Caribbean and
234 strongly decreases over the main development region. Therefore, changes in all variables
235 favor the northward shift of TC formations (Figure. 1b-c) and tracks (Figure. 1d-e) in the
236 North Atlantic basin and a general shift toward North America continent.

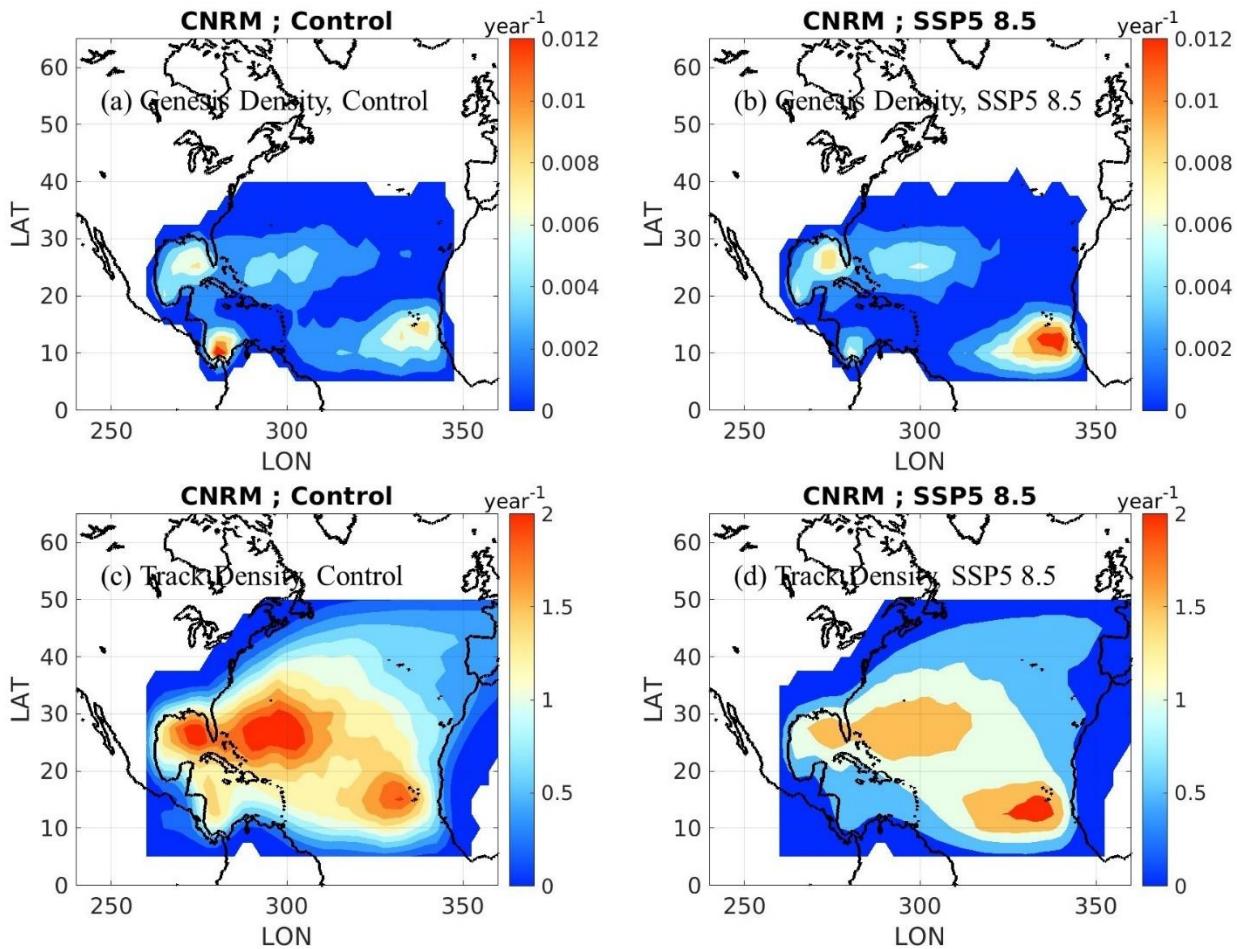


238 Figure 2. Changes of environmental variables that influence TC activity in PepC, averaged
239 during North Atlantic TC season (July-October) and across the nine CMIP6 models. The first
240 column shows the variables in the control simulation (1979-2014), the second column shows
241 the variables in SSP5 8.5 (2065-2100), the third column shows the change (future period
242 minus historical period). (a)(b)(c). Maximum potential intensity; (d)(e)(f). saturation deficit;
243 (g)(h)(i). deep layer wind shear; (j)(k)(l). low level vorticity (850 hPa); (m)(n)(o). high level
244 relative humidity (300 hPa – 500 hPa). The dots in the right column indicate the locations
245 where the difference passes the two-sample t-test under the 5% significance level.

246 **4. Uncertainties Inherent from Climate Projection**

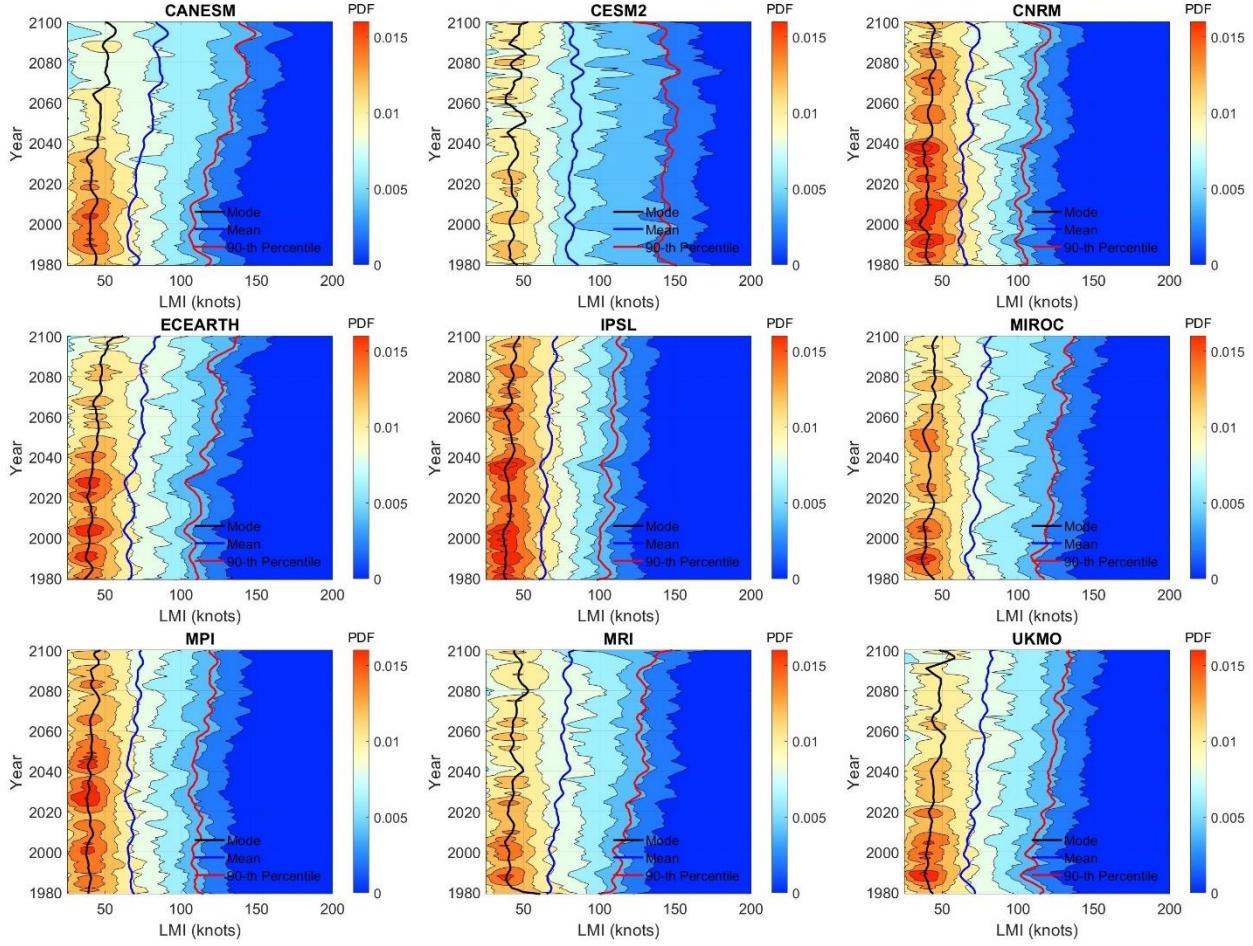
247 Though the ensemble results show a clear trend of decreasing TC frequency and increasing
248 TC intensity in the North Atlantic basin, there are discrepancies among different CMIP6
249 climate models. For example, the ensemble mean defines a decrease in TC genesis
250 frequency, but the CANESM model projects a slight increase (Figure 1a, Table S2). The
251 CNRM model projects an increase in TC genesis west of Africa (Figure 3a, 3b) though the
252 ensemble mean defines a decrease in frequency in that region (Figure 1b, 1c, Figure 3a, 3b).
253 Differences among models can also be found in track density projections. Although the
254 ensemble mean projection defines a decrease in TC activity in the west of Africa (Figure 1d,
255 1e), the CNRM model projects an increase in TC activity in that region (Figure 3c, 3d).
256 There are also differences among other models (Figures S1, S2), for example, CANESM
257 model projects relatively more storms generated near US coastline than other models, and
258 CESM2 model projects the most significant TC activity decrease in the North Atlantic basin
259 among the nine selected models. Although the change in locations of LMI does not show
260 significant differences across the nine climate models (Figure S3), there is a large uncertainty
261 in the projection of the probability distribution of LMI, including the mean and 90-th
262 percentile of LMI (Figure 4). For example, CANESM renders the largest change in LMI
263 from control to future projection (+17.19 knots), while CESM2 projects the least increase in
264 LMI (+2.24 knots). Also, some models project larger changes in the thermodynamic
265 parameters of the environment than others, e.g., the MPI model showing the lowest Vp
266 increase (Figure 5) and the CANESM model showing the largest SD increase over the largest
267 spatial extent (Figure 6). The uncertainties in the spatial pattern of change in wind shear,

268 low-level vorticity, and relative humidity are also substantial (Figures 7, 8, 9). For example,
269 MIROC model shows the lowest increase in vertical wind shear in the Caribbean Ocean
270 (Figure 7), and the increase in low-level vorticity in the MIROC model extends to the
271 Northeast coast of the US (Figure 8).



272

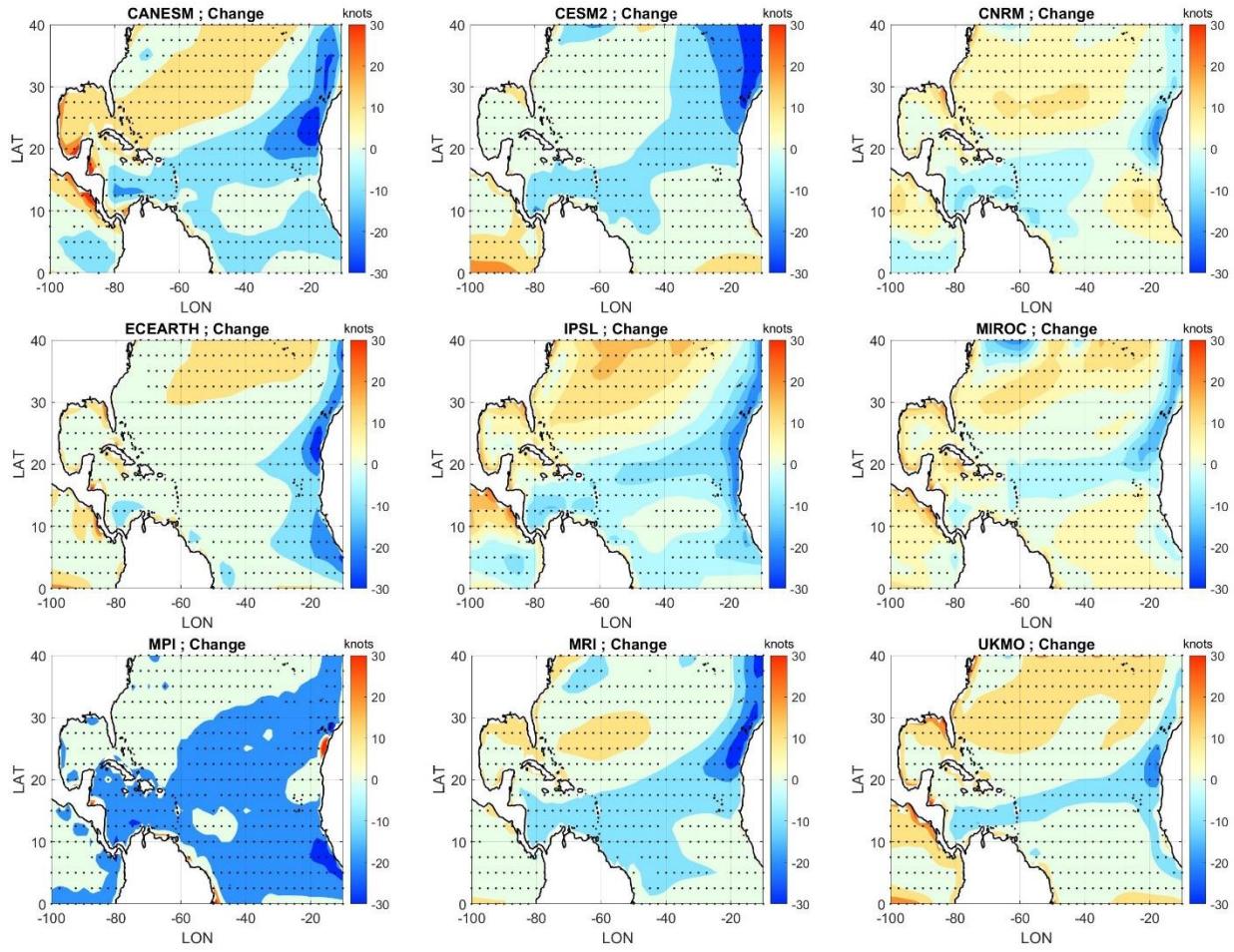
273 Figure 3. North Atlantic TC genesis density (a, b) and TC track density (c, d) under control
274 climate and SSP5 8.5 forcings in the CNRM model.



275

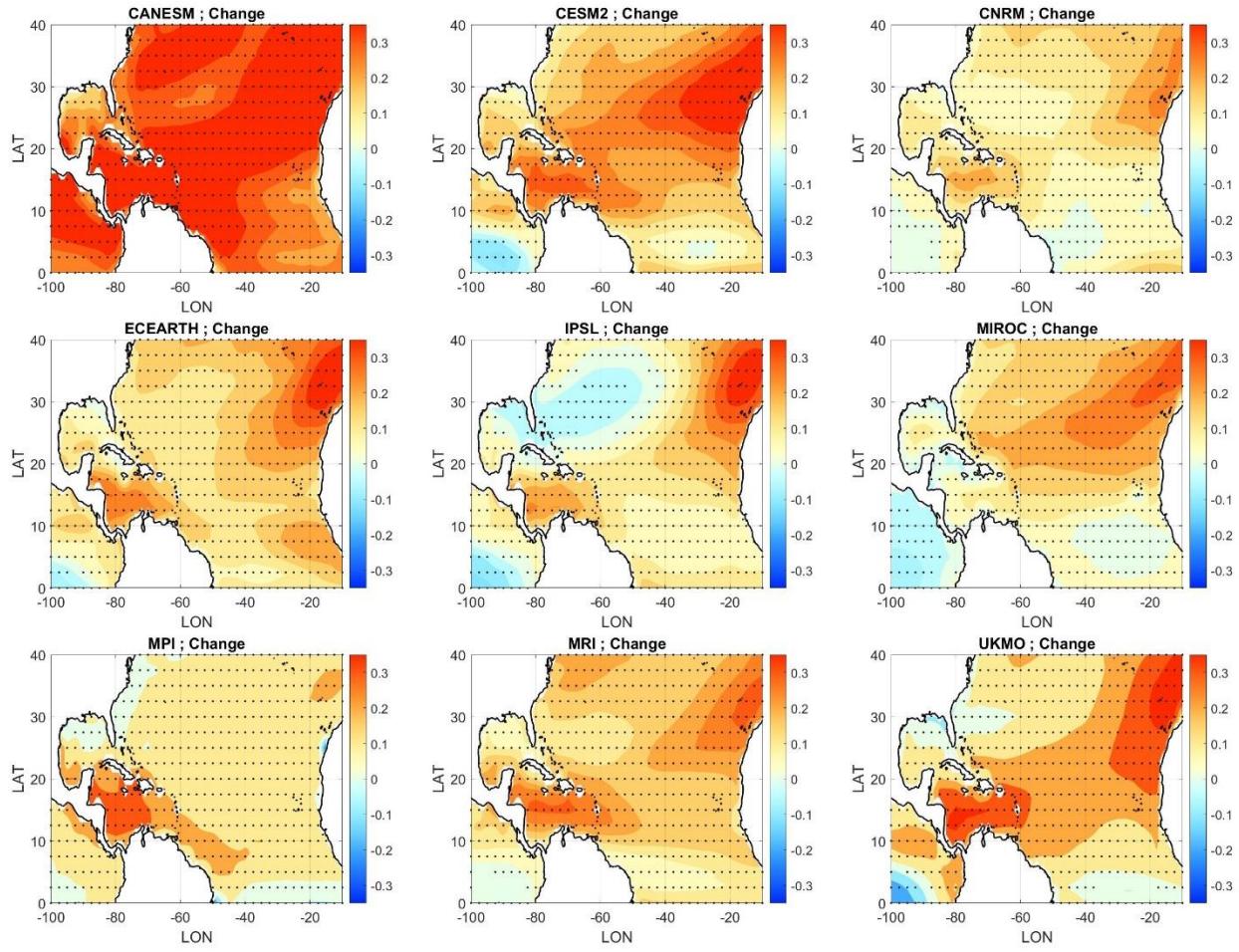
276 Figure 4. Probability density function (PDF) of annual LMI for each CMIP6 climate model.
 277 The black lines show the mode of the LMI probability distribution (mode means the LMI
 278 value at which its probability density function has a maximum value), the blue lines show
 279 mean of the LMI, and the red lines show the 90-th percentile of LMI.

280 To test how the uncertainties in TC projections are related to the uncertainties in the
 281 simulated large-scale environment, we change the parameters that drive PepC simulations to
 282 their values during 2065-2100 one at a time and keep other parameters unchanged as during
 283 1979-2014, and we perform PepC genesis and intensity simulations for each CMIP6 model.
 284 The changes in these parameters (Vp, SD, VO850, Shear, and RH) are not significantly
 285 correlated with each other (Figure S4). Although some changes appear correlated (e.g.,
 286 changes in Vp and Shear), none of the correlations are statistically significant under the 5%
 287 level so it is reasonable to perform sensitivity tests of each parameter one at a time.



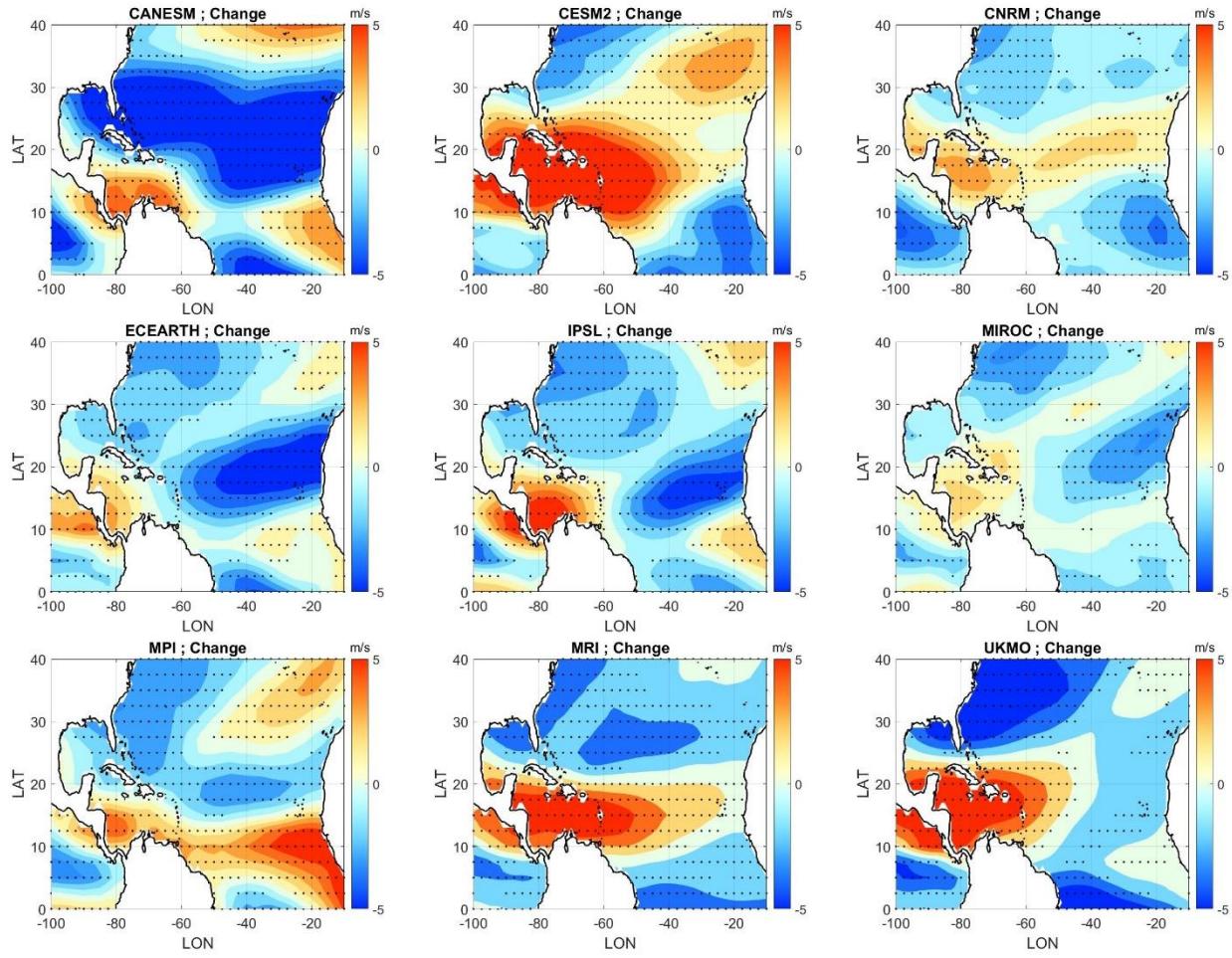
288

289 Figure 5. Change of maximum potential intensity (V_p) in each climate model (similar to Figure
 290 2c) from 1979-2014 to 2065-2100. The dots indicate the locations that the difference passes the
 291 two-sample t-test under the 5% significance level.



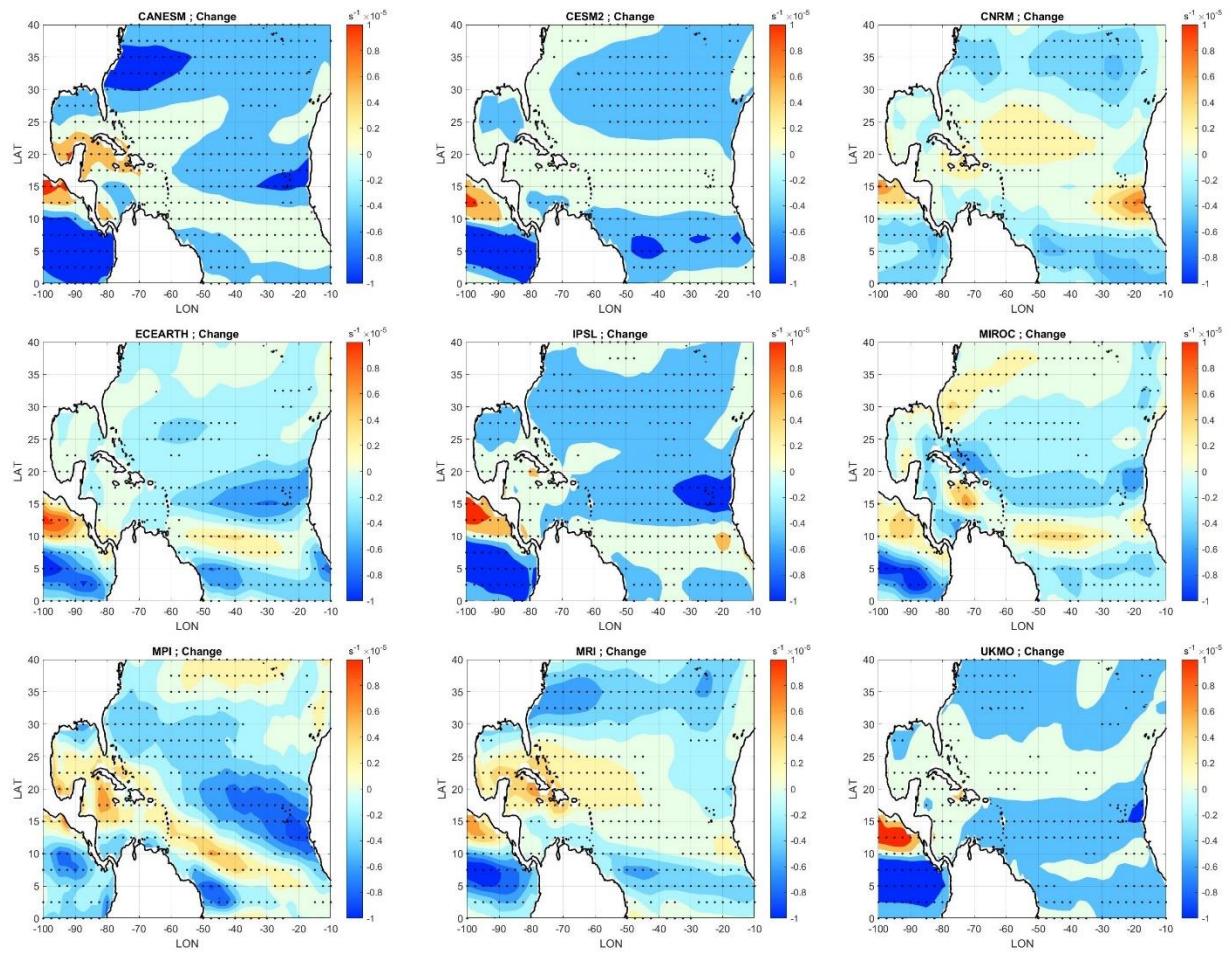
292

293 Figure 6. Change of saturation deficit (SD) in each climate model (similar to Figure 2f) from
 294 1979-2014 to 2065-2100. The dots indicate the locations that the difference passes the two-
 295 sample t-test under the 5% significance level.



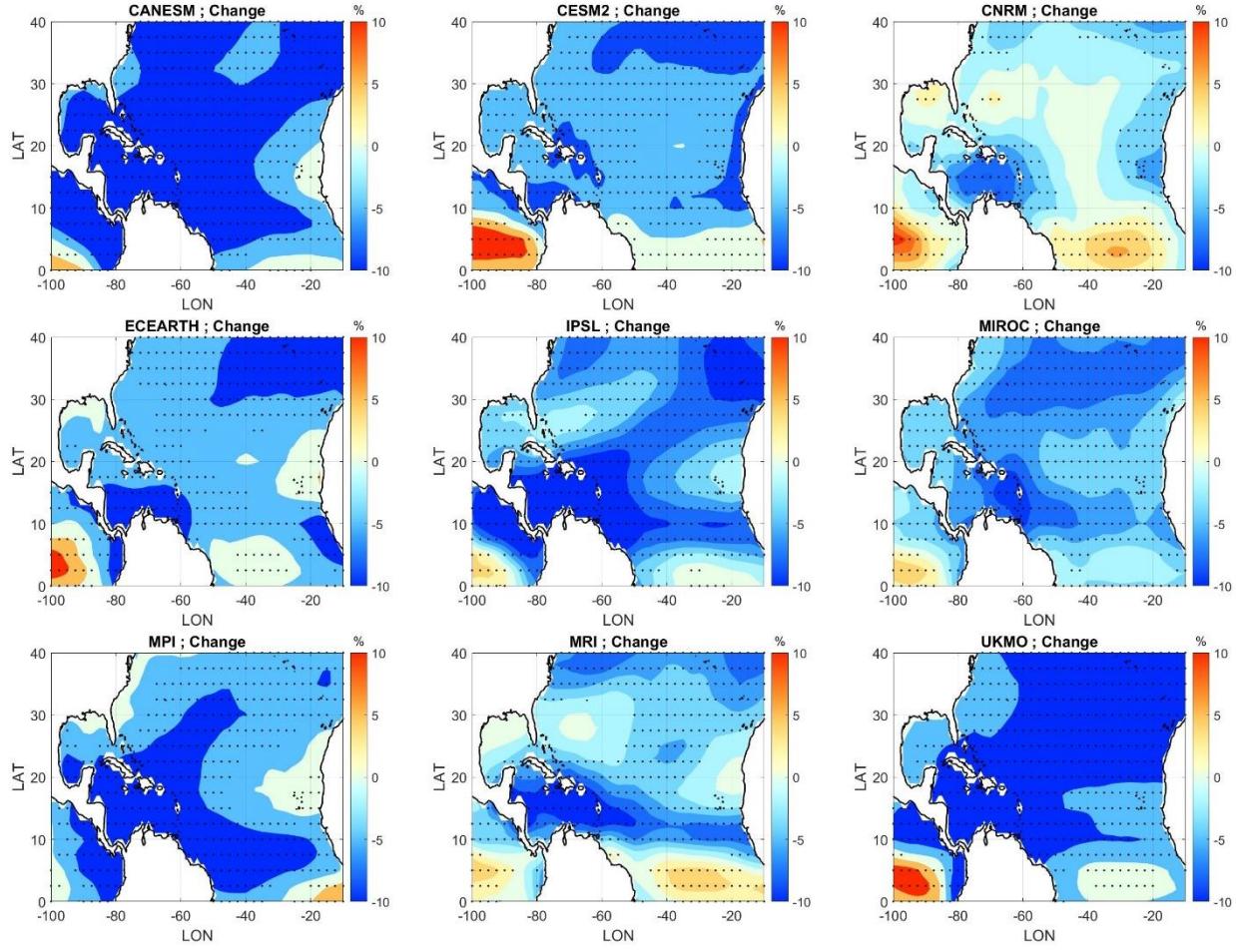
296

297 Figure 7. Change of deep level wind shear in each climate model (similar to Figure 2i) from
 298 1979-2014 to 2065-2100. The dots indicate the locations that the difference passes the two-
 299 sample t-test under the 5% significance level.



300

301 Figure 8. Change of low-level vorticity in each climate model (similar to Figure 21) from 1979-
 302 2014 to 2065-2100. The dots indicate the locations that the difference passes the two-sample t-
 303 test under the 5% significance level.



304

305 Figure 9. Change of relative humidity in each climate model (similar to Figure 2o) from 1979-
 306 2014 to 2065-2100. The dots indicate the locations that the difference passes the two-sample t-
 307 test under the 5% significance level.

308 We first examine how TC frequency changes are influenced by the changes in the parameters
 309 that are included in the PepC's genesis model (Vp, SD, SHR, and VO). For TC genesis, except
 310 the CANESM model, all other selected CMIP6 models project a decrease trend in TC frequency
 311 although the degrees of change are different among the models (black squares in Figure 10). The
 312 Vp change from current to end-of-century values causes TC annual frequency to increase (+0.72
 313 to +2.78) in all models except for the MPI model (-0.80, red dots in Figure 10a, Table S2). The
 314 change in SD causes a strong decrease in TC frequency (-9.77 to -4.05) and dominates over the
 315 influence from other parameters (blue dots in Figure 10a, Table S2). Impacts from changes in
 316 Shear and VO850 vary among different climate models. Change in shear causes increase in
 317 storm frequency in CANESM (+4.91), IPSL (+0.58), MIROC (+0.21), and ECEARTH (+1.19)
 318 but decrease in other models (-0.49 to -3.46). The VO850 change causes TC frequency to

319 increase in CANESM (+2.15), CESM2 (+1.28), IPSL (+0.39), MRI (+0.97), and CNRM (+2.17)
320 models and decrease in other models (-0.15 to -0.93, Figure 10a, Table S2). Changes in TC
321 frequency caused by changes in Shear have the highest correlation with the change in the SSP5
322 8.5 simulation (Table 1). The standard deviation of Shear-induced change and VO850-induced
323 change is larger than the mean (Table 1), indicating that the CMIP6 models (coupled with PepC)
324 differ markedly in their projection of the changes in these parameters and thus their effects on
325 future TC frequency changes. Overall, the climate models have larger projection
326 uncertainties/discrepancies in the dynamic parameters (Shear, VO850) than in the
327 thermodynamic parameters (Vp, SD).

328 For LMI (Figure 10b, Table 2), we analyze the impact from parameters (Vp, OP, RH, and
329 SHEAR) that are included in the intensity model of PepC on the mean LMI change. We found
330 that the change in the ocean parameter has a much smaller influence on LMI change compared to
331 the atmospheric dynamic and thermodynamic parameters. For the thermodynamic parameters,
332 climate models (coupled with PepC) have consistent implications for their influences on LMI.
333 All models indicate that the change in Vp causes an increase in LMI (+1.94 to +11.57), and the
334 increase dominates compared to other parameters (Figure 10b). For the RH change, all models
335 indicate that it causes a decrease in LMI (-1.81 to -0.56; Figure 10b). Similar to the response in
336 TC frequency, the responses in LMI to the change in Shear are different for different models,
337 with positive influence in CANESM (+5.82), IPSL (+1.02), MPI (+0.74) and ECEARTH (+1.66)
338 models and negative influence in other models (-7.61 to -0.35; Figure 10b and Table S3).

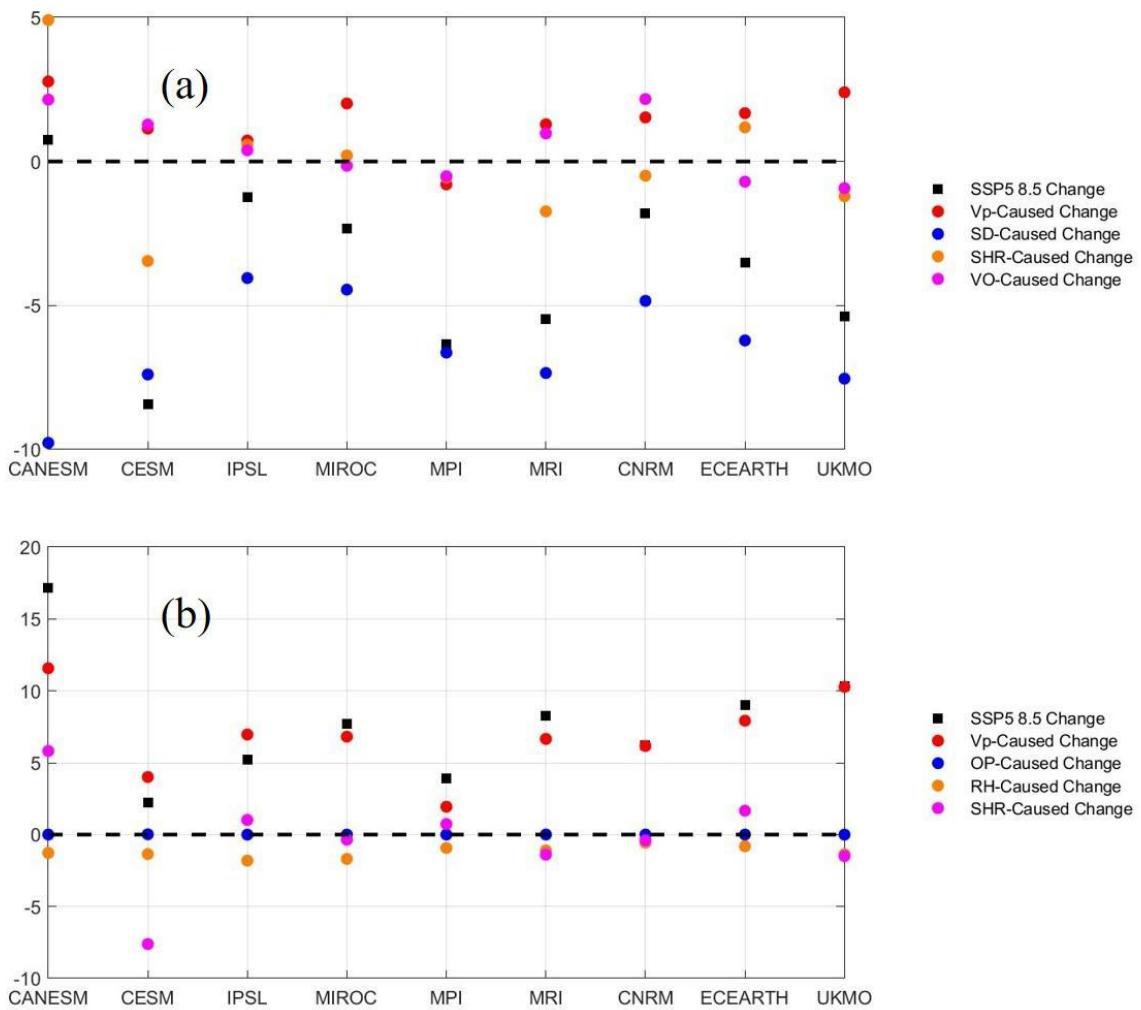
339 The analysis above focuses on the parameters that are included in PepC model. Although other
340 environmental factors (e.g. ventilation index) may also have influence on TC climatology, since
341 they are not included in the PepC model based on the statistical analysis (Jing et al. 2019, Jing
342 and Lin 2020), we focus on the parameters that are used by the PepC model.

343 **Table 1. Change in TC Genesis Frequency Caused by Individual Parameter**

	Correlation with SSP5 8.5 Genesis Change across nine CMIP6 models	Averaged Change in Genesis across nine CMIP6 models	Standard Deviation of Change in Genesis across nine CMIP6 models
--	--	---	---

Vp	0.46	1.42	1.04
SD	0.12	-6.47	1.81
SHR	0.86	-0.06	2.31
VO	0.35	0.52	1.19

344



345

346 Figure 10. Climate sensitivity tests of the influence of large-scale environmental parameters
 347 on TC genesis and intensity. (a). Change of North Atlantic TC frequency caused by the
 348 change in each individual parameter. (b). Same as (a). but for LMI. The dashed line indicates
 349 the level of no change.

350

351 **Table 2. Change in TC Mean LMI Caused by Individual Parameters**

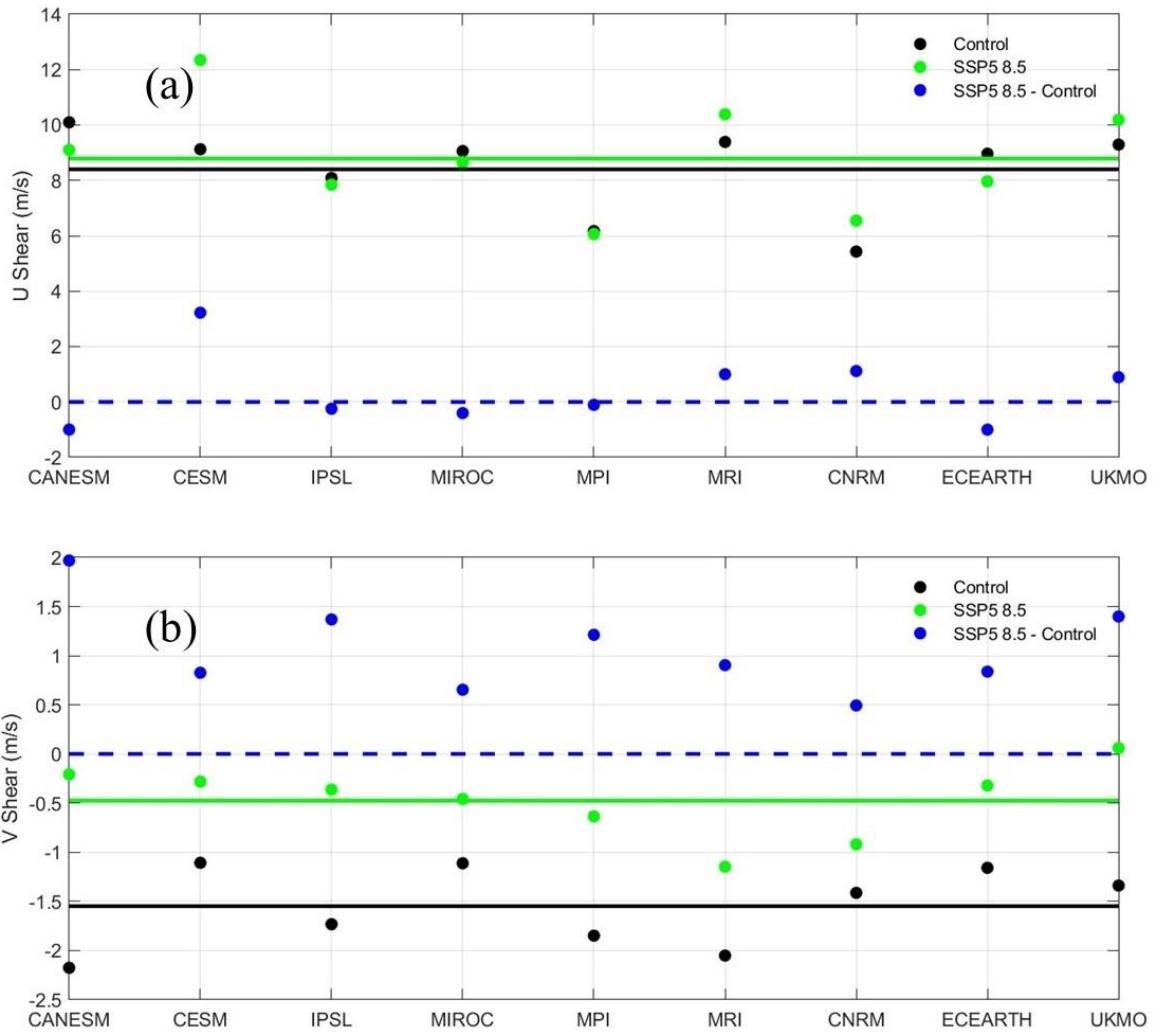
352

	Correlation with SSP5 8.5 Mean LMI Change	Averaged Change in Mean LMI across nine CMIP6 models	Standard Deviation of Change in Mean LMI across nine CMIP6 models
Vp	0.89	6.93	2.91
OP	-0.36	0.003	0.01
RH	-0.01	-1.21	0.40
SHR	0.73	-0.22	3.54

353

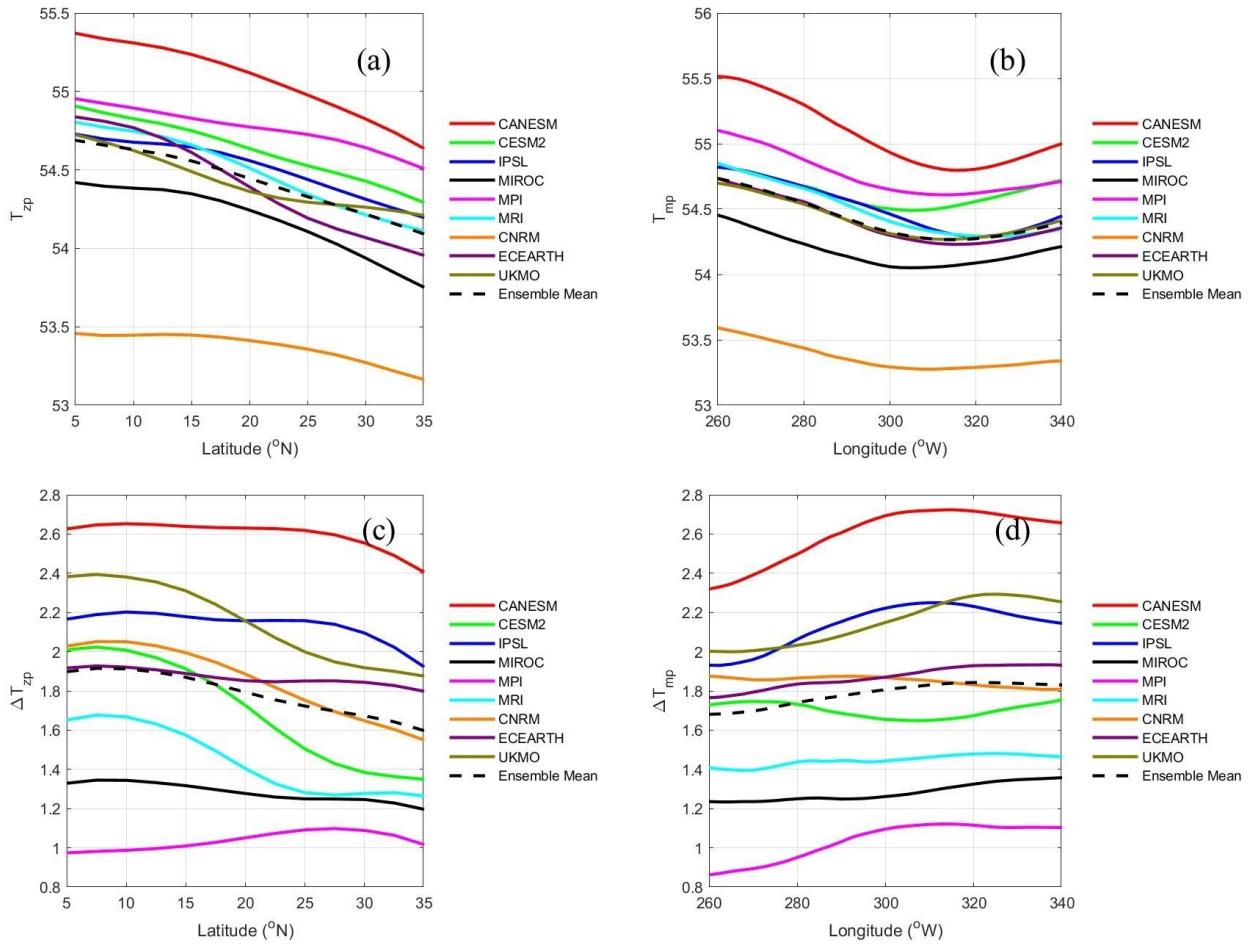
354 The abovementioned analysis implies that the uncertainties in the projection of wind shear across
 355 climate models may have profound impact on the projected TC climatology changes. Averaged
 356 across the region where we see most of TC activity in the North Atlantic basin (from 5 °N to 35
 357 °N and from 100 °W to 20°W), CESM, MPI, MRI, CNRM, and UKMO models project an
 358 increase in wind shear while other models project a decrease (Figure S4). To understand why
 359 there are such large uncertainties across different climate models, we examine the changes in
 360 vertical shear of zonal wind (Figure 11a) and meridional wind (Figure 11b) separately and link
 361 the changes to the zonal and meridional gradient of vertically integrated temperature (Figure 12a,
 362 b). In the tropics, though the large-scale circulation is not in (quasi) geostrophic balance so the
 363 thermal-wind balance does not hold theoretically, the horizontal temperature gradient can still
 364 influence the vertical wind shear. In control simulations, all models show that air is warmer in
 365 the tropics and cooler in the subtropic (Figure 12a) and exhibit the valley-shaped zonal
 366 distribution of the meridionally averaged temperature (Figure 12b). This spatial distribution is

related to the land-sea contrast. Overall, the air temperature on the west side of the North Atlantic basin is higher than the east side. Although the differences between climate models in simulating the air temperature in the control experiment are not large (in terms of both absolute value and the spatial distributions), the models show large uncertainties in air temperature change under climate change (see also Figure S6). For some climate models (and the ensemble average), the tropics are warmed up more than the subtropics while others show more homogeneous warming (Figure 12c, Figure S6). For example, the CESM2 model shows the largest tropic-subtropic contrast in air-warming, which explains why it shows the highest increase in vertical wind shear of zonal wind (Figure 11a). The IPSL, MIROC, MPI models, however, show less tropic-subtropic contrast in air-warming and less vertical shear of zonal wind (Figure 11a). Most of the climate models (and the ensemble average) show more temperature increase in the east part of the North Atlantic basin, and there are positive changes in the vertical shear of meridional wind (Figure 11b). Though this analysis may not be applicable to each individual model (e.g., shear of meridional wind in CESM2) due to the localized temperature gradient and the non-geostrophic nature of tropical atmosphere, the change in the spatial pattern of air temperature still explains the overall uncertainties of projected changes in wind shear. The uncertainties of projected meridional gradient of temperature are reported to be related to the differences in the parameterization in cloud processes and feedback mechanisms in the climate system such as the influence of sea ice (Flato et al. 2014, Pithan and Mauritsen, 2014), and the uncertainties of projected zonal gradient (land-sea contrast) may be related to the different parameterizations of surface processes and ocean dynamics (Karmalkar et al. 2011). Balaguru et al. (2023) also suggests that an increase in diabatic heating in the eastern tropical Pacific and the adjustment of circulation to this forcings are responsible for the decrease in wind shear, and the inter-model uncertainty related to the wind shear change can be attributed to the diabatic heating.



391

392 Figure 11. Change of vertical wind shear components over the North Atlantic basin. (a)
 393 Change of vertical shear of zonal wind. (b) Change of vertical shear of meridional wind. The
 394 dashed blue line indicates the level of no change. The green solid line indicates the averaged
 395 SSP5 wind shear level, while the black solid line indicates the averaged historical wind
 396 shear level.



397

398 Figure 12. Temperature distribution in the North Atlantic basin. (a) Zonally-averaged
 399 vertically-integrated temperature (T_{zp} defined in section 2) in different climate models in
 400 the historical period. (b) Meridionally-averaged vertical-integrated temperature (T_{mp}
 401 defined in section 2) in different climate models in the historical period. (c) Change of the
 402 zonally-averaged vertically-integrated temperature. (d) Change of the meridionally-averaged
 403 vertical-integrated temperature.

404 5. Large-scale Environmental Controls of TC Activity

405 In this and previous TC climate downscaling studies (e.g., Emanuel 2021), projections are
 406 presented from a subset of climate models selected mainly based on data availability and the
 407 number of models selected are restricted by storage limitations. Thus, the ensemble
 408 projections based on the selected models may be biased because the ensemble mean of the
 409 selected models may overall overestimate or underestimate the TC activity compared to the

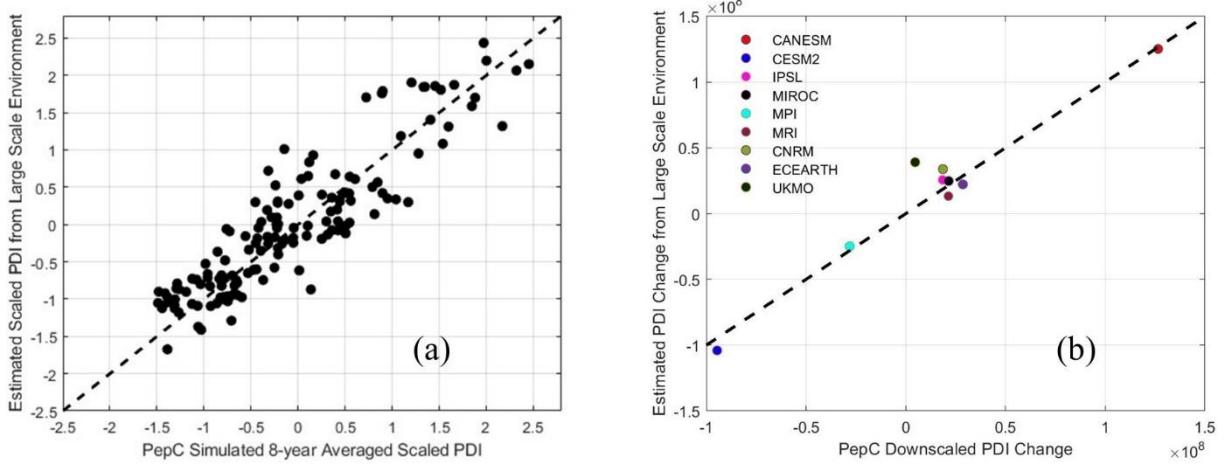
410 whole CMIP6 dataset. For example, Lockwood et al. (2022) found that the climate models
411 selected by Gori et al. (2022) to study the rain-surge joint hazard caused by US landfalling
412 TCs overall project higher global temperature increase so it may overestimate TC activity.
413 Thus, it is important to investigate which basic large-scale environmental parameters control
414 modeled TC activity and develop a method for selecting a group of climate models based on
415 their projection of these parameters to cover the range of TC activity change before
416 performing climate downscaling. In this section, we aim to develop a statistical model that
417 can help us predict the degree of changes in TC activities based on simple climate
418 parameters.

419 PDI is developed by Emanuel (2005) and is used to represent TC activities and hazards
420 (Emanuel 2005). PDI is first developed to represent TC wind hazard (Emanuel 2005), and it
421 is also found to be a good indicator for TC rainfall hazard (Xi et al. 2023). PDI is the
422 summation of the cube of storm intensity for each time step of all storms over a year in the
423 basin, so it is influenced by both the simulated frequency and intensity of TCs. Inspired by
424 the findings in Section 4, we use the low level (850 hPa) air temperature, high level
425 (averaged between 300hPa and 500hPa) relative humidity, low level (850 hPa) vorticity and
426 deep level (200 hPa – 850 hPa) wind shear (averaged during the TC season over the Atlantic
427 basin) as predictors to the accumulated annual PDI in the Atlantic basin. We use these
428 parameters because they are directly provided by CMIP6 climate models so that no
429 additional calculations are needed, which would be required for Vp and SD, and these
430 parameters cover both the dynamic and thermodynamic features of the climate condition. We
431 aim to train a statistical surrogate model that links these parameters to the PepC downscaled
432 TC yearly PDI. The reasons we train the statistical model based on PepC simulation results
433 rather than historical observations are two-fold. First, as we aim to estimate the accumulated
434 annual PDI based on the basin-wide averaged environmental field, we will only have less
435 than 50 data points for historical observation, which is too few to train a neural-network
436 model. PepC simulation outputs includes 10 Monte Carlo members of TCs downscaled from
437 nine climate models since 1979 to 2100, the large dataset supports the training of a neural
438 network model. Second, the purpose of developing the surrogate model is to help pre-select
439 climate models before using PepC to downscale TC activities, so it is consistent to train the
440 surrogate model based on PepC simulations. Researchers using other synthetic storm models

441 to study TC climatology may consider training a similar model based on the chosen synthetic
442 storm model.

443 While the complex relationship between TC activity and the basic environmental parameters
444 cannot be captured by a linear model (not shown), we found that a shallow fully connected
445 neural net is sufficient to predict annual PDI (results from test sets are shown in Figure 13a).
446 The neural net has only one hidden layer and all nodes are connected with the output layer.
447 The model is trained based on the 8-year moving average environmental parameters and PDI.
448 The average window is selected to achieve good performance of the model in terms of
449 distinguishing the degree of TC activity changes projected by different climate models while
450 still including enough of the testing and validation data for model evaluation. The trained
451 surrogate model is then fed with the 36-year averaged environmental parameters in historical
452 (1979-2014) and future (2065-2100) climates simulated by each climate model. We show
453 that the proposed statistical model can reproduce the wide range of projected change of TC
454 activities shown in PepC simulations (Figure 13b). It may not exhibit good skill in
455 distinguishing climate models that project relatively moderate change in storm activities, but
456 it is skillful for finding the climate models that can project drastic or low changes in TC
457 activity (CESM2, MPI, CANESM). The proposed statistical model thus can aid future
458 research in TC downscaling by selecting the climate models that represent different degrees
459 of TC climatology changes. The reason that the selected parameters can be used to
460 approximately project the basin-wide TC activity is that the air temperature and relative
461 humidity have strong influence on Vp and SD, which dominate the change of TC intensity
462 and frequency (Section 4), while the wind shear and low-level vorticity have profound
463 influences on the uncertainties across different climate models (Section 4).

464



465

466 Figure 13. Approximate projection of basin-wide TC activity using the proposed simple
 467 statistical tool. (a) Estimated yearly (8-year moving averaged) PDI from the neural net
 468 compared with PepC downscaled PDI. The control simulation and SSP5 8.5 simulation from
 469 the nine climate models are used. Among all the available data, 75% of the data are chosen to
 470 train the model while the remaining 25% of the data are used as test set. Only the test set is
 471 plotted and the $R^2 = 0.68$. (b) Comparison between neural net estimated PDI change from
 472 1979-2014 to 2065-2100 with PepC downscaled PDI change.

473

6. Discussions and Conclusions

474 In this study, we downscaled nine CMIP6 climate models using PepC to project TC activity
 475 change in the North Atlantic basin. We found that on average, TC frequency will decrease in
 476 the North Atlantic basin, consistent with most of previous research (Vecchi and Soden, 2007,
 477 Knutson et al., 2010, Villarini et al., 2011, Murakami et al. 2012) but differ from the
 478 statistical-dynamic downscaling of Emanuel (2021) and high-resolution climate simulation
 479 by Jing et al. (2021). We use saturation deficit as the humidity parameter for TC genesis
 480 prediction, and the results are consistent with the projection using saturation deficit in Lee et
 481 al. (2020). We found that TC intensity will increase in the future, consistent with most of
 482 previous studies (Emanuel 2005, 2013, 2021, Knutson and Tuleya, 2004, Murakami et al.,
 483 2012, Jing et al. 2021). Previous studies have also shown that the TC activity has been
 484 shifting poleward (Kossin et al. 2014) and will be shifting poleward in the future (Murakami
 485 et al. 2015), which is supported by the results of this study.

486 An important perspective that this study provides in addition to the projection of North
487 Atlantic TC climatology is the understanding of why different climate models project
488 different changes in TC activity. Using a synthetic TC model, we find the climate models
489 have larger discrepancies/uncertainties in the projected changes in dynamic factors for TC
490 activity, such as VO850 and Shear, than the projected changes in thermodynamic factors,
491 such as Vp, SD and RH. In particular, this study emphasizes that the large spread in the
492 projected Shear trend across models is the leading factor causing uncertainties in statistical
493 climate projection of future TC activity. The uncertainties in the projection of Shear have
494 been reported in previous studies and shown that they may be related to the uncertainties in
495 TC activity projections (Camargo and Wing 2016, Murakami et al. 2017). This study,
496 employing more climate models, further emphasizes the importance of understanding the
497 uncertainties in the projection of wind shear for more reliably projecting future TC activity.
498 The wide range of different projections of shear change may be related to the different
499 projections of future meridional and zonal gradient of temperature in the climate models,
500 which can be induced by the different parameterization of the surface physics, cloud
501 feedback, and ice physics.

502 In the future, PepC will be coupled with more climate models under different scenarios
503 (besides SSP5 8.5 used in this study) to project TC activity change. To better cover the range
504 of climate projections, as a first attempt, we developed a statistical model that relates the
505 large-scale environment (averaged air temperature, relative humidity, vorticity and wind
506 shear) to TC activity (PDI). The developed statistical model can be used as a surrogate for
507 screening climate models before calculating more complex parameters such as Vp and SD
508 for downscaling simulations. It should be noted that the statistical surrogate model is built
509 with TCs simulated by PepC, so it may not be suitable for other downscaling models.
510 However, the ideas and methods can be easily transplanted to projections based on other
511 downscaling models.

512 **Acknowledgement:**

513 The research is supported by the U.S. National Science Foundation (1652448 and 2103754 as
514 part of the Megalopolitan Coastal Transformation Hub).

515 **Data Availability Statement:**

516 The CMIP6 simulation outputs can be found online in <https://esgf-node.llnl.gov/projects/cmip6/>. The downscale simulation results from PepC can be access
517 online (link provided after acceptance)

519 **Reference:**

520 1. Balaguru, K., Chang, C.C., Leung, L., Foltz, G., Hagos, S., Wehner, M., Kossin, J., Ting, M.
521 and Xu, W., 2023. A global increase in nearshore tropical cyclone intensification.

522

523 2. Bhatia, K., Vecchi, G., Murakami, H., Underwood, S. and Kossin, J., 2018. Projected
524 response of tropical cyclone intensity and intensification in a global climate model. *Journal
525 of Climate*, 31(20), pp.8281-8303.

526

527 3. Camargo, S. J., & Wing, A. A. (2016). Tropical cyclones in climate models. *Wiley
528 Interdisciplinary Reviews: Climate Change*, 7(2), 211-237.

529

530 4. Chand, S.S., Walsh, K.J., Camargo, S.J., Kossin, J.P., Tory, K.J., Wehner, M.F., Chan, J.C.,
531 Klotzbach, P.J., Dowdy, A.J., Bell, S.S. and Ramsay, H.A., 2022. Declining tropical cyclone
532 frequency under global warming. *Nature Climate Change*, 12(7), pp.655-661.

533

534 5. Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30
535 years. *Nature*, 436(7051), 686-688.

536

537 6. Emanuel, K., Ravela, S., Vivant, E. and Risi, C., 2006. A statistical deterministic approach
538 to hurricane risk assessment. *Bulletin of the American Meteorological Society*, 87(3),
539 pp.299-314.

540

541 7. Emanuel, K. A. (2013). Downscaling CMIP5 climate models shows increased tropical
542 cyclone activity over the 21st century. *Proceedings of the National Academy of
543 Sciences*, 110(30), 12219-12224.

544

545 8. Emanuel, K. (2021). Response of global tropical cyclone activity to increasing CO₂:
546 Results from downscaling CMIP6 models. *Journal of Climate*, 34(1), 57-70.

547

548 9. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., ... &
549 Rummukainen, M. (2014). Evaluation of climate models. In *Climate change 2013: the*
550 *physical science basis. Contribution of Working Group I to the Fifth Assessment Report of*
551 *the Intergovernmental Panel on Climate Change* (pp. 741-866). Cambridge University
552 Press.

553

554 10. Gori, A., Lin, N., Xi, D., & Emanuel, K. (2022). Tropical cyclone climatology change
555 greatly exacerbates US extreme rainfall–surge hazard. *Nature Climate Change*, 12(2), 171-
556 178.

557

558 11. Hausfather, Z. and Peters, G.P., 2020. Emissions—the ‘business as usual’ story is misleading.

559

560 12. Jing, R., & Lin, N. (2019). Tropical cyclone intensity evolution modeled as a dependent
561 hidden Markov process. *Journal of Climate*, 32(22), 7837-7855.

562

563 13. Jing, R., & Lin, N. (2020). An environment-dependent probabilistic tropical cyclone
564 model. *Journal of Advances in Modeling Earth Systems*, 12(3), e2019MS001975.

565

566 14. Jing, R., Lin, N., Emanuel, K., Vecchi, G., & Knutson, T. R. (2021). A comparison of
567 tropical cyclone projections in a high-resolution global climate model and from downscaling
568 by statistical and statistical-deterministic methods. *Journal of Climate*, 34(23), 9349-9364.

569

570 15. Karmalkar, A. V., Bradley, R. S., & Diaz, H. F. (2011). Climate change in Central America
571 and Mexico: regional climate model validation and climate change projections. *Climate*
572 *dynamics*, 37, 605-629.

573

574 16. Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., ... & Sugi,
575 M. (2010). Tropical cyclones and climate change. *Nature geoscience*, 3(3), 157-163.

576

577 17. Knutson, Thomas, et al. "Tropical cyclones and climate change assessment: Part II:
578 Projected response to anthropogenic warming." *Bulletin of the American Meteorological*
579 *Society* 101.3 (2020): E303-E322.

580

581 18. Knutson, T. R., & Tuleya, R. E. (2004). Impact of CO₂-induced warming on simulated
582 hurricane intensity and precipitation: Sensitivity to the choice of climate model and
583 convective parameterization. *Journal of climate*, 17(18), 3477-3495.

584

585 19. Kossin, J. P., Emanuel, K. A., & Vecchi, G. A. (2014). The poleward migration of the
586 location of tropical cyclone maximum intensity. *Nature*, 509(7500), 349-352.

587

588 20. Lee, C. Y., Camargo, S. J., Sobel, A. H., & Tippett, M. K. (2020). Statistical-dynamical
589 downscaling projections of tropical cyclone activity in a warming climate: Two diverging
590 genesis scenarios. *Journal of Climate*, 33(11), 4815-4834.

591

592 21. Lockwood, J. W., Oppenheimer, M., Lin, N., Kopp, R. E., Vecchi, G. A., & Gori, A. (2022).
593 Correlation Between Sea-Level Rise and Aspects of Future Tropical Cyclone Activity in
594 CMIP6 Models. *Earth's Future*, 10(4), e2021EF002462.

595

596 22. Murakami, H., Vecchi, G. A., Villarini, G., Delworth, T. L., Gudgel, R., Underwood, S., ...
597 & Lin, S. J. (2014). Seasonal Forecasts of Category 4 and 5 Hurricanes and Landfalling
598 Tropical Cyclones using a High-Resolution GFDL Coupled Climate Model.

599

600 23. Murakami, H., Vecchi, G. A., Delworth, T. L., Wittenberg, A. T., Underwood, S., Gudgel,
601 R., ... & Zhang, W. (2017). Dominant role of subtropical Pacific warming in extreme eastern
602 Pacific hurricane seasons: 2015 and the future. *Journal of Climate*, 30(1), 243-264.

603

604 24. Murakami, H., Vecchi, G.A., Underwood, S., Delworth, T.L., Wittenberg, A.T., Anderson,
605 W.G., Chen, J.H., Gudgel, R.G., Harris, L.M., Lin, S.J. and Zeng, F., 2015. Simulation and
606 prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled
607 climate model. *Journal of Climate*, 28(23), pp.9058-9079.

608

609 25. Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., ... & Kitoh, A.
610 (2012). Future changes in tropical cyclone activity projected by the new high-resolution
611 MRI-AGCM. *Journal of Climate*, 25(9), 3237-3260.

612

613

614 26. Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature
615 feedbacks in contemporary climate models. *Nature geoscience*, 7(3), 181-184.

616

617 27. Sobel, A. H., Camargo, S. J., Hall, T. M., Lee, C. Y., Tippett, M. K., & Wing, A. A. (2016).
618 Human influence on tropical cyclone intensity. *Science*, 353(6296), 242-246.

619

620 28. Sobel, A. H., Wing, A. A., Camargo, S. J., Patricola, C. M., Vecchi, G. A., Lee, C. Y., &
621 Tippett, M. K. (2021). Tropical cyclone frequency. *Earth's Future*, 9(12), e2021EF002275.

622

623 29. Sugi, M., Murakami, H. and Yoshimura, J., 2009. A reduction in global tropical cyclone
624 frequency due to global warming. *Sola*, 5, pp.164-167.

625

626 30. Ting, M., Kossin, J.P., Camargo, S.J. and Li, C., 2019. Past and future hurricane intensity
627 change along the US East Coast. *Scientific reports*, 9(1), p.7795.

628

629 31. Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical
630 circulation. *Journal of Climate*, 20(17), 4316-4340.

631

632 32. Villarini, G., Vecchi, G. A., Knutson, T. R., Zhao, M., & Smith, J. A. (2011). North Atlantic
633 tropical storm frequency response to anthropogenic forcing: Projections and sources of
634 uncertainty. *Journal of climate*, 24(13), 3224-3238.

635

636 33. Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013). Coastal flooding by tropical cyclones
637 and sea-level rise. *Nature*, 504(7478), 44-52.

638

639 34. Xi, D., & Lin, N. (2022). Understanding uncertainties in tropical cyclone rainfall hazard
640 modeling using synthetic storms. *Journal of Hydrometeorology*, 23(6), 925-946.

641

642 35. Xi, D., Wang, S., & Lin, N. (2023). Analyzing relationships between tropical cyclone
643 intensity and rain rate over the ocean using numerical simulations. *Journal of
644 Climate*, 36(1), 81-91.