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ABSTRACT
Compound flooding, the concurrence of multiple flooding mechanisms such as storm surge,

10 heavy rainfall, and riverine flooding, poses a significant threat to coastal communities. To
mitigate the impacts of compound flooding events and improve preparedness, forecasts
must represent the variability of flooding drivers over a wide range of spatial©scales while
still being timely. One approach to develop these forecasts is through subgrid corrections,
which utilize information at smaller scales to “correct” water levels and current velocities

15 averaged over the model scale. Recent studies have shown that subgrid models can improve
both accuracy and efficiency; however, existing models are not able to account for the dynamic
interactions of hydrologic and hydrodynamic drivers and their contributions to flooding along
the smallest flow pathways when using a coarse resolution. Here, we have developed a solver
called CoaSToRM (Coastal Subgrid Topography Research Model) with subgrid corrections to

20 compute compound flooding in coastal systems resulting from fluvial, pluvial, tidal, and wind-
driven processes. A key contribution is the model’s ability to enforce all flood drivers and use
the subgrid corrections to improve the accuracy of the coarse-resolution simulation. The model
is validated for Hurricane Eta 2020 in Tampa Bay, Florida. Improvements in prediction accuracy
due to subgrid corrections are evaluated at 42 observation locations. The accuracy of the

25 subgrid model with relatively coarse resolutions (R2 = 0.70, 0.73, 0.77 for 3-, 1.5-, 0.75-km grid
sizes) is much better than that of a standard counterpart (R2 = 0.03, 0.14, 0.26 for 3-, 1.5-, 0.75-
km grid sizes). In this test, we observed that when comparing subgrid models with different
resolutions, a 3-km subgrid simulation runs roughly 50 times faster than a 0.75-km subgrid
simulation while maintaining the same level of accuracy.Q2
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30 1. Introduction

Compound flooding is a challenging issue due to the
concurrence of coastal storm surge, intense precipita-
tion, and river flooding. These processes occur at dif-
ferent temporal and spatial scales, encompassing

35 storm surge, pluvial, and fluvial inundation. These pro-
cesses have been simulated by two types of models:
hydrologic models for rainfall collecting over water-
sheds and into channels, and hydrodynamic models
for tides and surge from rivers to the open ocean.

40 These models have been used separately or one-way
coupled to study compound flooding in coastal
regions (Chen et al. 2013; Cho et al. 2012; Dresback
et al. 2013; Gori, Lin, and Smith 2020; Jin et al. 2017;
Kerr et al. 2013; Wing et al. 2019). However, employing

45 two models can create deficiencies in simulating inter-
connected processes. Hydrologic models lack the cap-
ability to address certain surface flow processes that
interconnect with estuarine dynamics Zhang et al.
(2020), and hydrodynamic models can exclude pluvial

50 and fluvial processes Bilskie and Hagen (2018).
A significant challenge is evident in the application of
a©tightly coupled or one comprehensive model to

represent the physical interactions between storm
surge and rainfall-runoff (Santiago-Collazo, Bilskie,

55and Scott 2019). The implementation of full- and
tight-coupling for such numerical models (e.g. hydro-
logic, ocean circulation, and hydraulic models) is much
more intricate compared to loose- or one-way cou-
pling. This complexity arises from the complicated

60mathematical representation of their physical pro-
cesses, the computational power required, and the
varying temporal and spatial resolutions (different
time and length scales) of the numerical models
(Santiago-Collazo, Bilskie, and Scott 2019).

65Recently, Zhang et al. (2020) presented a creek-to-
ocean 3D baroclinic model based on SCHISM (Semi-
implicit Cross-scale Hydroscience Integrated System
Model) that aims to unite hydrologic and hydrody-
namic models in a single modeling platform to simu-

70late compound floods. They simulate Hurricane Irene’s
impact on Delaware Bay as an example with spatial
resolution down to 20m. The streamflow from hydro-
logic models (e.g. NOAA’s National Water Model
(NWM)) is injected into the SCHISM grid at the inter-

75sections of NWM’s segments and SCHISM’s land
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boundary, and thus the pluvial and fluvial processes
are directly handled by SCHISM. They showed the
model’s accuracy, stability, and robustness with
a focus on the compound flooding events.

80 Separately, SFINCS, a new solver to compute com-
pound flooding in coastal systems due to fluvial, plu-
vial, tidal, wind- and wave-driven processes in
a computationally efficient way, was introduced and
validated for various application scenarios (Leijnse

85 et al. 2021). The model uses simplified equations for
mass and momentum, influenced by storm surge and
wave boundary conditions, as well as precipitation
rates and upstream river discharges. In the case study
of Hurricane Irma’s impact on Jacksonville (Florida,

90 USA), the observed flooding was found to be a result
of a combination of fluvial, pluvial, tidal, and wind-
driven flooding. Like many numerical models, these
recent models are faced with trade-offs between accu-
racy and efficiency. High accuracy requires high levels

95 of spatial resolution, which entails significant compu-
tational costs, posing a challenge for these models in
conducting large-scale simulations. On the other hand,
models utilizing coarser resolutions are unable to
account for the dynamic interactions of hydrologic

100 and hydrodynamic drivers and their contributions to
flooding along the smallest flow pathways, leading to
lower accuracy.

A potential and promising approach to develop
cost-effective and accurate models involves the use

105 of subgrid corrections. These models have gained sig-
nificant attention in various research domains, particu-
larly in the study of flow over tidal flats and wetlands,
urban flooding, and storm surge applications (Casulli
2009; Defina 2000; Kennedy et al. 2019; Nederhoff et al.

110 2024; Sanders, Schubert, and Gallegos 2008; Wu et al.
2016). The basic idea of a subgrid method is to account
for small-scale processes that cannot be resolved by
the main computational grid. These models enhance
the overall accuracy of the simulations while keeping

115 computational costs manageable. Previous studies
have examined using subgrids for modeling surge,
inundation, and circulation (Casulli 2009; Casulli and
Stelling 2011; Defina 2000; Kennedy et al. 2019).For
instance, Neal, Schumann, and Bates (2012) used the

120 subgrid concept to present a new hydraulic model for
efficiently simulating dynamics of water surface eleva-
tion, wave speed, and inundation extent over large
areas. It extends LISFLOOD-FP (Bates and De Roo
2000) to include subgrid-scale channels, improving

125 accuracy in simulating river behavior. The model has
been successfully applied in various flood modeling
scenarios (Bates et al. 2021; Y. Zhang and Reza Najafi
2020). Most of the subgrid studies focused on correc-
tions of the mass conservation equation, where they

130 account for the variation of the bathymetry in a coarse
grid to deal with partially wet cells (Casulli 2009; Casulli
and Stelling 2011; Defina 2000). J. Woodruff et al (2023,

2021). integrated subgrid corrections into the ADCIRC
(ADvanced CIRCulation) model (Luettich et al. 1992),

135a finite element-based hydrodynamic solver, to
improve its accuracy when operating on a coarse
mesh. Similarly, Begmohammadi et al. (2023) demon-
strated the implementation of subgrid corrections in
the SLOSH Jelesnianski (1992) storm surge model,

140leading to significant improvements in model accuracy
without substantially increasing computational costs
(Begmohammadi, 2022 Q3). The HEC-RAS model is another

©well-known©finite-volume-based hydrodynamic model
(Brunner 2016). A so-called subgrid bathymetry

145approach is also implemented on the model. To con-
sider the subgrid approach, the model calculates
hydraulic radius,©volume, and cross-sectional data for
each cell using the finer resolution data. Overall, these
models ignored the additional effects that comes from

150the momentum conservation equations. Volp, Van
Prooijen, and Stelling (2013) used a finite volume tech-
nique to correct the momentum equation with the
assumption of simplified canonical flow (a channel
flow with a uniform flow and constant friction slope)

155over a coarse grid. They developed corrections for
bottom friction and advection terms, which can be
significant in specific scenarios, such as channel flows
characterized by a large variation in topography.
Kennedy et al. (2019) developed shallow water subgrid

160systems based on a volume averaging technique
(Whitaker 1998) that are similar to previous studies,
but have additional terms and closures that had been
neglected and arise from the averaging process from
the mass and momentum conservation equations. The

165numerical scheme that has been used for these sub-
grid models is another important aspect that affects
the efficiency of the model especially the discretization
of the momentum conservation equations.
Momentum equations can be discretized in either

170a semi-implicit or explicit manner. In the semi-implicit
method, hydrostatic pressure and bottom friction
terms, as demonstrated in the SCHISM model (Y.
Zhang and Baptista 2008), can be treated implicitly,
resulting in a more complex solution algorithm. This

175semi-implicit discretization permits the use of larger
time steps, leading to significant gains in computa-
tional efficiency.

In this study, we present a subgrid-based model for
compound flood modeling in coastal systems due to

180fluvial, pluvial, tidal, and wind-driven processes. We
adopt the subgrid model presented by Kennedy et al.
(2019) and incorporate key factors such as wind stress,
gradient of atmospheric pressure, spatial varying pre-
cipitation, infiltration, bottom friction, river discharges,

185and river surface elevations as boundary conditions to
the model. Subsequently, we integrate subgrid correc-
tions to enhance the accuracy of these parameters.
Two-dimensional upscaled shallow water equations
(in which a volume averaging technique Whitaker
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190 (1998) is applied on the computational grids to con-
sider coarse grid quantities) are discretized semi-impli-
citly, whereas hydrostatic pressure gradient and
bottom friction terms are discretized fully implicitly.
This semi-implicit discretization allows for larger time

195 steps, which can lead to significant computational effi-
ciency gains Casulli (1990). It also offers a greater
numerical stability compared to explicit methods.
This stability is especially beneficial when simulating
complex and rapidly changing flow patterns Casulli

200 (1990). The model’s validation was conducted for
Hurricane Eta in 2020, specifically in Tampa Bay,
Florida, USA.

2. Methodology

2.1. Governing equations

205 Generally, two-dimensional shallow water equations
(SWEs) are used to model flows in coastal and environ-
mental engineering scenarios, including estuarine cir-
culation, tides, and storm surges (Canestrelli and Toro
2012; Dresback, Kolar, and Casey Dietrich 2005;

210 Luettich et al. 1992). Here, we adopt the SWE-based
subgrid model proposed by Kennedy et al. (2019) with
additions for wind stress, gradient of atmospheric pres-
sure, spatially varying precipitation, infiltration, bottom
friction, and river discharges. Upscaled equations are

215 derived by applying averaging technique Whitaker
(1998) to the non-conservative form of SWEs.

2.1.1. Upscaled equations
The upscaled mass conservation equation with addi-
tional source terms to incorporate precipitation and

220 infiltration is as follows:

@Vw ηh ið Þ
@t

þ @ Hh i Uh i
@x

þ @ Hh i Vh i
@y

¼ Rh i � Ih i (1)

The symbols enclosed by ⟨·⟩ brackets represent values
averaged over the grid, with the exception of velocity.
Vw(⟨η⟩) represents the wet volume per unit area, corre-
sponding to a specific wet-averaged surface elevation

225 ⟨η⟩. The symbol ⟨U⟩ denotes the averaged velocity
vector at the grid level, calculated through the equa-
tion ⟨U⟩ = R HUdV/R HdV , where ⟨H⟩ signifies the grid-
averaged water depth. The terms ⟨R⟩ and ⟨I⟩ refer to
the volume of precipitation and infiltration within

230 a given cell, respectively.
Infiltration is a significant factor in modeling inland

flooding by influencing how water moves through soil
and interacts with the ground surface during heavy
rainfall events. Although there are different categories

235 of infiltration models (Mishra and Singh 1999; Rawls
et al. 1992), here we implemented a temporally con-
stant, spatially varying infiltration, which showed pro-
mising results for compound flood modeling (Gori, Lin,
and Smith 2020; Leijnse et al. 2021; Sarhadi et al. 2024).

240The model has the potential to incorporate more
sophisticated infiltration methods in future updates.
Note that the current version requires hourly time
series data of spatially varying precipitation on the
computational grid as an input.

245The upscaled momentum conservation equations
with additional forces in x and y directions are:

Hh i @ Uh i
@t

� Uh i� � Uh i Hh ið Þ þ @

@x
CUU Uh i Vh i Hh ið Þ

þ @

@y
CUV Uh i Vh i Hh ið Þ

¼ �g Hh i Cη;xx @ ηh i
@x

þ Cη;xy @ ηh i
@y

� �
� ϕ Uh ij j CM;fxx Uh i þ CM;fxy Vh i� �
� Hh i

ρ

@PA
@x

� fc Hh i Vh i þ ϕ τsxh i
ρair

(2)

Hh i @ Vh i
@t

� Vh i� � ð Uh i Hh iÞ

þ @

@x
CVU Vh i Uh i Hh ið Þ þ @

@y
CVV Vh i Uh i Hh ið Þ

¼ �g Hh i Cη;yx @ ηh i
@x

þ Cη;yy @ ηh i
@y

� �
� ϕ Uh ij j

CM;fyx Uh i þ CM;fyy Vh i� �� Hh i
ρ

@PA
@y

þ Hh ifc Uh i þ ϕ τsy
� �
ρair

(3)

In Equations (2)–(3), the term = Aw/AG represents the
wet area fraction; the coefficients CUU,CUV ,CV U,CV V are
subgrid corrections to nonlinear convection terms; Cη

250is the subgrid correction for the surface gradient; and
CM is the subgrid correction for effective bottom stress.
All these coefficients come from the volume averaging
technique (see Kennedy et al. (2019)). Terms P and τs
indicate the atmospheric pressure and storm-induced

255wind stress, respectively. To account for wind stress,
we employ a variable wind drag coefficient, which
depends on the wind speed (Powell and Ginis 2006).
To transfer the wind stress into the momentum equa-
tions within the upscaled SWEs, the sea-surface

260momentum stress similar to the ADCIRC model
τw ¼ ρCDeagU2

10 Γ ¼ ρCDragU2
10%MathType!End!2!1!ρair

(Luettich et al. 1992) is used. Where U10 and ρ denote
the wind speed at the elevation of©10 m above the sea
surface and reference air density, respectively. CDrag

265represents the wind drag coefficient. This coefficient,
as proposed by Garratt Garratt (1977), is given by
CDrag ¼ 1

1000
15
20 þ 40

600U10
� �

. Note that the model
enforces a maximum limit on the wind drag coefficient,
setting it at CDrag = 0.002.

270To solve these equations, closures for determining
the subgrid correction parameters are proposed in
Kennedy et al. (2019). Here, we focus on correcting the
fractional wetting and drying within the grid cell. We
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also correct the atmospheric pressure, storminduced
275 wind stress, and bottom roughness. However, it does

not address complex subgrid corrections for advection
and surface gradient terms. Specifically, the subgrid
coefficients are set as CUU = CV V = CUV = CV U = 1 (con-
vective terms coefficients), Cη,xx = Cη,yy = 1,Cη,xy = Cη,yx =

280 0 (surface gradient coefficients). For the Manning fric-
tion coefficient, CM,f,xx = CM,f,yy= ⟨Cf⟩G,CM,f,xy = CM,f,
yx= 0. Note that Manning’s formula is used to approx-
imate the friction Cf G ¼ gn2

H1=3, where n denotes the
Manning’s roughness coefficient and g = 9.81 m/s2

285 is gravitational acceleration.

2.2. Discretization

The system of upscaled equations, given by (1)-(3),
involves three unknowns: ⟨η⟩, ⟨U⟩, and ⟨V ⟩. It’s impor-
tant to note that the averaged water depth ⟨H⟩ = Vw is

290 a predetermined variable derived from ⟨η⟩ and
a specified digital elevation model b(x,y). These equa-
tions are discretized on a staggered C-grid Arakawa
and Lamb (1977) (refer to Figure 1). The unknown
variable ⟨η⟩ is positioned at the cell-center, while ⟨U⟩

295 and ⟨V ⟩ are situated at the midpoint of the vertical and
horizontal cell edges, respectively. The discretization is
performed using a semi-implicit finite difference
method. The advection component in Equations (2)
and (3) is discretized through an explicit upwind

300 scheme. To allow the model to perform with the larger
Δt, the surface gradient and bottom stress components
in the momentum equations, along with the velocities

in the continuity Equation (1), are treated implicitly.
Henceforth, for the sake of simplicity, we substitute ⟨η⟩,

305⟨U⟩, ⟨V ⟩, ⟨H⟩, ⟨R⟩, and ⟨I⟩ with η, u, v, H, R, and I.
For each cell edge, a semi-implicit discretization of

the momentum equations is carried out in the x- and
y-directions at the vertical and horizontal edges,
respectively:

unþ1
iþ1

2;j
¼ 1

H�
iþ1

2;j

Hn
iþ1

2;j
unþ1
iþ1

2;j
� ΔtFniþ1

2;j
� g

Δt
Δx

Hn
iþ1

2;j
ηnþ1
iþ1

2;j
� ηnþ1

iþ1
2;j

� 	
 �

þ Δt
H�
iþ1

2;j

Hn
iþ1

2;j

ρairΔx
Pnþ1
iþ1;j � Pnþ1

i;j

� 	
� fcHn

iþ1
2;j
vniþ1

2;j
þ

ϕn
iþ1

2;j

ρairΔx
τnþ1
iþ1

2;j

" #
;

(4)

310and

vnþ1
i;jþ1

2
¼ 1

H�
i;jþ1

2

Hn
i;jþ1

2
vnþ1
i;jþ1

2
� ΔtGn

i;jþ1
2
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Δt
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iþ1

2;j

Hn
i;jþ1

2

ρairΔy
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i;jþ1 � Pnþ1

i;j

� 	
� fcH

n
i;jþ1
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2
þ

ϕn
i;jþ1

2
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2
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(5)

Figure 1. Depiction of the staggered C-Grid layout. Surface elevation (η) is denoted by purple circles at the centers of cells.
Horizontal velocity (u) is represented by red squares, positioned at the vertical edges’ midpoints. Vertical velocity (v) is illustrated
with blue diamonds, located at the midpoints of the horizontal edges.
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where Gi;jþ1
2
and Fiþ1

2;j
denote the discretization of the

advection terms (see Kennedy et al. (2019) for more
details) and H* define as follows:

H�
iþ1

2;j
¼ 1

Hn
iþ1

2;j
þ Γ iþ1

2;j
Δt

;H�
i;jþ1

2
¼ 1

Hn
i;jþ1

2
þ Γ i;jþ1

2
Δt

;

and, Γ iþ
1
2; j ¼ Cfh iG �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
iþ1

2;j
þ v2

iþ1
2;j

q



 j:. Note that υiþ1
2; j

315
represents the average velocity computed from the
four surrounding v velocities. The same approach is
applied to calculate Γiþ1

2;j .
For each cell, the discretization of continuity

320 Equation (1) with the Euler backward time discretiza-
tion is:

vw ηnþ1
i;j

� 	
� vw ηni;j

� 	
Δt

þ

1
Δx

X
s2E iþ1

2;jð Þ
us;nþ1
iþ1

2;j
Hs;n
iþ1

2;j
�

X
s2E i�1

2;jð Þ
us;nþ1
i�1

2;j
Hs;n
i�1

2;j

2
64

3
75

þ 1
Δy

X
s2E i;jþ1

2ð Þ
us;nþ1
i;jþ1

2
Hs;n
i;jþ1

2
�

X
s2E i;j�1

2ð Þ
us;nþ1
i;j�1

2
Hs;n
i;j�1

2

2
64

3
75

¼ Rni � Ini
(6)

where Vw(ηi,j) represents the volume per unit cell area
of each cell.

The approximate solutions for ηn+1, un+1, and vn+1

325 are obtained by solving a system of equations derived
by inserting the discretized momentum equations into
Equation (6) as detailed in Casulli (2009). This leads to
a set of slightly nonlinear algebraic equations, simply
expressed as follows:

V ηnþ1
� �þ Tηnþ1 ¼ b (7)

330 where ηn+1 represents the solution at the next time
level, while the matrix T emerges from the substitution
process. Additionally, V denotes the water volume
vector, and b signifies the known vector on the right-
hand side. Notably, the matrix T is symmetrical, featur-

335 ing positive diagonal elements and negative off-diag-
onal elements. This system of (mildly) nonlinear
equations is addressed using the©Newton–Raphson
method to determine ηn+1. Following this, the veloci-
ties at time level n +1 are computed through back

340 substitution using the now-established ηn+1. We refer
to Kennedy et al. (2019) for more detailed account of
the numerical method.

To minimize the computational cost, a pre-storage
lookup table is utilized in order to store the cell volume

345 and wet area as a function of surface elevations. These
tables can be generated for all cells in an initial pre-
processing process. Note that the basic model (without
wind stress, atmospheric pressure gradient, river dis-
charge, precipitation, and infiltration) is validated for

350various benchmark problems Begmohammadi et al.
(2021); Kennedy et al. (2019). The discharge from the
rivers can be imposed as fluxes or surface elevation
boundary conditions at any point within the computa-
tional domain.

3552.3. Subgrid connectivity

Incorporating subgrid modeling to address unresolved
topography in SWEs enables the use of larger grid cells
for computational efficiency. However, employing
overly large grid cells can result in artificial cross-

360flows between areas that are hydraulically separated
by physical barriers (e.g. a dune crest or raised high-
way) smaller than the grid size. Various methods have
been used to address the subgrid surface connectivity,
such as mesh refinement and edge blocking

365approaches (Hodges 2015; Li and Hodges 2019;
Platzek et al. 2016). Casulli (2019) introduced a cell
clone approach that eliminates artificial cross-flows
between disconnected regions within a cell without
the need for additional mesh refinement.

370Begmohammadi et al. (2021) extended this approach
by breaking the cell clone into sub-clones. This mod-
ification removes cross flows when barriers within the
coarse grids are submerged, effectively handling the
storm surge scenario.

375Here, a simple method is used to represent the
effects of the barriers and blockage on the coarse
grid. First, the cells with barriers are identified.
Second, the height of the barrier is determined by
checking for the disconnected wet areas in a specific

380range of water surface elevations. Third, the heights of
these barriers are mapped on the cell edges. These
three steps are done before the simulation.

3. Results

3.1. Hurricane eta in 2020

385Tampa Bay, located on the west Florida coast, encom-
passes Pinellas, Hillsborough, and Manatee Counties,
with Pinellas and Hillsborough being densely popu-
lated. Despite being the fourth-largest U.S. port in
tonnage, the bay faces potential vulnerability to

390storm surge due to its geographical features, sur-
rounded by low-lying lands and impacted by surge-
induced edge waves trapped on the west Florida shelf
(Lin and Emanuel 2016; Weisberg and Zheng 2006;
Yankovsky 2009). Tampa Bay has been fortunate to

395avoid major hurricanes since 1921, and historical
records indicate fewer storms track into this region
compared to the U.S. coasts along the Atlantic or
farther west in the Gulf of Mexico.

However, the region was impacted significantly by
400Hurricane Eta in 2020. Eta originated from a tropical

wave off the west coast of Africa, intensifying into
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a category 4 hurricane before making landfall in
Nicaragua. After crossing Central America, Eta ree-
merged in the Gulf of Honduras, regaining tropical

405 storm status and subsequently making landfall in the
Florida Keys (Figure 2). The system then turned north-
northeastward and made landfall near Cedar Key,
Florida, at around 0900 UTC at November 12, with its
maximum winds weakening to nearly 23.15 m/s due to

410 strong west-southwesterly shear and some intrusion of
dry air Pasch et al. (2021).

Eta caused inundation levels of 0.92 to 1.22 m
above ground level in the Tampba Bay region
(Pasch et al. 2021). Tide gauges from the National

415 Ocean Service (NOS) recorded peak water levels of
1.19 m above Mean Higher High Water (MHHW) at
Old Port Tampa and Tampa-East Bay, and 1.07 m
MHHW in St. Petersburg. Stream gauges from the
United States Geological Survey (USGS) further con-

420 firmed these heights, with examples such as 1.25 m
MHHW recorded on Lake Seminole in Pinellas
County and 1.16 m MHHW on the Hillsborough
River in Tampa (Pasch et al. 2021). In addition,
Hurricane Eta caused substantial rainfall in the

425 greater Tampa Bay region, with multiple locations
reporting rainfall exceeding 0.20 m. The highest
amount recorded was 0.27 m near Sun City Center
in Hillsborough County. Flooding was reported far
inland, near the Manatee River and Alafia River. The

430 peak of the flood upstream of the Manatee River
was recorded around 12 November at 22:00, reach-
ing a height of©4 m (Manatee River at SR 64 near
Mayakka Head, FL USGS gauge 0299950). In the
closest coastal gauge to the Manatee River, the

435 flood peaked around 12 November at 4:00, measur-
ing approximately 1.25 m (NOAA tide and current
gauge 8,726,384) Pasch et al. (2021). This indicates
that the runoff-driven streamflows caused flooding
later than the ocean-driven surge. This flooding led

440 to significant impacts in the greater Tampa Bay
area. In Pinellas County, 33 individuals were rescued
from flooded homes and stranded vehicles in Pass-
a-Grille, while other areas between St. Pete Beach
and Madeira Beach faced inundation of up to

445 a©meter from storm surge. The storm also caused
several sailboats to break free of their moorings,
leading to some being stuck under a bridge or
beached in Gulfport (Pasch et al. 2021). Coastal
areas in Hillsborough, Manatee, Sarasota, Charlotte,

450 and Lee Counties experienced street flooding and
road closures. More than 40,000 customers lost
power in the greater Tampa Bay area (Pasch et al.
2021). Given the substantial impacts of Hurricane
Eta, and especially its combined effects from storm

455 surge and rainfall-induced flooding, this study aims
to evaluate the performance of the CoaSToRM
model in simulating the compound flooding from
Eta on the greater Tampa Bay area.

3.2. Model setup

460To simulate compound flooding using CoaSToRM for
the case of Hurricane Eta in Tampa Bay, two-step
nested models were set up. For the large-scale simula-
tion of Eta’s effects on offshore water levels, we use the
ADvanced CIRCulation (ADCIRC) model (Luettich et al.

4651992), which is a well-known, finite-element-based,
storm surge model. Its grid includes 376,814 elements
and 221,706 nodes, and it covers the western north
Atlantic Ocean, Caribbean Sea, and Gulf of Mexico
(Figure 3). The large-scale model is forced by tidal

470data obtained from a global model (TPXO8-ATLAS
Egbert and Erofeeva (2002)), and by surface wind and
pressure fields obtained from a parametric wind model
(Holland vortex (Holland 1982)) based on best-track
information from Eta. To consider the wave effects,

475the ADCIRC model is coupled with SWAN (Dietrich
et al. 2011).

For the regional simulation of Eta’s effects on com-
pound flooding, we use the CoaSToRM model.
Topographic and bathymetric data for the Tampa Bay

480region were obtained at 3-m horizontal resolution
from the NOAA Digital Coast (CIRES, 2014) (CIRES). All
topographic and bathymetric elevations, and all water-
level data herein, are relative to the North American
Vertical Datum of 1988 (NAVD88) Zilkoski, Richards,

485and Young (1992). A spatially-varying roughness is
used based on land elevation for Research in
Environmental Sciences (CIRES). The high-resolution
bathymetric data with 660,000,000 pixels is shown in
Figure 3. As the focus of this paper is the performance

490of the subgrid model at coarser resolutions, we con-
sider three coarse grids with 30 × 22 (Δx = Δy = 3 km),
60 × 44 (Δx = Δy = 1.5 km), and 120 × 88

(Δx = Δy = 0.75 km) cells, respectively. We also ran
simulations with the same resolution without the sub-

495grid for all three grids. The high©-resolution bathymetric
data©are used to compute pre-storage lookup tables
(the cell volume and wet area as a function of surface
elevations)

The ADCIRC+SWAN model was run for 7 days of
500simulations from November 7th to 14th. The

CoaSToRM model was run for 3 days from
November 11th to 13th. Water surface elevations at
the ocean boundary condition of the CoaSToRMmodel
are obtained from the large-scale ADCIRC+SWAN

505simulation. The initial water level for the CoaSToRM
model are set to a constant 0.28m above mean sea
level. This adjustment accounts for the©0.12-m correc-
tion to the NAVD88 datum in Tampa Bay, as well as the

©0.16-m correction for the seasonal mean sea level
510variability observed in the region during November.

The parametric model Holland (1982) is used to gen-
erate surface wind and pressure fields due to Eta.
Precipitation forcing is supplied by NCEP/EMC with 4
km resolution (Du 2011) to the computational grid.

6 A. BEGMOHAMMADI ET AL.

Deleted Text


Deleted Text


Deleted Text


Deleted Text


Deleted Text


Deleted Text




515 Water level boundary conditions (for Manatee River)
and river fluxes (for Alafia River, Tampa Bypass Canal)
for rivers are obtained from USGS (U.S. Geological
Survey, n.d.).

3.3. Predictions of coastal water levels

520 To evaluate the model’s performance, we compared
the water surface elevations computed by the subgrid
model with the observed©time-series data from NOAA
(National Oceanic and Atmospheric Administration, n.
d..) stations. These gauges are located near the coast-

525 line of Tampa Bay and are depicted in Figure 2.
During Hurricane Eta, the model predicted storm

surge levels in the Tampa Bay area of Florida, ranging
from 1 to©1.45 m above the North American Vertical
Datum of 1988 (NAVD88), aligning well with observa-

530 tional data. The model predicted water levels at the
National Ocean Service (NOS) tide gauges in Old Port
Tampa and TampaEast Bay in the northern part of the
bay, recording peak water levels of around 1.4 and

©1.3 m above NAVD88, while St. Petersburg’s NOS
535 gauge documented a peak water level of©1.25 m above

NAVD88. These values closely match the observed
data, with an underestimation error of less than 0.05
in Old Port Tampa. However, our model employs
a coarse grid, which may contribute to inaccuracies in

540 predicting water levels.
We evaluated the subgrid model performance

across different grid resolutions to investigate how
the model’s accuracy changes as the resolution is
increased. For these simulations, we accounted for all

545 driving forces, including ADCIRC+SWAN boundary
conditions, wand and atmospheric pressure fields, pre-
cipitation and infiltration, and river water discharges.
The time series of water surface elevations are pre-
sented in Figure 4 for three resolutions utilizing the

550 subgrid model. The ERMS values, as shown in Table 1,
remain almost identical across all grid resolutions for
all selected gauges near to the coastline. This indicates
that the subgrid model is not sensitive to these
changes in grid resolution.

555 The coastal water-level observations can be used
to examine the relative effects of (a) model forces,
including both hydrodynamic and hydrological
inputs; and (b) model resolution, including the ben-
efits of the subgrid corrections. For the model

560 forces, we considered simulations using the coarsest
grid resolution (Δx = 3 km). There are three distinct
simulations conducted as follows: (1) the model is
forced with boundary conditions from ADCIRC
+SWAN; (2) meteorological forces, including wind

565 and atmospheric pressure fields, are added to the
model from simulation 1 (BC+Meteo); and (3) pre-
cipitation and infiltration are added to the model
from simulation 2 along with river water discharges
(All Forces). Lastly, a fourth run is executed with all

570Forces above without the subgrid implementation,
where the model is run with the cell-averaged
bathymetric elevation, aiming to observe the speci-
fic effect of the subgrid model on the results
(Standard Solution All Forces).

575The time series of surface elevation for two gauges
inside the bay, obtained using the coarsest grid
(Δx = Δy = 3km), are presented in Figure 5. These
results help illustrate the relative contribution of
each process across the domain. To quantify the mod-

580el’s performance, we use root-mean-square errors
(ERMS) over 60 hours of simulations. The ERMS values
are reported in Table 1. It can be seen that the ERMS

values for simulation 2 (BC+Meteo) are smaller than
the model 1 (BC) with only boundary conditions. It

585can be concluded that wind and atmospheric pres-
sure has a large effect on the modeled water levels,
where the peak of the surge are much closer to the
observation when meteorological forces included
(simulation 2). Incorporating precipitation and infil-

590tration into the model leads to a slight improvement
in accuracy. This enhancement can be seen in stations
2, and 4, as illustrated in Figure 5 and Table 1. In
general, when we compare the impact of meteorolo-
gical forces and precipitation on the peak water level,

595it’s evident that, for the coastal gauges, meteorologi-
cal forces play a dominant role. They contribute at
least 95% to the peak water level across these five
gauges. Note that, as we have shown, the results for
coastal gauges are not sensitive to grid resolution

600when the subgrid model is applied; thus, the meteor-
ological forces play a dominant role for all grid
resolutions.

Upon close inspection of Station 2 (see Figure 5), it
becomes evident that the standard solution fails to

605accurately capture the water surface elevation. When
employing the subgrid model with the same grid
resolution, the root-mean-square error (ERMS) value is
nearly one order of magnitude smaller than the stan-
dard solution (see Table 1). This significant improve-

610ment is highlighted by plotting the maximum water
surface elevation for the small area near
St. Petersburg, Tampa Bay, FL, where Station 2 is
located (see Figure 6). The figure illustrates that,
with the coarse resolution used, the subgrid model

615successfully allows the water to reach Station 2, as it
resolves small features in the coastline that are much
smaller than the grid size. Conversely, the water sur-
face elevation in the standard solution fails to reach
this location during the flood event (Note that if the

620total water depth was less than 0.05 m, it is disre-
garded on the plot). A closer examination of the
north part of Station 2 in this figure showcases the
subgrid model’s capacity to accurately capture the
effects of narrow rivers and channels, as well as

625small features. This capability is lacking in the stan-
dard solution counterpart.
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Figure 2. a) track for eta near the Florida coast, with intensities on the Saffir-Simpson scale for hurricane category 1 (H1) and
tropical storm (TS), and with locations at 6-hr intervals. b) locations of USGS observations: (white circles) 37 water level sensors;
and NOAA observation (yellow circles) 5 stations. The stations are described in Tables A1 and A2. The domain is in UTM zone 17N.
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Figure 3. a) ADCIRC grid that covers the western north Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. Blue line shows the
open ocean boundary nodes. Red lines represent the land boundary condition. Green lines are the land boundary conditions for
islands. b) CoaSToRM computational domain for Tampa bay, FL. The bathymetric data©are shown with two selected contours of
bathymetric depth (contour lines: 0 m; 2 m). The domain consists of 30,000 × 22000 pixels, which is used to calculate pre-storage
lookup tables (the cell volume and wet area as a function of surface elevations). The CoaSToRM domain covers a rectangle with
corners (82.21◦W, 27.27◦N) and (82.88◦W, 28.08◦N). The average total depth for the CoaSToRM boundary conditions is
15 m. Orange box shows the domain for Figure 6.

Figure 4. Time series of water surface elevation for four selected NOAA gauges with Δx = 3,1.5,0.75 km.

Table 1. Errors ERMS relative to the observation (m), computed over 60 hours with 6-min sampling intervals. SG represents subgrid
Model and SS shows standard solution.
Station ID (number) 8726724 (1) 8726520 (2) 8726607 (3) 8726674 (4) 8726384 (5)

Grid Resolution (km) Configuration
Δx = 3 BC SG 0.1415 0.1849 0.1892 0.1946 0.1059
Δx = 3 BC + Meteo SG 0.1366 0.1582 0.1404 0.1309 0.0695
Δx = 3 All forces SS 0.1419 1.4180 0.1189 0.1181 0.0594
Δx = 3 All forces SG 0.1298 0.1326 0.1125 0.1121 0.0584
Δx = 1.5 All forces SG 0.1292 0.1327 0.1122 0.1004 0.0577
Δx = 0.75 All forces SG 0.1284 0.1326 0.1135 0.0935 0.0544
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3.4. Predictions of inland water levels

The model predictions were evaluated at the USGS
water-level sensors, where the sensors are placed far

630 inland and near narrow rivers and features that are
much smaller than the grid sizes (Δx = 3 km, Δx = 1.5
km, Δx = 0.75 km). We considered three grid resolu-
tions with all forces, including tidal and surge bound-
aries, river discharges, wind and pressure fields,

635 precipitation, and infiltration. For each grid resolution,
we performed two types of simulations. In the first
simulation, the model was run with the cell-averaged
bathymetric elevation (standard solution). In
the second simulation, we applied subgrid corrections

640 to the model.
Overall there are 37 USGS gauges in the computa-

tional domain. We selected four USGS water-level sen-
sors scattered around Tampa Bay to demonstrate the
model’s performance in the region. These stations are

645 in proximity to the Manatee River (Station 8), Alafia
River (Station 17), Palm River (Station 19), and the
middle of Cross Bayou Canal (Station 29). As shown in
Figure 7, for all selected locations, the standard solu-
tions with different resolutions©show a roughly con-

650 stant surface elevation. The reason is the inability of

the standard solution to capture the effects of rivers,
channels and features that are much smaller than the
grid cell. However, the subgrid model outperforms the
standard solutions in these locations. Overall, at loca-

655tions farther inland, the flooding event could only be
predicted with the subgrid model, due to its ability to
represent flow pathways below the model scale.

Upon close inspection of Figure 7, for Stations 17
and 29, located in the northeast and northwest of

660Tampa Bay (see Figure 2), respectively, increasing
the resolution improves the accuracy of the subgrid
model. The higher resolution model provides more
accurate results compared to the observations. On
the other hand, Station 8, situated in the east side

665of Tampa Bay at Manatee River in Rye, FL, shows
nearly identical water surface elevations for all grids
with subgrid corrections. At Station 19, the coarsest
grid underestimates the water surface elevation,
while higher resolutions overestimate it. Generally,

670the performance of the subgrid model tends to vary
spatially across different resolutions. However,
increasing the resolution results in a slight increase
in accuracy, which is a consequence of representing
the computational domain with more degrees of

675freedom.

Figure 5. Time series of water surface elevations at two selected NOAA gauges (Δx = 3km).

Figure 6. a) high water surface elevation for subgrid model (Δx = 3 km). b) high water surface elevation for standard solution
(Δx = 3 km). The location of station 2 is shown with blue circle. The total water height less than 0.05 m is not plotted.

10 A. BEGMOHAMMADI ET AL.
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By careful examination of the timing of peak flood-
ing for all these stations, it is evident that the peak of
inland flooding occurs between 16:00 and 22:00 on
November 12th. In contrast, the peak of coastal flood-

680 ing happens around 4:00 to 6:00 on November 12th.
This discrepancy highlights the delay in flooding attrib-
uted to pluvial and fluvial processes.

To better understand the impact of various drivers,
we applied subgrid methods at a grid resolution of Δx

685 = 3 km in three distinct simulations. The first simulation
used ADCIRC boundary conditions and meteorological
forces; the second simulation added spatially varying
rainfall and infiltration, and the third simulation added
river discharges. This sequential approach allowed for

690 a comprehensive exploration of the interplay between
various forces influencing the system under study.
Figure 8 displays the time series of surface elevation
for the three simulations and observed water surface
elevation for four selected USGS gauges. Additionally,

695 the local rainfall for each location is plotted on the
right y-axis. For stations 8, 17, and 19, the impact of
incorporating rainfall and river discharges on the simu-
lation results is evident. These stations are situated
near rivers and channels, making them susceptible to

700 the influence of river discharges. Conversely, station 29
is primarily affected by local rainfall alone. Located far
from rivers, channels, and disconnected from the bay,
station 29 is predominantly influenced by local rainfall
patterns. The findings indicate that without account-

705 ing for pluvial and fluvial factors (rainfall, infiltration,
and river discharges), there is no significant inland
flooding in the region. This suggests that inland flood-
ing is primarily influenced by hydrological drivers. Note
that the results consistently follow the same trend

710across all grid resolutions when the subgrid model is
applied.

Comparing the time series of surface elevations
for coastal flood gauges with those for inland flood
gauges (see Figures 4 and 7), it can be observed that

715the time series of surface elevation for the coastal
gauges (Figure 4) are less sensitive to changes in
grid resolution compared to the inland gauges
(Figure 7). This issue mainly arises because the runoff
process cannot be capture at the scale smaller the

720computational grid. However, these errors diminish
as finer resolutions are employed. whenever rainfall
contributes significantly to the peak surface eleva-
tion, grid dependency becomes a more significant
concern. For example, at Stations 17, 19, and 29,

725rainfall contributes to more than 60% of the peak
water surface elevation, resulting in evident grid
dependency. Conversely, at Station 8, water dis-
charge has a larger impact on the peak surface
elevation, resulting in nearly identical surface eleva-

730tions across all grid sizes, similar to the coastal
gauges.

3.5. Predictions of peak water levels

The high water mark (HWM) refers to the highest level
the water can reach during a flood event. Eta’s effects

735on water levels in Tampa Bay are described at the
selected stations in the previous sections, but here
more comprehensively at the 37 USGS stations and 5
NOAA tide and currents gauges. Combining observed
peak water levels from the sensors allows the creation

740of a more extensive inundation dataset. Then, the
models’ performance can be quantified through

Figure 7. Time series of water surface elevation for four selected USGS gauges.
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a comparison of peak to peak values between observa-
tions and predictions.

Three quantities are used to measure the model
745 performance for each simulation: (1) Root-mean-

square error (RMSE) is used as a measure of the magni-
tude of error (and is calculated based on peak water
levels for all stations); (2) best-fit slope (a from y = ax
line), which describes how well a regression line fits

750 a dataset, and (3) coefficient of determination (R2),
which indicates the overall performance of the model
to predict the magnitude of the peak surge, this is
calculated relative to the 1:1 line. The optimal agree-
ment for each of these metrics corresponds to

755 RMSE = 0, R2 = 1, and a = 1.
Figure 9 demonstrates the correlation between

observed and modeled HWMs, showing a slope
close to unity for the subgrid models. In contrast,
the slopes for standard solution counterparts are

760 larger than unity. For the standard solution on
either grid, the R2 values are much smaller than
those of the subgrid model. Examining standard
solutions reveals that increasing the resolutions
lead to enhanced model accuracy, with R2 values

765 increasing and RMSE decreasing significantly.
Comparing the subgrid model with different resolu-
tions, it is noticeable that the R2 values improve
slightly with increasing the resolution, suggesting
a better match with a discernible scatter. However,

770 it is worth noting that these error statistics could be
further improved with higher-resolution grids, fully
dynamic atmospheric forcing, inclusion of wind
waves, among other factors.

The blue line (—) is the best fit (y = ax) for subgrid
775model. The red line (- - - -) denotes the best fit (y = ax)

for standard solution.
Figure 10 provides an overview of the maximum

water depths experienced in Pinellas County during
Hurricane Eta. The results show that the patterns of

780water lever peaks are quite similar across all grid reso-
lutions. Despite the similarity in result patterns, it is
apparent that the higher resolution results depict
a low-depth flood in the middle of the domain that is
absent in the coarser resolution. This disparity primar-

785ily arises from the inability of the coarser grid to cap-
ture small-scale runoff processes, pointing out these
small differences. In Tampa Bay, flood depths range
from 1 to©2.5 m near the bay, decreasing as we move
farther inland. As expected, flooding is less severe

790farther away from the bay.

3.6. Computational cost

The subgrid model introduced here does come with an
extra computational cost for each simulation.
However, we tried to minimize this extra cost via cer-

795tain improvements to the model to reduce the com-
putational burden. One such improvement is the
incorporation of lookup tables, which effectively low-
ers the model’s computational requirements. A pre-
storage lookup table is implemented to store the

800volume and the wet area of the cells as a function of
surface elevations. Lookup tables can be built once
and for all cells as a pre-processing step. This imple-
mentation is seamlessly integrated into the code,

Figure 8. Time series of water surface elevation for four selected USGS gauges. ’OC’ represents the first simulation, which includes
ADCIRC boundary conditions and meteorological forces. ’OC+Rain’ denotes the second simulation, where spatially varying rainfall
and infiltration are incorporated into the model. ’Discharge+OC+Rain’ indicates the simulation where river discharges are
considered in addition to the conditions in simulation 2.
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Figure 9. Comparison of observed and predicted peak waterlevels for Eta2020.Eta2020.The solid black circles(•). are the peak of the
water levels predicted by each model’s resolution.Resolution.The black solid line(—) is 1:1 line.

Figure 10.Modeled maximum water depths in Pinellas County during hurricane eta for water depths greater than 0.5 m. From left
to right, the panels show Δx = 0.75 km, Δx = 1.5 km, and Δx = 3 km. All subgrid results are downscaled based on high-resolution
bathymetry data (3 m resolution).
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making it more user-friendly. Note that implementing
805 the lookup table within the code does add computa-

tional cost, but it provides the advantage of enabling
CoaSToRM to run on any grid resolution effortlessly.
This flexibility in handling various grid resolutions is
a significant benefit of the model.

810 Table 2 displays the reported computational costs
(walltime duration) for both the subgrid and the stan-
dard models. We also show the computational cost
when the lookup table is not utilized, along with the
additional time taken by the code to generate the

815 lookup table. Note that without lookup tables, the
model must compute all integrals in the subgrid levels
numerically, leading to computational expense. Firstly,
it is apparent that without the use of the lookup table,
the computational cost increases significantly.

820 Additionally, the introduction of the subgrid model
with lookup table results in a marginal rise in the
computational cost. However, this enhancement sig-
nificantly improves the accuracy of the results. For
instance, with the coarsest grid (Δx = 3km), the R2

825 value was approximately 0.03. By incorporating the
subgrid model, the computational time increases by
a few minutes, but the R2 value rises to 0.70, which
represents a considerable improvement. Overall, com-
paring subgrid models with different resolutions, we

830 find that a 3-km subgrid simulation runs roughly 50
times faster than a 0.75-km subgrid simulation while
maintaining accuracy. Note that if the computational
cost of building lookup tables is not taken into
account, the subgrid model contributes an increase

835 of approximately 2% to 35% in the overall computa-
tional cost. All simulations are performed on a single
core with a 2.8 GHz Intel CPU.

In general, while subgrid corrections add extra com-
putational cost to the model, the subgrid results on

840 coarser grids demonstrate greater accuracy compared
to standard

solutions. As a result, for achieving a desired level of
accuracy (e.g. an acceptable RMSE value), the subgrid
model can be applied on a coarser grid, leading to

845 faster computations. Consequently, considering both
accuracy and computational cost, the subgrid model
offers a significant gain in computational efficiency.

4. Discussion and conclusions

In this study, a subgrid method was employed for
850 compound flood modeling, aiming to enhance flood

prediction while performing on a relatively coarse grid

resolution, which offers considerable computational
efficiency. Here, we adopt the model presented by
Kennedy et al. (2019) but with additions for spatially-

855varying precipitation, infiltration, friction, atmospheric
pressure, and wind stress. The final governing equa-
tions are discretized with a semi-implicit finite-differ-
ence method on a staggered C-grid (Arakawa and
Lamb 1977).

860Several key considerations emerge from our
findings.

(1) First, decisions about grid resolution are essential.
Increasing the resolution can reduce the compu-
tational cost while maintaining accuracy, but the

865grid size must provide the model with the ability
to represent the real dynamics of the problemwith
a sufficient degree of freedom. For instance, we
have assumed that each computational cell
(coarse cell) has a single surface elevation (one

870degree of freedom), which is equal to the average
surface elevation within the coarse cell area. If the
variation of surface elevation within the coarse
cell is not large, then the assumption is valid.
However, in practical scenarios, when employing

875an excessively large cell that exhibits a significant
variation in surface elevation at the subgrid level,
a single surface elevation cannot adequately
represent the large gradient of surge elevation
within that coarse cell. Consequently, the cell

880would require a higher degree of freedom for the
surface elevation (using more than one surface
elevation to represent the cell surface elevation)
to accurately represent this. The choice of the
coarse grid is mainly based on the application

885context.
(2) Second, drawing from previous subgrid modeling

experiences, challenges related to the representa-
tion of flow between hydraulically disconnected
regions were noted by Casulli (2019). Although

890solutions such as incorporating cell clones have
been proposed by Begmohammadi et al. (2021),
this study uses a blocking solution for simplicity
and practicality. The framework has the potential
to update with more complex methodology in the

895future.
(3) Third, a temporally constant, spatially varying

infiltration method is employed in the model.
This method offers several advantages, including
a more realistic representation of infiltration pat-

900terns across the study area compared to uniform
infiltration rates. However, it is essential to
acknowledge that this method still simplifies com-
plex hydrological processes and may not fully
account for all influencing factors. In the future,

905we plan to enhance the model by implementing
more sophisticated infiltration methods that con-
sider additional variables such as soil

Table 2. The table presents computational costs, with all times
expressed in decimal minutes.
Grid size (km) Δx = 3 Δx = 1.5 Δx = 0.75

Subgrid model with lookup table 0.0695 0.2292 3.7211
Standard solution 0.0231 0.1933 3.6905
Lookuptable computational cost 0.0389 0.0358 0.0306
Subgrid model without lookup table 12.0414 29.9361 68.1331
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characteristics, land cover types, and rainfall
intensity, aiming to further improve the accuracy

910 and reliability of the model’s predictions.
(4) Fourth, it is important to note that aspects such as

stormwater drainage and wave effects were not
included in the current model. However, there is
potential for future versions of the model to incor-

915 porate these effects.
(5) Fifth, the model is written in a single core and it is

appropriate to be used for the coarse resolution
simulations with the subgrid approach. We plan to
includeMPI or OpenMP in future versions to enhance

920 parallel processing capabilities. Note that for the
example presented herein, it is feasible to execute
the model at resolutions finer than 750m, contin-
gent upon the availability of suitable hardware.

While acknowledging inherent limitations, the metho-
925 dology presented serves as a foundational framework

for compound flooding simulation, with ongoing
efforts aimed at continuous improvement to address
practical considerations and advancements in the field.

Finally, the model performance is evaluated for
930 Hurricane Eta 2020 in Tampa Bay, FL. Here are the

major findings:

(1) Various types of forcing are important in com-
pound flooding. We demonstrated that
a comprehensive model, which simultaneously

935 considers surge and tidal boundary conditions,
meteorological forces, precipitation, infiltration,
and spatially-varying friction, is essential for
studying compound flooding along coastlines.
We showed that incorporating meteorological

940 forces, precipitation, and infiltration on the top
of tidal boundary conditions improves the peak
surge prediction at four NOAA gauges along the
coastline. Overall, at coastal locations, the
hydrodynamic forces are the primary drivers to

945 the peak water levels but hydrologic forces can
contribute as much as 5% of the peak water
levels. Conversely at inland locations, the hydro-
logic forces become important, and they contri-
bute over 85% to the peak water levels.

950 (2) Subgrid corrections improve the accuracy of the
model by resolving features that are much smaller
than the grid scale. We showed that the utiliza-
tion of the subgrid model better captures the
effects of narrow channels and small features

955 along the coastlines compared to the standard
solution at the same grid resolution. The perfor-
mance of the subgrid model was evaluated in
real scenarios, such as the inundation caused by
Hurricane Eta. The subgrid model exhibits

960 improvements across all statistical measures,
encompassing the RMSE error, the R2 value,
and the slope of the linear best fit, which are

used to assess the model’s predictive capacity
for the peak water levels at various locations. For

965the grid sizes investigated in this study (3 to
0.75-km), the subgrid model enhances the R2

and RMSE values from approximately 0.03 to
0.25 and 4.95 to 2.84, as seen in the standard
solutions, to around 0.70 to 0.78 and 1.13 to 0.93

970for the subgrid model, respectively.
(3) For a given grid configuration, integrating subgrid

corrections leads to a moderate increase in compu-
tational expenses. In our current implementation,
the incorporation of the subgrid model raises the

975computational cost by 2% to 35%

on the same grid when the lookup table is employed
externally to the model. Although introducing lookup
tables does come with an associated computational
cost, it substantially enhances the convenience of

980using the code. Therefore, the additional computa-
tional expenses are minor when weighed against the
accuracy gains achieved by applying subgrid correc-
tions to coarser grids. Furthermore, we have demon-
strated the necessity of utilizing lookup tables, as the

985subgrid model without them results in a substantial
computational expense. In addition, the semi-implicit
discretization used here allows for larger time steps,
which can lead to significant computational efficiency
gains. It reduces the computational burden and makes

990simulations faster, enabling the study of larger and
more intricate domains (Casulli 1990).

These findings have implications for coastal flood
forecasting, where a large number of ensemble fore-
casting may be run in a short time and risk assessment,

995where thousands of realizations may be required, as
the proposed model offers higher accuracy (via better
representation of small-scale flow pathways and bar-
riers) and/or higher efficiency (via faster run-times by
using coarsened grids).
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Appendix A. Measurement Locations 1280

Table A1. Locations and identifiers NOAA tides and currents stations.

Identifier Station ID Name

1 8726724 Clearwater Beach, FL

2 8726520 Petersburg, Tampa Bay, FL
3 8726607 Old Port Tampa, FL
4 8726674 East Bay, FL

5 8726384 Port Manatee, FL

Table A2. Locations and identifiers for USGS observations during eta 2020. Locations also shown in Figure 2. Model results were
explored via hydrographs (figure at selected water-level sensors with identifiers in the first column.

Identifier Station ID Identifier Station ID Identifier Station ID

1 02299950 2 02300017 3 02300017
4 02300033 5 02300042 6 02300075
7 02300082 8 02300095 9 02300300

10 02300500 11 02300700 12 0230703
13 02301635 14 02301718 15 02301721

16 02301738 17 02301740 18 02301745
19 02301750 20 02301739 21 02306028

22 02306647 23 02307000 24 02307032
25 02307496 26 02307668 27 02307669
28 02307780 29 02308861 30 02308870

31 02308889 32 02308950 33 02309110
34 02309415 35 02309421 36 02309425

37 023060013
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