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Abstract
A reaction limited by standard diffusion is simulated stochastically to illustrate how
the continuous time random walk (CTRW) formalism can be implemented with min-
imum statistical error. A step-by-step simulation of the diffusive random walk in one
dimension reveals the fraction of surviving reactants P(t) as a function of time, and the
time-dependent unimolecular reaction rate coefficient K(t). Accuracy is confirmed by
comparing the time-dependent simulation to results from the analytical master equa-
tion, and the asymptotic solution to that of Fickian diffusion. An early transient feature
is shown to arise from higher spatial harmonics in the Fourier distribution of walkers
between reaction sites. Statistical ‘shot’ noise in the simulation is quantified along
with the offset error due to the discrete time derivative, and an optimal simulation time
interval�t0 is derived to achieve minimal error in the finite time-difference estimation
of the reaction rate. The number of walkers necessary to achieve a given error tolerance
is derived, andW = 107 walkers is shown to achieve an accuracy of ±0.2% when the
survival probability reaches P(t) ∼ 1

3 . The stochastic method presented here serves
as an intuitive basis for understanding the CTRW formalism, and can be generalized
to model anomalous diffusion-limited reactions to prespecified precision in regimes
where the governing wait-time distributions have no analytical solution.
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1 Introduction

Relaxation dynamics of disordered systems can often bemodeled as a reaction process
limited by diffusion. If the diffusion is standard and obeys Fick’s law, then the diffusion
coefficient is a constant, and the reactant concentrationwill decay exponentially at long
times. Such reactions are quite common and include (pseudo)unimolecular chemical
reactions in solution at room temperature.On the other hand, diffusion inmore strongly
disordered systems can be governed by a diffusion coefficient with explicit time-
dependence, frequently containing a power-law in time. When such diffusion is the
limiting step of a reaction, the reactant concentration decays more slowly than an
exponential at long times.One example of this is the stretched exponential Kohlrausch-
Williams-Watts relaxation. These slow relaxations have been observed in a wide range
of fields including conductivity in amorphous solids [1], photocurrent in organic and
inorganicmaterials [2], and dielectric relaxation in polymers [3] among others, and can
apply to both unimolecular and bimolecular reactions [4]. A microscopic model that
can describe the dynamics of both standard and anomalous diffusion is the continuous-
time random walk theory (CTRW) [5], whereby each step of the diffusive random
walk is governed by a wait-time distribution function ψ(τ) predicting the probability
ψ(τ)dτ for the subsequent step to be taken within dτ of the wait time τ . In spite of
the power of the CTRW theory, this formalism has, to date, been solved primarily with
analytical expressions and even then, for only a limited number of proposed analytical
wait time distribution functions [4, 6–8].

Therefore, thisworkwill stochastically simulate thewell-known case of a diffusion-
limited reaction limited by standard diffusion in order to validate the stochastic
simulation method and quantify its accuracy. CTRW theory was first proposed by
Montroll and Weiss [9] as a generalized framework for describing arbitrary diffusion
processes. Here we focus on the simplest choice for ψ(τ), a Poissonian wait time
distribution. We then perform stochastic simulations of the CTRW by generating an
appropriately distributed sequence of wait times for a statistical ensemble of walkers
while querying the walk at regular intervals in measurement time. Using the results
from these stochastic studies, we deduce key descriptors of the diffusion in-progress,
such as the time-dependent normalized distribution of walkers p(x, t), and, in the
presence of a reaction, the time-dependent fraction of surviving walkers P(t) and
reaction rate coefficient K (t). Finally, we confirm the accuracy of our simulations by
comparing to the analytical solutions of the master equation for standard diffusion,
which asymptotically arrives at the Fickian limit. We find good agreement between
stochastic simulation and analytical results for the calculated rate coefficients K (t)
at the limit of infinitesimal step distance. The stochastic method described here can
be adapted to simulate arbitrary reaction kinetics starting from the initial transient
response at t = 0 to the final asymptotic relaxation. Cases of interest include an inho-
mogeneous initial distribution of reactants, anomalous diffusion limited reactions [4,
6], and surface reaction kinetics, such as the Langmuirinshelwood andEleyidealmech-
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anisms [10]. The underlying CTRW formalism has proven useful in many fields that
describe dynamics in complex systems, such as biophysics [11, 12], and the CTRW
model forms the microscopic basis for complex kinetics that can be asymptotically
described with fractional calculus [13].

2 RandomWalk Formalism

This sectionwill review the originalCTRWformalism for the sake of completeness and
establish notation specific to this manuscript. For readers unfamiliar with randomwalk
theory, the authors highly recommend the classic introductory review text byMontroll
[14], and subsequently the foundational Montroll & Weiss paper which introduced
CTRW theory [9], with the key results of CTRW theory summarized succinctly by
Shlesinger [1] and discussed in greater depth by Klafter and Sokolov [15].

In CTRW,walkers move in space-time by following the same rules at each step. The
rules that describe a single step of a walker therefore determine the dynamics of the
entire random walk and are specified through functions p(ξ), the probability density
function for a relative displacement vector ξ at a given step, and ψ(τ), the probability
density for the wait time τ between successive steps. These probability functions are
normalized [16]:

∫
Rn

p(ξ)dξ = 1 (1)

where n is the dimensionality of the displacement vector and

∫ ∞

0
ψ(τ)dτ = 1. (2)

In this work, the space will be simplified to a 1D lattice, and the step displacement
ξ discretized to ra, where r is an integer and a the lattice spacing. In this regard, the
spatial probability density is replaced by a probability mass function p(ξ) for discrete
relative positions ξ , and the normalization integral of Eq. (1) by a discrete sum over
these relative lattice positions:

∑
ξ

p(ξ) = 1. (3)

The probability distribution in step time ψ(τ), however, remains continuous, hence
the name attributed to this theory.

The nth step probability mass function pn(x) to find the walker at position x after
n ≥ 1 steps recursively satisfies the convolution sum [9]:

pn(x) =
∑
ξ

pn−1(x − ξ)p(ξ) (4)
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where p0(x) describes the initial spatial probability mass function of the walkers at
the start of the randomwalk. For example, p0(x) = δ(x)would represent a Kronecker
delta function if the walker starts at the origin. In the absence of any mechanism to
annihilate walkers, the total probability is conserved at every step,

∑
x

pn(x) = 1. (5)

Analogous to the spatial recursion of Eq. (4), the probability density ψn(t) to take the
nth step at time t is recursively defined with a convolution integral [9],

ψn(t) =
∫ t

0
ψn−1(t − τ)ψ(τ)dτ (6)

Using pn(x) and ψn(t), one can determine the probability mass function q(x, t)
that the walker landed at position x exactly between time t and t + dt , regardless of
how many steps it took to get there [9].

q(x, t)dt =
∞∑
n=0

pn(x)ψn(t)dt (7)

We further define the idling probability φ(t) not to have taken a subsequent step within
a time interval t as [9]

φ(t) = 1 −
∫ t

0
ψ(τ)dτ (8)

The product of q(x, t ′) and φ(t − t ′) therefore gives the probability that the walker
arrived with any integer number of steps at position x some time t ′ earlier and has
remained idle thereafter without taking any subsequent steps. Thewalker’s normalized
probability function p(x, t) to be at position x at time t is therefore the convolution
over all possible idling times of arriving at that position and subsequently not moving
[9]

p(x, t) =
∫ t

0
q(x, t ′)φ(t − t ′)dt ′ (9)

3 Model of Unimolecular Reaction

A simple representation of a diffusion-limited reaction can now be simulated stochas-
tically. The diffusion of the reactant is simulated by the random walk, and the reaction
is modeled as a contact interaction with site specific annihilation of the walkers at trap
sites ±xtr/2 representing a trap density ntr = 1/xtr . In the language of a bimolecular
reaction, the minority reactant is represented by the mobile walkers and the majority
reactant is represented by stationary traps that annihilate walkers upon contact. Since
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the concentration of annihilation sites is unchanged, the reaction is effectively uni-
molecular. In keeping with the unimolecular nature of the reaction, it is assumed that
the traps can annihilate an arbitrary number of walkers, resulting in a minority reactant
concentration that vanishes at long times, and a majority reactant concentration that
remains unchanged.

The reaction modifies the spatial recursive relation of Eq. (4) and the probability
conservation law of Eq. (5) from the standard random walk formalism. The spatial
recursive relation will remain valid only in the spatial interval between traps, whereas
the traps will force the concentration of walkers at each trap site±xtr/2 to zero, acting
as nodes in the spatial distribution function:

pn(x) =
{∑

ξ pn−1(x − ξ)p(ξ) for |x | < xtr
2

0 for |x | ≥ xtr
2

(10)

A unitless trap distance S = xtr/a counts the number of steps of size a between the
two traps, where the continuum limit with inifinitesimal step size is reached as S → ∞
for fixed xtr .

Note that under the reactive boundary conditions of Eq. (10), the normalization
condition in Eq. (5) is no longer necessarily valid at increasing step index, since as n
increases more walkers can reach the reactive trap sites where their contribution to the
total probability is annihilated. Summing p(x, t) from Eq. (9) over all positions gives
the time dependent fraction of surviving walkers P(t):

P(t) =
+xtr/2∑

x=−xtr/2

p(x, t) (11)

And from this, the rate coefficient K (t) for a unimolecular reaction is calculated [6]:

K (t) = − 1

P(t)
× d

dt
P(t) = − d

dt
ln P(t), (12)

which by inspection would yield a constant rate coefficient K if P(t) were an expo-
nential decay.

To validate the stochastic methods employed here, the reaction coefficient K (t)
deduced from three different methods will be compared. First, Sect. 4 details the
stochastic description of the diffusion-limited reaction according to CTRW. Second,
Sect. 5 uses the master equation to solve for the same. Finally, Sect. 6 compares the
well-known asymptotic rate constant for reactions limited by simple Fickian diffu-
sion. In each of the three descriptions, there will be an initial distribution of walkers
normalized to the Kronecker delta function at the origin

p(x, 0) = δ(x). (13)

Unlike prior CTRW analyses which deliberately randomize the starting position of
the walker [4, 6, 17–19], here the starting condition δ(x) represents many equally
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weighted Fourier components of the distribution so that this initial response can be
quantified. To illustrate the simulation with the simplest symmetric random walk, we
choose the characteristic probability function

p(ξ) =

⎧⎪⎨
⎪⎩
0.5 for ξ = a

0.5 for ξ = −a

0 otherwise

(14)

and a Poissonian wait time distribution [6, 19]

ψ(τ) = 1

T
e−τ/T , (15)

where T is the characteristic average wait-time between steps of the walkers.

4 Stochastic Simulation of Diffusion-Limited Unimolecular Reaction

Amethod for stochastic simulation of a randomwalk is nowdemonstrated according to
the CTRW formalism. A time-dependent stochastic distribution of surviving walkers
p(x, t) normalized to unity at t = 0 is generated by simulating an ensemble of W
continuous time random walks for times 0 < t ≤ t f , where t f is the maximum
duration of the simulation. The walkers are indexed w ∈ 1, . . .W , and according
to Eq. (13) each step of the wth walker obeys the spatial p(ξ) and temporal ψ(τ)

distribution functions of Eqs. (14) and (15), respectively, as follows.
To determine the random wait-time interval τn between the (n− 1)th and nth steps

that obeys the wait-time distribution function, the inverse transform sampling method
is used [20]. The cumulative distribution function up to the wait-time τ will yield a
number between 0 and 1,

C(τ ) =
∫ τ

0
ψ(τ ′)dτ ′; 0 ≤ C(τ ) < 1. (16)

So a set of uniformly distributed random numbers is first created within the interval
yn ∈ [0, 1). Then the inverse of this set τn = C−1(yn) will contain random wait times
for single steps distributed according to ψ(τ). For the Poissonian ψ(τ) specified in
Eq. (15), the cumulative distribution is

C(τ ) = 1 − e− τ
T (17)

with inverse,

C−1(y) = −T ln (1 − y). (18)

A stochastic simulation of the CTRW formalism will now provide the position-
and time-dependent probability distribution p(x, t). First, a set of random wait-time
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Fig. 1 a Stochastic algorithm flow chart for thewth walker to determine the position xw
r at the r th reporting

time, as well as the age of the walker Aw and kill index κw when the walker is annihilated by reacting
at the trap site ±xtr/2. b If the spatial distribution does not need to be recorded, a simplified algorithm
accelerates calculation of the age Aw and kill index κw for each walker, without tracking the position at
reporting times tr

intervals τw
n and random step displacements ξw

n is generated for the n steps of the wth
walker to obey the probability distributions ψ(τ) and p(ξ), respectively. Assume a
set of R reporting times of interest tr indexed by r ∈ 1, 2, ...R.

The flow chart of Fig. 1a illustrates how the instantaneous position xw
r of the wth

walker can be determined at reporting times tr . Let the position of thewalker of interest
for the nth step be notated with the variable x ,

x =
n∑

i=0

ξw
i , (19)

and let the position at reporting time tr be recorded as xw
r . Two asynchronous time

scales are tracked, namely the cumulative step time θ after n steps,

θ =
n∑

i=0

τw
i , (20)
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and the reporting time tr . Correspondingly, two asynchronous time increment loops
are run in Fig. 1a: one which increments the step index ‘n = n + 1’ if the cumulative
step time θ is less than the current reporting time, and one which increments the
reporting time index ‘r = r+1’, otherwise. Both loops have asynchronous termination
conditions: the step-increment loop is terminated if thewalker lands on a trap x = ±xtr ,
and the reporting time increment loop is terminated if the final reporting time is
reached. Either termination condition sets the age of the walker Aw = θ and the kill
index κw = n of how many steps that walker took to reach the trap. Note that the
0th wait time τw

0 and step displacement ξw
0 represent the starting time and starting

position of the wth walker.
Averaging the ensemble of xw

r positions for all walkers at a given reporting time tr
yields the distribution p(x, tr ):

p(x, tr ) = 1

W

W∑
w=1

δ(x − xw
r )
(Aw − tr ) (21)

where δ(x) is the Kronecker delta and 
(x) is the Heaviside step function that counts
only surviving walkers whose age exceeds the reporting time Aw ≥ tr . An example
of the statistical ensemble average p(x, tr ) is plotted with dots in Fig. 2, where the
distribution at early times before the walkers reach the traps resembles a Gaussian,
and the distribution at later times converges to a cosine function with nodes at the traps
at xtr = ±1/2. The total probability of survival P(tr ) as a function of time can then
be deduced from the spatial summation of Eq. (21) per Eq. (11).

If the spatial distribution p(x, tr ) is not needed, a faster and more computationally
efficientway to directly deduce the survival probability P(tr ) can be used, as illustrated
in Fig. 1b. This alternative approach is particularly helpful when only time derivatives
of the survival probability need to be estimated, in which case the r ∈ (1, 2, . . . R)

indexed reporting times will be taken at regular intervals tr = r
t f
R defined in terms of

a total simulated time duration t f . From the resulting ages Aw, P(tr ) can be computed
as follows

P(tr ) = 1

W

W∑
w=1


(Aw − tr ) (22)

From either method of determining the stochastic survival probability P(tr ), the
reaction rate coefficient K (tr ) can be approximated using a discrete double-sided
derivative approximation to the logarithmic derivative in Eq. (12):

K (tr ) = − 1

P(tr )

P(tr+1) − P(tr−1)

2�t
. (23)

Employing the displacement probability p(ξ) of Eq. (14) and the Poissonian wait time
distribution ψ(τ) of Eq. (15), the resulting fraction of surviving walkers P(tr ) and
reaction rate K (tr ) are plotted with dots in Fig. 3 panels (a) and (b), respectively, with
panel (c) zooming into the noise around the asymptotic value of K (tr ). In addition, the
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Fig. 2 Stochastic simulations of p(x, tl ) (circles) at different times compared to the analytical solution
p†(x, t) in the spatial continuum limit (lines) for a diffusion-limited unimolecular reaction with diffusion
constant D = 1, trap position xtr = 0.5, number of steps between the origin and traps S = 20, giving a
lattice spacing a = 1/20, wait-time distribution time constant T = 1/200, and characteristic reaction rate
K0 = π2/4. The number of walkers is W = 106. The plots of the continuum limit are generated from
Eq. (33) where the sum is terminated at | j | ≤ 100. The times shown represent K0t ≈ 0.06, 0.25, 1.0, and
2.0 demonstrating rapid decay of all but the lowest cosine harmonic for K0t � 1

statistical average 〈K (t)〉over a rangeof data r = {1 . . . R} such that J < K0tr < J+1
for integer J is plotted with open circles,

〈K (t)〉 = 1

R

R∑
r=1

K (tr ), (24)

and the standard deviation δK (t) over the same range is plotted with error bars,

δK (t) = 1

R

R∑
r=1

[K (tr ) − 〈K (t)〉]2. (25)

5 Master Equation for Diffusion-Limited Unimolecular Reaction

Tovalidate the accuracy of these stochastic simulations, the next sectionwill use amas-
ter equation to derive an analytical expression for the same diffusion-limited reaction
in the spatial continuum limit. In this limit, the step distance a and the characteristic
step wait time T both vanish while the limit value of the corresponding diffusion coef-
ficient D remains constant and finite. The same spatial and temporal variable names
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Fig. 3 Comparison between stochastic simulation and analytical solution for a diffusion-limited unimolecu-
lar reactionwith Poissonian wait-time distribution functionψ(τ). a Stochastic P(tr ) and analytical P†(t) in
log-lin plot versus time. b Stochastic K (tr ) and analytical K †(t) in lin-lin plot versus time. c The stochastic
K (tr ), average 〈K (t)〉 and standard deviation ±δK (t) of the local ensemble of statistical values are plotted
as dots, open circles, and error bars, respectively. The standard deviation of the noise in the stochastic
simulation δK (t) matches well with the analytical noise prediction δK †(t) of Eq. (45) (red dashed line).
The simulation employs a normalized diffusion constant D = 1 and trap position xtr = ±1/2, with the
number of steps between the origin and the traps S = 40, giving a lattice spacing a = 1/40, wait-time
distribution time constant T = 1/800, and characteristic reaction rate K0 = π2/4. The number of walkers
is W = 107

will be used as in the previous section, with probabilities and rates superscripted with
a dagger to differentiate the analytical solution from the statistically derived case, i.e.
p†(x, t), P†(t), and K †(t).

CTRW theory can determine the appropriate infinitesimal step parameters to com-
pare with the stochastic random walk. Montroll [16] showed that any CTRW with a
wait time distribution having a first moment and a spatial step distribution having both
first and secondmoments behaves like standard diffusion at long times [9]. The explicit
relationship of these moments to the diffusion coefficient [16], is shown below for the
spatial and wait-time distributions under consideration from Eqs. (14) and (17):

〈ξ 〉 =
∞∑

ξ=−∞
ξ p(ξ) = 0, (26)

〈ξ2〉 =
∞∑

ξ=−∞
ξ2 p(ξ) = a2, (27)

〈τ 〉 =
∫ ∞

0
τψ(τ)dτ = T , (28)
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from which the diffusion coefficient can be determined, accordingly,

D = 〈ξ2〉 − 〈ξ 〉2
2〈τ 〉 = a2

2T
= x2tr

2S2T
. (29)

This relation can be inverted to choose different discrete random walk parameters
a and T that all correspond to the same diffusion constant D. For example, as the
lattice spacing a between step sites vanishes and the number of steps S increases, the
characteristic wait time of the Poisson distribution should vanish as

T = a2

2D
= x2tr

2DS2
, (30)

whereby D remains fixed.
Now that the diffusion coefficient corresponding to the continuum limit has been

determined, the analytical solution can be derived for the Fickian diffusion problem
between two symmetrically positioned traps. First in the absence of traps, the standard
master equation for Fickian diffusion,

∂G†(x, t)
∂t

= D ∇2G†(x, t), (31)

has the well-known time-dependent Gaussian solution for the specialized 1D case
where all walkers start at the origin

G†(x, t) = a√
4πDt

e− x2
4Dt , (32)

where the lattice spacing factor a normalizes the continuous probability density to
match the discrete probability per lattice site.

In the presence of a reaction, the analytical solution to the Fickian master equation
Eq. (31) must vanish at the reactive traps x = ±xtr/2. As illustrated in Fig. 4, a linear
superposition of periodically translated functions G(x− j xtr, t)with alternating signs
(−1) j for integers j ∈ (. . . − 2,−1, 0, 1, 2, . . .), leads to a solution having nodes at
x = ±xtr/2, while still satisfying homogeneous diffusion between −xtr/2 < x <

xtr/2:

p†0(x, t) =
∞∑

j=−∞
(−1) j G (x − j xtr, t) |x | ≤ xtr/2 (33)

Figure4 illustrates the positive (blue) and negative (red) contributions of these trans-
lated Gaussians for this case, with the solution for p†0(x, t) shown in the interval
−xtr/2 < x < +xtr/2 (black).

Using Fourier analysis (derivation in “Appendix”), the explicit spatial dependence
in the domain x < |xtr/2| is observed to consist of odd cosine harmonics with nodes
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Fig. 4 Fickian master equation in the continuum approximation p†(x, t) of the probability distribution
(black curve) for a diffusion-limited reaction with walkers all starting at the origin and reactive trap sites
at x/xtr = ±1/2 indicated by vertical lines. Conceptually, p†(x, t) can also be represented as a linear
superposition of the displaced positive (blue) and negative (red) Gaussian solutions to the homogeneous
diffusion equation Eq. (31). Such a periodic superposition guarantees nodes at x = ±xtr/2

at x = ±xtr/2 whose higher harmonics (2ν + 1) decay much faster with time:

p†(x, t) = 1

2xtr

∞∑
ν=0

exp

{
−

[
π(2ν + 1)

xtr

]2
Dt

}

× cos

[
(2ν + 1)

π

xtr
x

]
.

(34)

The decay rate of the fundamental ν = 0 term is K0 = D(π/xtr)2, with higher order
cosine harmonics vanishing much faster with decay rates Kν = (2ν + 1)2K0. For
example, the ν = 1 decay term is already e−8 times smaller than the ν = 0 term when
K0t = 1. Reexamination of Fig. 2 clearly shows how at increasing time intervals the
solution rapidly decays to the fundamental cosine distribution.

Spatially integrating over the interval between the traps, the time-dependent fraction
of surviving walkers becomes

P†(t) = 4

π

∞∑
ν=0

(−1)ν

2ν + 1
exp

{
−

[
π(2ν + 1)

xtr

]2
Dt

}
. (35)

In Fig. 3, this analytical solution P†(t) is observed to lie directly on top of the stochastic
solution P(t), confirming its validity. The unimolecular reaction coefficient for the
infinitesimal step limit K †(t) is defined identically to Eq. (12), and, again, Fig. 3 shows
excellent agreement between the analytical K †(t) and the noise averaged value 〈K (t)〉.
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6 Asymptotic Limit for Diffusion-Limited Unimolecular Reaction

The asymptotic limit for the infinitesimal step probability distribution p†(x, t) is
dominated by the slowest decaying ν = 0 term in the sum of Eq. (34). The spa-
tial dependence at long times is therefore a simple cosine with nodes at x = ±xtr/2
and an antinode at x = 0:

lim
t�0

p†(x, t) = 1

2xtr
exp

[
−

(
π

xtr

)2

Dt

]
cos

(
π

xtr
x

)
(36)

The spatial integral of this yields a simple exponential decay for the time dependent
fraction of surviving walkers:

lim
t�0

P†(t) = 4

π
exp

[
−

(
π

xtr

)2

Dt

]
(37)

Substituting this asymptotic behavior into Eq. (12), gives the expected time-
independent unimolecular rate coefficient at large t ,

lim
t�0

K †(t) = K0 = D

(
π

xtr

)2

= 1

2T

(
πa

xtr

)2

= 1

2T

(π

S

)2
. (38)

This classical value for the Fickian reaction rate coefficient is represented in Fig. 3b
as a horizontal line at later times.

7 Noise and Error Analysis of Statistical Simulation

When comparing the stochastic solution K (t) to the analytical solution in the contin-
uum limit K †(t) in Fig. 3b and c, there are two principle sources of inaccuracy, both
arising from the finite time difference approximation to the derivative dP(t)/dt of
the discontinuously valued stochastic survival probability P(t). The first inaccuracy
is the finite time difference error in approximating the true derivative. The second is
statistical noise in counting the number of walkers annihilated within the time interval
�t over which the derivative is estimated. Whereas the first source of error is min-
imized by making the sampling time interval �t as small as possible, the latter is
minimized by making this time interval �t as large as possible. By quantifying both
sources of error, an optimal time difference interval can be determined for evaluating
derivatives that will minimize error in the stochastic estimation of the reaction rate
coefficient K (t). The error analysis belowwill be particularly important for non-trivial
wait-time distributions ψ(τ)whose probability distributions P(t) and/or reaction rate
coefficients K (t) cannot be expressed analytically and must therefore be determined
via stochastic simulation, only.

First, the finite-difference error in estimating the reaction coefficient will be quan-
tified. The finite-difference derivative approximation to the reaction coefficient in
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Eq. (23) will always overestimate the exact analytical solution by a small offset
since the odd derivatives of a decay function are always negative [21], whereby
P ′(t), P ′′′(t) < 0 in the Taylor expamsion:

P(t+�t)−P(t−�t)
2�t = P ′(t) + �t2P ′′′(t)/6 + . . . (39)

The overestimate ε
†
K (t) in the reaction coefficient K (t) can therefore be expressed as:

ε
†
K (t) = �t2

6
|P ′′′(t)|
P(t) + · · · . (40)

For exponential-like decays with slowly varying decay coefficient K (t) each succes-
sive derivative can be approximated as Pn+1(t) � −K (t)Pn(t) so that this relative
offset can be approximated as

ε
†
K (t)

K (t)
= �t2

6 K 2(t) + · · · (41)

Thus, the systematic discrete derivative error will diverge as �t2 and would be mini-
mized in the limit of small �t .

On the other hand, the statistical noise δK (t) in estimating K (t) is minimized under
larger sampling windows as �t increases. The total noise fraction in the reaction
coefficient δK (t)/K (t) can be expressed as the quadrature sum of the noise fractions
of the numerator and denominator in Eq. (12):

[
δK (t)

K (t)

]2
=

[
δ
dP(t)
dt

d P(t)
dt

]2

+
[
δP(t)

P(t)

]2
, (42)

where the prefix δ represents the statistical noise for a given parameter. The noise in
both terms in the right of Eq. (42) can be determined from the statistical fluctuation
law (δN )2 = N , where N corresponds to the relevant number of walkers for that term.
To arrive at an expression for the first term, the relevant number is N = 1

2�t | dP(t)
dt |W ,

the average number of walkers that relax in the time interval 2�t between points
used in calculating the double-sided finite difference derivative in Eq. (23), and δN =
δ
dP(t)
dt W is the statistical fluctuation in the number of walkers within that time interval

interval 2�t . Inserting both expressions into the fluctuation law gives:

[
δ
dP(t)
dt W

]2 = 1

2�t
| dP(t)

dt |W . (43)

For the second term of Eq. (42), the fluctuation law again holds, where N = P(t)W is
the average number ofwalkers at time t , and δN = δP(t)W is the statistical fluctuation
in that number of walkers:

[δP(t)W ]2 = P(t)W . (44)
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Inserting both expressions back into Eq. (42) results in the following analytical pre-
diction of noise in the stochastically simulated reaction coefficient,

δK †(t)

K †(t)
=

√
1

P†(t)W

[
1

2K †(t)�t
+ 1

]
≈

√
1

P†(t)2K †(t)W�t
. (45)

For any useful relaxation study, the time interval 2�t between discrete datapoints
used for the numerical derivative should be much smaller than the characteristic decay
time 1/K †(t), such that 2K †(t)�t � 1, hence the validity of the approximation to
the right. Figure3 plots this analytical estimation of the noise δK †(t) from Eq. (45)
(red dashed line), accurately predicting the standard deviation of the stochastic noise
δK (t) in the random walk simulation.

To find the value of �t that minimizes the combined error from the noise δK †(t)
and offset ε†K (t), the following expression needs to be minimized with respect to the
choice of discrete time interval �t for the finite difference derivative:

d

d(�t)

[
δK †(t)

K †(t)
+ A

ε
†
K (t)

K †(t)

]
= 0. (46)

A multiplicative factor A � 1 has been added to the offset term, so that the offset
amplitude is buried well within the noise. Assuming a slowly varying reaction rate
K †(t) so that its derivatives can be neglected and picking a value of A = 3, the result
becomes:

�t(t) = 1

K †(t)

[
1

8P†(t)W

] 1
5

. (47)

Note that the stochastically derived K (t) and P(t) can also be inserted into Eq. (47)
to determine the optimal discrete time interval �t even though K (t) itself depends on
�t via Eq. (23). In such a case, any value of �t can be used for the discrete derivative
in Eq. (23) to get a sufficiently accurate estimate of K (t) for use in Eq. (47). Note,
also, that the optimal time interval �t(t) for minimizing noise in the derivative is,
itself, dependent on time. The 5th root of the bracketed term makes this dependence
on the instantaneous survival probability P†(t) very weak, so that a rough estimate
of an average value within the time interval of interest is adequate. However, the
reciprocal dependence on K (t) is much stronger. Fortunately, in the present example
of a Poissonianψ(τ)wait time distribution, K (t) rapidly approaches a constant value.
But for time-dependent K (t) such when ψ(τ ) is governed, for example, by a power
law [1–3], the time dependence of K (t) must be considered.

It is therefore recommended that the smallest value of�t be chosen within the data
range of interest,

�t0 = min{�t(t)}. (48)
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Under the condition of minimal�t0, any error is dominated by noise δK (t) around the
correct mean value, rendering the systematic offset ε

†
K (t) negligible by comparison.

For example, if K (t) is approximately constant, this means the smallest value�t0 will
occur at the beginning of the time interval of interest where P(t) is largest. Conversely,
if K (t) decreaseswith time faster than the 5th root of P(t), then thismeans the smallest
value�t0 will occur at the end of the time interval of interest. Once one knowswhether
the beginning or the end of the time interval t in Eq. (48) should be considered for�t0,
Eqs. (45) and (47) can be combined and inverted to determine the number of walkers
W required to achieve the appropriate minimum error tolerance δK (t)/K (t):

W = 1√
2 P(t)

(
1

δK/K (t)

) 5
2

. (49)

8 Results

The results below show quantitative agreement between the stochastic simulation of
the random walk with a discrete number of steps and the analytical result from the
spatial continuum limit, while importantly also accurately predicting the margin of
error for the stochastic result. In the general scenario for a given wait-time distribution
ψ(t), an initial stochastic simulation with arbitrary �t and arbitrary W would be run
to get an estimate of the P(t) and K (t) values for a given time range of interest. Then
these values along with the desired noise tolerance δK/K would be used to estimate
both the necessary number of walkers W per Eq. (49) and the corresponding optimal
�t0 value per Eqs. (47) and (48). If a particularly broad time range has P(t) and K (t)
values that vary by more than an order of magnitude, the time range can be broken into
temporal subsegments, each with a different W and �t0 value for error minimization.

In the present case, P†(t) and K †(t) can be taken from the asymptotic exponential
decay form in the analytical solution. Equation (38) yields the following analytical
value for the asymptotic rate coefficient,

lim
t→∞ K †(t) = K0 = π2/4 � 2.4674, (50)

and if we assume the desired time range of interest is around K0t = 1.5, then P†(t) �
0.28 from Eq. (37). If the desired accuracy is δK/K = 0.2%, then the number of
walkers necessary to run a stochastic simulation from Eq. (49) is circa W � 107, and
the optimal step time interval for the lowest noise stochastic simulation from Eq. (47)
is �t0 � 0.014. In anticipation of this result, these are exactly the parameters used in
the data shown in Fig. 3.

The numerical accuracy of the stochastic simulation can now be quantified. The
mean statistical value 〈K (t)〉 and the standard deviation δK (t) for data between 1 <

K0t < 2 are calculated to be:

〈K (t)〉 ± δK (t) = 2.465 ± 0.0056. (51)
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Fig. 5 Analysis of statistical error in the stochastic simulation of a diffusion-limited unimolecular reaction.
a The average reaction rate coefficient 〈K (t)〉 (open circles) and standard deviation ±δK (t) (error bars) of
the stochastic dataset sampled from 1 < K0t < 2 are evaluated for different step time intervals �t . The
optimal �t0 from Eq. (47) indicated with a vertical arrow clearly shows a minimum in the total error due to
the combination of statistical noise (dominating left of �t0) and discrete derivative offset (dominating right
of�t0). Thismean value and error compare favorably to analytical value K †(t) (red solid line) and predicted
error ε†(t) ± δK †(t), respectively, from the analytical expression in Eqs. (41) and (45), respectively. The
parameters in (a) are identical to those in Fig. 3. The residual discrepancy in panel (a) to the left of �t0
between the average statistical value 〈K (t)〉 and the analytical result K †(t) of circa 0.007 is an artifact of
the discrete versus continuum cases, respectively. b A zoomed in comparison of the standard deviations
under optimal�t0 with varying step number S shows eventual convergence of the statistical average 〈K (t)〉
to the analytical continuum value K †(t) + ε†(t) as S → ∞ or 1/S → 0.

The mean value is within 0.1% of the analytical result of Eq. (50), and the standard
deviation is 0.23%, which matches the desired error margin, validating the statistical
method proposed here.

To further demonstrate that �t0 per Eq. (47) is, in fact, the optimal step time for
minimal noise, a range of step times �t was tested in Fig. 5a. Statistical ensembles
of K (tr ) generated from different values of �t are analyzed between times t = 1/K0
and 2/K0, and the results are compared to the predicted accuracy from the above
analysis. Once again, the ensemble averages 〈K (t)〉 are plotted with open circles and
the statistical standard deviations ±δK (t) with error bars. For comparison, the ana-
lytically predicted asymptotic reaction rate coefficient K0 is plotted with a horizontal
red line. with predicted offset error ε†K (t) from Eq. (41) plotted with a yellow line, and
the predicted noise error δK †(t) with a dashed red line. As predicted from Eq. (45),
the noise ±δK (t) in Fig. 5a diverges to the left as �t → 0 like ±�t−1/2, and the
offset error ε

†
K (t) (yellow line) diverges to the right as �t → ∞ like +�t2. In the

middle, Eq. (47) proposes the optimal finite difference time interval �t0 to minimize
error with a vertical arrow at �t0 = 0.014. Overall, Fig. 5a shows excellent quanti-
tative agreement between the values from the statistical ensemble and the predicted
analytical value and accuracy:

〈K (t)〉 ± δK (t) � K †(t) + ε
†
K (t) ± δK †(t). (52)
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K (tr ) : stochastic
〈K (t)〉 : stochastic average

±δK (t) : standard deviation

K †(t) : analytical
ε
†
K (t) : predicted offset error

±δK †(t) : predicted noise error

The minor discrepancy to the left of Fig. 5a between the statistical average 〈K (t)〉
and the analytical continuum value K †(t) can be shown to be an artifact of the discrete
step number. In Fig. 5b the statisticalmean and standard deviation are plotted versus the
reciprocal step count 1/S at various step count values S for the optimal �t0 derivative
time interval. As the step count S is increased to the left, the asymptotic value 〈K (t)〉 in
the limit of S → ∞ approaches the continuum prediction of K †(t) + ε†(t). Note that
by design, the systematic offset error of ε†(t) is much less than the standard deviation
δK †(t).

9 Conclusion

This work has shown how to stochastically simulate a continuous time random walk
model of a diffusion-limited unimolecular reaction with arbitrary wait-time distribu-
tion function ψ(t). The characteristic model parameters can be reliably quantified
within a prespecified error tolerance and can be reduced arbitrarily by increasing the
number of walkers. The accuracy of this approach is confirmed using a simple Pois-
sonian wait-time distribution and simple binary left-right step distribution that yields
the standard diffusion limit at long times. Initial transient behavior also reveal the
relaxation times of the higher spatial harmonics in the starting spatial distribution of
walkers between reactive trap sites. These stochastic simulations have the potential
to be more powerful than analytical solutions when modeling experimental systems
whose wait-time distributionsψ(τ) defy an analytical CTRW solution. The stochastic
model presented in this work can easily be extended to higher dimensions, as well as
to bimolecular and anomalous diffusion-limited reactions.
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Appendix: Continuum Limit for Survival Probability Distribution

The continuum expressions for the diffusion-limited reaction are detailed below.Using
the following definition of the Fourier transform,

p̃(k, t) = 1√
2π

∫
p(x, t)e−ikxdx (53)

Eq. (33) can be expressed as

p̃(k, t) =
∞∑

j=−∞
(−1) j

[
1√
2π

∫
G (x − j xtr, t) e

−ikxdx

]
(54)

Taking advantage of the translation property of Fourier transforms, this can be written
as

p̃(k, t) =
∞∑

j=−∞
(−1) j e−i j xtrk G̃ (k, t)

= G̃ (k, t)

⎡
⎣ ∞∑

j=−∞
ei2 j xtrk −

∞∑
j=−∞

ei(2 j−1)xtrk

⎤
⎦

= G̃ (k, t)
(
1 − e−i xtrk

) ∞∑
j=−∞

ei2 j xtrk .

(55)

where the Fourier transform of G(x, t) is:

G̃(k, t) = 1√
2π

∫ ∞

−∞
(4πDt)−

1
2 exp

(
− x2

4Dt

)
e−ikxdx

= 1√
2π

e−k2Dt .

(56)

Applying the Poisson summation formula, yields

∞∑
j=−∞

ei2 j xtrk = π

xtr

∞∑
ν=−∞

δ

(
k − πν

xtr

)
. (57)

Inverting the Fourier transform and using Eqs. (55) and (57), the final expression for
the time-dependent probability distribution becomes,
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p†(x, t) = 1√
2π

∫
1√
2π

e−k2Dteikx
(
1 − e−i xtrk

)

× π

xtr

∞∑
ν=−∞

δ

(
k − πν

xtr

)
dk (58)

= 1

2xtr

∞∑
ν=−∞

exp

[
−ν2

(
π

xtr

)2

Dt

]

× exp

[
iν

(
π

xtr

)
x

] [
1 − exp (−iνπ)

]
(59)

= 1

xtr

∑
ν odd

exp

[
−ν2

(
π

xtr

)2

Dt

]

× exp

[
iν

(
π

xtr

)
x

]
(60)

= 2

xtr

∞∑
ν=0

exp

{
−

[
π(2ν + 1)

xtr

]2
Dt

}

× cos

{[
π(2ν + 1)

xtr

]
x

}
. (61)

Spatial integration will then determine the survival probability as a function of time,

P†(t) =
∫ xtr/2

−xtr/2
p†(x, t)dx (62)

= 2

xtr

∞∑
ν=0

exp

{
−

[
π(2ν + 1)

xtr

]2
Dt

}

×
∫ xtr/2

−xtr/2
cos

{ [
π(2ν + 1)

xtr

]
x

}
dx (63)

= 2

xtr

∞∑
ν=0

exp

{
−

[
π(2ν + 1)

xtr

]2
Dt

}

×
[

2xtr
π(2ν + 1)

(−1)ν
]

(64)

= 4

π

∞∑
ν=0

(−1)ν

2ν + 1
exp

{
−

[
π(2ν + 1)

xtr

]2
Dt

}
. (65)
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