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Abstract

Estimating the 6-DoF pose of a rigid object from a

single RGB image is a crucial yet challenging task. Re-

cent studies have shown the great potential of dense

correspondence-based solutions, yet improvements are still

needed to reach practical deployment. In this paper, we

propose a novel pose estimation algorithm named Check-

erPose, which improves on three main aspects. Firstly,

CheckerPose densely samples 3D keypoints from the sur-

face of the 3D object and finds their 2D correspondences

progressively in the 2D image. Compared to previous so-

lutions that conduct dense sampling in the image space,

our strategy enables the correspondence searching in a

2D grid (i.e., pixel coordinate). Secondly, for our 3D-

to-2D correspondence, we design a compact binary code

representation for 2D image locations. This representa-

tion not only allows for progressive correspondence refine-

ment but also converts the correspondence regression to

a more efficient classification problem. Thirdly, we adopt

a graph neural network to explicitly model the interac-

tions among the sampled 3D keypoints, further boosting

the reliability and accuracy of the correspondences. To-

gether, these novel components make CheckerPose a strong

pose estimation algorithm. When evaluated on the pop-

ular Linemod, Linemod-O, and YCB-V object pose esti-

mation benchmarks, CheckerPose clearly boosts the accu-

racy of correspondence-based methods and achieves state-

of-the-art performances. Code is available at https:

//github.com/RuyiLian/CheckerPose.

1. Introduction

Object pose estimation from RGB images aims to es-

timate the rotation and translation of a given rigid object

relative to the camera. It is crucial in various applications

including robot grasping and manipulation [84, 70, 71], au-

tonomous driving [43, 78, 34], augmented reality [44, 67],

etc. Most existing methods [56, 68, 46, 22, 51, 81, 48, 38,
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Figure 1: Illustration of CheckerPose. We evenly sam-

ple dense keypoints from the object surface, and predict the

2D locations in the input image. We design a binary code

representation to progressively localize each keypoint in the

iteratively refined 2D grids. To improve the localization, we

also use graph neural networks to explicitly model the inter-

actions between 3D keypoints. Note: we plot 8 keypoints

for better visualization, while use 512 keypoints in practice.

61] first estimate an intermediate geometric representation,

i.e., the correspondences between 3D object keypoints and

2D image locations, and then recover the object pose us-

ing the Perspective-n-Point (PnP) algorithm. Theoretically,

for a rigid object, four pairs of 3D-2D correspondences can

determine a unique pose [55, 12, 52]. In practice, how-

ever, sparse correspondences easily degrade due to occlu-

sion, background clutter, lighting variation, etc.

Increasing the number of 3D-2D correspondences is

a feasible solution to enhance robustness, especially

when combined with outlier removal mechanisms such as

RANSAC. Recent methods [81, 48, 38, 18, 21, 75, 10]

densely sample 2D image pixels and predict their 3D ob-

ject coordinates. While these dense predictions improve

the robustness of pose estimation, they have several draw-

backs. Firstly, the predictions consider only visible pixels

and ignore global relations between visible and occluded

keypoints, making them unstable when the object is under

severe occlusions. Secondly, estimating the corresponding



3D coordinates is nontrivial. Finally, the rich shape prior

information is not effectively encoded.

To overcome the above issues, we propose a novel 6D

pose estimation algorithm, named CheckerPose, which im-

proves dense correspondence with three cooperative com-

ponents: dense 3D sampling, progressive 2D localization

through binary coding, and shape prior encoding with graph

neural network, as illustrated in Figure 1.

For dense correspondence, CheckerPose samples 3D

keypoints on the object surface and then finds their 2D pixel

correspondences in the 3D-to-2D matching way. Compared

to previous solutions that conduct dense sampling in the 2D

image space, our strategy enables more efficient correspon-

dence searching in a 2D grid (i.e., pixel coordinate) using

2D binary coding, as well as explicit shape prior modeling

with graph representation.

Then, to facilitate the localization of dense keypoints,

we propose a 2D hierarchical binary coding to represent a

2D image position. Specifically, we superpose a grid on

the input image and predict which cells contain the desired

keypoints. The precision of the 2D keypoint location is con-

trolled by the resolution of the grid. This novel representa-

tion allows us to refine the correspondence progressively.

We first localize the keypoints in the 2 × 2 grid, and then

iteratively subdivide each cell and localize the keypoints in

the refined grid. Inspired by ZebraPose [64], we use binary

codes on the x and y directions to represent each cell, which

makes the grids have a checkerboard pattern.

Furthermore, to capture the shape prior of the 3D object,

we adopt a graph neural network to explicitly model the in-

teractions among the sampled 3D keypoints and to guide the

progressive correspondence estimation. In particular, we

construct the k-nearest neighbor (k-NN) graph of the dense

keypoints and utilize graph network layers to fuse informa-

tion from a keypoint and its neighbors. By stacking multiple

such layers, we can capture non-local interactions between

invisible and visible keypoints, and thus significantly im-

prove the prediction robustness of invisible keypoints.

To summarize, our main contributions are as follows:

• We propose to localize dense 3D keypoints in the

input image, to establish dense correspondences for

instance-level object pose estimation.

• We design a hierarchical binary coding strategy for 2D

projections, which enables progressive localization of

dense keypoints.

• We utilize graph neural networks to explicitly model

the interactions between 3D keypoints and improve the

predictions of invisible keypoints.

Together, these novel contributions make our CheckerPose

a strong pose estimation algorithm. We conduct extensive

experiments on the popular benchmarks including Linemod

[17], Linemod-Occlusion [2], and YCB-V [79], and Check-

erPose consistently achieves state-of-the-art performances.

2. Related Work

In this section we review previous studies that are closely

related to our work, mainly including different types of pose

estimators and graph neural networks.

Direct Methods. Given an input RGB image, direct

methods estimate the 6D pose of the object in the image

without intermediate geometric representations, e.g., 3D-

2D correspondences. Traditional direct methods mainly

adopt template matching techniques with hand-crafted fea-

tures [25, 13, 16], and thus can not handle textureless ob-

jects well. Recent deep learning based methods utilize fea-

tures learned by CNNs to directly regress 6D pose [79] or

formulate the rotation estimation as a classification task by

discretizing the rotation space SO(3) [72, 63, 28, 65].

Correspondence Guided Methods. Instead of direct es-

timation, correspondence guided methods [50, 56, 68, 46,

22, 51, 21, 23, 81, 48, 38, 75, 10, 64] follow a two-stage

framework: they first predict a set of correspondences be-

tween 3D object frame coordinates and 2D image plane co-

ordinates, and then recover the pose from the 3D-2D cor-

respondences with a PnP algorithm [32, 30, 11, 73, 6].

RANSAC can be used to remove the outliers in the corre-

spondences. Keypoint-localization based methods [50, 56,

68, 46, 22, 51, 21, 23] estimate the 2D coordinates for a

sparse set of predefined 3D keypoints, while dense meth-

ods [81, 48, 38, 75, 10, 64] predict the 3D object frame coor-

dinate of each 2D image pixel. Compared with sparse corre-

spondences, dense correspondences contain richer context

information of the scene and is more robust to occlusion.

Graph Neural Networks for 3D Vision. In 3D vision

tasks, point clouds and meshes are important input data for-

mats since they can efficiently represent complex shapes.

Compared with convolutional neural networks (CNNs),

graph neural networks (GNNs) [62] can handle inputs with

irregular structures and effectively model the long-range de-

pendencies, and thus are widely used for processing point

clouds and meshes. While meshes can be naturally treated

as graphs, a common practice of constructing graphs from

point clouds is to treat each 3D point as graph nodes and

connect each node to its k nearest neighbors [77, 60, 8].

GNN-based methods have been proposed for representa-

tion learning [60, 77, 40, 74], detection [59, 8], segmen-

tation [53, 33], data generation [54, 39], camera pose in-

ference [35, 36], etc. Graph techniques have also been used

for learning dense correspondences between 3D shapes [58]

using both local and global information. For object pose es-

timation, GNNs are mainly used for RGB-D inputs [9, 83]

to enhance the feature extraction from different modalities.

Another recent application is to learn geometric structures

of the sparse keypoints for domain adaptation [82].
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Figure 2: Framework of our progressive dense keypoint localization with graph neural network, i.e., CheckerPose.

Given an RGB image and object detection results, we progressively generate the binary codes representing the 2D locations

of N 3D keypoints. (a) Initial graph embedding generation: we use a CNN backbone network to extract feature F
(0)
I from

the zoomed-in RoI IO, and then transform F
(0)
I to the initial keypoint embeddings F

(0)
G in the k-NN graph G. (b) Progressive

prediction: we use a graph neural network to generate the binary code representation in a coarse-to-fine manner. We adopt

an additional CNN decoder network to generate image features with increased resolutions from F
(0)
I , and fuse the features in

the graph neural network based on current predictions. Object segmentation masks M are predicted as an auxiliary learning

task. (c) Feature fusion: to fuse the image feature FI into the graph embeddings FG, for each keypoint, we crop a feature

patch from FI based on the current localization result, and concatenate the flattened feature with keypoint embedding. We

then use a shared MLP to fuse the concatenation and the result is the updated keypoint embedding.

Our work follows the two-stage framework and combines

the strengths of both keypoint-based methods and dense

methods, by localizing a dense set of predefined 3D key-

points to establish dense correspondences. Moreover, it

utilizes GNNs to efficiently model the interactions among

dense 3D keypoints and thus improve the localization in the

input RGB image for monocular object pose estimation.

3. Method

3.1. Problem Formulation and Method Overview

Given an RGB image I and a rigid object O, our goal is

to estimate rotation R ∈ SO(3) and translation t ∈ R
3 of

O relative to the calibrated camera. We assume the 3D ge-

ometry information, e.g., the 3D CAD model, is available,

thus we can obtain N(N k 8) keypoints P ¢ R
3 from the

object surface using farthest point sampling (FPS).

We adopt a two-stage pipeline for object pose estimation:

we first predict 2D projection ρ ∈ R
2 for each keypoint

P ∈ P , and then regress the rotation and translation from

the 3D-2D correspondences via a PnP solver. For the input

RGB image, we use an off-the-shelf object detector [57, 69]

to detect the object bounding box and extract the zoomed-

in Region of Interest (RoI) IO, following the common prac-

tice in instance-level object pose estimation [38, 75, 10, 64].

Figure 2 illustrates our proposed pipeline. We first process

the input RoI IO by a backbone network to obtain back-

bone feature F
(0)
I and keypoint embedding F

(0)
G in the k-

NN graph G. Then we use graph network layers (i.e., Edge-

Conv [77]) to progressively localize the keypoints, which

are represented as binary codes bv,bx, and by. We also

use a standard CNN decoder to transform F
(0)
I to a series of

image feature maps, and fuse the features in the graph neu-

ral network based on the current predicted locations. The

CNN decoder also outputs object segmentation masks M
as an auxiliary learning task. Finally, we convert the binary

codes to 2D coordinates and use a PnP solver to recover the

pose from the established correspondences. We describe

our method, named CheckerPose due to the checkerboard-

like binary pattern, in details as follows.

3.2. Hierarchical Representation of 2D Keypoints

Establishing 3D-2D correspondences provides an inter-

mediate representation for object pose estimation. In this

work, we focus on localizing a dense set of predefined 3D

keypoints P in the 2D image plane. For N(N k 8) 3D

keypoints P , we first predict whether their 2D projections
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Figure 3: Keypoint location representation. (a) We rep-

resent the 2D projection coordinate as the center of the cell

containing the 2D projection. (b) We iteratively refine the

grid and represent the cell as binary codes bx,by.

appear in the RoI IO, and then localize the keypoints in-

side IO, denoted as PI . In contrast to directly regressing

the precise coordinates, we superpose a 2d × 2d grid S on

the RoI IO and predict which cell s ∈ S contains the 2D

projection ρ (Figure 3 (a)). Then we can use the coordinate

of the cell center to approximate ρ, and only need to predict

the discrete index (ix, iy)(0 f ix, iy f 2d − 1) of the cell

s, which is much easier than precise regression. The local-

ization precision is controlled by the resolution of the grid

S, and approaches the actual 2D projection as d → ∞.

Based on the approximate representation, we can further

localize the keypoint P ∈ PI in a coarse-to-fine manner.

As shown in Figure 3 (b), at the beginning, we superpose

a 2 × 2 grid S(1) on the RoI IO and predict the index of

the cell s
(1)
P . Then at iteration j (2 f j f d), we increase

the grid resolution from 2j−1 × 2j−1 to 2j × 2j by evenly

splitting each cell s(j−1) ∈ S(j−1) into halves on both x and

y directions. With the prediction of s
(j−1)
P in iteration j−1,

we only need to search the corresponding 2× 2 sub-cells to

find s
(j)
P in the refined grid S(j).

Inspired by ZebraPose [64], we use binary codes to con-

cisely represent the hierarchical localization. For the cell

sP in the final 2d × 2d grid S, we use a d-bit binary code

bx to represent the index ix as

ix =

d∑

k=1

bx(k)× 2d−k, (1)

where bx(k) is the k-th bit of bx. We use another d-bit

binary code by to represent the index iy in the same way.

The first j(1 f j f d) bits of bx and by also represent the

cell s
(j)
P ∈ S(j). We use an additional 1-bit binary code bv

to indicate the existence of the projection ρ in the RoI IO,

where bv = 1 means ρ ∈ IO while bv = 0 means ρ /∈ IO.

Compared with dense representations (e.g.,

heatmaps [50, 46] and vector-fields [51, 22]), our rep-

resentation needs only 2d+1 binary bits for each keypoint,

thus greatly reduces the memory usage for dense keypoint

localization. In addition, during inference, we can effi-

ciently convert the binary codes to the 2D coordinates.

Furthermore, our representation can be naturally predicted

in a progressive way, which allows to gradually improve

the localization via iterative refinements.

3.3. Dense Keypoint Localization via Graph Neural
Network

Modeling the interactions among the keypoints P is cru-

cial for predicting their 2D locations. For the keypoints that

are invisible due to occlusions or self-occlusions, the fea-

tures of the visible ones provide additional clues to infer the

2D locations. However, previous keypoint-based methods

mainly use convolutional neural networks (CNNs), which

can not handle inputs with irregular structure and thus fail

to explicitly capture the interactions among P .

We instead utilize graph neural networks (GNNs) to pro-

cess the features F = {f1, · · · , fN} of N keypoints P .

To construct a graph G from P , we treat each keypoint

Pi ∈ P(1 f i f N) as a graph node, and connect Pi

to its k nearest neighbors in 3D Euclidean space to gener-

ate edges E . We adopt the EdgeConv operation [77] as our

graph network layer, which directly models local interac-

tions between Pi and its neighbors. For edge (i, j) ∈ E , we

compute the feature eij as

eijm = ReLU(θm · (fj − fi) + φm · fi), (2)

where eijm is the m-th channel of eij , and θm, φm are the

weights of the filters. The feature of Pi is updated by ag-

gregating the edge features as

f
′

im = max
j:(i,j)∈E

eijm, (3)

where f
′

im is the m-th channel of updated feature f
′

i . By

stacking multiple EdgeConv operations, our network can

gradually learn the non-local interactions in a computation-

ally efficient way for dense keypoints P .

As shown in Figure 2 (a), to obtain the initial keypoint

embeddings F
(0)
G in G, we first use a backbone network

to extract a C0 × 2d0 × 2d0 feature map F
(0)
I from RoI

IO, where C0 is the number of the feature channels, and

2d0 × 2d0 is the spatial size. We then reshape F
(0)
I to

C0 × 22d0 by flattening the spatial dimensions, and use a

1D convolutional network layer to obtain a N × 22d0 fea-

ture map, which is regarded as the initial 22d0 -dimensional

embeddings F
(0)
G for N keypoints.



After obtaining F
(0)
G , we use a graph neural network to

predict the 1-bit indicator code bv, and progressively gener-

ate the d-bit index codes bx,by. Specifically, at stage 0, we

apply L0 EdgeConv [77] operations to F
(0)
G to get the up-

dated embeddings F
(1)
G , and then use shared MLPs to gen-

erate bv and the first d0 bits of bx,by, respectively. Then at

stage j(1 f j f d−d0), we apply Lj EdgeConv operations

to F
(j)
G to obtain F

(j+1)
G , and use shared MLPs to generate

new bits bx(d0 + j), by(d0 + j) for bx,by, respectively.

We regard stage j(1 f j f d − d0) as refinement stage,

since it refines the localization from the low-resolution grid

S(d0+j−1) to the high-resolution one S(d0+j).

Compared with generating all bits at the network out-

put layer, our progressive prediction enables image fea-

ture fusion at each refinement stage. As shown in Fig-

ure 2 (b), starting with the image feature map F
(0)
I with

low spatial resolution 2d0 × 2d0 , we use an additional

CNN-based decoder to progressively generate image fea-

ture maps F
(1)
I , · · · , F

(d−d0)
I with increased spatial resolu-

tions 2d0+1×2d0+1, · · · , 2d×2d, respectively. We also add

skip connections between the backbone and the decoder to

recover the high-resolution details lost in F
(0)
I . As shown in

Figure 2 (c), at the beginning of the refinement stage j, for

each keypoint P , we select local image feature from F
(j)
I

based on the localization result in the previous stage. We

then concatenate F
(j)
l with the keypoint embedding in the

graph G, and use a shared MLP to fuse the concatenation.

The fused feature is used as the updated keypoint embed-

ding. Since the initial keypoint embeddings F
(0)
G are ob-

tained from F
(0)
I , fusing the local image features in the re-

finement stages provides critical high-resolution details for

fine-grained localization.

3.4. Training

For the 1-bit indicator code bv of keypoint P ∈ P , our

network output b̂v is the probability that bv = 1. We use

binary cross-entropy loss for bv as below:

Lv =
1

N

∑

P∈P

bv log b̂v + (1− bv) log(1− b̂v), (4)

where N is the number of the keypoints. For d-bit index

codes bx,by, since we only localize the keypoints inside

the RoI (i.e., bv = 1), denoted as PI , we compute binary

cross-entropy loss for each bit of bx as

Lx =
1

dNI

∑

P∈PI

d∑

k=1

bx(k) log(b̂x(k))+

(1− bx(k)) log(1− b̂x(k)), (5)

where NI is the number of keypoints inside the RoI, b̂x(k)
is the network prediction for k-th bit of bx. We compute

the loss Ly for by in the same way as Lx.

Besides predicting the 2D projections as binary codes,

we also enforce the network to output object segmentation

masks. To do this, we apply a single CNN layer to the final

image feature map F
(d−d0)
I and obtain a 2×2d×2d output,

which serves as the full segmentation mask Mfull and the

visible one Mvis. We input the network predictions to the

sigmoid function and apply L1 loss as the mask loss Lmask.

Generating the masks can be regarded as an auxiliary task

to facilitate the learning of image features.

The overall loss function L is a combination of Lv , Lx,

Ly , and Lmask as

L = Lv + Lx + Ly + Lmask. (6)

Before training the whole network, we pretrain the layers

that generate bv and the first d0 bits of bx,by. This encour-

ages the backbone network to quickly adapt to the object

keypoints with smaller GPU memory usage, and makes the

initial localization to be good for local image feature fusion

in the refinement stages.

3.5. Inference

During inference, we first discard the keypoints with

bv = 0. Then we convert the binary codes to the cor-

responding cells in the final grid S (Eq. 1), and use the

2D coordinates of the cell centers as the keypoint projec-

tions. In this way, we establish dense 3D-2D correspon-

dences from the network outputs without time-consuming

computation operations, e.g., voting for the vector-field rep-

resentations [51]. Finally we use the RANSAC/PnP [32] or

Progressive-X [1] solvers to obtain the object pose from the

dense 3D-2D correspondences.

We empirically find that for textureless objects with se-

vere self-occlusions, discarding the correspondences out-

side Mvis can improve the pose estimation results. To quan-

tify the self-occlusions of a given object O, we uniformly

sample 2,562 camera viewpoints on a sphere, and use the

Hidden Point Removal (HPR) operator [27] to estimate the

visibility of point P ∈ O from each viewpoint. We then

calculate the proportion of the viewpoints for which P is

visible, denoted as V (P ). If 0.2 f V (P ) < 0.4, then P
is considered to be easily self-occluded. Note we ignore

the points with V (P ) < 0.2, to make our estimation robust

to the classification error of the HPR operator. The overall

self-occlusion of the object O can be computed by

rso(O) =
1

|O|

∑

P∈O

1(0.2 f V (P ) < 0.4), (7)

where |O| is the number of vertices of the object CAD

model, and 1(·) is the indicator function. If rso(O) g 0.5,

i.e., over half part of O is easily to be self-occluded, then

we regard O as severely self-occluded.



4. Experiments

4.1. Experimental Setup

Implementation Details. Our method is implemented us-

ing PyTorch [49] and trained using the Adam optimizer [29]

with a batch size of 32. We pretrain our network for 50, 000
steps with learning rate of 2e-4. We use N = 512 key-

points, and utilize k = 20 nearest neighbors to construct

the k-NN graph G. For the binary code representation, we

set d = 6 and d0 = 3. We resize the input RoIs to 256×256,

and use HRNet [76] as our image feature backbone to ex-

tract 1024×8×8 feature map F
(0)
I . Then we apply L0 = 2

EdgeConv operations to get bv and the first d0 = 3 bits of

bx,by, and obtain the full binary codes after 3 refinement

stages with Lj = 3 (j = 1, 2, 3) EdgeConv operations.

Datasets. We conduct our experiments on three

commonly-used datasets for object pose estimation:

Linemod (LM) [17], Linemod-Occlusion (LM-O) [2], and

YCB-V [79]. LM consists of 13 sequences of real images

with ground truth poses for a single object with background

clutter and mild occlusion. Each sequence contains around

1, 200 images. Following [3], we utilize about 15% images

for training while keeping the rest for testing. We addi-

tionally use 1, 000 synthetic RGB images for each object

during training following [38, 75, 10]. LM-O consists of

1, 214 images from a sequence of LM [17], where ground

truth poses of eight objects with partial occlusion are

annotated for testing. YCB-V is composed of more than

110, 000 real images of 21 objects with severe occlusion

and clutter. Apart from the real training images, we also

utilize the physically-based rendered data following [19]

for training on LM-O and YCB-V.

Evaluation Metrics. We employ the common evalua-

tion metric ADD(-S) for object pose estimation. ADD(-S)

measures whether the average distance between the model

points transformed by the predicted pose and the ground

truth is less than 10% of the object’s diameter (0.1d). For

symmetric objects, ADD(-S) metric computes the deviation

to the closest model point. On YCB-V, we also compute

the AUC (area under curve) of ADD-S and ADD(-S) with a

maximum threshold of 10 cm [79]. On LM, we also report

the n◦, n cm metric, measuring the percentage of predicted

6D poses with rotation error below n◦ and translation error

below n cm. For symmetric objects n◦, n cm computes the

smallest error for all possible ground truth poses [37, 75].

4.2. Ablation Study on LINEMOD Dataset

We present ablation experiments on LM [17] in Table 1

to verify the effectiveness of each module. We also study

the number of keypoint N and the size of neighborhood k
in Supplementary. We train a single pose estimator for all

objects for 120k steps, with a fixed learning rate of 1e-4 for

Method
ADD(-S)

2
◦

2cm 5
◦

5cm
0.02d 0.05d 0.1d

GDR-Net [75] 35.5 76.3 93.7 62.1 N/A

SO-Pose [10] 45.9 83.1 96.0 76.9 98.5

EPro-PnP [7] 44.8 82.0 95.8 81.0 98.5

Ours (w/o GNN) 26.4 77.8 95.2 67.7 97.9

Ours (w/o Prog.) 14.1 56.9 85.8 42.3 94.1

Ours (w/o Mfull) 30.2 82.8 96.7 79.3 98.9

Ours (w/o Mvis) 34.1 82.8 96.6 79.1 98.9

Ours (ResNet34) 31.3 80.2 95.6 74.2 98.6

Ours (RANSAC/PnP) 31.1 81.4 96.6 78.4 98.9

CheckerPose (Ours) 35.7 84.5 97.1 79.7 98.9

Table 1: Ablation Study on the LM Dataset.

the first 100k steps and a smaller learning rate of 5e-5 for

the remaining steps. During inference, we utilize the detec-

tion results from Faster-RCNN [57] by [38]. We do not use

any segmentation masks to filter the correspondences for

fair comparison. Without specification, we use Progressive-

X [1] to compute pose from the dense correspondences.

Comparison with State of the Art. As shown in Ta-

ble 1, our method outperforms the state-of-the-art meth-

ods [75, 10, 7] w.r.t. ADD(-S) 0.05d, ADD(-S) 0.1d, and

5◦5cm, and achieves comparable results w.r.t. ADD(-S)

0.02d and 2◦2cm. The improvement of ADD(-S) 0.1d in-

dicates that our method can facilitate the estimation of hard

cases and serve as a good initialization for refinement meth-

ods [37, 26, 80]. Since the 2D coordinates of our esti-

mated correspondences are approximated by the cell centers

(Sec. 3.2), our pose estimation results in terms of ADD(-S)

0.02d may be further improved by increasing the grid reso-

lution.

Effectiveness of Graph Neural Networks. Our network

utilizes GNN layers, e.g., EdgeConv [77], to explicitly

model the interactions between different keypoints. We also

report the result of removing all GNN layers in Table 1.

Without GNN layers, the keypoints still interact indirectly

via local image feature fusion modules, since the keypoints

with close 2D locations share the similar local image fea-

tures. However, the performance of pose estimation de-

grades significantly, demonstrating that it is important to

directly model the keypoint interactions with GNN layers.

Effectiveness of Progressive Prediction. Progressively

generating the binary codes enforces our network to grad-

ually refine the localization in the iteratively subdivided

grids. It also enables image feature fusion based on the

intermediate estimations, which can provide crucial high-

resolution details for fine-grained localization. As shown

in Table 1, the accuracy decreases significantly without



Method PVNet [51] S. Stage [21] Hybrid [61] RePose [26] GDR-Net [75] SO-Pose [10] Zebra [64] Ours

ape 15.8 19.2 20.9 31.1 46.8 48.4 57.9 58.3

can 63.3 65.1 75.3 80.0 90.8 85.8 95.0 95.7

cat 16.7 18.9 24.9 25.6 40.5 32.7 60.6 62.3

driller 65.7 69.0 70.2 73.1 82.6 77.4 94.8 93.7

duck 25.2 25.3 27.9 43.0 46.9 48.9 64.5 69.9

eggbox* 50.2 52.0 52.4 51.7 54.2 52.4 70.9 70.0

glue* 49.6 51.4 53.8 54.3 75.8 78.3 88.7 86.4

holep. 36.1 45.6 54.2 53.6 60.1 75.3 83.0 83.8

mean 40.8 43.3 47.5 51.6 62.2 62.3 76.9 77.5

Table 2: Comparison with State-of-the-art Methods on the LM-O Dataset. We report the Average Recall (%) of ADD(-

S). (*) denotes symmetric objects. We highlight the best result in red color, and the second best result in blue color.

progressively generating the binary codes, which clearly

demonstrates the importance of progressive prediction.

Effectiveness of Object Segmentation Masks. Our net-

work outputs the full segmentation mask Mfull and the vis-

ible one Mvis as auxiliary tasks. As shown in Table 1, the

performance degrades without either Mfull or Mvis. The

ADD(-S) 0.02d metric drops significantly without Mfull, in-

dicating that predicting Mfull facilitates image feature ex-

traction for keypoint localization, since all the keypoints

should be located within Mfull. The degraded performance

without Mvis also implies that predicting Mvis provides im-

portant context information including occlusions.

Impact of Backbone Networks. We report the results of

our method with different backbone networks in Table 1.

After replacing HRNet [76] by ResNet34 [15], our method

still achieves comparable results with state of the art, which

demonstrates the efficacy of our method regardless of the

backbone networks.

Influence of PnP Solvers. We show the results with dif-

ferent PnP solvers during inference in Table 1. Since our

correspondences are established from the binary codes, a

small perturbation of our network prediction can result

in flipped bit values, which may correspond to dramati-

cally different locations in the input RoI. Compared with

RANSAC/PnP [32], Progressive-X [1] contains a spatial co-

herence filter to efficiently remove such outliers, and thus

achieves better performance w.r.t. to all the metrics, espe-

cially ADD(-S) 0.02d.

4.3. Comparison to State of the Art

In this section we present the quantitative results of our

method on LM-O and YCB-V datasets. We train a single

CheckerPose for each object for 380,000 steps with a fixed

learning rate of 1e-4. During inference, we utilize the de-

tections from FCOS [69] provided by CDPNv2 [38].

Experiments on the LM-O dataset. We report the re-

call of ADD(-S) metric for the LM-O dataset in Table 2.

Based on the criterion discussed in Sec. 3.5, we filter out

the correspondences outside the visible segmentation masks

Mvis for textureless objects with severe self-occlusions, in-

cluding can, cat, driller, and eggbox. Without the filtering

operation, the average recall of ADD(-S) of our method is

77.1, which surpasses previous methods. The detailed re-

sults of each object without filtering are provided in supple-

mentary material. The additional filtering operation further

improves the performance of our method. The intuition is

that it is infrequent to observe an easily self-occluded key-

point P in the training images. Besides, due to the lack of

texture, it is also hard to infer the location of P from other

keypoints with distinguishable features. Such objects may

require much more training steps to achieve stable estima-

tions for easily self-occluded keypoints. Simply discarding

correspondences outside Mvis reduces unstable localization

results when our network is trained for limited steps, and

enhances the robustness of pose estimation.

Experiments on the YCB-Video dataset. We report the

averaged metrics of 21 objects in Table 3, and provide de-

tailed results in the suppl.. Based on the criterion discussed

in Sec. 3.5, we use visible segmentation masks to filter cor-

respondences for foam brick. We also apply the filtering

operation to pudding box because it is severely occluded by

gelatin box, which is a distraction object with similar tex-

ture. As shown in Table 3, CheckerPose achieves the best

performance w.r.t. ADD(-S) and AUC of ADD(-S), and is

comparable with state of the art w.r.t. AUC of ADD-S.

4.4. Qualitative Results

In Figure 4, we provide localization results of eight key-

points for the occluded and flipped bowl. While our net-

work directly outputs the 2D locations, the results of other

dense methods [64, 75] are computed by projecting the key-

points using the estimated poses. Figure 4 (a) visualizes

the reprojections of ZebraPose [64], where the keypoints



Method ADD(-S)
AUC AUC

ADD-S ADD(-S)

SegDriven [22] 39.0 – –

SingleStage [21] 53.9 – –

CosyPose [31] – 89.8 84.5

RePose [26] 62.1 88.5 82.0

GDR-Net [75] 60.1 91.6 84.4

SO-Pose [10] 56.8 90.9 83.9

ZebraPose [64] 80.5 90.1 85.3

DProST [47] 65.1 – 77.4

CheckerPose (Ours) 81.4 91.3 86.4

Table 3: Comparison on the YCB-Video Dataset. We re-

port the ADD(-S), and AUC of ADD-S and ADD(-S). Fol-

lowing [79], the symmetric metric is used for all objects in

ADD-S while only for symmetric objects in ADD(-S). We

highlight the best result in red color, and the second best re-

sult in blue color. “–” denotes unavailable results.

(a) ZebraPose [64] (b) GDR-Net [75]

(c) CheckerPose (Ours) (d) Ground Truth

Figure 4: Keypoint localization. (a) Keypoint locations

based on the predicted pose of ZebraPose [64]. (b) Key-

point locations based on the pose estimated by GDR-

Net [75]. (c) Keypoint locations output by our network. (d)

The ground truth keypoint locations. Considering the sym-

metry of the bowl, we use the equivalent rotations closest to

our prediction to project the keypoints in (a), (b), and (d).

concentrate on the visible pixels. Since ZebraPose gener-

ates pixel-wise 3D coordinates from the visible regions, it

predicts a drastically wrong pose for the severely occluded

bowl. As shown in Figure 4 (b), the reprojections of GDR-

Net [75] cover the region similar to the ground truth (Fig-

ure 4 (d)). However, the order of the blue keypoint and the

red one changes from clockwise to counterclockwise, indi-

cating the bowl is actually faced up. Since GDR-Net is an

end-to-end method, it may memorize poses that frequently

appear in the training samples. As shown in Figure 4 (c),

our network is capable of localizing the keypoints for the

upside-down object with severe occlusion. More qualitative

results can be found in the Supplementary Material.

4.5. Runtime Analysis

We test the running speed on the LM-O dataset. Given

a 640 × 480 RGB image, we evaluate the speed on a desk-

top with an Intel 3.30GHz CPU and an NVIDIA GeForce

GTX 1080 GPU (8G), which is reasonable in real-world

application. The FCOS detector [69] takes 87 ms for each

image. The runtime of establishing the dense 3D-2D corre-

spondences by our network is 78 ms. RANSAC/PnP [32]

takes only 1 ms to recover pose from the correspondences,

while Progressive-X [1] takes 32 ms. Under the same test-

ing environment, ZebraPose [64] requires 10ms for gener-

ating 3D-2D correspondences by CNN and around 350ms

to estimate pose using Progressive-X. The overall running

time of our method is greatly reduced, because we estab-

lish at most 512 candidate 3D-2D correspondences while

ZebraPose outputs 1282 candidates in the worst case.

5. Conclusion

In this work, we propose a novel way to establish dense

correspondences for object pose estimation, by progres-

sively localizing dense 3D keypoints in the input image.

With dense keypoints including occluded and self-occluded

ones, we comprehensively explore the available geometry

information and enhance the robustness of pose estimation

under severe occlusion. We adopt graph neural networks

to explicitly model the keypoint interactions, and design

a hierarchical binary code representation for the 2D loca-

tions. The experiments on LM, LM-O and YCB-V datasets

demonstrate that our method achieves state-of-the-art per-

formance of instance-level object pose estimation.
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symmetry-agnostic and correspondence-free 6d object pose

estimation. In 2022 International Conference on 3D Vision

(3DV). IEEE, 2022. 15

[5] Pedro Castro and Tae-Kyun Kim. CRT-6D: fast 6d object

pose estimation with cascaded refinement transformers. In

Proceedings of the IEEE/CVF Winter Conference on Ap-

plications of Computer Vision (WACV), pages 5746–5755,

2023. 15

[6] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun

Chin. End-to-end learnable geometric vision by backprop-

agating pnp optimization. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 8100–8109, 2020. 2

[7] Hansheng Chen, Pichao Wang, Fan Wang, Wei Tian, Lu

Xiong, and Hao Li. EPro-PnP: generalized end-to-end prob-

abilistic perspective-n-points for monocular object pose es-

timation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages

2781–2790, 2022. 6

[8] Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying,

Danny Z Chen, and Jian Wu. A hierarchical graph network

for 3d object detection on point clouds. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 392–401, 2020. 2

[9] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin

Shen, and Ales Leonardis. FS-Net: fast shape-based network

for category-level 6d object pose estimation with decou-

pled rotation mechanism. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1581–1590, 2021. 2

[10] Yan Di, Fabian Manhardt, Gu Wang, Xiangyang Ji, Nassir

Navab, and Federico Tombari. SO-Pose: exploiting self-

occlusion for direct 6d pose estimation. In Proceedings of

the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 12396–12405, 2021. 1, 2, 3, 6, 7, 8

[11] Luis Ferraz, Xavier Binefa, and Francesc Moreno-Noguer.

Very fast solution to the pnp problem with algebraic outlier

rejection. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 501–

508, 2014. 2

[12] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and

Hang-Fei Cheng. Complete solution classification for the

perspective-three-point problem. IEEE transactions on

pattern analysis and machine intelligence, 25(8):930–943,

2003. 1

[13] Chunhui Gu and Xiaofeng Ren. Discriminative mixture-of-

templates for viewpoint classification. In Proceedings of Eu-

ropean Conference on Computer Vision (ECCV), pages 408–

421. Springer, 2010. 2

[14] Rasmus Laurvig Haugaard and Anders Glent Buch. Sur-

femb: Dense and continuous correspondence distributions

for object pose estimation with learnt surface embeddings.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6749–6758,

2022. 15

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016. 7

[16] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter

Sturm, Nassir Navab, Pascal Fua, and Vincent Lepetit. Gra-

dient response maps for real-time detection of textureless ob-

jects. IEEE transactions on pattern analysis and machine

intelligence, 34(5):876–888, 2011. 2

[17] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-

fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.

Model based training, detection and pose estimation of

texture-less 3d objects in heavily cluttered scenes. In Asian

Conference on Computer Vision (ACCV), pages 548–562.

Springer, 2012. 2, 6, 13

[18] Tomas Hodan, Daniel Barath, and Jiri Matas. EPOS: estimat-

ing 6d pose of objects with symmetries. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 11703–11712, 2020. 1
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6. Supplemental Material

6.1. Hyper­parameters in the Pose Solver

We use both RANSAC/PnP [32] and Progressive-X [1]

when evaluating the results on the LM dataset [17], and

we use Progressive-X for LM-O [2] and YCB-V [79]

datasets. For both pose solvers, we set the threshold of re-

projection error as 2 pixels. We run 150 iterations when

using RANSAC/PnP and run 400 iterations when using

Progressive-X.

6.2. Additional Ablation Experiments on
LINEMOD Dataset

Theoretically, increasing the number of keypoint N

leads to more candidate 3D-2D correspondences and en-

hances the robustness of pose estimation. In our current

implementation, we adopt k = 20 in EdgeConv follow-

ing [77], and N = 512 based on our available computation

resources. We also conduct ablation studies of N and k on

the LM dataset in Table 4, showing that larger N and k help

improve the performance.

N k
ADD(-S)

2
◦

2cm 5
◦

5cm
0.02d 0.05d 0.1d

128

10 29.4 81.3 96.4 75.6 98.8

15 29.2 81.0 96.1 74.8 98.6

20 29.8 82.0 96.5 77.6 98.7

256

10 36.0 84.2 96.8 79.1 98.8

15 32.0 83.4 96.8 78.1 98.8

20 33.6 82.9 96.4 75.8 98.8

512

10 30.4 82.0 96.6 76.3 98.7

15 29.9 82.8 96.3 76.4 98.5

20 35.7 84.5 97.1 79.7 98.9

Table 4: Ablation Study of N and k on the LM Dataset.

6.3. Filtering Operation on LM­O and YCB­V

As discussed in the main paper, we empirically find that

for a textureless object O with severe self-occlusions, fil-

tering out the correspondences outside the visible segmen-

tation masks Mvis can improve the pose estimation results.

We quantify the self-occlusions of O using rso(O). As a

common practice, the visibility of point P ∈ O from each

viewpoint can be determined by checking the intersections

between the camera rays and the object mesh. However,

this may produce undesired results for our task. For ex-

ample, the mesh of the bowl in the YCB-V dataset can be

treated as a half sphere with very small thickness. When

sampling the dense keypoints from the surface, we get key-

points from both outer side and inner side. For the key-

point on the inner side of the bowl, it is considered as easily

self-occluded when we use ray intersections to determine

Object rso filtering

ape 0.356 :

can 0.650 6

cat 0.584 6

driller 0.657 6

duck 0.483 :

eggbox 0.529 6

glue 0.362 :

holep. 0.354 :

Table 5: Quantitative measure rso of the self-occlusions

of the objects on LM-O [2]. Since the objects do not have

strong textures, for the objects with rso ≥ 0.5, we apply

the filtering operation during inference, i.e., discarding the

correspondences outside the visible segmentation masks.

the visibility. However, since the bowl is textureless and

the thickness of the mesh can be ignored, the keypoint is

equivalent to the nearest surface point on the outer side, and

should not be considered as easily self-occluded. Consider-

ing this issue and the slow computation speed, we instead

use Hidden Point Removal (HPR) operator [27] to estimate

the proportion V (P ) of the viewpoints for which P is visi-

ble. For a keypoint with high V (P ), it may be consistently

misclassified as invisible by the HPR operator, so we ignore

the points with V (P ) < 0.2 estimated by the HPR operator.

We report the value of rso(O) for each object O of the

LM-O dataset in Table 5. Since these objects do not have

strong textures, we apply the filtering operation during the

inference for the objects with rso(O) ≥ 0.5.

For the objects that requires filtering operation, we re-

port the ADD(-S) metric without filtering in Table 6. We

also report the results of using different segmentation masks

to filter the correspondences in Table 6. Without the filter-

ing operation, the ADD(-S) values decreases for all the ob-

jects. Since all the 2D projections should be located within

the full segmentation mask Mfull, using Mfull to filter the

correspondences aims to discard the wrong predictions out-

side the object area. However, it does not improve the final

estimations consistently, which indicates that we still need

to discard more unstable correspondences within the object

area.

We report the values of rso for the textureless objects

in the YCB-V dataset in Table 7. According to Table 7,

only one textureless object, i.e., 061 foam brick, requires

filtering operation due to severe self-occlusions.

We further report the ADD(-S) metric w.r.t. the filter-

ing operation for 061 foam brick in Table 8. The ADD(-S)

of 061 foam brick remains the same without filtering op-

eration or using Mfull rather than Mvis in the filtering op-

eration. This observation suggests that the localization of

the easily self-occluded regions may become stable after



Object w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

can 95.2 95.1 95.7

cat 62.0 61.3 62.3

driller 92.6 92.6 93.7

eggbox 68.8 69.6 70.0

Table 6: ADD(-S) metrics on LM-O [2] w.r.t. the filtering

operation. “w/o Filter” denotes using all predicted corre-

spondences to compute the pose. “w/ Filter (Mfull)” denotes

discarding the correspondences outside the full segmenta-

tion mask Mfull, while “w/ Filter (Mvis)” denotes discard-

ing the correspondences outside the full segmentation mask

Mvis.

Object rso filtering

011 banana 0.240 :

019 pitcher base 0.221 :

024 bowl 0.498 :

025 mug 0.108 :

036 wood block 0.438 :

037 scissors 0.365 :

051 large clamp 0.163 :

052 extra large clamp 0.138 :

061 foam brick 0.542 6

Table 7: Quantitative measure rso of the self-occlusions

of the textureless objects on YCB-V [79]. For the ob-

ject with rso ≥ 0.5, we apply the filtering operation during

inference, i.e., discarding the correspondences outside the

visible segmentation masks.

Object w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

008 pudding box 66.4 71.0 86.5

061 foam brick 87.2 87.2 87.2

Table 8: ADD(-S) metrics on YCB-V [79] w.r.t. the fil-

tering operation. “w/o Filter” denotes using all predicted

correspondences to compute the pose. “w/ Filter (Mfull)”

denotes discarding the correspondences outside the full seg-

mentation mask Mfull, while “w/ Filter (Mvis)” denotes dis-

carding the correspondences outside the full segmentation

mask Mvis.

380,000 training steps. We further investigate the results of

061 foam brick after different training steps in Table 9. Af-

ter 200,000 steps, the ADD(-S) without filtering is inferior

to the result of discarding correspondences outside Mvis.

This observation implies that the localization of the easily

self-occluded regions are unstable with fewer training steps.

Besides textureless objects with severe self-occlusions,

we also apply filtering operation on 008 pudding box

Steps w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

200k 86.1 85.4 86.8

380k 87.2 87.2 87.2

Table 9: ADD(-S) metrics of 061 foam brick with differ-

ent training steps. “w/o Filter” denotes using all predicted

correspondences to compute the pose. “w/ Filter (Mfull)”

denotes discarding the correspondences outside the full seg-

mentation mask Mfull, while “w/ Filter (Mvis)” denotes dis-

carding the correspondences outside the full segmentation

mask Mvis.

from the YCB-V dataset. As shown in Figure 5,

008 pudding box is severely occluded by 009 gelatin box.

We regard 009 gelatin box as a distraction object for the

keypoint localization task of 008 pudding box, since these

objects share similar appearances, especially the texts (i.e.,

“JELL-O”). Such severe occlusions by the same distrac-

tion object exist in all the test images of 008 pudding box,

and can be automatically detected by checking the object

detection results. Thus we discard the correspondences out-

side Mvis to remove the unstable localization results due to

the occlusions by the distraction object. We also report the

ADD(-S) metric without filtering and using Mfull in filter-

ing in Table 8. Using either Mfull or Mvis to filter the corre-

spondences improve the pose estimation results compared

with using all predicted correspondences. This indicates

that the filtering operation can remove extreme outliers that

are far from 008 pudding box to improve the pose estima-

tion. Using Mvis in the filtering operations obtains better

results than Mfull, which demonstrates that the localization

results of the keypoints occluded by the distraction object

are not accurate enough for recovering the pose.

6.4. Evaluation of 2D­3D Correspondences

The evaluation results in the main paper focus on the fi-

nal estimated poses. We additionally evaluate the quality

of the established dense correspondences before RANSAC.

Specifically, for each test sample, we reproject the 3D key-

points by the ground truth pose and compute the mean dis-

tance between the reprojection results and predicted 2D lo-

cations. For symmetric objects, we use the equivalent rota-

tion closest to our final estimated pose. To obtain the inlier

ratio of the estimated correspondences, we regard a key-

point as an inlier if its reprojection error is less than 5 pix-

els. We compute the average reprojection error and inlier

ratio for each object and report the average values over the

whole dataset in Table 10.

6.5. BOP Results on LM­O and YCB­V

We report the performance of our method on LM-O and

YCB-Video using the evaluation metrics from BOP chal-



Figure 5: Example of test images for 008 pudding box

from the YCB-V dataset. We visualize the zoomed-in

RoI based on the detection results. For all test images,

008 pudding box (the brown box) is severely occluded by

009 gelatin box (the red box).

Dataset LM LM-O YCB-V

reprojection error (pixel) 3.4 14.4 10.9

inlier ratio (%) 88.4 67.8 39.6

Table 10: Evaluation results of predicted dense corre-

spondences.

lenge [19] in Table 11 and Table 12, respectively. We

mainly select baselines from officially published work. We

also include the results of GDRNPP [42] for reference,

which improves upon GDR-Net [75] with implementation

skills including stronger domain randomization, more pow-

erful detectors, etc., to compensate for the domain gap be-

tween training and test images. Without these implemen-

tation skills, our method still achieves comparable perfor-

mance with the state-of-the-art methods, including the re-

finement based method [41].

6.6. Detailed Results of YCB­V

We report the detailed evaluation metrics of each ob-

ject on YCB-V dataset [79] in Table 13 and Table 14. Our

method outperforms previous methods w.r.t. ADD(-S) and

AUC of ADD(-S), and achieves comparable performance

with state of the art w.r.t. AUC of ADD-S.

6.7. Qualitative Results

We provide additional qualitative results for LM-O [2]

and YCB-V [79] in Figure 6 and Figure 7, respectively.

We render the 3D CAD model based on the predictions of

CheckerPose, and highlight the contour in green. We also

highlight the ground truth contour in blue. For better visu-

alization, we crop the images and we also show the original

Method ARMSPD ARMSSD ARVSD AR

SurfEmb [14] 85.1 64.0 49.7 66.3

Coupled [41] 83.1 63.3 50.1 65.5

Zebra [64] 88.0 72.1 55.2 71.8

NCF [24] – – – 63.2

PFA [20] 83.7 66.1 52.3 67.4

CRT-6D [5] 83.7 64.0 50.4 66.0

GDRNPP [42] 88.7 70.1 54.9 71.3

Ours 87.3 72.3 53.7 71.1

Table 11: Results on LM-O dataset under BOP

setup [19]. The results of Coupled [41] and NCF [24]

are obtained from the original paper, and the results of

other methods are obtained from https://bop.felk.

cvut.cz/leaderboards/. We highlight the best re-

sult in red color, and the second best result in blue color.

“–” denotes unavailable results.

Method ARMSPD ARMSSD ARVSD AR

SurfEmb [14] 77.3 62.0 54.8 64.7

Coupled [41] 85.2 83.5 78.3 82.4

Zebra [64] 86.4 83.0 75.1 81.5

NCF [24] – – – 77.5

PFA [20] 84.9 81.4 75.8 80.7

SC6D [4] 80.4 79.6 69.5 76.5

CRT-6D [5] 77.4 77.6 70.6 75.2

GDRNPP [42] 86.9 84.6 76.0 82.5

Ours 85.3 84.4 70.7 80.1

Table 12: Results on YCB-Video dataset under BOP

setup [19]. The results of Coupled [41] and NCF [24]

are obtained from the original paper, and the results of

other methods are obtained from https://bop.felk.

cvut.cz/leaderboards/. We highlight the best re-

sult in red color, and the second best result in blue color.

“–” denotes unavailable results.

input image on the left for LM-O and YCB-V.

Furthermore, we provide more keypoint localization re-

sults of duck, bowl, and banana in Figure 8. For better vi-

sualization we only plot eight keypoints that are evenly dis-

tributed over the object surface. While our network directly

outputs the 2D locations, the results of other dense meth-

ods [64, 75] are computed by projecting the keypoints using

the estimated poses. Considering the symmetry of the bowl,

we use the equivalent rotations closest to our prediction to

project the keypoints of bowl.

6.8. Failure Cases and Future Work

We visualize typical failure cases in Figure 9. As shown



Method SegDriven[22] S.Stage[21] RePose [26] GDR [75] Zebra [64] DProST [47] Ours

002 master chef can 33.0 - - 41.5 62.6 - 45.9

003 cracker box 44.6 - - 83.2 98.5 - 94.2

004 sugar box 75.6 - - 91.5 96.3 - 98.3

005 tomato soup can 40.8 - - 65.9 80.5 - 83.2

006 mustard bottle 70.6 - - 90.2 100.0 - 99.2

007 tuna fish can 18.1 - - 44.2 70.5 - 88.9

008 pudding box 12.2 - - 2.8 99.5 - 86.5

009 gelatin box 59.4 - - 61.7 97.2 - 86.0

010 potted meat can 33.3 - - 64.9 76.9 - 70.0

011 banana 16.6 - - 64.1 71.2 - 96.0

019 pitcher base 90.0 - - 99.0 100.0 - 100.0

021 bleach cleanser 70.9 - - 73.8 75.9 - 89.8

024 bowl* 30.5 - - 37.7 18.5 - 68.0

025 mug 40.7 - - 61.5 77.5 - 89.0

035 power drill 63.5 - - 78.5 97.4 - 95.9

036 wood block* 27.7 - - 59.5 87.6 - 58.7

037 scissors 17.1 - - 3.9 71.8 - 62.4

040 large marker 4.8 - - 7.4 23.3 - 18.8

051 large clamp* 25.6 - - 69.8 87.6 - 95.4

052 extra large clamp* 8.8 - - 90.0 98.0 - 95.6

061 foam brick* 34.7 - - 71.9 99.3 - 87.2

MEAN 39.0 53.9 62.1 60.1 80.5 65.1 81.4

Table 13: Detailed results on YCB-V [79] w.r.t. ADD(-S). (*) denotes symmetric objects and “-” denotes unavailable results.

in Figure 9 (a) and (b), the textureless object eggbox from

LM-O dataset is severely occluded by a toy car, and a dis-

traction object with similar color also partially appears in

the input RoI. As a result, the estimated 2D projections are

shifted towards the distraction object. We also present a

failure case of objects with textures in Figure 9 (c) and (d).

The object in interest is 002 master chef can from YCB-V

dataset, which is geometrically symmetric. Though the tex-

ture is almost symmetric as well, the barcode only appears

on one side of the object, which causes the asymmetry. For

the given input RoI, the keypoints are localized in the oppo-

site directions, w.r.t. the central axis.

To improve the localization results, one future direc-

tion is the selection of 3D keypoints. Since we adopt

farthest point sampling algorithm to obtain evenly dis-

tributed keypoints, we ignore other factors to make the

keypoints more representative. For example, the issue of

002 master chef can may be solved by sampling more key-

points in the barcode area. Besides, no positional encod-

ing [45, 66] is leveraged in graph feature aggregation and

image feature fusion operations. Such encoding can pro-

vide additional cues for textureless regions. In future, we

will explore the positional encoding to enhance the keypoint

localization process.



Method CosyPose [31] GDR-Net[75] ZebraPose[64] DProST [47] Ours

Metric
AUC of AUC of AUC of AUC of AUC of AUC of AUC of AUC of AUC of

ADD-S ADD(-S) ADD-S ADD(-S) ADD-S ADD(-S) ADD(-S) ADD-S ADD(-S)

002 master chef can - - 96.3 65.2 93.7 75.4 - 87.5 67.7

003 cracker box - - 97.0 88.8 93.0 87.8 - 93.2 86.7

004 sugar box - - 98.9 95.0 95.1 90.9 - 95.9 91.7

005 tomato soup can - - 96.5 91.9 94.4 90.1 - 94.0 89.9

006 mustard bottle - - 100.0 92.8 96.0 92.6 - 95.7 90.9

007 tuna fish can - - 99.4 94.2 96.9 92.6 - 97.5 94.4

008 pudding box - - 64.6 44.7 97.2 95.3 - 94.9 91.5

009 gelatin box - - 97.1 92.5 96.8 94.8 - 96.1 93.4

010 potted meat can - - 86.0 80.2 91.7 83.6 - 86.4 80.4

011 banana - - 96.3 85.8 92.6 84.6 - 95.7 90.1

019 pitcher base - - 99.9 98.5 96.4 93.4 - 95.8 91.9

021 bleach cleanser - - 94.2 84.3 89.5 80.0 - 90.6 83.2

024 bowl* - - 85.7 85.7 37.1 37.1 - 82.5 82.5

025 mug - - 99.6 94.0 96.1 90.8 - 96.9 92.7

035 power drill - - 97.5 90.1 95.0 89.7 - 94.7 88.8

036 wood block* - - 82.5 82.5 84.5 84.5 - 68.3 68.3

037 scissors - - 63.8 49.5 92.5 84.5 - 91.7 81.6

040 large marker - - 88.0 76.1 80.4 69.5 - 83.3 72.3

051 large clamp* - - 89.3 89.3 85.6 85.6 - 90.0 90.0

052 extra large clamp* - - 93.5 93.5 92.5 92.5 - 91.6 91.6

061 foam brick* - - 96.9 96.9 95.3 95.3 - 94.1 94.1

MEAN 89.8 84.5 91.6 84.3 90.1 85.3 77.4 91.3 86.4

Table 14: Detailed results on YCB-V [79] w.r.t. AUC of ADD-S and ADD(-S). As in [79], symmetric metric is used for all

objects in ADD-S while only for symmetric objects in ADD(-S). (*) denotes symmetric objects.



Figure 6: Qualitative results on the LM-O dataset. For each image on the left, we visualize the 6D pose by rendering the

3D CAD models and highlighting the contours on the right. Blue color denotes ground truth and green color denotes the

prediction from CheckerPose.



Figure 7: Qualitative results on the YCB-V dataset. For each image on the left, we visualize the 6D pose by rendering

the 3D CAD models and highlighting the contours on the right. Blue color denotes ground truth and green color denotes the

prediction from CheckerPose.



Figure 8: Visualization of keypoint localization. Each column visualizes the keypoint location results of ZebraPose [64],

GDR-Net [75], our method, and ground truth. While our network directly outputs the 2D locations, the results of other dense

methods [64, 75] are computed by projecting the keypoints using the estimated poses.

(a) Ground Truth (b) Prediction (c) Ground Truth (d) Prediction

Figure 9: Failure cases. We provide the localization results of eight keypoints that are inliers of the estimated poses.


