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A B S T R A C T 
Co v ering ∼ 5600 de g 2 to rms sensitivities of ∼70 −100 µJy beam −1 , the LOFAR Two-metre Sk y Surv e y Data Release 2 
(LoTSS-DR2) provides the largest low-frequency ( ∼150 MHz) radio catalogue to date, making it an excellent tool for large-area 
radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of 
galaxies within the surv e y. We discuss systematics in the data and an impro v ed methodology for generating random catalogues, 
compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak 
signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary 
models. When fitting angular scales of 0 . 5 ≤ θ < 5 ◦, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of 
the underlying matter, with a bias of b C = 2 . 14 + 0 . 22 

−0 . 20 (assuming constant bias) and b E ( z = 0) = 1 . 79 + 0 . 15 
−0 . 14 (for an evolving model, 

inversely proportional to the growth factor), corresponding to b E = 2 . 81 + 0 . 24 
−0 . 22 at the median redshift of our sample, assuming the 

LoTSS Deep Fields redshift distribution is representative of our data. This reduces to b C = 2 . 02 + 0 . 17 
−0 . 16 and b E ( z = 0) = 1 . 67 + 0 . 12 

−0 . 12 
when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is 
slightly lower than LoTSS-DR1 ( ≥2 mJy), our study benefits from larger samples and impro v ed redshift estimates. 
Key words: galaxies: haloes – large-scale structure of Universe – radio continuum: galaxies. 

1  I N T RO D U C T I O N  
The LOw Frequency ARray (LOFAR; van Haarlem et al. 2013 ) is a 
key radio telescope array, transforming views of the low-frequency 
radio skies. Based in Europe, its full array combines a dense core of 
stations in the Netherlands with additional stations that have much 
larger baselines both across the Netherlands and Europe. This allows 
" E-mail: catherine.hale@ed.ac.uk 

baselines of up to ∼ 100 km across the Netherlands and ∼ 2000 km 
across Europe, producing 6 arcsec resolution using the Dutch stations 
only and sub-arcsecond resolution imaging using the full array 
(Morabito et al. 2022 ; Sweijen et al. 2022 ), at 150 MHz . These sta- 
tions combine two types of antennas to operate in two low-frequency 
ranges: the low-band antennas (LBA; 10 −80 MHz ) and high-band 
antennas (HBA; 120 –240 MHz ). Such lo w-frequency observ ations 
lead to a large field of view for each LOFAR observation, making it 
an excellent instrument for surv e y science. As part of this, LOFAR is 
currently focusing on several large-area survey projects, including: 
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the LOFAR LBA Sky Survey (LoLSS; de Gasperin et al. 2021 ) and 
the LOFAR Two-metre Sk y Surv e y (LoTSS; Shimwell et al. 2017 , 
2019 , 2022 ) with the HBA, which is what we use for this work. 
LoTSS aims to observe the entire Northern hemisphere at 144 MHz 
to a typical rms sensitivity of σ144 MHz ∼ 70 –100 µJy beam −1 and 
trace a combination of active galactic nuclei (AGN) and star- 
forming galaxies (SFGs) across large periods of cosmic time. At 
such frequencies, the dominant radiative mechanism is synchrotron 
emission from relativistic electrons spiraling in the magnetic fields. 
This leads to a typically power-law-like distribution for flux densities 
as a function of frequency ( S ν ∝ ν−α) with a range of spectral indices, 
typically assumed to be α ∼ 0.7 −0.8 for an average radio population 
(Kellermann, P aulin y-Toth & Williams 1969 ; Mauch et al. 2003 ; 
Smol ̌ci ́c et al. 2017a ; de Gasperin, Intema & Frail 2018 ), though 
much larger or smaller values can be observed for individual sources 
with flat or peaked spectra (e.g. Massaro et al. 2014 ; Callingham 
et al. 2017 ; O’Dea & Saikia 2021 ). 

LoTSS has dev eloped o v er a series of data releases, improving 
in properties such as angular resolution, sensitivity, image fidelity 
and areal co v erage. Initially, observations co v ering 350 de g 2 were 
released with direction-independent calibration only at a resolu- 
tion of 25 ′′ , detecting ∼44 000 sources with a typical noise of 
∼ 0 . 5 mJy beam −1 . This was then impro v ed upon in both resolution 
and sensitivity with the first fully direction-dependent calibrated 
data release for LoTSS: LoTSS-DR1 (Shimwell et al. 2019 ). This 
data release co v ered 424 de g 2 o v er The Hobby-Eberly Telescope 
Dark Energy Experiment (HETDEX) Spring Field (Hill et al. 
2008 ) with a corresponding catalogue of ∼325 000 sources, with 
a 1 σ sensitivity of ∼ 70 –100 µJy beam −1 at 6 arcsec angular res- 
olution. This sky coverage has now been enlarged in the latest 
data release, LoTSS-DR2 (Shimwell et al. 2022 ), which co v ers 
∼ 5600 deg 2 with an accompanying catalogue of ∼4.4 million 
sources. This is the largest catalogue of radio sources within an 
individual radio surv e y to date. Such a combination of area and 
large source numbers means that LoTSS-DR2 provides an excel- 
lent data set for radio cosmology studies, allowing for a more 
detailed understanding of the distribution of radio sources in the 
Universe. 

The study of the distribution of sources observed in galaxy surveys 
throughout the Universe is important for a number of reasons. Most 
importantly, it allows us to understand more about how galaxies trace 
the large-scale structure of the Universe and the underlying dark 
matter distribution. Starting from initial primordial o v erdensities, 
dense regions of matter have come together and evolved over time. 
This has resulted in the large-scale distribution of matter we observe 
today (Colless et al. 2001 ; Doroshkevich et al. 2004 ; Springel, 
Frenk & White 2006 ). This coming together of dark matter forms 
haloes in these initially o v erdense re gions, and leav es an absence 
of dark matter, known as voids, in regions of initial underdensities. 
Filaments then connect dense regions together. Luminous matter, 
which we observe in astrophysical objects such as stars and galaxies, 
is also attracted together under the effects of gravity but is further 
influenced by factors such as the effect of feedback associated with 
both star formation and from AGNs (see e.g. Ceverino & Klypin 
2009 ; Fabian 2012 ; Hopkins, Quataert & Murray 2012 ; Morganti 
2017 ). Since galaxies form in dense re gions, the y trace peaks in 
the underlying matter distribution, leading galaxies to be known as 
biased tracers of the matter distribution in the Universe (see e.g. 
Peebles 1980 ; Kaiser 1984 ; Mo & White 1996 ; Desjacques, Jeong & 
Schmidt 2018 ). 

On large scales, the galaxy o v erdensity, δg ( x , z), can be considered 
to trace the matter o v erdensity, δm ( x , z), related by a quantity known 

as ‘galaxy bias’, b ( z): 
δg ( x , z) = b( z) δm ( x , z) . (1) 
To quantify galaxy bias, a common method is to first determine 
the excess probability to observe galaxies within different spatial 
separations, compared to if they were randomly distributed. This is 
known as the spatial two-point correlation function (TPCF), ξ ( r , z). 
The redshift-dependent linear bias, b ( z), can then be measured and 
is related to the ratio of spatial clustering of galaxies, ξ ( r , z), to the 
clustering of matter, ξM ( r , z), as given by 
b 2 ( z) = ξg ( r, z) 

ξM ( r, z) . (2) 
The spatial clustering of galaxies, ξ g ( r ), defines the excess clustering 
of galaxies observed at a given spatial separation, compared to if 
they were randomly distributed. Such measurements of the spatial 
clustering rely on accurate redshifts and corrections due to peculiar 
velocities. Where highly accurate redshifts are not available for 
sources in a surv e y, it is still possible to estimate the spatial clustering 
by combining the observed projected angular clustering of sources 
with their redshift distributions using methods such as Limber 
inversion (Limber 1953 , 1954 ). Radio surveys provide excellent 
catalogues to measure the large-scale structure of the Universe as 
they predominately trace extragalactic sources over a broad redshift 
range and o v er large areas, but typically rely on angular clustering 
measurements instead of spatial measurements. 

The angular two-point correlation function ( ω( θ ), see e.g. Tot- 
suji & Kihara 1969 ; Peebles 1980 ; Cress et al. 1996 ; Blake & 
Wall 2002 ; Overzier et al. 2003 ; Wang, Brunner & Dolence 2013 ) 
does not rely on redshifts for its calculation and quantifies the 
excess probability (d P ) of pairs of sources observed within a surv e y 
catalogue at a given projected angular separation, θ , compared to if 
the sources were randomly distributed on the sky, with no intrinsic 
large-scale structure. This is defined by 
d P = N [ 1 + ω( θ ) ] d ), (3) 
where d ) is the solid angle of the observations and N is the mean 
number of sources per unit area. 

Radio continuum surv e ys rely on multiwav elength information 
for redshifts (see e.g. Smol ̌ci ́c et al. 2017b ; Prescott et al. 2018 ; 
Algera et al. 2020 ), which are typically dominated by less accurate 
photometric redshifts for a large fraction of the sources. For LOFAR, 
in the first LoTSS data release (Shimwell et al. 2019 ), sources were 
cross-matched to sources in surv e ys such as Pan-STARSS (Chambers 
et al. 2016 ) and WISE (Wright et al. 2010 ; Williams et al. 2019 ), with 
∼50 per cent of LoTSS-DR1 sources having redshift information 
(see Duncan et al. 2019 ). Similarly for the LoTSS Deep Fields, the 
wealth of multiwavelength data has been used to obtain redshifts for 
97 per cent of sources across the multiwavelength defined regions 
in the three fields LoTSS Deep Fields (see Duncan et al. 2021 ; 
Kondapally et al. 2021 ; Sabater et al. 2021 ; Tasse et al. 2021 ) which 
was used to help classify such sources (see Best et al. 2023 ). The 
accuracy of redshifts for such radio sources will be impro v ed upon 
with future spectroscopic surv e ys (such as WEAVE-LOFAR; Smith 
et al. 2016 ). 

Combining measurements of the angular clustering and redshift 
distribution, the spatial clustering for a population of sources can 
be inferred. The spatial clustering can then be used to estimate the 
galaxy bias of radio sources (as in Equation 2 ), this will be discussed 
further in Section 5 . Such clustering and bias measurements have 
been presented in a number of works (see e.g. Magliocchetti et al. 
1999 , 2004 ; Negrello, Magliocchetti & De Zotti 2006 ; Lindsay et al. 
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2014a ; Nusser & Tiwari 2015 ; Magliocchetti et al. 2017 ; Hale et al. 
2018 ; Siewert et al. 2020 ; Mazumder, Chakraborty & Datta 2022 ; 
Tiwari et al. 2022 ). A number of such studies suggest an evolving 
bias model for radio sources, suggesting radio sources are more 
biased tracers of the underlying matter distribution at higher redshift. 
Moreo v er, studies which further consider the bias for radio SFGs and 
AGN separately have shown that these sources have different bias 
distributions and trace different mass haloes (see e.g. Magliocchetti 
et al. 2017 ; Hale et al. 2018 ; Chakraborty et al. 2020 ; Mazumder, 
Chakraborty & Datta 2022 ). Such studies have shown that AGN 
appear to inhabit more massive haloes than for SFGs at similar 
redshifts, reflecting the fact that they preferentially inhabit massive 
ellipticals. Further studies which classify AGN suggest that the 
haloes hosting radio AGN may be related to the accretion mode 
of AGN (using high-redshift analogues to high/low-excitation radio 
galaxies, see Hale et al. 2018 ). Such differences in the bias of different 
source populations can be advantageous for cosmological analysis, 
using the multitracer techniques (see e.g. Raccanelli et al. 2012 ; 
Ferramacho et al. 2014 ; Gomes et al. 2020 ). These techniques require 
understanding of the bias evolution for different source populations 
and make use of such difference to help place constraints on, for 
example, non-Gaussianity. 

Further cross-correlating radio data with other cosmological 
tracers (see e.g. Allison et al. 2015 ; Alonso et al. 2021 ) can also 
help remo v e some of the systematics which remain in the data and 
have added further constraints on the galaxy bias evolution of radio 
sources, and Alonso et al. ( 2021 ) further used this to place constraints 
on the redshift distributions for radio sources, where no redshift 
information was available. Measurements of bias have been used in 
numerous studies to relate such measurements to the typical mass 
of the dark matter haloes which are hosting such sources (see e.g. 
those described in Mo & White 1996 ; Tinker et al. 2010 ), but there 
are caveats to such measurements, especially if full halo occupation 
models are not taken into account (see e.g. Aird & Coil 2021 ). 

In this paper, we investigate the angular clustering of radio sources 
within ∼ 4500 deg 2 of the LoTSS-DR2 surv e y and use this to infer 
the average bias of LoTSS-DR2 sources. The paper is arranged as 
follows: In Section 2 , we describe the LoTSS-DR2 data used in this 
analysis, as well as the methods to measure the angular clustering 
of radio galaxies in Section 3 . This includes a detailed description 
of the methods used in order to obtain accurate random sources that 
mimic the distribution of observational biases across the field of 
vie w, which de velops the techniques used for LoTSS-DR1 (Sie wert 
et al. 2020 ). Then, in Section 4 , we present our measurements 
of the angular clustering of sources and our validation of these 
measurements before presenting our methods to determine galaxy 
bias in Section 5 . This allows us to place constraint on how such 
sources trace the underlying matter and dark matter haloes across 
cosmic time. We then discuss our results in Section 6 . We then go 
on to draw final conclusions in Section 7 . For this paper, we assume 
standard cosmological parameters from Planck Collaboration ( 2020 ) 
in a flat model Universe, specifically: H 0 = 67.4 km s −1 Mpc −1 , 
)b = 0.0493, )c = 0.264, )m = )b + )c , )* = 1 − )m , n s = 0.965, 
σ 8 = 0.811, unless otherwise stated. 
2  DATA  
For this work, we make use of the data and associated data products 
from two LOFAR surv e y projects: (i) the large area LoTSS-DR2 
surv e y (Shimwell et al. 2022 ) and (ii) the associated redshift 
information from sources in the smaller LoTSS Deep fields (Duncan 
et al. 2021 ). 

2.1 LoTSS-DR2 
The majority of data used in this work consists of images and 
catalogues from the mosaics generated from combining 841 indi- 
vidual pointings of LoTSS-DR2 (Shimwell et al. 2022 ) co v ering 
∼ 5600 deg 2 o v er two re gions. The first of these is centred at 13 h 
in RA, co v ering 4178 de g 2 , and the second re gion is centred at an 
RA of 1 h, co v ering 1457 de g 2 . The data were reduced in a two- 
stage process which consists of both a direction-independent and a 
direction-dependent calibration pipeline. The former flags, calibrates 
and averages the data in order to reduce the large data volumes, 
whilst the latter does further calibration and imaging to account for 
direction-dependent effects. This includes the effect of the varying 
ionosphere across the field of view, which is more prominent at the 
observing frequencies that telescopes such as LOFAR operate at, 
compared to higher frequency radio observations. As presented in 
works such as Williams et al. ( 2016 ), van Weeren et al. ( 2016 ), 
Shimwell et al. ( 2019 ), and Tasse et al. ( 2021 ), such direction- 
dependent calibration of LOFAR data is crucial for improving image 
fidelity and for producing higher-resolution imaging of the field 
at 6 arcsec angular resolution, compared to 25 arcsec without this 
accounted for (see e.g. Shimwell et al. 2017 ), when using only the 
Dutch LOFAR stations. Source catalogues were generated using the 
source finder PYBDSF (Mohan & Rafferty 2015 ) which detected a 
total of ∼4.4 million sources across the full LoTSS-DR2 co v erage. 
The distribution of these sources o v er the Northern hemisphere can 
be seen in Fig. 1 . This distribution varies significantly across the field 
of view due to a combination of factors. These include intrinsic large- 
scale structure, and non-uniform detection across the field of view 
resulting from instrumental, calibration and source finding effects. 
Understanding the factors which cause such non-uniformity in the 
data are important in order to accurately measure the true angular 
clustering of sources and will be discussed further in Section 3.2 . 
Unless otherwise stated, any mention of images and pointings from 
LoTSS-DR2 refer to the mosaic images which are available from 
https://lofar-surv e ys.org , and are the mosaiced region closest to the 
pointing centre. 
2.2 LoTSS Deep Fields 
In order to relate any observed angular clustering to the spatial 
clustering and bias, it is crucial to have knowledge of the redshift 
distribution of the sources within the field. As there are not direct 
measurements of redshifts for the full population of LoTSS-DR2 
sources 1 we make use of the LoTSS Deep Fields data (Sabater 
et al. 2021 ; Tasse et al. 2021 ) which targets a handful of fields 
in the Northern hemisphere with an abundance of multiwavelength 
data, these are observed to deeper sensitivities than in LoTSS-DR2. 
Observations within these fields are important to help infer the 
redshift distribution of the sources observed within LoTSS-DR2. 
The first LoTSS Deep Fields data release consisted of three fields: 
Bo ̈otes, Lockman Hole, and the European Large-Area ISO Surv e y 
Northern Field 1 (ELAIS-N1) field. These were observed for a total 
of 80, 164, and 112 h, respectively, covering ∼ 20 deg 2 in each field. 

For each field, a smaller region was defined for which there 
exists deep multiwavelength information. In such regions, the source 
1 Redshifts for a number of sources will be available in the value-added 
catalogue of Hardcastle et al. ( 2023 ) which is cross-matching sources ≥4 
mJy, to ensure accurate host positions for source ≥8 mJy. Ho we ver, there 
will be significant incompleteness compared to the full population of sources 
used in this work. 
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Figure 1. Sky density distribution of all sources in the LoTSS-DR2 survey (upper panel) from Shimwell et al. ( 2022 ) and for the random catalogues generated 
for this work (lower; prior to any flux density, SNR or spatial cuts). This shows the two large regions covered by the survey, centred on right ascensions of 
1 h (15 ◦) and 13 h (195 ◦). The figure is plotted in the Mollweide projection using HealPix (G ́orski et al. 2005 ; Zonca et al. 2020 ) with an N side = 256. The 
colour-scale indicates the source density per sq. deg across the field of view. 
catalogues from PYBDSF were cross-matched to host galaxies 
(Kondapally et al. 2021 ) using a wealth of ancillary data. This 
cross-matched area constituted a total area of 8 . 6 deg 2 in the Bo ̈otes 
field, 6 . 7 deg 2 in ELAIS-N1 and 10 . 3 deg 2 in the Lockman Hole 
field, totalling 25 . 6 deg 2 across the three fields. For the cross- 
matched sources, a redshift was also associated to the source using a 
combination of template fitting to the multiwavelength data as well 
as machine-learning methods in order to obtain probability density 
functions (PDFs) for the redshift distributions, denoted p ( z). A ‘best 
redshift’ was then assigned to each source based on the PDF, or a 
spectroscopic redshift if such was available for the sources. More 
detail on this can be found in Duncan et al. ( 2021 ). We use these 
redshift distributions to estimate the redshift distribution, p ( z), for 
sources in the wider LoTSS-DR2 surv e y. This will be discussed 
further in Section 5.1 . 
3  A N G U L A R  CLUSTERING  A N D  R A N D O M S  
G E N E R AT I O N  
3.1 Angular clustering 
As discussed in Section 1 , one way to investigate the clustering of 
sources within a galaxy catalogue is through measuring the angular 
two-point correlation function (TPCF), denoted by ω( θ ). The TPCF 
quantifies the excess clustering observed at a given angular separation 
in the catalogue data, compared to what would be observed over the 
field of view if there was no large-scale structure within the data. 
Naiv ely, such e xcess probability to detect galaxies in the data at a 
given angular separation compared to the distribution from random 
sources is given by : 
ω( θ ) = DD ( θ ) 

RR ( θ ) − 1 . (4) 

In this estimator, DD ( θ ) is the counts of pairs of galaxies within the 
data catalogue at a given angular separation θ (normalised such 
that + θDD ( θ ) = 1) and RR ( θ ) is the corresponding normalised 
pair counts within a random catalogue. This random catalogue is 
generated to mimic observational effects across the field of view. If 
the data were indeed randomly distributed and exhibited no large- 
scale structure behaviour, ω( θ ) would fluctuate around a value of 
0. Any deviation from this suggests intrinsic large-scale structure. 
A number of predictions for galaxies as well as observations have 
suggested that this angular clustering behaves as a power law 
for galaxies and specifically radio sources (see e.g. Peebles 1980 ; 
Blake & Wall 2002 ; Lindsay et al. 2014a ; Magliocchetti et al. 2017 , 
but see Section 4 ). Whilst Equation 4 could be used to estimate ω( θ ), 
work by Landy & Szalay ( 1993 ) has shown that a more accurate 
estimator of ω( θ ) is given by: 
ω( θ ) = DD ( θ ) − 2 DR ( θ ) + RR ( θ ) 

RR ( θ ) . (5) 
In this estimator, DR ( θ ) is the corresponding normalised pair counts 
between the data and random catalogues within a given angular 
separation. This estimator has been shown to have minimal variance 
and be less biased than other estimators such as Equation 4 (see 
Landy & Szalay 1993 ). As such, we use Equation 5 to calculate ω( θ ) 
in this work. 

To calculate ω( θ ), a random catalogue must first be generated 
to compare to the data. If source detection across the field of 
view were uniform, such a random catalogue could be generated 
through sampling random positions across the observed field of 
vie w. Ho we ver, the detection of sources is not uniform (see Fig. 
1 ) and will be affected by a number of observ ational ef fects across 
the sky. Thus, the generation of randoms which accurately mimic the 
detection of sources across the sky is crucial to a v oid observational 
effects being mistaken for intrinsic large-scale structure. We therefore 
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employ a number of methods (discussed in Section 3.2 ) to mimic such 
observations across the field of view. 

To measure ω( θ ), we make use of the package TreeCorr (Jarvis 
2015 ) to calculate the pairs of galaxies within angular separation 
bins that are uniformly spaced bins in ln ( θ ) and co v er the range of 
angular scales possible with the data. Due to the large area co v erage 
of LoTSS-DR2, we ensure that the metric for calculating separations 
within TreeCorr is set to ‘Arc’ . This helps to more accurately 
calculate separations across large fields of view, using great circle 
distances. We also set the parameter bin slop to 0 which enforces 
that exact calculations are made to calculate the number of pairs of 
sources within each angular separation bin, as opposed to the default 
method which has some flexibility between the separation bins in 
order to help speed up the calculation of pairs. Such parameters were 
determined to be important in the work of Siewert et al. ( 2020 ), 
where a non-zero bin slop was found to introduce larger errors in 
the measurement of ω( θ ). The associated uncertainties in ω( θ ) will 
be discussed in greater detail in Section 3.4 and its connection to 
linear bias also discussed in Sections 5.2 –5.3 . 
3.2 Randoms 
As discussed in Section 3.1 , in order to measure the angular clustering 
from LoTSS-DR2, we need to have a catalogue of random sources 
which mimics the detection of data across the field of view. Fig. 
1 highlights the non-uniform detection of radio sources across the 
field of view, due to a combination of factors including sensitivity 
variations across the field of view due to bright sources, reduced 
sensitivity with declination and smearing of points sources across 
the field of view. In building our random catalogue, we will take a 
series of steps to account for these effects. An outline of these steps, 
as well as the section in which these shall be applied is as follows: 

(i) Survey area – We generate randoms across the surv e y field 
of view, ensuring we remo v e an y masked regions within pointings 
which are masked out due to failures within the data reduction 
process. We consider this in Section 3.2.1 . 

(ii) Smearing – There may be position-dependent smearing effects 
across the field of view of a pointing, as well across the 5600 deg 2 . 
Smearing will affect the detection of sources (which is based on 
signal-to-noise ratio ‘SNR’, defined here as peak flux density/rms 
(root mean square noise), for which the Isl rms column is used 
for rms of the data 2 ), and could arise from effects such as residual 
calibration uncertainties and uncorrected smearing effects inherent 
to the data averaging. We model smearing across the field of view 
and its dependence on field ele v ation and correct for this, which is 
discussed in Section 3.2.2 . 

(iii) Incompleteness and measurement errors – The sensitivity 
(rms) will vary across the surv e y area, such as with ele v ation or 
declination (see Fig. 2 of Shimwell et al. 2019 ) or location within the 
mosaic and proximity to bright sources, where the noise is known 
to be ele v ated. Variations may also exist towards the edge of the 
field, where there are fewer neighbouring pointings that can be 
mosaiced together (as mosaicing would reduce the noise). This will 
affect source detection and hence the completeness. Furthermore, the 
source finder may have a completeness dependence with SNR and 
its measurement errors can affect the properties such as flux density 
2 For the randoms, we use the pixel rms value at the source centre. Using a 
central rms value for the data makes a negligible difference to the number of 
sources when the final flux density and SNR cuts are applied are described in 
Section 3.3.2 

associated with sources. We account for completeness as a function 
of source input SNR and the effect that noise and the source finder 
may have on the measured flux properties of sources in Section 3.2.3 . 

(iv) Additional spatial masking – Finally, there may be additional 
spatial regions which should be masked to a v oid regions such as the 
unmosaiced edges of pointings; this is described in Section 3.3 . 

We note, though, that there may be limitations to generating 
the randoms which may be more challenging to account for, es- 
pecially o v er the large area of LoTSS-DR2. This includes residual 
primary beam uncertainties which are unknown and that mosaicking 
pointings together may cause additional smearing which can very 
spatially due to pointing-dependent astrometric offsets. To minimize 
the effects of these, additional flux limit and SNR limits can be 
applied to both the data and random samples. Specifically, for our 
final analysis, we limit the sample to ≥1.5 mJy and ≥ 7.5 σ . We 
discuss these and additional cuts in Sections 3.3.2 –3.3.3 . 
3.2.1 Input simulated catalogue 
The first step in generating accurate random catalogues for the 
LoTSS-DR2 surv e y is to generate a sample of input positions which 
are uniformly distributed across the field of view of LoTSS-DR2, 
accounting for masked regions within the fields. For this work, we 
generated random positions in the range: RA from 0 ◦ to 360 ◦ and 
Dec. from 20 ◦ to 80 ◦. This wide-area encompasses the full LoTSS- 
DR2 footprint, but a significant fraction of such a region is not 
co v ered by LoTSS-DR2. Therefore, we use the associated rms maps 
of each individual pointing to identify the sources within the LoTSS- 
DR2 area. We assign each random position an rms value, based on 
the pixel value at the source location, using the rms map for the 
closest pointing. This also allows sources within masked regions, 
or regions not surveyed in LoTSS-DR2 to be identified. Random 
sources falling within the surv e yed re gion are retained and consist 
of ∼200 million input simulated positions across the field of view of 
LoTSS-DR2. 

To account for sensitivity variations and the effect that this has on 
the detection of sources, we take a number of iterative steps. First, 
we assign simulated properties of radio sources to each of the ∼200 
million random positions. Such properties include the flux density 
of the simulated source, as well as source shape information. To 
do this, we make use of the SKA Design Studies Simulated Skies 
(SKADS; Wilman et al. 2008 , 2010 ), which provide a simulated 
catalogue of sources co v ering 100 de g 2 with multiple observable 
properties for each simulated source. These properties include an 
associated redshift, flux density measurements at several frequencies 
in the range 151 MHz − 18 GHz , shape information and source 
type (e.g. AGN or SFG). Recent observations suggest that SKADS 
underestimated the number of SFGs at the faintest flux densities 
(see e.g. Bonaldi et al. 2016 ; Smol ̌ci ́c et al. 2017a ; Matthews et al. 
2021 ; van der Vlugt et al. 2021 ; Best et al. 2023 ; Hale et al. 2023 ). 
Therefore, we employ a modified version of the SKADS catalogue 
where the number of SFGs in the original catalogue are doubled, as 
also done in Hale et al. ( 2023 ). The source counts from the modified 
SKADS catalogue better reflects deep data from the LoTSS Deep 
Fields (Mandal et al. 2021 ), source counts presented for LoTSS- 
DR2 (Shimwell et al. 2022 ) and data from other wavelengths scaled 
to 144 MHz , assuming a spectral index 3 of α = 0.7, We initially 
3 We use this value for the spectral index unless otherwise stated, under the 
convention S ν ∝ ν−α . 
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use a minimum flux density of 0 . 1 mJy for the SKADS sources to 
validate the randoms, but increase this to 0 . 2 mJy once flux density 
cuts are applied (see Section 3.3.2 ). We note that the relatively 
limited area of SKADS compared to LoTSS-DR2 means that the 
contribution of the much rarer, bright sources may be undersampled 
and so may differ from LOFAR observations. However, such bright 
sources are rare in the observations and simulations and so will not 
contribute largely to the clustering. Moreo v er, those sources will not 
be sensitivity limited. Due to the nature of the large area of LoTSS- 
DR2, SKADS sources will need to be repeated in our random sample, 
to ensure both spatial co v erage and to allow the random sample to 
be significantly larger than the data. Whilst other simulated radio 
catalogues exist, such as T-RECS (Bonaldi et al. 2019 , 2023 ), we 
will demonstrate later that the source counts used from this modified 
SKADS model can accurately represent the source counts of our 
data and other deeper observations, and have been shown to be 
successful in estimating completeness in other studies (Hale et al. 
2023 ). Therefore, we feel we are able to adopt SKADS for use in this 
work. With future studies which split by source type and redshift, 
it will become increasingly important to use simulated catalogues 
which both have overall flux distributions which reflect the data 
as well as reflect the evolving luminosity functions for different 
populations. 

As PYBDSF relies on peak SNR in order to determine whether 
a source is detected abo v e the local noise, we need a peak flux 
density for the simulated sources. For a given integrated flux density, 
a point source is more likely to be detected than an extended source, 
due to the decreasing peak SNR for more extended sources. To 
assign a peak flux density to our simulated sources, we use the 
component catalogue which corresponds to the modified SKADS 
catalogue. The catalogue used for this work has a flux density limit 
of 5 µJy at 1 . 4 GHz ( ∼ 25 µJy at 144 MHz ), and includes the shapes 
and orientations of components that make up the individual sources 
in the SKADS catalogue. Following Hale et al. ( 2021 , 2023 ), we 
model each SKADS source through combining the emission related 
to the modelled components of a source. For each component, 
we model this as an ellipse randomly positioned within a pixel 
of the same pixel scale as the LOFAR observations. We convolve 
this ellipse with a Gaussian kernel representing the restoring beam 
which is an approximation to the point spread function (PSF) of the 
LOFAR observations (6 arcsec) and sum these components together. 4 
This procedure provides an input catalogue of sources which have 
information on the integrated flux density, redshift, source type and 
peak flux density, which we can assign to our random catalogues. 
Unlike in Hale et al. ( 2021 , 2023 ), though, we do not inject sources 
into the images and re-extract sources using the source finder, 
PYBDSF . This is due to the large area of the field being considered, 
for which a significant computational effort would be required to 
create sufficient random sources to measure the clustering. Instead 
we make use of information from the simulations performed in 
Shimwell et al. ( 2022 ) to account for incompleteness across the 
sky. Ho we ver, we must first account for smearing across the field 
of view. 
4 We note that the knowledge of the true underlying source size distribution is 
challenging to understand from current observations, due to complexities such 
as source deconvolution and smearing in the image. Whilst SKADS provides 
one source size model, knowledge of these for the data will be impro v ed with 
deep, high-resolution imaging of galaxies, such as with observations from the 
LOFAR International stations (see e.g. Morabito et al. 2022 ; Sweijen et al. 
2022 ). 

3.2.2 Smearing 
Smearing effects can reduce the peak flux densities of sources, and 
hence their detection. This smearing can originate from a range of 
factors including: bandwidth and time smearing (Bridle & Schwab 
1999 ); residual calibration errors; the size of the facets used in the 
reduction; and residual effects from the ionosphere interacting with 
the radio signals. The first of these, bandwidth and time smearing, 
is described in detail in Bridle & Schwab ( 1999 ) and is related to 
the averaging of data, which causes an increasing smearing with 
distance from the pointing centre. In LoTSS-DR1, Shimwell et al. 
( 2019 ) suggested that the use of DDFacet reduced the effects of such 
smearing at the largest angular separations compared to Bridle & 
Schwab ( 1999 ) (see Fig. 10 of Shimwell et al. 2019 ). This is because 
DDFacet uses a different PSF in each facet which can be used to 
account for smearing in the data. The 6 arcsec restoring beam of 
LOFAR images is then used uniformly across the images. Ho we ver, 
such a process leads to residual effects. For example, sources which 
are not fully deconvolved may still exhibit smearing and as only 
one PSF per facet is assumed, this can also lead to residual effects. 
We do not adopt the relation for smearing as presented in fig. 10 of 
Shimwell et al. ( 2019 ), but instead investigate the smearing for the 
LoTSS-DR2 data and how it varies with observational properties. 

Given the large survey area of LoTSS-DR2 ( ∼ 5600 deg 2 ), we 
consider whether there is a possibility of smearing being a function 
of position across the surv e y, in particular with the ele v ation of the 
observations, as the primary beam size of an individual pointing 
increases at low elevation with LOFAR as it is not a steerable 
telescope, and as there are larger ionospheric effects, because more 
of the Earth’s atmosphere is along the line of sight. This leads to 
larger and more elongated PSF sizes and observational area at lower 
declination (see LOFAR observations at lower declinations in Hale 
et al. 2019 ). Therefore, we consider the dependence of the observed 
smearing as a function of these parameters. 

To investigate the relationship of the position-dependent smearing 
we make use of sources from the Faint Images of the Radio Sky at 
Twenty-cm surv e y (FIRST; Becker, White & Helf and 1995 ; Helf and, 
White & Becker 2015 ) where we have overlap between the two 
surv e ys (mostly in the 13h field). FIRST is a 1.4 GHz surv e y with 
the VLA which observed the northern sky to σ1 . 4 GHz ∼ 0 . 15 mJy 
at 5 arcsec resolution. To study the smearing, it is important to 
identify sources which are believed to be unresolved. Such sources 
should have a ratio of integrated to peak flux densities ( S I 

S P ) of 
1, though scatter will exist due to the effects of noise at lower 
SNR. Due to the higher angular resolution in FIRST compared 
to LoTSS-DR2, we make the assumption that those sources which 
are unresolved in FIRST will also be unresolved in LoTSS-DR2. 
To identify unresolved sources in FIRST, we took those which are 
isolated (no neighbours within 12 arcsec) and are high SNR (SNR 
≥ 10). For those sources, we follow the methods of previous works 
such as Smol ̌ci ́c et al. ( 2017a ), Shimwell et al. ( 2019 ), Hale et al. 
( 2021 ) and use a 95 per cent SNR envelope of the form: 
S I 
S P = A ± B × SNR −C , (6) 

where the ± reflects the upper/lower envelopes. A is found using 
the value of S I 

S P at high SNR, and sources with S I 
S P below A are used 

to fit for B and C in order to define the envelope. The form of the 
envelope fit for these sources can be seen in Fig. 2 . Those FIRST 
sources which are below the upper envelope are considered to be 
unresolv ed. These unresolv ed FIRST sources are then cross-matched 
within a 3 arcsec matching radius to LoTSS-DR2 sources which are 
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Figure 2. SNR envelope for integrated to peak flux density ratio as a function 
of SNR that is determined for isolated, high SNR sources in FIRST (see 
Section 3.2.2 ). Sources in blue are considered to be unresolved and in red are 
resolved. The model for the envelope is also provided. 
isolated (again, within 12 arcsec), high-SNR sources (SNR ≥ 20, to 
ensure sources are less affected by Eddington bias, see Eddington 
1913 ), and those sources which were considered single sources by 
PYBDSF (i.e. S Code = ‘S’). 

We then consider the position-dependent median ratio of the 
integrated-to-peak flux densities as a function of distance to the 
nearest pointing centre and its dependence on RA, Dec., and mean 
ele v ation of the field observation. Only those separation bins that 
have at least 200 sources within them are presented in Fig. 3 and 
error bars are generated by bootstrap resampling the sources within 
the bin 100 times after resampling one-third of the sources. 

Fig. 3 , shows an increase in smearing across the field of view as 
a function of distance from the pointing centre. Ho we ver, there is 
also an apparent dependence on the declination and ele v ation of the 
field. The relationship with the right ascension of the observations is 
more complicated. If we first consider the effects of declination, 
the median flux density ratios appear to increase with declining 
declination, whilst for the two lowest declination bins considered 
there is similarity in the trend of the observed smearing as a function 
of separation. If we consider the dependence on RA this does not 
appear to have a clear trend, but at the largest RA considered the 
smearing is minimised. Ho we ver, we note that the comparison with 
FIRST does not have sufficient RA co v erage to investigate the full 
RA range observed with LOFAR. Finally, if we investigated the 
ele v ation dependence of this smearing, we see increasing smearing 
with distance from the pointing centre, which also appears to decrease 
with ele v ation abo v e an ele v ation of ≥65 ◦, and to be constant at 
ele v ations belo w this. As the ele v ation of an observation is related to 
the declination of the source combined with the time of observation, 
such smearing effects are likely correlated. For this work, we only 
consider the ele v ation-dependent smearing to correct the peak flux 
densities of the random sources, using for a model of the form: 
S I 
S P = C 1 + e −D 1 ×θ , (7) 
where θ is the angular separation (in degrees) from the pointing 
centre of the nearest pointing and C 1 and D 1 are values to be fit. 
We calculate the best-fitting values of C 1 and D 1 in bins of ele v ation 
and then model the average distribution of these parameters using a 
linear equation: 
C 1 = αC + βC × ε, (8) 

and similarly for D 1 . Here, αC and βC are constants, and ε is the mid- 
point of the ele v ation bin in degrees. These are fit for ele v ation bins 
with an ele v ation ≥60 ◦. For those ele v ations ≤62.5 ◦, we apply the 
same relation to that fit for the 60–65 ◦ ele v ation range. These models 5 
are presented in Fig. 3 . When applied to the random sources, angular 
separations are measured to the nearest pointing centre and the mean 
ele v ation is taken as that of the nearest pointing. As can be seen 
from Fig. 3 , this functional form appears to be a good visual fit to 
the data. This smearing shows that for those sources at the largest 
angular distances from the pointing centre have greater smearing 
and so would be less easy to detect than for a source with the same 
integrated flux density close to the pointing centre. 
3.2.3 Correcting the simulations for completeness and source 
measurement effects 
Once we have information for the flux density properties (both 
integrated and peak) for each simulated source, we consider the 
likelihood a random source would be detected, accounting for 
completeness. Due to the variations in rms across the image and 
the source finder itself, the completeness will vary across the sky and 
not all sources with intrinsic peak flux densities abo v e 5 σ will be 
detected by the source finder, and some source with intrinsic SNR 
below the threshold will be pushed abo v e the threshold. It is then 
important to use this understanding of the completeness variation to 
determine which of our simulated randoms would be detected if they 
were observed through the LoTSS-DR2 survey. 

To measure this, we make use of the image plane completeness 
simulations which were presented and used in Shimwell et al. ( 2022 ) 
and investigate the recovery of sources over a range of flux density 
and source shapes. We use the output from these simulations in order 
to investigate completeness and the source counts for the surv e y. 
These simulations involved generating 10 simulated images for each 
field in which sources of varying flux densities and shapes 6 are 
injected within the residual images of the individual pointings. This 
uses a source counts model from Mandal et al. ( 2021 ) to determine 
the number of sources to inject into a field. PYBDSF is then used to 
re-extract the sources over the simulated images. This then allows the 
completeness to be measured, which is presented as a function of flux 
density in Shimwell et al. ( 2022 ) for both point source completeness 
and using simulations which include extended sources, which we 
use for this work. These simulations can help quantify which of 
our simulated sources are likely to be detected, but also to establish 
what the ‘measured’ flux densities of these sources may be, if they 
had theoretically been detected by the source finder. It is with a 
combination of accounting for these two effects that we generate our 
random catalogue of simulated sources. 

Whilst the completeness is shown to have a large variation as 
a function of flux density for each LoTSS pointing (see Shimwell 
et al. 2022 ), the scatter is greatly reduced when its dependence on 
SNR is considered (see Fig. 4 ). This smaller scatter is due to the 
5 The model parameters that we find and use in this analysis are αC = 0.506, 
βC = −0.004 28, αD = 0.0557, and βD = −0.000 217 (to three significant 
figures). 
6 We note these shapes are based on deconvolved source sizes, which may 
have smearing effects. We also note the SKADS models use elliptical based 
models, not Gaussians, and so this may lead to some residual differences 
when comparing the detection of extended sources. We use these simulated 
sources from Shimwell et al. ( 2022 ), though, as they are more appropriate 
than point sources, and allow some indication of the effect of non-point-like 
objects. 
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Figure 3. The measured integrated to peak flux density ratio (an indicator of source smearing, y -axis) as a function of separation from the closest pointing centre 
( x -axis). The dependence of such smearing is shown as a function of declination (left panel), RA (centre panel) and ele v ation (right panel). The dashed–dot line 
in the right-hand panel indicates the ele v ation-dependent smearing model which will be used in this work. For ele v ation bins ≤65 ◦, a constant model is used 
(green, orange, and red data). 

Figure 4. Completeness as a function of peak SNR (x-axis) and as a function 
of flux density (see colour bar) for sources across the 841 pointings of LoTSS- 
DR2. Inset: the completeness as a function of SNR only for each individual 
field (light blue) and the average across all fields (navy, dotted). 
fact that source finding with PYBDSF uses thresholding which is 
based on the peak flux density of pixels within a source, compared 
to the local noise, i.e. SNR. Both the boundary of pixels which 
contribute to a source island and the criteria which define which 
sources contribute to the catalogue both use a SNR threshold. This 
is a 3 σ and 5 σ thresholding limit, respectively, for the two criteria 
defined. Therefore, while the rms v alues v ary between the different 
fields of LoTSS-DR2, so each field has a different flux density 
dependence on completeness, the SNR dependence is more likely 
to be consistent across the fields. This can be seen in the inset of Fig. 
4 which also demonstrates that at a 5 σ limit, which is used to generate 
the source catalogue, the completeness is in fact only ∼50 per cent, 
rising to ∼95 per cent at 7 σ . Due to this consistency between fields, 
we therefore believe that using completeness as a function of SNR 
is a much more appropriate way to resample our simulated sources, 
instead of using solely a flux density dependence. 

Ho we ver, it is possible that while the average completeness as 
a function of SNR is consistent across the fields, it may be that 
completeness has both a dependency on SNR and flux density. This 
is because the intrinsic size distribution of sources is likely to have 
a dependence on flux density, such as AGN (which may have jets 
and be resolved) are likely to be brighter than SFGs. For extended 
sources, these may be more likely to be detected at a given peak SNR 
as the larger sizes means that while the peak of the sources may be 

Figure 5. Comparison of the measured to input simulated flux density as a 
function of input SNR for the simulated sources in Shimwell et al. ( 2022 ) for 
both the integrated (left panel) and peak (right panel) flux densities. 
affected by a noise trough, pushing it below a detection limit, but the 
large size means that other neighbouring pixels could push the source 
abo v e the detection limit, making it detectable. For smaller sources, 
they may be less likely to have a pixel above the detection threshold, 
given the smaller size. Therefore, we also consider the flux density 
dependence of the completeness as a function of SNR (Fig. 4 ). As 
can be seen in Fig. 4 , there does appear to be a weak flux density 
dependence of the completeness for the same SNR. For example at 
5 σ , there is a variation in completeness from ∼0.3 at ∼0.2 mJy to 
∼0.65 at ∼5 mJy. This behaves in the way expected, as discussed 
abo v e, with larger sources better detected. Ho we ver, at ∼6–7 σ for 
sources with the highest flux densities considered in Fig. 4 there is 
the opposite behaviour, where the completeness appears to decrease 
with increasing flux density of the simulated sources. 

Moreo v er, the simulations from Shimwell et al. ( 2022 ) allow us to 
also consider (i) the combined effects of Eddington bias (Eddington 
1913 ), where faint sources are preferentially boosted to higher flux 
densities, and (ii) source finder measurement errors. Combined, this 
allows sources which would be inherently fainter than 5 σ to be 
detected by PYBDSF but leads to sources at lower SNR to have 
measured integrated and peak flux densities at values different to their 
intrinsic values. Hence, we also consider the ratio of the measured 
to input flux density for each simulated source as a function of input 
SNR. This is shown for both the integrated and peak flux densities 
in Fig. 5 . As can be seen, at high SNR, the measured-to-input flux 
density ratio tends to a value of 1, indicating that these sources can 
be accurately characterised by the source finder. At lower SNR, there 
is a scatter for both the integrated and peak flux density ratios which, 
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Figure 6. Normalised distribution of the integrated (Int) to peak flux density 
ratio for the data (blue) compared to the random sources (red). This is shown 
for all sources in LoTSS-DR2 and also those sources when a SNR cut of 5 σ is 
applied, and for the finally adopted cuts of 7.5 σ , 1.5 mJy (see Sections 3.3.1 –
3.3.3 ). A lighter colour indicates a higher SNR cut. 
at the lowest flux densities, are biased to measured flux densities that 
are larger than the intrinsic flux densities. 

We therefore resample our randoms to correct for the effects of: 
(i) The completeness as a function of both input SNR (peak flux 

density/rms) and integrated flux density; 
(ii) The ratio of the input simulated peak flux density ( S P,in ) to the 

measured peak flux density ( S P, meas ) as a function of input SNR (to 
obtain a ‘measured’ peak flux density); 

(iii) The ratio of the input integrated-to-peak flux density ratio 
to the measured integrated-to-peak flux density ratio ( S I, in S P, meas 

S I, meas S P, in ) as 
a function of input SNR (to obtain a ‘measured’ integrated flux 
density). 

We use the simulations of Shimwell et al. ( 2022 ) to take our input 
simulated catalogues and resample them to determine which sources 
are ‘detected’ based on their expected completeness, given their SNR 
and integrated flux density. For those sources which were considered 
to be detected, we calculate a ‘measured’ integrated and peak flux 
density for the simulated source. 

To generate the final catalogue of randoms to be used to investigate 
the angular clustering, we therefore take the input catalogue of ran- 
dom sources from SKADS discussed in Section 3.2.1 and calculate 
the peak flux densities that have been corrected for smearing (see 
Section 3.2.2 ). We also apply a further constant smearing ratio by 
dividing the peak flux densities by a ratio of 0.95; this was found 
to be essential to allow the peak of the integrated-to-peak flux ratio 
of the simulated sources to match that of the data, see Fig. 6 . The 
value was chosen to align the peak of these ratios and likely reflects 
a residual smearing issue from the data reduction processes such 
as from the effects of the ionosphere or residual calibration errors. 
Then, given the rms at the source location, it is possible to determine 
an input SNR. 

Using this input source SNR and integrated flux density for 
an individual randoms source, we then calculate its completeness 
through interpolating from a 2D grid of completeness as a function 
of both SNR and flux density which have been calculated from 

the simulations of Shimwell et al. ( 2022 ), across all fields. 7 For 
regions in SNR and flux density space where there is no or limited 
information from the simulations of Shimwell et al. ( 2022 ) to 
interpolate a completeness, we extrapolate to reflect the detection. 
F or e xample, at high SNR ( ≥10) and high-flux densities where there 
is limited simulation information (and so can be affected by smaller 
number statistics), we assume all sources will be detected, and at 
low SNR ( ≤1), we assume the completeness is zero. From this 
2D interpolation, we are able to calculate a probability associated 
with the completeness which is compared to a randomly chosen 
probability and is considered to be ‘detected’ if the completeness 
value is larger than the random probability. 

For these ‘detected’ random sources, we then determine the 
‘measured’ peak and integrated flux densities for a source. This 
is important to consider because if we want to apply flux density or 
SNR cuts on the data (see Section 3.3 ) then such cuts would need 
to be applied to the random sources as well. Therefore, we again 
make use of the simulations of Shimwell et al. ( 2022 ) in order to 
generate a simulated ‘measured’ peak and integrated flux density for 
each random source. To do this we again take the simulations from 
Shimwell et al. ( 2022 ) and construct a 2D histogram of the input 
SNR distribution versus the ratio of the input to measured integrated 
flux density distribution (or similarly for peak flux density), for each 
pointing observed in LoTSS-DR2. To generate the measured flux 
densities, we use the input SNR of each random source and use 
random sampling to obtain a measured peak flux-density input-to- 
output ratio and to obtain a ‘measured’ peak flux density. For the 
integrated flux density, we sample to find the ratio between the 
input-to-output peak flux density to integrated source flux density 
ratio, given the source SNR. Again, we make sensible extrapolations 
in those regimes where we have fewer sources, for example, at 
high SNR. Using this combined method means that we now have 
a distribution of random sources with not only positions, but also 
knowledge of the ‘measured’ flux densities and SNR for the source. 
3.2.4 Distribution of randoms 
This methodology leads to a distribution of randoms that can be seen 
in the lower panel of Fig. 1 . This, in general, matches that of the data 
(Fig. 1 ) in that both underdensity and o v erdensity within the data are 
also apparent within the randoms in similar locations. This highlights 
that the process we are using to generate the randoms appears to 
broadly represent the observational biases across the field of view. 
Ho we ver, as we believe there is real structure within the distribution 
of galaxies, there will be differences between the distribution of data 
and randoms across the image. There may, ho we ver, be additional 
SNR, flux density and positional cuts that need to be applied to the 
data to ensure the randoms reflect the data. We discuss such additional 
constraints in the next sub-section. 
3.3 Additional positional constraints on the data and randoms 
While these randoms have been generated across the full field of view 
of the LoTSS-DR2 surv e y, it is important to apply additional position- 
based constraints in order to account for known observational 
systematics within the data. 
7 Abo v e 5 mJy, there is more uncertainty due to the smaller number 
of simulated sources and so we assume the completeness variation with 
integrated flux density does not change abo v e the maximum flux density 
shown. 
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Table 1. Definition of inner regions used to mask both the data and random 
catalogues as described in Section 3.3 . 
Region RA ( ◦) Dec ( ◦) Region RA ( ◦) Dec ( ◦) 
1 [1, 37] [25, 40] 5 [127, 248] [30, 67] 
2 [1, 32] [19, 25] 6 [193, 208] [25, 30] 
3 [0, 1] [19, 35] 7 [248, 270] [30, 45] 
4 [113, 127] [27.5, 39] 8 [332, 360] [19, 35] 

Figure 7. Distribution of sources in the 1 h (top panel) and 13h (bottom 
panel) fields of LoTSS-DR2 for the full area (grey) and inner masked region 
(blue) that is presented in Table 1 . The black dots indicate the pointing centres 
for each of the 841 fields observed. White regions indicate areas where the 
images are masked or outside the co v erage of LoTSS-DR2. 

As discussed in Section 3.3.2 of Shimwell et al. ( 2022 ) and shown 
in their Fig. 9 , there appears to be variations in the flux scale across 
an individual pointing within the LOFAR field. This appears to be a 
result of differences in the model of the primary beam across the field 
of view. Such flux scale variations were seen to reduce by Shimwell 
et al. ( 2022 ) when pointings were mosaiced together. Therefore, we 
only include regions where pointings have been mosaiced together 
and by reducing the area of observations for both the data and the 
randoms to remo v e the outer edges. Furthermore, and for a similar 
reason, we want to remo v e those areas where there are a large number 
of gaps within the images due to facets that failed the data reduction 
process. These often, though not e xclusiv ely, lie towards the outer 
edges of the observations. 

The reduced area is defined in Table 1 and shown in Fig. 7 , 
alongside the locations of the centres of the 841 pointings which 
make up the DR2 region. The RA and Dec cuts are chosen to ensure 
that the data are at least a pointing radius from the outer edges of the 
observations. These cuts are employed to be conservative and remove 
regions where uncertainty may be introduced in the flux scale across 
the image as the region is not mosaiced with neighbouring pointings. 
With these cuts applied, we have ∼80 per cent of the total area of 
LoTSS-DR2 remaining. This reduces the number of pointings which 
the data co v er to 791. 

3.3.1 Validation of randoms 
In order to validate that our randoms are accurate before using 
them and to determine any additional cuts to apply in order to 
study the angular clustering, we first make comparisons to check 
that the data and randoms have similar distributions, using those 
within the region defined above (see Table 1 ). First, we consider 
the apparent completeness produced by the random catalogues and 
what this implies for the ‘intrinsic’ source counts that would be 
estimated based on this completeness. We present the Euclidean 
normalised source counts distribution in Fig. 8 , where the raw data 
are compared to the ‘detected’ random sources. As can be seen, 
there is good agreement between the raw source counts from the 
LoTSS-DR2 data and the ‘detected’ randoms to a flux density 
of ∼0.3 mJy. Below 0.3 mJy, deviations likely arise from the fact 
that the minimum flux density used for the random catalogues 
was 0.1 mJy. Therefore, below ∼0.3 −0.4mJy it is likely that the 
corrections are mis-estimated as the full effects of detection biases 
(e.g. measurement and Eddington biases) in the flux densities for low 
SNR sources will not be probed fully. Further comparing the LoTSS 
random completeness-corrected source counts to our input randoms 
sources, there are similar discrepancies below ∼0.3–0.4 mJy, which 
combines the resultant effects of not fully probing the correction 
for faint sources (as abo v e) as well as the effect that the raw 
LOFAR data include sources found from the wavelet fitting mode 
of PYBDSF , which is not modelled by the randoms. The effect 
of the wavelet fitting on the data can be better understood when 
we consider the SNR envelope of the data, which we discuss 
below. 

We compare the SNR envelope of our data to that of the randoms 
catalogue in Fig. 9 . This presents the integrated to peak flux ratio 
as a function of detected SNR (measured peak flux density/rms). In 
theory, this would consist of sources with an integrated to peak flux 
density ratio of 1 if they are unresolved or a ratio greater than 1 if 
they are resolved. In reality, an envelope distribution is observed with 
increasing scatter in the ratio at low SNR. Fig. 9 also shows there 
are a wealth of LoTSS-DR2 sources with SNR < 5. These originate 
from PYBDSF ’s wavelet fitting mode which was used during the 
source detection process. This is due to the fact that a new rms 
map is recalculated for each wavelet fitting scale. This mode is used 
for finding larger extended sources. Ho we ver, the simulations from 
Shimwell et al. ( 2022 ) use smooth models for their simulated sources, 
so do not employ the wavelet fitting mode when source finding with 
PYBDSF . Therefore, a SNR cut of at least 5 σ should be employed to 
ensure we use sources not detected through the wavelet fitting mode 
which have a different associated rms map that is not used here for 
the randoms. We present the comparison of the SNR envelope at 
≥5 σ for both the randoms and the data in Fig. 9 , which are in better 
agreement and for the final cuts to the data which are discussed in 
Sections 3.3.1 –3.3.3 . 

Both of the comparisons presented in Figs 8 and 9 examine the 
random populations as a whole, not as a distribution across the field 
of view and so we also consider the distribution of randoms and data 
across the field of view, within the inner regions bounded by the 
ranges listed in Table 1 . In Fig. 10, we present the distribution of the 
ratio of normalised number of data sources (normalizing the number 
of sources in a bin to total number of sources) to the normalised 
number of randoms as a function of declination with various SNR and 
integrated flux density cuts applied. As can be seen, the comparison 
of data to randoms is shown both when the randoms are uniformly 
distributed across the sky as well as the randoms generated from 
the resampling process discussed in Section 3.2 abo v e. An accurate 
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Figure 8. Euclidean normalised source counts for the input and reco v ered randoms compared to that from previous data and simulated models. The randoms 
that are used as an input model (pink, right-facing triangles) and reco v ered (red, left-facing triangles) are shown, both scaled to reflect the larger ratio of randoms 
to data. The raw LoTSS-DR2 counts are also shown (black open circles) as well as the corrected source counts from the completeness derived from the reco v ered 
randoms (navy crosses) and the corrected source counts from the raw counts across DR2 using the completeness from the simulations of Shimwell et al. ( 2022 ) 
both accounting for flux shifts between the simulated and detected flux density for a source (light blue dotted line) and not accounting for flux density shifts (blue 
solid line). Also shown are previous data from the LoTSS Deep Fields (Mandal et al. 2021 , data – light grey stars and model – grey dot-dashed line) and source 
counts converted to 144 MHz from (Smol ̌ci ́c et al. 2017a , dark grey squares) and (Matthews et al. 2021 , grey triangles). Also compared is the source counts 
model from the model of SKADS (Wilman et al. 2008 , black dashed line) and modified SKADS model used in this work (black dotted line). Errors associated 
with source counts not presented in previous papers are determined using the relations from Gehrels ( 1986 ). When applying completeness corrections, we do 
not include uncertainty on the completeness as we only use a single randoms realization. We also include the LOFAR corrected source counts using the raw data 
and completeness corrections from randoms when a 7.5 σ cut is applied o v er the inner region described in Table 1 (navy plus symbols, see Sections 3.3.1 –3.3.3 ). 
distribution of randoms which reflect the underlying observational 
systematics should show a ratio which is close to, or scatters around, 
a value of 1. 

Fig. 10 , demonstrates that up to a 5 - mJy flux density limit, there is 
a clear difference between the uniform randoms and those which 
have the systematics of the data taken in to account. With just 
uniform randoms there is a clear declination dependence compared 
to the data, which likely reflects sensiti vity v ariations across the 
sk y. F or e xample, the sensitivity becomes poorer at the lowest 
declination, therefore the uniform randoms will appear to be much 
more numerous than the sources observed in the data. Ho we ver, 
the randoms generated for this work which account for sensitivity 
v ariations and observ ational systematics across the field of view 
show a more similar distribution to the data, oscillating around a 
value of 1. For higher flux density cuts, the comparison between the 
data and randoms becomes more similar to a ratio of 1, staying 
within ∼5 per cent of a ratio of 1 abo v e a flux density cut of 
1 mJy. 

Given the comparisons presented, it is clear that a 5 σ SNR (at 
least) is needed to a v oid using those sources fit within the wavelet 
fitting mode of PYBDSF , whose rms maps will not reflect those used 
in this work. Furthermore, from the source counts distribution it has 
been discussed that at least a 0 . 3 mJy integrated flux density cut needs 
to be applied. 

3.3.2 Additional SNR and flux density constraints 
Despite the more advanced random catalogues presented in this work 
compared to Siewert et al. ( 2020 ) for the clustering of sources in 
LoTSS-DR1, we still may be limited by systematics in the data and 
may need to include additional cuts on the data and randoms. While 
Fig. 10 has demonstrated that our randoms are smooth across the field 
of view as a function of declination, it cannot categorically show what 
flux density and SNR cuts to apply to the data and randoms in order 
to calculate the TPCF. We therefore consider the ratio across each 
pointing of the numbers of real sources to randoms (both normalised 
by the total numbers of real sources and randoms respectively) 
across the observations as a function of SNR and flux density cuts, 
specifically how the standard deviation in this ratio changes across 
each pointings. We use standard deviation, as opposed to the mean 
values as the mean values will fluctuate around a constant value, but 
it is the deviations in these which illustrate the variation of fields 
which appear to have an overdensity or underdensity of randoms 
compared to data around a mean value. If there are observational 
effects which are unaccounted for in the generation of our randoms, 
these would cause larger standard deviations in the normalised ratios 
of data to randoms across the sky coverage. 

In Fig. 11, we present the variation of this ratio both across the full 
field of view (all 841 fields) and within the subset of pointings for 
which at least half of their sources lie within the inner region defined 
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Figure 9. Distribution of integrated-to-peak flux density ratio ( y -axis) as a function of measured SNR ( x -axis) for the full LoTSS-DR2 surv e y (upper left panel), 
for the data with a 5 σ cut applied (upper centre panel) and for the randoms with a 5 σ cut applied (upper right panel) and with the 1.5 mJy and 7.5 σ final cuts 
applied (lower panels, see Sections 3.3.1 –3.3.3 ). 

Figure 10. Comparisons of the ratio of the fraction of the total random sources to the fraction of the total data as a function of declination (accounting for 
differences in sample sizes) for the randoms generated using the methods in Section 3.2 (solid lines) and for randoms generated uniformly across the sky area 
(dotted lines) for sources ≥5 σ (light blue), 7.5 σ (blue), and 10 σ (dark blue), respectively, in the regions defined by Table 1 . This is shown with increasing flux 
density cut applied when moving from top left to bottom right. 
in Table 1 (where this limit is applied to a v oid the effects of small 
number statistics). As can be seen, at a given SNR cut, the standard 
deviation declines with increasing flux density to ∼ 2 mJy , where 
it begins to flatten. The right-hand side of Fig. 11 sho ws ho w the 
number of such sources in the data changes, given the cuts applied. 
As a compromise to balance both the number of sources we have 

as well as the variation in data compared to randoms, we apply a 
flux density limit of 1 . 5 mJy and SNR cut of 7.5 σ for this work. 8 
8 Given this higher flux density cut, we adopt a 0.2 mJy lower limit for our 
randoms as opposed to the 0.1 mJy described earlier. 
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Figure 11. Standard deviations in the field-to-field scatter of the ratio of the LoTSS-DR2 sources to randoms across each individual pointings for different flux 
density and signal-to-noise cuts. Shown are the results for using the full field (dotted lines) and for those pointings which are within the inner region of Table 1 
and contains at least 50 per cent of the data sources in that pointing contained within the inner region (solid lines). The right-hand figure uses the same colour 
scheme, but instead indicates the number of LoTSS-DR2 sources available for analysis. 
Table 2. Number of data and random sources used when different cuts to the data are applied: using the inner region, a SNR cut and a flux density cut. The 
effects of these cuts on the data are presented individually as well as their combined effect on the catalogues (alongside the masking of 3 Healpix pixels, see the 
text), in the bottom row. Presented are the number of data sources; the percentage of sources in the total catalogue that this consists of the number of random 
sources; percentage of random sources compared to the initial (i.e. no cuts applied) random catalogue and the ratio of random sources to data sources with the 
same cuts applied. 
Cut applied N Data Per cent of Initial Data 

catalogue N Random Per cent of initial random 
catalogue N Randoms / N Data 

No cuts 4 396 228 100 50 336 145 100 11.4 
Inner region 3 696 448 84 42 655 772 85 11.5 
7.5 σ SNR cut 2 160 232 49 27 364 838 54 12.7 
1 . 5 mJy flux density cut 1 401 782 32 16 206 613 32 11.6 
All cuts applied 903 442 21 11 378 354 23 12.6 
Referring back to Fig. 10 , it is clear that the distribution as a function 
of declination for such a SNR and flux density cut varies around a 
ratio of 1 within ±5 per cent. Hence, we believe this will be sufficient 
and have a good reliability for our clustering measurements. 

Therefore, we are still limited in this work to a similar high- 
flux density cut (1.5 mJy) which is ∼15 −20 times the typical point 
source sensitivity limit within the surv e y (70–100 µJy), despite our 
additional investigations into generating accurate random sources. 
We believe that contributing to this may relate to residual field-to- 
field systematics across the field of view. Whether this relates to 
flux scale differences between pointings, as presented in Fig. 9 of 
Shimwell et al. ( 2022 ), imperfect primary beam models or another 
residual observational systematic, remains unclear. Accounting for 
such residual systematics is something which is challenging to do 
within the simulations due to a lack of knowledge about, for example, 
these flux scale variations as a function of pointing. In order to 
assess any flux variations across the field of view, the LoTSS-DR2 
sources would need to be compared with similar large area, deep 
radio surv e ys across the field of view, using a catalogue with known 
high flux density accuracy. Ho we ver, such a similar large area, high- 
resolution and moderately deep surv e y which allows a relatively large 
number of sources at a similar frequency for flux density comparison 
across the full field of view is not available at present. For those large 
area surv e ys that are currently available, applying SNR cuts, isolation 
criteria and other cuts to ensure accurate comparisons of source 

flux densities between the two catalogues would lead to too few 
sources to accurately study the flux variations across each pointing. 
We therefore are reliant on applying flux density and SNR cuts 
until we can fully understand and account for additional remaining 
observational systematics. 
3.3.3 Final data set 
After applying the abo v e SNR and flux density cuts as well as 
restricting to an inner region and also flagging three HealPix pixels 
(using N side = 256) which were contaminated by a nearby spiral 
galaxy (see Pashapour-Ahmadabadi et al. in preparation), the number 
of sources which are used for these clustering studies is reduced. We 
present the number of data and random sources that are available 
after applying such cuts in Table 2 . Such cuts help produce a random 
catalogue which we believe is accurate to measure the intrinsic large- 
scale structure. The distribution of the final data and randoms used 
in this analysis can be seen in Fig. 12 . 
3.3.4 Changes in the process to create randoms compared to 
LoTSS-DR1 and remaining limitations 
As this paper follows on from the clustering studies within the 
first data release of the LoTSS surv e y (DR1) (see cosmology 
analysis presented in Siewert et al. 2020 ), we briefly summarize the 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/6540/7313622 by C
alifornia Institute of Technology user on 17 July 2024



Angular clustering in LoTSS-DR2 6553 

MNRAS 527, 6540–6568 (2024) 

Figure 12. Sky distribution of data (upper panel) and randoms (lower panel) used in this work after cuts are applied to the data. These are plotted using Healpy 
(Zonca et al. 2020 ) in the mollweide projection. Note that the random sample is larger than the data sample, to minimize any Poisson errors associated with the 
randoms. 
developments in random catalogues generated in this work compared 
to in Siewert et al. ( 2020 ) as well as the additional cuts applied to the 
data. First, in Siewert et al. ( 2020 ), the assumption was made that 
any sources above 5 σ are detected. Ho we ver, as sho wn in the inset 
of Fig. 4 , at 5 σ the completeness is ∼50 per cent on average. This 
work, instead, uses the completeness curves as a function of SNR 
from Shimwell et al. ( 2022 ) which take into account the varying 
completeness with SNR and, therefore, do not use a hard cut off. 
This will result in fewer sources in the 5–10 σ range (based on 
input signal to noise) being included within the random sample, 
though with a 7.5 σ cut (on measured signal to noise), this will reduce 
the impact of such effects. Secondly, we also take into account the 
source sizes and do not assume all sources are point sources. This 
aims to take into account the effects of resolution bias, which will 
affect completeness within our catalogue, though it does rely on a 
source shape model which has uncertainties in the true distribution. 
Observations at higher angular resolution, such as sub-arcsecond 
LOFAR surv e ys (see e.g. Sweijen et al. 2022 ), may aid with such 
knowledge but will be affected by resolution bias. Finally, we also 
calculate more accurately, for each random source, its ‘measured’ 
peak and integrated flux densities. In Siewert et al. ( 2020 ), a flux 
density cut could be applied to the sources by ensuring the flux 
density added to the sampled noise associated with each source 
(which provides an estimate for a measured flux density) was greater 
than a given flux density limit. Ho we ver, this used the same noise 
term which would be applied to the peak flux density. With this 
work, we are able to calculate the simulated to detected flux ratio 
as a function of SNR separately for the peak and integrated flux 
densities. This allows both SNR and flux density cuts to be applied 
on the appropriate ‘measured’ flux density value. 

While we ha ve endea v oured to improve the generation of such 
random catalogues, residual caveats within the data still remain, 
which we discuss here for full clarity. First, as discussed abo v e, 

residual uncertainties in the beam model, flux density scale across 
the field of view and other un-accounted for observational biases 
may impact the accuracy of the random catalogues. We believe that 
these are a significant contribution to the inability to use fainter flux 
density/SNR cuts. While such flux offsets will average out when 
measuring, for example, source counts and declination dependencies 
o v er a full population, these will still exist on a field-to-field level. 
Furthermore, as we are not passing our randoms through a full end- 
to-end pipeline, there may be issues from the full LOFAR data 
reduction process, which we may not be fully able to account for 
the effects of. These include the effect of the ionosphere across 
each individual pointing, astrometric errors, the direction-dependent 
calibration introduced by DDFacet or how individual fields are 
mosaiced together. The latter, especially, can lead to smearing of 
sources due to positional offsets within o v erlapping areas, which 
co v er a large fraction of the observations. This smearing of sources 
may lead to a reduced sensitivity to detecting sources in the o v erlap 
regions and may affect the smearing model used at the largest 
distances from the pointing centre. These effects are challenging 
to model, as are the uncertainties in the intrinsic size distribution 
of radio sources. Whilst full end-to-end simulations (starting from 
simulating sources in the uv -data) could help such understanding, 
they are computationally expensive, especially for changes in the 
input source models considered. 

With the methods discussed we have aimed to characterize as 
many of the systematics as possible in order to generate accurate 
random catalogues. While the ef fecti veness of the detailed analysis 
when creating random catalogues through mimicking observational 
biases is reduced by the effect of the larger flux density and SNR 
cuts adopted in this work, our presentation of a detailed discussion 
of the methods employed to generate the randoms as an example of 
methods which will be important for future analyses with deep radio 
surv e ys. 
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3.4 Errors on the TPCF 
Once the randoms catalogues have been generated, it is possible 
to calculate ω( θ ) through Equation 5 and attribute uncertainties to 
our measurements. We consider several methods for quantifying the 
errors on the angular correlation function measurements. Possible 
errors include those from Poissonian statistics (i.e. just based on the 
number of sources observed within the data), bootstrap errors (where 
a random number of sources are replaced across the field of view) 
and jackknife errors (where regions are remo v ed one area at a time 
and the scatter on the measured TPCFs assessed). Poissonian errors 
are known to underestimate the true errors (see e.g. Cress et al. 1996 ) 
and do not take in to account systematic variations in the data. For the 
naive estimate of ω( θ ) given in Equation 4 , these Poissonian errors 
are given by 
δω Poisson ( θ ) = 1 + ω( θ ) √ 

D D ( θ ) . (9) 
Ho we ver, when including the cross-terms ( DR ) in with the Landy–

Szalay model, small changes to this are expected (see e.g. the 
equations presented in Landy & Szalay 1993 ; Chen & Schwarz 
2016 ). Either way, such estimates of the errors do not account for 
potential systematics in the errors across the field. Therefore, we 
consider several methods which resample the data to assess the errors 
more accurately across the field of view. For bootstrap resampling, 
∼1/3 of sources are randomly remo v ed from the data and randomly 
replaced with the same number of randomly selected data sources. 
This means that a source from the original catalogue may not be 
in the bootstrap sample, be in it a single time, or multiple times. 
This process is then repeated in order to make N B resamples. For 
each resample, ω( θ ) is then calculated using TreeCorr as used 
for the original sample. The errors are then calculated from these 
as in Barrow, Bhavsar & Sonoda ( 1984 ) and Ling, Frenk & Barrow 
( 1986 ): 
δω B ( θ ) = 

√ √ √ √ 1 
N B − 1 

N B ∑ 
i= 1 [ ω i ( θ ) − ω B ( θ )] 2 , (10) 

where ω B is the mean value across the bootstrap samples. However, 
bootstrap resampling randomly remo v es sources and is not able to 
trace systematic trends across the data. If such systematics exist or 
if there is significant variation in source density across the field, it 
is therefore possible that bootstrap resampling underestimates the 
errors on ω( θ ). 

We therefore, also consider using jackknife errors (see e.g. Norberg 
et al. 2009 ) which are calculated by splitting the field into a number 
of sub regions ( N J ). One sub-region is then removed in turn and 
we measure the ω( θ ) from the remaining areas. The error is then 
calculated as: 
δω J ( θ ) = 

√ √ √ √ N J − 1 
N J 

N J ∑ 
i= 1 [ ω i ( θ ) − ω J ( θ )] 2 , (11) 

where ω J is the mean value of the angular TPCF across the samples 
where a sub-region has been removed. 

For completeness, we present the errors measured for the TPCF 
for jackknife resampled errors, using TreeCorr to calculate the 
effect of changing the number of jackknife bins from 10 to 200. 
Finally, we consider the effect of field-to-field variations between the 
individual pointings of LoTSS-DR2. This method will directly probe 
the variations introduced from uncertainties between the different 
individual pointings of LoTSS-DR2. We calculate the errors from 
this using each pointing as a jackknife sample. We note that jackknife 

Figure 13. Comparison of the ratio of errors from different resampling 
methods. Shown are the naive Poissonian errors (black crosses, Equation 
9 ), the shot noise errors measured for the sample using the Landy–Szalay 
estimator in TreeCorr (grey crosses), bootstrap errors (red stars) and 
Jackknife errors for 10 TreeCorr jackknife samples (light blue squares), 
20 TreeCorr jackknife samples (light blue right triangles), 50 TreeCorr 
jackknife samples (blue diamonds), 100 TreeCorr jackknife samples (blue 
triangles), and 200 TreeCorr jackknife samples (navy circles) and field-to- 
field variation (yellow open crosses). 
errors typically use regions of similar areas when calculating such 
errors, this will not be the case when calculating for the individual 
LoTSS-DR2 pointings being remo v ed in turn. The internal pointings 
should be of roughly similar areas, but those towards the outside 
of the regions defined in Table 1 could be significantly smaller. 
Ho we ver, such jackknife scales are more rele v ant to understand the 
variation across the field of view. A comparison of these resampling 
errors is presented in Fig. 13 , relative to the Poissonian errors. The 
relative sizes of the bootstrap and jackknife errors vary at different 
angular scales. At the smallest angles, θ ! 0.1 −0.2 ◦, bootstrap errors 
appear lar ger. At lar ger angular scales, the jackknife errors are, as 
expected, significantly larger than found from bootstrap errors. This 
likely reflects variations in the data across the field of view either 
due to real variation across the field of view or systematics within 
the surv e y across the field of view. The bootstrap errors are a factor 
of ∼2 larger than the Poissonian errors at angles ! 1 ◦, increasing 
to a factor of ∼5 at 10 ◦. In contrast, the jackknife errors are similar 
to within a factor of 2 to the Poissonian errors for θ ! 0.2 ◦, rapidly 
increasing to a factor of ∼10 larger at angles of ∼2 ◦. In general, 
since our fitting of ω( θ ) will focus on the largest angular scales, our 
comparison suggests we should use jackknife errors, compared to 
bootstrap errors, in order to not underestimate uncertainties at large 
angular scales ! 0.2 ◦. These larger angular scales are important for 
fitting linear bias, see Section 5.2 . 

The errors from jackknife resampling appear to be dependent on 
the number of jackknife samples considered, with larger errors for 
smaller samples and more comparable errors for ! 50 resamples. 
The errors generated using the individual field-to-field variations are 
comparable to those calculated using Treecorr when 100–200 
resampling bins are used, which is expected as ∼800 pointings are 
used for the field-to-field variations. As the field-to-field sizes are 
the most physically moti v ated binning as they are based off scales 
of the pointings within the LoTSS-DR2 samples, we present result 
using such errors. The covariance matrix for such errors is presented 
in Fig. 14 . We note that whilst the errors from TreeCorr compared 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/6540/7313622 by C
alifornia Institute of Technology user on 17 July 2024



Angular clustering in LoTSS-DR2 6555 

MNRAS 527, 6540–6568 (2024) 

Figure 14. Covariance matrix from resampling the errors using a Jackknife 
approach where each individual observed LOFAR pointing (791 within the 
inner region) is removed in turn. 

Figure 15. Angular TPCF, ω( θ ) for the final LoTSS-DR2 sample used in 
this work (black, see Section 3.3 ) from the range of θ : 5 × 10 −3 −10 2 ◦. Also 
shown if the fit to ω( θ ) of the form A θ−0.8 and the probability distribution in 
the value of A is shown in the figure inset (top right panel). These are shown 
for fitting o v er the angular ranges: 0.03–5 ◦ (red), 0.1–5 ◦ (blue), 0.5–5 ◦ (gold) 
as well as for the range where we reduce the largest fitting angle 0.03–1 ◦
(grey) both without (light colours) and with (dark colours) the full covariance 
matrix, see Sections 4 and 5.2 . 
to the field-to-field variation presented in Fig. 13 appear similar for 
N Jack ≥ 100, the covariance matrix using TreeCorr has a larger 
contribution of off-diagonal covariance values, especially for small 
N Jack . As such off diagonal covariance values can affect the fitting 
of the source, we therefore will also briefly discuss the effect on the 
measured bias values of instead assuming 100 jackknife bins as well, 
in Section 6 . 
4  A N G U L A R  TP CF,  ω(  θ )  
We present the angular TPCF for LoTSS-DR2 sources with S ≥
1 . 5 mJy and SNR ≥ 7.5 in Fig. 15 . This is shown abo v e a minimum 
angular scale of ∼3 times the PSF of the data ( ∼3 × 6 arcsec ∼18 

arcsec). As discussed in many previous studies (e.g. Peebles 1975 ; 
Roche & Eales 1999 ; Blake & Wall 2002 ; Brodwin et al. 2008 ; 
Lindsay et al. 2014a ; Hale et al. 2018 ), we can often describe the 
angular clustering at small angular scales ( θ * π) as a power-law 
distribution, given by 
ω( θ ) = Aθ1 −γ , (12) 
where A is the amplitude, θ is measured in degrees, and the power-law 
slope is given by 1 − γ . Observations suggest γ has a typical value 
of ∼1.8 (see e.g. Peebles 1975 , 1980 ; Blake & Wall 2002 ; Wilman 
et al. 2003 ), meaning that ω( θ ) follows a power law of slope –0.8. 

As can be seen in Fig. 15 , our results for ω( θ ) appear to follow a 
power law with γ = 1.8 o v er a large range of angular scales (0.03 
≤ θ < 1 ◦), at larger angles ( θ ! 10 ◦) there is more uncertainty on 
the value of ω( θ ) and so we do not present such scales in this work. 
At small angles ( θ ! 0.03 ◦), there is a deviation from this power- 
law distribution. This could arise from a combination of factors: (a) 
clustering of galaxies within the same dark matter halo and (b) the 
effect of multicomponent sources. 

The first of these contributions to the excess clustering at small 
angular scales is related to whether the clustering of galaxies we 
are observing is from sources that are residing within the same dark 
matter halo (this is observed at small angular scales and is known as 
the ‘1-halo’ clustering, see e.g. Zehavi et al. 2004 ). Measurements of 
the ‘1-halo’ clustering require observations which are both sensitive 
enough to observe multiple galaxies within the same dark matter 
halo and also have the resolution to ensure any galaxies within the 
same dark matter halo are not confused into a single source. In 
the radio, this ‘1-halo’ clustering has been challenging to observe 
due to the depths and resolutions of surv e ys previously observed, 
ho we ver, it will become increasingly possible with future deep, high- 
resolution radio surv e ys. When discussing clustering previously, we 
have instead focused on the clustering from galaxies in different 
dark matter haloes (known as the ‘2-halo’ clustering) which presents 
as the power -law beha viour given in Equation 12 on large angular 
scales). 

The second contribution to the excess clustering at small angular 
scales, on the other hand, relates to the source detection within radio 
catalogues. F or e xample, a jetted radio galaxy could be observ ed 
to have a core and two lobes separated from it. Depending on the 
separation of these lobes, conventional source finders (e.g. Whiting & 
Humphreys 2012 ; Mohan & Rafferty 2015 ; Hancock, Trott & 
Hurley-Walker 2018 ) may not be able to accurately characterize 
the components of the radio galaxy into a single source. As such, 
accurate cross-matching of radio components relies on techniques 
such as visual identification (see e.g. Banfield et al. 2015 ; Williams 
et al. 2019 ), or machine-learning/algorithm-based techniques (see 
e.g. Galvin et al. 2020 ; Alegre et al. 2022 ; Barkus et al. 2022 ). If, 
in this example, the three components of the single radio source are 
catalogued to be different objects, then this will result in seeing an 
apparent excess angular clustering at small angular scales (see e.g. 
Blake & Wall 2002 ; Overzier et al. 2003 ), which can be described 
as a power law with a steeper slope. To determine the angular scales 
below which such multicomponent sources may become important 
in our work we consider the clustering in LoTSS-DR1 with both the 
raw PYBDSF catalogue and the value-added catalogue of Williams 
et al. ( 2019 ), where PYBDSF source components were combined into 
physical sources. We use the randoms generated for Siewert et al. 
( 2020 ) and apply a 1.5 mJy and 7.5 σ cut, as used in this work, and 
present the clustering with and without source associations in Fig. 16 . 
This demonstrates a deviation between the raw and merged (source 
associated) catalogues, for which a deviation is seen at angles below 
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Figure 16. Comparison of ω( θ ) for LoTSS-DR1 Data (Shimwell et al. 2019 ; 
Siewert et al. 2020 ) for the raw PYBDSF catalogue compared to the source 
associated and cross-matched catalogue described in Williams et al. ( 2019 ) 
using a 1.5 mJy flux density cut and a 7.5 σ SNR cut and presented with 
bootstrapped uncertainties. 
0 . ◦03. This therefore suggests that the impact of multicomponent 
sources is likely important below such an angular threshold and so 
we should not fit our ω( θ ) for LoTSS-DR2 below this scale. 

We fit ω( θ ) using Equation 12 , with a maximum angular separation 
of 5 ◦ and a minimum angular separation of either (i) 0.03 ◦, below 
which multicomponent source clustering becomes important; (ii) 
0.5 ◦ below which models that include both 1- and 2-halo clustering 
can diverge (see Section 5.2 for fitting with the cosmology code CCL , 
Chisari et al. 2019 ) 9 and (iii) 0.1 ◦ as a compromise between the two 
angular fitting ranges. Finally, we also include an angular fitting range 
of 0.03 ≤ θ < 1 ◦ to reflect the fact that the approximation of a power- 
law model for ω( θ ) breaks down at large angles. In our model, we also 
include an extra term known as the integral constraint which accounts 
for finite field sizes (see e.g. Roche & Eales 1999 ). We therefore 
calculate the χ2 through the difference between the observed data 
and the model (with the integral constraint subtracted 10 ), using two 
methods. The first method, that we adopt, solely accounts for the 
diagonal elements of the errors ( δω, as compared in Fig. 13 ), defining 
χ2 as: 
χ2 = N θ∑ 

i= 1 
(

ω( θi ) − ω M ( θi ) 
δω i 

)2 
, (13) 

where ω M ( θ i ) is the model for the angular clustering, as in Equation 
12 , for a given angular bin ( θ i ) and is fit across the N θ bin in 
the angular range considered. This does not encapsulate the full 
systematic correlations between θ bins, but allows for a comparison 
to previous works who use such methods for fitting ω( θ ). The second 
method uses the full covariance matrix, which allows correlations 
between θ bins to be accounted for. For this method, we calculate χ2 
as: 
χ2 = ( + ω − + ω M ) T Cov −1 ( + ω − + ω M ) , (14) 
where Cov is the associated covariance matrix for our measurements 
of ω( θ ), as calculated by TreeCorr . The T indicates that the 
transpose is being used. We fit a model for ω( θ ) using both Equations 
9 Which makes use of CAMB (Lewis, Challinor & Lasenby 2000 ) and CLASS 
(Lesgourgues 2011 ). 
10 We note that the integral constraint will be very small due to the large field 
of observation in LoTSS-DR2, on the scales considered. 

13 and 14 to highlight the differences of accounting for the full 
covariance. 

When fitting solely for A (and fixing γ to 1.8), we measure the 
variation in χ2 when fitting the data using values of log 10 ( A ) which 
are uniformly sampled from −4 to −2. From the χ2 distribution, we 
calculate a probability distribution ( P ∝ e −χ2 / 2 ) and use a resampling 
method with 5000 samples to calculate a median value and associated 
error bars from this sample. The results are presented in Table 3 and 
Fig. 15 . As can be seen in Fig. 15 , the chosen angular scale below 
which we do not fit the data, θ < 0.03 ◦, appears to be an appropriate 
scale to restrict the fitting o v er. Below these angular scales, we 
observe a significant increase in ω( θ ), which we attribute to the 
contribution of the combination of multicomponent sources and 1- 
halo clustering. Fig. 15 shows the best-fitting models to the clustering 
amplitude, log 10 ( A ), of –2.50 ± 0.01 (using χ2 as in Equation 13 ) 
and -2.54 ± 0.01 (using the full covariance) when fit o v er the largest 
angular range (0.03–5 ◦). When fitting to the lower maximum angular 
scale (0.03 ≤ θ < 1 ◦) we find little difference to that when fitting 
in the range 0.03 ≤ θ < 5 ◦. Whilst fitting ω( θ ) using Equation ( 13 ) 
shows a good fit to the data on a large range of angular scales, there 
is a deviation from such a power law around 1 ◦. This results in an 
increased clustering amplitude when fitting across the largest angular 
scales only 0.5–5 ◦, which then o v erestimates clustering on smaller 
scales. This may suggest some excess residual systematics in the 
data, on the scale of ∼1 ◦. The fits using Equation 14 also appear 
to underestimate the values for ω( θ ) to more of an extent than with 
Equation 13 . 

To test whether the assumed slope of -0.8 is suitable for this work, 
we also fit ω( θ ) for both A and 1 − γ , using a fitting range of −4 to 
−1, for log 10 ( A ) and −2 to 0 for 1 − γ . We fit this using the Markov 
chain Monte Carlo code, emcee (F oreman-Macke y et al. 2013 ). We 
fit using 100 w alk ers, each with 5000 chain steps and remo v e the first 
90 per cent of chains as burn in. From this, we fit for A and γ using 
likelihoods based on the χ2 described in Equations 13 and 14 . The 
results for such fitting across the angular ranges described abo v e are 
presented in Fig. 17 which, for the majority of angular scales, find 
a value of 1 − γ ∼ −0.6 to −0.75, shallower than the −0.8 slope 
assumed when fixing 1 − γ . Ho we ver, pre vious measurements of 
1 − γ using radio surv e ys (see e.g. Lindsay et al. 2014a ; Lindsay, 
Jarvis & McAlpine 2014b ; Magliocchetti et al. 2017 ) have found that 
such slopes (1 − γ ) observed for radio surv e ys are typically closer to 
−1.2 to −0.8. The differences observed here may therefore relate to 
a combination of factors, such as residual systematics in the data (as 
discussed abo v e and in Section 3.3.4 ) as well as effects of combining 
multiple source populations in our measurement of ω( θ ). As such, 
we will predominately use our measurements where we fix the slope 
of γ in order to measure bias, though in Sections 5 and 6 , we will 
discuss the effect on the bias of assuming a variable slope. 
4.1 Variation with location and flux density 
In order to investigate the uniformity of ω( θ ) given the possibility of 
systematics we are unable to correct for, we also present comparisons 
of the angular clustering of the LoTSS-DR2 data as a function 
of Right Ascension, Declination and position within the full field 
of view. To do this, we consider the TPCF in RA angular ranges 
spanning 40 ◦ and declination in angular ranges spanning 10 ◦ and 
finally within nine different regions spread across the field of view 
in RA and Dec. bins as presented in Fig. 18 . Uniform RA and Dec 
ranges are used to generate the RA and Dec bins, this will lead to 
significant differences in the number of sources in each of the bins 
which will have a more substantial impact on the measured ω( θ ) in 
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Table 3. Results from fitting ω( θ ) for models across a range of angular fitting ranges. Presented is the fitting range, Fitting type, amplitude of power law ( A ) as 
in Equation 12 , clustering length, r 0 , and bias, b L , from Limber inversion using both a comoving (c) and linear (l) assumption. Bias values are evaluated at the 
median value of the median redshifts ( z m ) from the p ( z) resamples, as in Fig. 20 , z m ≈ 0.89. This is for both the case where the full covariance matrix is (with 
Cov) and is not (without Cov) used. 
θ range Fitting type log 10 ( A ) r 0, c (Mpc) b c ( z m ) r 0, l (Mpc) b l ( z m ) 
( ◦) 
0.03–5.00 Without Cov −2 . 50 + 0 . 01 

−0 . 01 11 . 55 + 0 . 92 
−0 . 77 2 . 58 + 0 . 25 

−0 . 21 15 . 41 + 1 . 99 
−1 . 44 1 . 77 + 0 . 20 

−0 . 14 
0.10–5.00 Without Cov −2 . 47 + 0 . 01 

−0 . 01 12 . 02 + 0 . 96 
−0 . 81 2 . 68 + 0 . 26 

−0 . 22 16 . 04 + 2 . 06 
−1 . 50 1 . 83 + 0 . 20 

−0 . 15 
0.50–5.00 Without Cov −2 . 38 + 0 . 02 

−0 . 02 13 . 51 + 1 . 11 
−0 . 96 2 . 97 + 0 . 29 

−0 . 25 18 . 03 + 2 . 33 
−1 . 74 2 . 04 + 0 . 23 

−0 . 17 
0.03–1.00 Without Cov −2 . 50 + 0 . 01 

−0 . 01 11 . 48 + 0 . 92 
−0 . 77 2 . 57 + 0 . 25 

−0 . 21 15 . 32 + 1 . 97 
−1 . 43 1 . 76 + 0 . 20 

−0 . 14 
0.03–5.00 With Cov −2 . 54 + 0 . 01 

−0 . 01 10 . 96 + 0 . 88 
−0 . 75 2 . 46 + 0 . 24 

−0 . 21 14 . 63 + 1 . 88 
−1 . 38 1 . 69 + 0 . 19 

−0 . 14 
0.10–5.00 With Cov −2 . 52 + 0 . 02 

−0 . 02 11 . 22 + 0 . 91 
−0 . 78 2 . 51 + 0 . 24 

−0 . 21 14 . 97 + 1 . 93 
−1 . 43 1 . 72 + 0 . 19 

−0 . 14 
0.50–5.00 With Cov −2 . 42 + 0 . 03 

−0 . 03 12 . 83 + 1 . 13 
−1 . 01 2 . 84 + 0 . 29 

−0 . 25 17 . 14 + 2 . 26 
−1 . 76 1 . 95 + 0 . 22 

−0 . 18 
0.03–1.00 With Cov −2 . 54 + 0 . 01 

−0 . 01 10 . 96 + 0 . 88 
−0 . 75 2 . 46 + 0 . 24 

−0 . 21 14 . 62 + 1 . 88 
−1 . 38 1 . 69 + 0 . 19 

−0 . 14 

Figure 17. Angular TPCF-fitting parameter constraints for both A and γ
(with contours at 1 σ and 3 σ ) for fitting o v er the angular ranges: 0.03–5 ◦
(red), 0.1–5 ◦ (blue), 0.5–5 ◦ (purple) as well as for the range where we reduce 
the largest fitting angle 0.03–1 ◦ (black) both without (dark colours) and with 
(light colours) the full covariance matrix, see Sections 4 and 5.2 . 

Figure 18. Regions used to investigate the TPCF variation as presented in 
Fig. 19 . Each colour indicates a different region used to quantify the TPCF. 

regions where there are fewer sources. This analysis, follows on from 
the comparisons of Siewert et al. ( 2020 ), in which three regions were 
used to consider the variation in the angular clustering of LoTSS- 
DR1. 

The resulting variations in ω( θ ) are presented in Fig. 19 . As can 
be seen, the variation of the angular clustering is typically restricted 
to larger angles θ ! 0.5 ◦, whilst smaller angles are typically in much 
better agreement with one another. Whilst there are no apparent 
trends with RA, there may be a suggestion of a systematic trend in the 
angular clustering observed with declination, with higher observed 
angular clustering at typically lower declinations. However, this is 
not seen at all angular scales. We also see there is more variation in the 
measured ω( θ ) when split into RA ranges and the regions presented 
in Fig. 18 . As discussed in Sections 3.3.2 and 3.3.4 , we believe there 
are still limitations in the data which the randoms do not account for, 
such as individual flux shifts between pointings, uncertainty in the 
beam models and remaining systematics not modelled as full end-to- 
end simulations were not used to generate the random sources. It is 
possible that the effect of these can be a cause of the variation of ω( θ ) 
when split by these sky regions ho we ver, true underlying large-scale 
structure may also play a role. The spread with declination is much 
smaller, with ω( θ ) in the Dec: 60–70 ◦ bin showing the most variation, 
likely due to the smaller area and number of sources in this region. 
This smaller variation is likely due to the corrections implemented for 
ele v ation-dependent smearing, which is related to the declination for 
fields observed with a good hour angle co v erage. If there are residual 
systematics relating to flux shifts between pointings (as described in 
Shimwell et al. 2022 ), these are challenging to identify and model 
using available radio surv e ys. These effects and a combination of 
other residual systematics may relate to why there can be variations 
between ω( θ ) in different regions of the data. Identifying the cause of 
these and making further corrections may be possible in the future, 
with further understanding of the systematics. 
5  G A L A X Y  BI AS  
Whilst fitting a clustering amplitude, A , allows for a comparison 
with previous work, it is also challenging to compare with previous 
studies due to its dependence on flux density, luminosity and source 
type within the same sample (see e.g. Overzier et al. 2003 ; Wilman 
et al. 2003 ; Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty 
et al. 2020 ). We calculate the more physical parameter of bias, b ( z). 
As discussed in Section 1 , bias traces the clustering compared to 
matter and can be used to estimate the typical dark matter halo mass 
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Figure 19. The clustering variation between regions which are split based on their right ascension (left panel), declination (centre panel) and their location 
within the DR2 region as presented in Fig. 18 (right panel). The colour of the lines present the RA range, Dec range or region being considered and the results 
of the full area of the surv e y are shown in grey (stars). Only the ω( θ ) value is presented for each subset, not the associated errors. 
hosting a population of sources (see e.g. Berlind & Weinberg 2002 ; 
Zehavi et al. 2004 ). By calculating the bias, we not only calculate a 
more physical parameter, but also account for the redshift distribution 
of the sources being investigated. Ho we ver, this will also have a 
dependence on flux density, as the relative contribution of different 
source types to the o v erall population (e.g. AGN and SFGs) varies 
with flux density (see Best et al. 2023 , for a comparison of this in 
the LoTSS Deep Fields). These populations can have different bias 
values and so will affect the bias measured for a full population (see 
e.g. Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty et al. 
2020 ). 

In order to obtain measurements of the bias for the LoTSS-DR2 
sources, knowledge of the redshift distribution, p ( z), for the data 
are required. This is because ω( θ ) is a projected measurement of 
the clustering of galaxies o v er the sk y, and to understand the bias, 
we need to understand the true spatial distribution. Using a given 
p ( z), we then tak e tw o approaches to modelling the clustering: (1) 
fitting using the cosmology code, CCL (Chisari et al. 2019 ) and 
(2) using the power-law model fit for the amplitude, described in 
Section 4 , and using Limber’s inversion (see Limber 1953 , 1954 ; 
Peebles 1980 , assuming a power-law model for ω( θ ) to calculate 
a clustering length, r 0 , and subsequently a measurement of the 
bias), as has been commonly employed in clustering studies for 
radio surv e ys (see e.g. Magliocchetti et al. 2004 ; Lindsay et al. 
2014a ; Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty et al. 
2020 ; Mazumder, Chakraborty & Datta 2022 ). We will describe 
both approaches, belo w, ho we ver, we first describe how the redshift 
distribution, p ( z), for the data are obtained, as this is critical for both 
approaches. 
5.1 Redshift distribution 
In order to calculate the bias, we must assume a redshift distribution 
for the sources in our sample, which is not possible from radio 
continuum measurements alone. Instead, a catalogue where radio 
data and multiwavelength data have been cross-matched together (as 
with LoTSS-DR1, see Duncan et al. 2019 ; Williams et al. 2019 ), 
may provide redshifts for some sources, ho we ver, redshifts are not 
currently available for a relatively complete population of LoTSS- 
DR2 sources. Therefore, in order to estimate the expected redshift 
distribution of the sources observed in LoTSS-DR2, we make use of 
the LoTSS Deep Fields observations (Duncan et al. 2021 ; Kondapally 
et al. 2021 ; Sabater et al. 2021 ; Tasse et al. 2021 ). The LoTSS Deep 
Fields data are more sensitive than in LoTSS-DR2 (reaching an rms 
∼ 20 –40 µJy beam −1 ) o v er three e xtragalactic fields (see Section 2.2 

for details). For the Deep Fields sources, 97 per cent have been 
cross-matched to a multiwavelength host galaxy (Kondapally et al. 
2021 ) and have an associated redshift (Duncan et al. 2021 ). A full 
probability distribution for the photometric redshift, p i ( z), of those 
sources with an associated host galaxy is presented in Duncan et al. 
( 2021 ), which we use in this work. 

To determine the redshift distribution for the sources observed 
here, we first apply a 1.5 mJy flux density cut to the cross-matched 
radio deep-field catalogues, matching that used here for LoTSS-DR2. 
Specifically, we take an individual field and generate N f estimates 
for the redshift distribution, where N f across the three fields totals 
1000 samples. The N f values are weighted for each field to gives 
more samples where there are larger number of S ≥ 1.5 mJy sources 
in the field. To make a single resample within a field, we use those 
sources which have S ≥ 1.5 mJy and generate a resampled redshift for 
those sources through the following process. For those sources with a 
photometric redshift, we sample from the full p i ( z) distribution for the 
individual source. For those sources where a spectroscopic redshift 
exists, we instead consistently use the spectroscopic value. From the 
resampled redshifts for the S ≥ 1.5 mJy sources, we create a p ( z) 
by binning the redshifts and normalizing the resultant distribution. 
When binning the redshift distribution, we use bins which have more 
frequent binning at low redshifts ( z ≤ 1, using δz = 0.02, where we 
have more accurate spectroscopic information) and coarser binning 
at higher redshifts ( z > 1, using δz = 0.1). 11 To generate the redshift 
distribution across the fields, we combine the samples from each 
field to produce 1000 resampled p ( z) distributions. From this, we are 
able to determine a mean p ( z) distribution and associated errors from 
the standard deviations of the sample. The final p ( z) and errors is 
presented in Fig. 20 . 

To use this p ( z) in our fitting and modelling of b ( z), we generate 
1000 resampled p ( z) distributions using the mean and standard 
deviation across each redshift bin. We do this, as opposed to using 
the 1000 samples combined from the three fields, to a v oid extreme 
models in each field that are driven by cosmic variance affecting 
such measurements, as well as the effects of multiwavelength data 
availability. In order to ensure that such randomly sampled values 
does not lead to a highly varying p ( z) and satisfies P (0) = 0. We 
model the resampled redshift distribution using a functional form 

11 We note that low redshifts also have an important contribution to ω( θ ) on 
larger angular scales [ ∼O(1 ◦)], and we found that averaging in larger redshifts 
bins affected the fitting of ω( θ ) on such scales. 
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Figure 20. Weighted redshift distribution generated from combining redshift 
distributions in the LoTSS deep fields (grey) as described in Section 5.1 . The 
distribution of models fit to the resampled p ( z) as described in Section 5 
are presented as the median in blue (solid line) alongside the 16th and 84th 
percentiles, respectively (as dashed lines). 
given by 
p( z ) ∝ z 2 

1 + z 
[

exp (− z 
z 0 
)

+ r 2 
(1 + z) a 

]
, (15) 

which we normalize such that it becomes a PDFs. 
Such a functional form is found to appropriately represent the 

redshift distribution, and was chosen to allow contributions from 
AGN and SFGs to the full redshift distribution. The form reflects 
the probed volume of a * CDM model at small redshifts with the 
exponential and power-law terms representing the high-luminosity 
cut-offs at large redshifts of SFGs and AGNs, respectively (for more 
description see Nakoneczny et al. 2023 ). The model parameters ( z 0 , r , 
and a ) are fit for each resample using scipy ’s curve fit function. 
The range of the modelled redshift distribution from these resamples 
are presented in Fig. 20 . 

We note that with this method, the ∼5 per cent of LoTSS Deep 
Fields sources abo v e 1 . 5 mJy which have no associated redshift 
distribution cannot be included in p ( z). This may bias the results 
slightly, likely by missing some very high-redshift AGN or SFGs 
and those which are dust obscured. Furthermore, there are potential 
biases in the p ( z) due to the band selection and magnitude limits of the 
multiwav elength data. F or e xample, sources may not be detectable in 
all bands and there is differing availability of multiwavelength data in 
the three deep fields, both of which will affect constraints which can 
be placed on their redshift distributions. Moreo v er, the deep fields 
are much smaller areas than the full LoTSS-DR2 surv e y, and so 
are more likely to be affected by variances in large-scale structures, 
ho we ver, we mitigate this by averaging across the three fields. Finally, 
it is challenging to apply similar SNR cuts to the deeper LoTSS 
Deep Fields data, which may lead to residual systematics in the p ( z) 
models. Ho we ver, this combined p ( z) is the best model available 
for a representative radio population and those sources without any 
redshift information only represent a very small fraction of sources 
in the data. 
5.2 Measuring b ( z) using CCL 
In the first method to determine b ( z), we use CCL to fit ω( θ ), assuming 
a bias model. For this work, we follow the work of Alonso et al. 
( 2021 ) and assume two possible bias models either (i) a constant 
bias i.e. b ( z) = b 0 or (ii) an evolving bias of the form b 0 / D ( z), where 
D ( z) here is the normalised (to z = 0) growth factor as described in, 

for example, Hamilton ( 2001 ). We also consider two matter power 
spectrum models (i) a ‘linear’ model where only linear perturbation 
theory was assumed and (ii) a ‘HaloFit’ (Smith et al. 2003 ; Takahashi 
et al. 2012 ) model where non-linear effects within a dark matter halo 
are also accounted for. Both models are considered as we may not 
e xpect to observ e a strong contribution from ‘1-halo’ clustering at 
the depth of this surv e y, or that if such 1-halo contribution does exist 
that this may dominate predominately in the angular region where 
effects of multicomponent sources is also important (see Fig. 16 ). 
We use the 0 range 1 ≤ 0 ≤ 10 000 in 256 logarithmically spaced 
bins to generate the C 0 power spectrum with CCL and then use this to 
determine ω( θ ) o v er the θ range used in this work using a Legendre 
polynomial transform given by 
ω( θ ) = 1 

4 π ∑ 
0 (2 0 + 1) C 0 P 0 ( cos θ ) . (16) 

Such a conversion from C 0 to ω( θ ) was also used in Siewert et al. 
( 2020 ). To obtain C 0 , we use the conversions in CCL which convert 
the 3D power spectrum to C 0 using the equations in Section 2.4.1 of 
Chisari et al. ( 2019 ), but assuming the redshift-space distortion and 
magnification bias terms can be neglected: 
C 0 = ∫ d χ

χ2 q 2 ( χ ) P (k = 0 + 1 / 2 
χ

, z( χ ) ) , (17) 
where χ is the comoving radial distance, P ( k , z) is the matter power 
spectrum, and the radial kernel q ( χ ) is: 
q( χ ) = H ( z) 

c b( z ) p( z ) , (18) 
with H ( z) is the Hubble parameter. This relation relies on Limber’s 
approximation (Limber 1953 , 1954 ), which is valid for the broad 
redshift distribution explored here. 

We fit for b 0 through calculating ω( θ ) with CCL and fitting to 
the data using Equations 13 and 14 . Again, when fitting the data we 
consider three angular ranges: 0.03 −5 ◦, 0.1 −5 ◦ and 0.5 −5 ◦. We also 
consider all possible combinations of linear and HaloFit models with 
the two bias evolutionary models. To determine b 0 , we use the 1000 
redshift resamples described in Section 5.1 . First, we calculate ω( θ ) 
for each resampled redshift distribution, assuming b 0 = 1 (denoted 
here as ω b 0 = 1 ( θ )). Using this, we select random bias values within 
the range 0.5–3.5 and generate a model ω( θ ) through multiplying 
ω b 0 = 1 ( θ ) by b 2 . Using such a predicted model and comparing to 
the data, we then calculate the associated χ2 across the angular 
fitting ranges described abo v e and calculate this both assuming only 
diagonal elements as well as using the full covariance matrix. The 
full covariance will highlight if there are correlations in the ω( θ ) 
values at different θ which can affect the fitting of b . In both cases, 
we take the ‘model’ to be the model produced from CCL with the 
integral constraint as modelled in Roche & Eales ( 1999 ), though the 
contribution of an integral constraint will be negligible. Using such a 
χ2 value we then calculate an associated probability for b 0 assuming 
P ( b 0 ) ∝ e −χ2 / 2 (which makes the assumption that errors on the data 
can be approximated as Gaussian). 

To determine final values of b 0 found from fitting our observations 
we then resample from P ( b ). To do this, we consider two possibilities 
of how to include the redshift distribution to determine b 0 . The 
first case assumes that the individual redshift resamples described 
in Section 5.1 are all equally probable. In this case, any differences 
which may remain between the model and observations will reflect 
residual systematics in the data which are unaccounted for in 
the random catalogues or that a different bias evolution model is 
appropriate. For this method, we renormalize the P ( b ) model from 
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Table 4. Results from fitting bias with CCL across a range of angular fitting scales, with both the linear ( b L ) and HaloFit ( b H ) models of CCL . These are both 
given by their value at z = 0 and, for the evolving bias model, are evaluated at the median value of the median redshifts ( z m ) from the p ( z) resamples, as in 
Fig. 20 , z m ≈ 0.89. These are given for both the case where the full covariance matrix is not used and where it is included (denoted by Co v). F or each model, 
the median reduced χ2 ( χ2 /DOF) from the resampled bias values is also given. This will be larger than the best-fitting model found across the samples, but is 
provided to show representative values for the fit. A fit type is given by the combination of the bias evolution type (E = evolving, C = constant) and redshift 
resampling method [U = unweighted, i.e. all p ( z) samples weighted equally and W = weighted, i.e. preferential p ( z) resamples are selected]. 
θ Range Fit b 0, L b L ( z m ) χ2 

L / b 0, H b H ( z m ) χ2 
H / b 0, L b L ( z m ) χ2 

L / b 0, H b H ( z m ) χ2 
H / 

( ◦) type DOF DOF Cov Cov DOF Cov Cov DOF 
Cov Cov 

0.03–5.00 E/U 1 . 90 + 0 . 10 
−0 . 09 2 . 97 + 0 . 15 

−0 . 15 9.34 1 . 51 + 0 . 12 
−0 . 10 2 . 37 + 0 . 19 

−0 . 16 13.69 1 . 83 + 0 . 08 
−0 . 08 2 . 87 + 0 . 13 

−0 . 13 10.50 1 . 41 + 0 . 11 
−0 . 10 2 . 21 + 0 . 18 

−0 . 15 4.43 
0.10–5.00 E/U 1 . 83 + 0 . 10 

−0 . 10 2 . 87 + 0 . 16 
−0 . 15 4.12 1 . 57 + 0 . 13 

−0 . 11 2 . 46 + 0 . 21 
−0 . 17 14.58 1 . 73 + 0 . 08 

−0 . 08 2 . 71 + 0 . 13 
−0 . 13 2.73 1 . 41 + 0 . 12 

−0 . 10 2 . 21 + 0 . 18 
−0 . 16 5.52 

0.50–5.00 E/U 2 . 04 + 0 . 20 
−0 . 17 3 . 20 + 0 . 32 

−0 . 27 3.53 2 . 04 + 0 . 21 
−0 . 17 3 . 20 + 0 . 33 

−0 . 27 4.49 1 . 79 + 0 . 15 
−0 . 14 2 . 81 + 0 . 24 

−0 . 22 3.18 1 . 75 + 0 . 16 
−0 . 15 2 . 74 + 0 . 25 

−0 . 23 4.05 
0.03–5.00 C/U 2 . 37 + 0 . 19 

−0 . 17 – 12.74 1 . 79 + 0 . 20 
−0 . 15 – 11.40 2 . 36 + 0 . 17 

−0 . 15 – 14.01 1 . 68 + 0 . 19 
−0 . 14 – 3.95 

0.10–5.00 C/U 2 . 27 + 0 . 19 
−0 . 16 – 2.24 1 . 87 + 0 . 22 

−0 . 16 – 11.62 2 . 21 + 0 . 16 
−0 . 15 – 3.05 1 . 69 + 0 . 20 

−0 . 15 – 4.81 
0.50–5.00 C/U 2 . 33 + 0 . 28 

−0 . 22 – 1.76 2 . 32 + 0 . 30 
−0 . 23 – 2.63 2 . 14 + 0 . 22 

−0 . 20 – 1.81 2 . 07 + 0 . 24 
−0 . 20 – 2.79 

0.03–5.00 E/W 1 . 98 + 0 . 05 
−0 . 06 3 . 11 + 0 . 07 

−0 . 10 7.81 1 . 18 + 0 . 01 
−0 . 01 1 . 84 + 0 . 02 

−0 . 02 10.27 1 . 97 + 0 . 09 
−0 . 05 3 . 09 + 0 . 14 

−0 . 08 9.07 1 . 35 + 0 . 08 
−0 . 08 2 . 11 + 0 . 13 

−0 . 13 4.19 
0.10–5.00 E/W 1 . 69 + 0 . 04 

−0 . 07 2 . 66 + 0 . 06 
−0 . 11 1.46 1 . 21 + 0 . 06 

−0 . 02 1 . 90 + 0 . 09 
−0 . 03 11.49 1 . 71 + 0 . 07 

−0 . 06 2 . 68 + 0 . 11 
−0 . 10 2.15 1 . 33 + 0 . 08 

−0 . 09 2 . 09 + 0 . 13 
−0 . 13 5.18 

0.50–5.00 E/W 1 . 81 + 0 . 15 
−0 . 12 2 . 84 + 0 . 24 

−0 . 19 1.46 1 . 78 + 0 . 14 
−0 . 13 2 . 79 + 0 . 22 

−0 . 21 2.59 1 . 67 + 0 . 12 
−0 . 12 2 . 62 + 0 . 19 

−0 . 18 1.86 1 . 62 + 0 . 12 
−0 . 11 2 . 54 + 0 . 19 

−0 . 18 3.11 
0.03–5.00 C/W 2 . 77 + 0 . 17 

−0 . 15 – 9.54 1 . 49 + 0 . 22 
−0 . 18 – 9.20 3 . 04 + 0 . 05 

−0 . 06 – 10.63 1 . 67 + 0 . 17 
−0 . 13 3.83 

0.10–5.00 C/W 2 . 28 + 0 . 13 
−0 . 11 1.68 1 . 57 + 0 . 15 

−0 . 20 – 10.56 2 . 33 + 0 . 13 
−0 . 13 – 2.59 1 . 65 + 0 . 18 

−0 . 13 – 4.65 
0.50–5.00 C/W 2 . 15 + 0 . 17 

−0 . 18 – 0.74 2 . 10 + 0 . 18 
−0 . 18 – 1.67 2 . 02 + 0 . 17 

−0 . 16 – 1.03 1 . 94 + 0 . 17 
−0 . 16 – 2.24 

each redshift sample to 1. The second case assumes that there are 
no remaining systematics and so redshift resamples which better fit 
the data reflect the intrinsic p ( z) of our sample can be determined. 
In this case, we do not normalize P ( b ) for each sample to 1 before 
resampling and instead retain the difference in probabilities based on 
the magnitude of the χ2 . 

Through resampling the data, we determine b 0 accounting for the 
uncertainty in p ( z) models. In the first method, this means that the 
contribution of p ( z) samples from those models which satisfy the 
resampling criteria are approximately evenly distributed across the 
1000 redshift resamples and, as such, some p ( z) samples may lead 
to large χ2 values where the magnitude of the χ2 for such a p ( z) 
was large. In the second method, there will instead be preferred p ( z) 
samples and others may not have any (or very little) contribution 
to the bias values which satisfy the resampling criteria, whilst other 
p ( z) models may substantially dominate the sample. This can lead 
to only a small fraction of p ( z) samples actually contributing to the 
fit, especially when the fit is poor. Due to this method, the associated 
χ2 values of the fit will be lower to that of the previous method. 
The b 0 values these are quoted as the median value with errors 
measured from the 16th and 84th percentiles and are presented 
in Table 4 and Fig. 22 . To present associated models of ω( θ ) we 
use 10000 realizations of the final b 0 sample to determine ω( θ ) 
models, this is shown in Fig. 21 for the evolving and constant bias 
models. 
5.3 Fitting b ( z) using Limber’s equation for a power-law model 
of ω( θ ) 
The second commonly used method to infer the spatial cluster- 
ing of galaxies from the angular clustering is by using Limber’s 
equations after assuming a power-law model for ω( θ ) (see e.g. 
Limber 1953 , 1954 ; Peebles 1980 ). This method has been fre- 
quently employed in studies of the clustering of galaxies both at 
radio frequencies (see e.g. Lindsay et al. 2014a ; Hale et al. 2018 ; 

Chakraborty et al. 2020 ; Mazumder, Chakraborty & Datta 2022 ) 
and other frequencies (see e.g. Puccetti et al. 2006 ; Starikova et al. 
2012 ; Cochrane et al. 2017 ). To quantify b ( z), we use the fitting of 
ω( θ ) as described in Equation 12 , discussed in Section 4 , with the 
parametrisation of the spatial clustering: 
ξg ( r) = ( r 

r 0 ( z) 
)−γ

= ( r 
r 0 
)−γ

(1 + z) γ−(3 + ε) , (19) 
where r 0 is a spatial clustering length which parameterises the 
clustering of galaxies and ε describes the evolving clustering model. 
ξ g ( r ) is the spatial clustering of galaxies, as introduced in Section 1 . 
We present r 0 and b measurements using two assumptions for 
ε: (i) assuming ‘comoving’ clustering, where ε = γ − 3, to 
make comparisons with previous studies (e.g Lindsay et al. 2014a ; 
Lindsay, Jarvis & McAlpine 2014b ; Hale et al. 2018 ; Mazumder, 
Chakraborty & Datta 2022 ) and (ii) assuming ‘linear’ clustering, 12 
where ε = γ − 1, which probes a different range of bias evolution, 
see Lindsay et al. ( 2014a ). In order to determine the spatial clustering, 
we need both knowledge of γ and A from Equation 12 as well as p ( z) 
to determine the spatial clustering length, r 0 . As discussed, in the 
majority of cases we fix γ to a value of 1.8, though we also consider 
the case for a variable γ for comparison. The value of r 0 , can then 
be calculated using Limber’s equation (see e.g. Limber 1953 , 1954 ; 
Peebles 1980 ): 
r 0 = ( 

A r c (∫ ∞ 
0 p( z )d z )2 

H γ H 0 ∫ ∞ 
0 E( z ) 1 2 p( z ) 2 χ ( z ) 1 −γ (1 + z) γ−(3 + ε) d z 

) 1 
γ

, (20) 
where c is the speed of light in km s −1 , E ( z) = )m (1 + z) 3 + (1 −
)m ) and χ ( z) is the comoving distance at redshift, z. A r is related 
12 We note that ‘linear’ here does not refer to the mode used in CCL described 
earlier, but refers to an assumption of growth under linear perturbation theory, 
as discussed in Lindsay et al. ( 2014a ). 
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Figure 21. Comparisons of ω( θ ) for LoTSS-DR2 and their modelled fits (subtracting the integral constraint) assuming errors without accounting for covariance 
between θ bins (upper row of each sub figure) and using the full covariance matrix is shown (lower row of each sub figure). These models are shown for the 
angular fitting ranges 0 . 03 − 5 ◦ (left panel), 0 . 1 − 5 ◦ (centre panel) and 0 . 5 − 5 ◦ (right panel), with the dashed vertical lines indicating the angular scales used 
for fitting. Black stars correspond to the measurements from LoTSS-DR2, and the shaded regions correspond to (i) the linear constant bias model (red), (ii) the 
HaloFit constant bias model (yellow), (iii) the linear evolving bias model (blue) and (iv) the HaloFit evolving bias model (purple). The upper panel presents the 
results when all redshift resamples are weighted equally, whilst the lower panel allows preferential p ( z) resamples to be weighted preferentially. 
to the amplitude ( A ) in Equation 12 when θ is in the unit of radians. 
Finally, H γ is given by 
H γ = 2 ( 1 2 ) 2 ( γ−1 

2 ) 
2( γ2 ) , (21) 

where 2 represents the gamma function. As described in Section 1 
and Equation 2 , the spatial clustering of galaxies can be related to that 

of matter to parameterise galaxy bias. Following analysis from Pee- 
bles ( 1980 ) and discussed and used in works such as Koutoulidis et al. 
( 2013 ), Lindsay et al. ( 2014a ), Hale et al. ( 2018 ), and Mazumder, 
Chakraborty & Datta ( 2022 ), the bias can then be inferred from r 0 
using: 
b( z) = ( r 0 ( z) 

8 Mpc h −1 
)γ / 2 

J 1 / 2 2 
σ8 D ( z) /D (0) , (22) 
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Figure 22. Comparisons of the bias models fit (using the full covariance) for the data for a constant bias model and evolving bias model for the three angular 
fitting ranges: 0 . 03 − 5 ◦ (red), 0 . 1 − 5 ◦ (blue) and 0 . 5 − 5 ◦ (yellow) for linear (lighter colours) and HaloFit (darker colours) models. The left panel shows 
the results when each p ( z) resample is weighted as equally probable (method 1, Section 5.2 ) and the centre panel shows the results when preferential p ( z) 
models are upweighted (method 2, Section 5.2 ). This is presented alongside previous measurements from Nusser & Tiwari ( 2015 ) (grey dashed line), Lindsay 
et al. ( 2014a ) (grey pentagons), Hale et al. ( 2018 ) (grey triangles), Chakraborty et al. ( 2020 ) (grey squares) and Mazumder, Chakraborty & Datta ( 2022 ) (grey 
diamonds). Also shown are the fitting of b ( z) from Equation ( 22 ) using the angular fitting range 0.03–1 ◦ (e v aluated at the median redshift of the sample) for 
the fixed slope ( γ ) model (black) and 2 parameter model (magenta) for both the comoving (diamond) and linear (circle) Limber models. The right-hand panel 
shows a comparison of the bias values (evaluated at z med ≈ 0.89) from CCL (in the 0.5–5 ◦ fitting range) using the linear constant (up facing triangle), HaloFit 
constant (right facing triangle), linear evolving (down facing triangle) and HaloFit evolving (left facing triangle) with and without covariance (indicated by a 
fainter symbol). The filled markers for the CCL fitting represent those models where the p ( z) samples are uniformly weighted and open markers indicate where 
a preferential p ( z) model was preferentially selected. These are presented alongside the Limber comoving linear models across the three angular fitting ranges. 
Values on the right-hand panel are shown with an arbitrary offset on the y-axis to highlight the differences in the values. 
where D ( z) is the growth factor, and J 2 is given by 72 

2 γ (3 −γ )(4 −γ )(6 −γ ) 
and z is e v aluated at the median redshift of the redshift distribution 
(which is found here to be z m ≈ 0.9 for the full redshift distribution). 

In order to perform this fitting, we use the fit for ω( θ ) described in 
Section 4 and the modelled resampled redshift distributions (using 
Equation 15 ) described in Section 5.2 . We calculate r 0 and b and their 
associated uncertainties by using 5000 random values of log 10 ( A ) 
(and γ for a two-parameter model) from our sample which were 
generated to fit A in Section 4 and e v aluate these using the random 
samples for the p ( z) distribution to then quantify b ( z). Using this 
method, we have no reason a priori to assume a certain redshift 
distribution and so use the 1000 modelled p ( z) resamples equally to 
calculate b . This is therefore most comparable to the first resampling 
method described in Section 5.2 . From the r 0 and b samples, we then 
quantify the median value as well as the errors from the 16th and 
84th percentiles. 

We note though, that using Limber inversion used in this method 
does make assumptions, which could affect the results presented. 
These assumptions include that the angles considered are small. At 
larger angles, approximations in Limber’s equation break down and 
ω( θ ) deviates from a power la w. F or the majority of angular fitting 
ranges considered (up to 5 ◦), these use large scales where deviations 
from a power law are expected. Therefore, we also considered the 
fitting range for the power-law fitting of A , 0.03 ≤ θ < 1 ◦, as discussed 
in Section 4 where such a power-law distribution appears appropriate. 
Moreo v er, assumptions are used to obtain Limber’s equation, which 
can include that r 0 is independent of luminsosity; this is likely not be 
the case (see e.g. Zehavi et al. 2011 ; Cochrane et al. 2017 ), ho we ver, 
without an ability to split by luminosity for our sources, our analysis 
will give an average value across the population. We continue to 
present the bias measurements from this method as a number of 
previous radio clustering papers (as well as at other wavelengths, 
see e.g. Lindsay et al. 2014a ; Magliocchetti et al. 2017 ; Hale et al. 
2018 ; Chakraborty et al. 2020 ; Mazumder, Chakraborty & Datta 
2022 ) all determine r 0 and bias through this method and so allows 
for comparison with previous works. 

We note that CCL also uses Limber’s inversion in order to obtain 
a measurement of the bias, but does not rely on assumptions about 
a power-law functional form for ω( θ ) and ξ g ( r , z) and accounts 
for the deviation from a power law at the largest angular scale. 
Therefore, different results for the bias may be obtained through 
these different models and we present results for measurements 
of b from both methods to make direct comparison of the results 
obtained. 

5.4 ω( θ ) and b ( z) models 
We present the results from fitting ω( θ ) assuming the evolving bias 
and constant bias model in Fig. 21 . For each model, we present 
the fits using the three different angular ranges described abo v e, for 
both the diagonal only errors and also the full covariance array. The 
associated bias models are then presented in Fig. 22 along with the 
values from the Limber method assuming a power-law distribution of 
ω( θ ), with additional comparisons to previous results from analysis 
of the large area NVSS surv e y (Nusser & Tiwari 2015 ) as well as 
other individual measurements of bias evaluated at specific redshifts 
from Lindsay et al. ( 2014a ), Hale et al. ( 2018 ), Chakraborty et al. 
( 2020 ), and Mazumder, Chakraborty & Datta ( 2022 ). The results 
of such fitting for both the power-law amplitude, spatial clustering 
length ( r 0 ) and bias for both the Limber- and CCL -derived bias 
models are also provided in Tables 3 and 4 . A comparison of the 
amplitude fit assuming a power -law distrib ution as in Equation 12 
is also presented in Fig. 24 compared to the work of Lindsay et al. 
( 2014a ), Hale et al. ( 2019 ), Siewert et al. ( 2020 ), Bonato et al. ( 2021 ), 
and Mazumder, Chakraborty & Datta ( 2022 ). As these surv e ys are 
at different frequencies and flux density limits (shown in the inset), 
this may affect the populations observed and hence the estimated 
biases for such sources, and so an equi v alent surv e y limit scaled to 
144 MHz is used. We note that Fig. 22 includes the bias values from 
the two-parameter-fitting model compared to the fixed slope model, 
which appear in good agreement. 
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Figure 23. p ( z) for the data (grey) compared to the range of p ( z) models when 
uniformly sampling the data (blue) compared to allowing the p ( z) resamples 
to preferentially selected in the fitting process (see Section 5.2 ) for a linear 
model across the angular range 0.5–5 ◦ using the full covariance array with 
an evolving (red) and constant (yellow) bias model. All models are shown in 
the range given by the 16th and 84th percentiles. 
6  DISCUSSION  
In this section, we shall discuss our results in context of the different 
models used to fit the data as well as comparing to previous studies 
of the angular clustering of radio sources. 
6.1 Comparing CCL -deri v ed models for ω( θ ) and b ( z) 
First, we compare the fitting of ω( θ ) using the linear and HaloFit 
models of CCL . As can be seen in Fig. 21 , the fit of ω( θ ) using 
the linear model appears to have relatively good agreement with the 
data across the angular range 0.06–1 ◦ using all three angular fitting 
ranges considered in this work when using the more simplistic χ2 for 
both the evolving and constant bias models. Abo v e 1 ◦, the evolving 
bias model appears to underestimate slightly ω( θ ), compared to the 
constant bias model, especially when using fitting ranges that co v er 
the largest angular range and the full covariance is considered. As the 
full covariance accounts for correlations between different angular 
bins, this allows the model to underpredict ω( θ ) on these scales 
relative to what might be expected by simply looking at minimizing 
χ2 using the diagonal errors on ω( θ ) only. Ho we ver, such an ef fect 
is less notable in Fig. 21 (b) where we allow the p ( z) resamples to 
be preferentially selected to best fit the model. Below 0.06 ◦, the 
measured value for ω( θ ) appears to be larger than expected from the 
linear model for both the evolving and constant bias models, with an 
ev en larger discrepanc y for θ < 0.03 ◦, where we believe the effect of 
multicomponent sources within the LoTSS-DR2 surv e y is important. 
On the contrary, the HaloFit model, shows greater agreement with 
ω( θ ) for θ ≤ 0.06 ◦ when fitting with minimum angular scales θ
≤ 0.1 ◦. Ho we ver, in doing so these models greatly underestimate 
ω( θ ) on the majority of larger angular scales ( θ ≥ 0 . ◦1), which is 
where linear bias is dominating. This results in significantly larger 
reduced χ2 values compared to the linear models. For the narrowest 
angular fitting range (fitting between 0.5–5 ◦), instead, there is much 
better agreement with the measured ω( θ ) on the largest angular 
scales (comparable to that when using a linear model), but the model 
significantly o v er predicts the clustering at angles ! 0.5 ◦. 

This comparison suggests that neither the linear or HaloFit models 
can completely reproduce the measured ω( θ ) across the full range of 
angular scales presented in Fig. 21 , though abo v e the angular scale 
where we believe the effects of multicomponent sources is negligible 
( θ ≥ 0.03 ◦), the linear models are able to much more accurately fit the 
data across a wider range of angular scales using both p ( z) resampling 
methods. The linear and HaloFit models should agree on the largest 
angular scales and only deviate at small angular scales due to the ‘1- 
halo’ clustering from sources within the same dark matter halo. When 
measuring the linear bias, where we measure the ‘2-halo’ clustering 
relating to galaxies in different dark matter haloes, it is important 
that the model ω( θ ) from the fitting be an accurate representation 
on the largest angular scales. Therefore, the bias measured by the 
HaloFit models using the angular ranges 0.03–5 ◦ and 0.1–5 ◦ appears 
to underestimate ω( θ ) on the largest angular scales compared to the 
linear models and so will underestimate the linear bias. These should 
therefore not be used to draw conclusions of b 0 . When fitting for 
angular scales of θ ≥ 0.5 ◦ there is better agreement between the 
linear and HaloFit models and so measurements of bias from such 
models are more likely to represent the true bias. 

Given that cross-matched data for the LoTSS-DR2 is not currently 
available for the full LoTSS-DR2 sample, and instead cross-matching 
is only complete abo v e 8 mJy (Hardcastle et al. 2023 ), it is not 
possible to conclusively determine whether we do have a significant 
contribution of 1-halo clustering to ω( θ ) in this work. Ho we ver, 
from the LoTSS-DR1 clustering measurements shown in Fig. 16 , 
the correction for multicomponent sources is relatively small and 
would be insufficient to explain the excess clustering seen here at 
small angular scales ( θ ! 0.03 ◦). This therefore suggests that we are 
indeed observing some 1-halo clustering within LoTSS-DR2. Given 
the uncertainty in the effect of multicomponent sources, ho we ver, we 
are also unable to do a full halo occupation distribution modelling 
(HOD; see e.g. Berlind & Weinberg 2002 ; Zheng et al. 2005 ) in 
order to determine properties of the haloes which allow them to host 
multiple radio sources of the type observed in this data. 

At the largest angular scales, we note that the linear and HaloFit 
models are slightly lower than the measured ω( θ ) from the data 
when the full covariance is used (especially when uniform weighting 
is used for each p ( z) resample). This may suggest that residual 
systematics remain within the data which are not fully captured by 
the randoms but are accounted for by the cov ariance. Alternati vely, 
it could also represent a contribution of the radio dipole to the 
observed TPCF, which can cause an excess clustering at larger 
angular scales (see Chen & Schwarz 2016 ), but is not included in our 
models. More likely, these differences could suggest the assumed bias 
models used in this analysis may be too simplistic for the sources 
observed in this work. Our sample is a combination of different 
sources types and luminosities which dominate at different redshift 
ranges and so contribute differently across the redshift distribution. 
Such sub-populations have different bias evolution models (see e.g. 
Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty et al. 
2020 ; Mazumder, Chakraborty & Datta 2022 ), which are complex 
to combine when considering only a single population. As we are 
unable to separate the LoTSS-DR2 sources into different source 
classes, we rely on more simplistic models to probe the population 
as an average population, until the time where such sources can be 
studied in greater detail, split by source type. Such studies which 
account for differences in bias models are more beneficial for those 
data where sources have been associated with a galaxy host, assigned 
a redshift and source classification has been undertaken to identify 
the source type. This will be aided in future o v er such large sky areas 
with WEAVE-LOFAR (Smith et al. 2016 ), where spectra can be used 
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Figure 24. Comparison of the ω( θ ) from this work (black stars) compared 
to pre vious po wer-law fitting from the studies of Siewert et al. ( 2020 ) 
using a 2 mJy (solid purple) cut as well as the works of Hale et al. ( 2019 ) 
(turquoise dotted), Bonato et al. ( 2021 ) (dark red dot–dashed), Mazumder, 
Chakraborty & Datta ( 2022 ) (orange dashed) and Lindsay et al. ( 2014a ) (light 
grey dotted). Inset: Amplitude variation as a function of flux density compared 
to the fitting here using the simple χ2 method across the three fitting ranges: 
0.03–5.00 ◦ (red), 0.10–5.00 ◦ (yellow) and 0.50–5.00 ◦ (black). The quoted 
flux limits are scaled to 144 MHz to allow more equivalent comparisons. 
to attribute redshifts to sources and to classify the source type. At 
present, though, such studies should focus on deep, multiwavelength 
fields, as in the recent works of Hale et al. ( 2018 ), Chakraborty et al. 
( 2020 ), and Mazumder, Chakraborty & Datta ( 2022 ). 

Alternatively, if the systematics within the data have been fully 
accounted for it could imply that the true p ( z) is different from 
that currently estimated from the LoTSS Deep Fields. Fig. 23 
shows the preferred p ( z) models (using a linear model, fit o v er 
the angular range 0.5–5 ◦), which fa v our a model with a greater 
fraction of sources at these low redshifts. As discussed, this provides 
a much better fit to the data at the largest angular scales than 
using a uniform weighting of our resampled p ( z) models, reflected 
in the smaller average χ2 /DOF values for our samples. For other 
angular fitting ranges which may give poorer fits to the data, the 
preferred p ( z) may shift to higher or lower redshifts, however, we 
present the 0.5–5 ◦ range which we believe is the most trustworthy 
to measure linear bias. We note that o v er the 0.5–5 ◦ fitting range, 
the measured bias values presented in Table 4 are lower using 
the weighted p ( z) resampling, but are consistent with one another 
within ∼ 1 σ . Discerning between whether we expect a p ( z) with a 
stronger preference to low-redshift sources or that there are residual 
systematics in our data are challenging, but will be aided with future 
spectroscopic surv e ys such as WEAVE-LOFAR (Smith et al. 2016 ). 

Next, we consider the comparison between the evolving, b ( z) = 
b 0 / D ( z ), and constant, b ( z ) = b 0 , bias models for our data, as 
presented in Fig. 22 . The model used in analysis of NVSS in Nusser & 
Tiwari ( 2015 ) was an evolving bias model and we also note that 
for previous measurements using Limber inversion, the choice of 
comoving clustering assumes a non-evolving r 0 and so an evolving 
bias model inversely proportional to the growth factor, as can be 
seen in Equation 22 . As can be seen in Fig. 21 , both the evolving 
and constant bias model appear to accurately recreate the observed 
angular TPCF across a diverse range of angular scales ( ∼0.07 −1 ◦). 
Ho we ver, whilst at θ ∼ 1 −5 ◦ the model for ω( θ ) using the constant 
bias model (and assuming equal weighting for our p ( z) resamples, 
see Fig. 21 a) can be seen to better model ω( θ ) at the largest angular 
scales, the evolving bias model underpredicts the observed angular- 
TPCF. This would therefore imply that a constant bias model appears 

to more accurately represent the measurements made in this work. 
Ho we ver, in the literature, bias models which evolve and increase 
with redshift have typically been assumed due to expectations that 
at higher redshifts a halo of the same mass represents a more 
extreme fluctuation from the average, and so is more biased. In 
SKADS (Wilman et al. 2008 ), the authors used an assumption 
of a constant mass haloes for each different source population, 
these result in an evolving bias model for such an assumption. 
These models have been used in numerous cosmology forecasts 
(Raccanelli et al. 2012 ; Ferramacho et al. 2014 ; Square Kilometre 
Array Cosmology Science Working Group et al. 2020 ). The model 
used in the analysis presented in this work, ho we ver, includes a 
more simplistic evolving bias model, inversely proportional to the 
growth factor, and more complicated evolutionary models taking 
into account the contributions of different source populations are 
likely more appropriate. If the p ( z) resamples are allowed to be 
preferentially chosen to best fit the data (see Fig. 21 b), the constant 
and evolving bias models both appear to become more similar 
compared to the measurements of ω( θ ). 

Finally, comparisons can be made for the results when using the 
full covariance matrix, compared to errors based on the diagonals of 
the covariance matrix. Work such as Lindsay et al. ( 2014a ) and Hale 
et al. ( 2018 ) have followed methods where only the uncertainties on 
a θ bin and not the full covariance matrix was assumed, which could 
affect the measurements of bias. As can be seen in Figs 21 and 22 
and in Tables 3 and 4 , there do exist differences in the measured bias 
and ω( θ ) models depending on whether or not the full covariance 
matrix is provided. These often find a lower bias value when the full 
covariance matrix is used, although the values are typically consistent 
within 1–2 σ . Differences between the results with and without the 
full covariance imply a correlation between angular scales which 
needs to be accounted for in the fitting of ω( θ ). We therefore use 
the models in which the full covariance is incorporated for drawing 
conclusions. We also note that when weighting all p ( z) resamples 
equally (and modelling these as in Equation 15 ), the results when 
using the covariance matrix from TreeCorr (with N Jack = 100) 
were consistent within ∼1 σ and using a δz = 0.1 binning for the 
p ( z) from the LoTSS Deep fields also resulted in b 0 values consistent 
within ∼1 −1.5 σ to those presented in this work. 
6.2 Comparison of b ( z) to other sur v eys 
We next present comparisons to the results made from previous 
measurements with similar large-area surv e ys. As this work follows 
from the previous work of LoTSS-DR1 presented in Siewert et al. 
( 2020 ), we first make comparisons to the results found in that work. 
In Siewert et al. ( 2020 ), redshifts were not available for the full 
population of LoTSS-DR1 sources and no redshift data for LOFAR 
sources in the Deep Fields were available at that time. Therefore, for 
bias measurements this relied on those sources which had cross- 
matched hosts (from Williams et al. 2019 ) and redshifts (from 
Duncan et al. 2019 ). This meant that approximately 50 per cent 
of sources had redshifts a vailable, b ut that measurements of bias 
in redshift bins were skewed to those sources. Therefore, it is 
challenging to make direct comparisons to that work. Ho we ver, it 
is possible to make comparisons to the fitting parameters for ω( θ ) 
provided in Siewert et al. ( 2020 ). 

In Fig. 24 , we present comparisons of the best-fitting models to 
Siewert et al. ( 2020 ) as well as a number of other previous works from 
Lindsay et al. ( 2014a ), Hale et al. ( 2019 ), Bonato et al. ( 2021 ), and 
Mazumder, Chakraborty & Datta ( 2022 ). For these works, we include 
an indication of the equi v alent flux limit used, scaled to 144 MHz. 
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For those with fainter populations, we note that differences in the 
populations being observed, which will be increasingly dominated by 
SFGs below 1 mJy , will affect the comparison of such measurements. 
As can be seen from Fig. 24 , our work finds a smaller clustering 
amplitude to that found in Mask 1 used in Siewert et al. ( 2020 ) 
at 2 mJy (their best model from their paper). We do note that our 
result is in excellent agreement to that of Siewert et al. ( 2020 ) using 
their 2 mJy cut in Mask d (not shown in Fig. 24 ), which used a 
less conserv ati ve masking of re gions the y considered to have ‘good’ 
sensitivity. As discussed though in Section 3.3.4 , there are differences 
introduced in this work for the method of generating random sources 
compared to that in Siewert et al. ( 2020 ), which may also affect 
comparisons of the measurements, as systematics in the data were 
accounted for using some different methods. 

At both similar flux densities and a similar frequency to this work 
is the clustering presented in Hale et al. ( 2019 ). In their work, the 
clustering of sources within the XMM–LSS field as observed with 
LOFAR was presented, and Hale et al. ( 2019 ) found a clustering 
amplitude approximately three times larger to the work presented 
here. These difference could arise from cosmic variance as the 
XMM–LSS field co v ers a much smaller area ( ∼25 deg 2 ) compared 
to the ∼5000 deg 2 used in this work. Ho we ver, we also note that 
Hale et al. ( 2019 ) discuss the fact that the corrected source counts 
appear to suggest that the completeness corrections applied are an 
underestimation. This could affect the measurement of ω( θ ) in their 
w ork. Our w ork is consistent with that of Lindsay et al. ( 2014a ), who 
study the clustering of sources in FIRST (Becker, White & Helfand 
1995 ; Helfand, White & Becker 2015 ) with an equi v alent limit at 
144 MHz of ∼ 5 mJy , yet there are large uncertainties in their work. 
We derive a larger amplitude than that of Mazumder, Chakraborty & 
Datta ( 2022 ), who use 325-MHz observations of the Lockman Hole 
field which are the equi v alent of ∼3 times more sensitive than for 
LoTSS-DR2, but restricted o v er smaller areas. Whilst previous work 
has investigated how the amplitude of clustering changes with flux 
density (see e.g. Overzier et al. 2003 ; Wilman et al. 2003 ), who find a 
typical declining amplitude at smaller flux densities, the complication 
between the different populations introduced and changes in redshift 
distribution as flux limits decrease means that discussion of the 
power-law amplitude is complicated to make direct comparisons. 
We provide the inset in Fig. 24 to show the flux density dependence 
in context with the other work presented. 

Next, comparing the bias evolution models implied from this work 
to those from other works, we note that again there exists challenges 
when making comparisons due to the variety of radio populations, 
and their variation with flux density. Radio surv e ys are dominated by 
AGN at the brightest flux densities, with SFG dominating at fainter 
flux densities (see e.g. Smol ̌ci ́c et al. 2017b ; Algera et al. 2020 ; 
Hale et al. 2023 ) and Best et al. ( 2023 ). For example, Nusser & 
Tiwari ( 2015 ) used a quadratic polynomial model to investigate 
an evolving bias model for NVSS sources with S 1 . 4 GHz ≥ 2 . 5 mJy . 
This is an equi v alent flux density limit of ∼ 12 . 5 mJy at 144 MHz , 
approximately eight times the flux density limit used in this work. 
These sources will be dominated by AGN and have very little 
contribution of SFG, whereas we expect a much larger contribution 
of SFGs within this work. As shown in radio clustering studies such 
as Magliocchetti et al. ( 2017 ), Hale et al. ( 2018 ), and Mazumder, 
Chakraborty & Datta ( 2022 ), these two populations are believed to 
have different biases and so by investigating the bias for a source 
population as a whole, the bias measured will be an average between 
the bias of the two populations. Moreo v er, if such previous studies 
use comoving clustering, these should be compared to the evolving 
bias models instead of a constant bias model. Therefore, the results 

shown for the Limber-derived bias values for comoving clustering 
in this work are only comparable for the evolving bias model and 
not the constant model. Our measurements of bias with Limber’s 
equation (when assuming a power-law spatial clustering model) can 
underestimate the bias model (if comparing to those from CCL ), 
though these are typically consistent within 1–2 σ . The remaining 
differences highlight the challenges when making comparisons of 
bias evolution models using these different approaches. 

Evolving bias models (with the covariance) are consistent with 
some of the measured values from Chakraborty et al. ( 2020 ) and Hale 
et al. ( 2018 ) as well as the evolving bias model from NVSS (Nusser & 
Tiwari 2015 ), especially when the linear model is assumed. We 
note that whilst for Hale et al. ( 2018 ) we present results for the 
full population in Fig. 22 , the results for Chakraborty et al. ( 2020 ); 
Mazumder, Chakraborty & Datta ( 2022 ) are separated by source type, 
with those for SFGs found to have lower bias values. Therefore, 
our agreement with Chakraborty et al. ( 2020 ) is to their AGN 
population measurements and similarly, as discussed, NVSS will 
also be dominated by AGN at the flux densities applied. Recent 
work from Best et al. ( 2023 ) for the LoTSS Deep Fields, suggests 
∼20 per cent of SFGs and ∼6 per cent of radio quiet quasars (RQQs, 
which become more important at faint flux densities, see e.g. Jarvis & 
Rawlings 2004 ) at the limiting flux density used in this work. 

It is also important to compare to the results of Alonso et al. ( 2021 ) 
who used a combination of LoTSS-DR1 and CMB measurements to 
jointly constrain both p ( z) and b ( z) (for sources ≥2 mJy). Their 
results suggested that for an evolving bias model, the value of b 0 is 
expected to be ∼1.2–1.7, assuming a redshift distribution similar to 
that of Smol ̌ci ́c et al. ( 2017b ) using an appropriate flux density cut. 
Our measurements o v er the 0.5–5 ◦ angular fitting range using the full 
covariance matrix to determine b 0 are slightly larger than the results 
of Alonso et al. ( 2021 ) (when the p ( z) samples are equally weighted), 
though our results are consistent with their upper limits within our 
1 σ uncertainties. Ho we ver, when we allow more preferential p ( z) 
models to be weighted, we find b 0 ∼ 1.6 −1.7, consistent with the 
work of Alonso et al. ( 2021 ). In their work, Alonso et al. ( 2021 ) fit for 
both the p ( z) and b ( z) model, and so are more comparable to when 
we allow preferential selection of the p ( z) samples. For the constant 
bias models, on the other hand, our b 0 values are typically lower than 
those found in (Alonso et al. 2021 , who find b 0 ∼ 2.3 −4). Ho we ver, 
their redshift distribution which they find for such a constant bias 
model is skewed to a much higher redshift than shown in Fig. 20 . 
Our redshift distribution peaks significantly below z ∼ 1, similar 
to the evolving bias model of Alonso et al. ( 2021 ), whereas their 
constant bias model predicts a redshift distribution peaking at z ∼
1 −2. From Fig. 23 , we see that the LoTSS Deep Fields data do not 
indicate such a peak at higher redshifts. Therefore, to have agreement 
between this work and that of Alonso et al. ( 2021 ) this suggests 
a preference towards an evolving bias model for LoTSS sources 
assuming a redshift distribution similar to that of the LoTSS Deep 
Fields. 
7  C O N C L U S I O N S  
The LOFAR Two-metre Sk y Surv e y Data Release 2 (LoTSS-DR2; 
Shimwell et al. 2022 ) provides a catalogue of ∼4.4 million low- 
frequency radio sources over ∼ 5600 deg 2 , making it an ideal data 
set for radio cosmology studies of the large-scale structure of the 
Universe. In this work, we provided analysis of the angular clustering 
of sources in the LoTSS-DR2 surv e y and comparison of the bias 
models implied for such sources. We provide a comprehensive 
description of the methods used to impro v e upon the accurac y of 
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the random catalogues generated in this work compared to those 
used in the LoTSS-DR1 clustering analysis of Siewert et al. ( 2020 ). 
Our random catalogues account for a variety of observational biases 
within the data including: rms sensitivity variations across the field of 
view; resolution bias; smearing variations across the observations; 
detection completeness of PYBDSF ; and the effect of Eddington 
and measurement biases on the measured flux density properties of 
sources. 

Using the random catalogues generated, we measure the angular 
TPCF, ω( θ ), for sources with SNR ≥ 7.5 and integrated flux 
density ≥1 . 5 mJy , which shows an approximate power-law behaviour 
( ω( θ ) ∝ θ1 − γ ) o v er the angular scales between 0.03 and 2 ◦. We 
model ω( θ ) using a variety of models which account for both an 
evolving and constant bias model as well as using matter power 
spectrum models which account for linear effects only (‘linear’) or 
with non-linear effects also included (‘HaloFit’). Our results show 
that in order to best model the ω( θ ) measured from LoTSS-DR2 
across a range of angular scales ( ∼0.1 −1 ◦), the linear model is 
preferred, which suggests that at the sensitivities probed by this work, 
we are typically only observing a single radio source per dark matter 
halo, and do not have a strong contribution from ‘1-halo’ clustering. 
Ho we ver, we note that the linear model underestimates the clustering 
at smaller angular scales, where a combination of 1-halo clustering 
and multicomponent source clustering may play a role. 

Comparing bias evolutionary models with the linear halo model, 
assuming the models based on the redshift distributions from the 
LoTSS Deep Fields accurately represent that of our data, our work 
suggests that for an evolving bias model of the form b ( z) = b 0 / D ( z), 
the best-fitting value of b 0 ∼ 1.7 −1.8 o v er the angular scales which 
we believe are most accurate for measuring bias (0.5–5 ◦). Instead 
for a constant bias model, of the form b ( z) = b 0 , we find b 0 ∼ 2.1. 
At the largest angles ( ≥1 ◦), we see that the constant bias model 
provides a slightly better fit to the observed data when we use 
equally weighted p ( z) models from the LoTSS Deep fields to measure 
bias. Such differences are reduced if we allow our models to have 
preferential p ( z) models, based on the fit to the data. Where we allow 
our p ( z) model to be preferentially selected, the bias values in both 
the constant and evolving bias models also reduced slightly, to b 0 ∼
1.6 −1.7 in an evolving model, and b 0 ∼ 2.0 for a constant model. 
Assuming an evolving bias model and taking into account the full 
covariance matrix, we find good agreement with the results from 
NVSS of Nusser & Tiwari ( 2015 ) up to z ∼ 1 and previous results 
from Hale et al. ( 2018 ) and Chakraborty et al. ( 2020 ), though we note 
that these probe different populations at both different frequencies 
and different equivalent sensitivities to that used in this work. 

Moreo v er, in comparison with work, from LoTSS-DR1 of Alonso 
et al. ( 2021 ) who used both CMB and LOFAR measurements to 
jointly constrain the redshift distribution and bias evolution model 
of LoTSS-DR1 sources ( ≥2 mJy), we find that given the greater 
knowledge of the redshift distributions contributed by the LoTSS 
Deep Fields (see Duncan et al. 2021 ; Sabater et al. 2021 ; Tasse et al. 
2021 ), an evolving model from Alonso et al. ( 2021 ) is necessary to 
reflect the redshift distribution found in their work. We find that the 
bias values presented from Alonso et al. ( 2021 ) for their evolving 
model is similar to that of the evolving bias models presented in 
this work, especially when we allow p ( z) models to be preferentially 
determined during the fitting process. Using a linear model for the 
matter power spectrum to fit across the largest angular scales (0.5–
5 ◦) and equally weighting p ( z) models from the LoTSS Deep Fields, 
we find, for an evolving bias model, a value of b 0 = 1 . 79 + 0 . 15 

−0 . 14 which 
is equi v alent to b E = 2 . 81 + 0 . 24 

−0 . 22 at the median redshift of our sample, 
z m ≈ 0.9 when we do not show a preference to the p ( z) models, 

reducing to b 0 ,E = 1 . 67 + 0 . 12 
−0 . 12 which is equi v alent to b E = 2 . 62 + 0 . 19 

−0 . 18 
and b 0 ,C = 2 . 02 + 0 . 17 

−0 . 16 when we allow our measurements to suggest 
preferential p ( z) models, 13 which are found to peak more strongly at 
lower redshifts. 

Observations from future spectroscopic surv e ys such as WEAVE–
LOFAR (Smith et al. 2016 ) will allow us to more accurately 
determine the redshift distribution of LOFAR sources at low redshifts 
and allow more understanding of the p ( z) models we expect for the 
sources observed in this work. This will allow us to disentangle 
whether small systematics remain within our data or we have a 
population of radio sources which are more highly skewed to low 
redshifts (e.g. from SFGs). As the low redshift p ( z) appears important 
for this work in modelling ω( θ ) at the larger angular scales, such 
accurate redshifts at z < 1 are important for constraining the results 
of future studies. This work has highlighted how a number of 
observational systematics can be corrected for future deep radio 
cosmology studies, whilst also demonstrating that the understanding 
of systematics in wide-field mosaiced images is complex, and needs 
deep understanding for use in cosmological studies. 
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