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ABSTRACT

Covering ~ 5600 deg® to rms sensitivities of ~70—100 pJy beam~!, the LOFAR Two-metre Sky Survey Data Release 2
(LoTSS-DR2) provides the largest low-frequency (~150 MHz) radio catalogue to date, making it an excellent tool for large-area
radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of
galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues,
compared to that used for LoTSS-DR1, before presenting the angular clustering for ~900 000 sources >1.5mlJy and a peak
signal-to-noise > 7.5 across ~80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary
models. When fitting angular scales of 0.5 < 6 < 5°, using a linear bias model, we find LoTSS-DR?2 sources are biased tracers of

the underlying matter, with a bias of bc = 2.141033 (assuming constant bias) and bg(z = 0) = 1.797)13 (for an evolving model,
inversely proportional to the growth factor), corresponding to bg = 2.81f8:§3 at the median redshift of our sample, assuming the

LoTSS Deep Fields redshift distribution is representative of our data. This reduces to bc = 2.0270-17 and bg(z = 0) = 1.677)13

when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is
slightly lower than LoTSS-DR1 (>2 mly), our study benefits from larger samples and improved redshift estimates.

Key words: galaxies: haloes —large-scale structure of Universe —radio continuum: galaxies.

baselines of up to ~ 100 km across the Netherlands and ~ 2000 km

1 INTRODUCTION across Europe, producing 6 arcsec resolution using the Dutch stations

The LOw Frequency ARray (LOFAR; van Haarlem et al. 2013) is a
key radio telescope array, transforming views of the low-frequency
radio skies. Based in Europe, its full array combines a dense core of
stations in the Netherlands with additional stations that have much
larger baselines both across the Netherlands and Europe. This allows

* E-mail: catherine.hale@ed.ac.uk

only and sub-arcsecond resolution imaging using the full array
(Morabito et al. 2022; Sweijen et al. 2022), at 150 MHz. These sta-
tions combine two types of antennas to operate in two low-frequency
ranges: the low-band antennas (LBA; 10—80MHz) and high-band
antennas (HBA; 120-240 MHz). Such low-frequency observations
lead to a large field of view for each LOFAR observation, making it
an excellent instrument for survey science. As part of this, LOFAR is
currently focusing on several large-area survey projects, including:
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the LOFAR LBA Sky Survey (LoLSS; de Gasperin et al. 2021) and
the LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017,
2019, 2022) with the HBA, which is what we use for this work.
LoTSS aims to observe the entire Northern hemisphere at 144 MHz
to a typical rms sensitivity of oj44mu, ~ 70-100 py beam™' and
trace a combination of active galactic nuclei (AGN) and star-
forming galaxies (SFGs) across large periods of cosmic time. At
such frequencies, the dominant radiative mechanism is synchrotron
emission from relativistic electrons spiraling in the magnetic fields.
This leads to a typically power-law-like distribution for flux densities
as a function of frequency (S, oc v™*) with a range of spectral indices,
typically assumed to be o ~ 0.7—0.8 for an average radio population
(Kellermann, Pauliny-Toth & Williams 1969; Mauch et al. 2003;
Smol¢i¢ et al. 2017a; de Gasperin, Intema & Frail 2018), though
much larger or smaller values can be observed for individual sources
with flat or peaked spectra (e.g. Massaro et al. 2014; Callingham
etal. 2017; O’Dea & Saikia 2021).

LoTSS has developed over a series of data releases, improving
in properties such as angular resolution, sensitivity, image fidelity
and areal coverage. Initially, observations covering 350 deg® were
released with direction-independent calibration only at a resolu-
tion of 25", detecting ~44 000 sources with a typical noise of
~ 0.5mJybeam™'. This was then improved upon in both resolution
and sensitivity with the first fully direction-dependent calibrated
data release for LoTSS: LoTSS-DR1 (Shimwell et al. 2019). This
data release covered 424 deg® over The Hobby-Eberly Telescope
Dark Energy Experiment (HETDEX) Spring Field (Hill et al.
2008) with a corresponding catalogue of ~325 000 sources, with
a lo sensitivity of ~ 70-100 uJybeam™' at 6 arcsec angular res-
olution. This sky coverage has now been enlarged in the latest
data release, LoTSS-DR2 (Shimwell et al. 2022), which covers
~ 5600 deg® with an accompanying catalogue of ~4.4 million
sources. This is the largest catalogue of radio sources within an
individual radio survey to date. Such a combination of area and
large source numbers means that LoTSS-DR2 provides an excel-
lent data set for radio cosmology studies, allowing for a more
detailed understanding of the distribution of radio sources in the
Universe.

The study of the distribution of sources observed in galaxy surveys
throughout the Universe is important for a number of reasons. Most
importantly, it allows us to understand more about how galaxies trace
the large-scale structure of the Universe and the underlying dark
matter distribution. Starting from initial primordial overdensities,
dense regions of matter have come together and evolved over time.
This has resulted in the large-scale distribution of matter we observe
today (Colless et al. 2001; Doroshkevich et al. 2004; Springel,
Frenk & White 2006). This coming together of dark matter forms
haloes in these initially overdense regions, and leaves an absence
of dark matter, known as voids, in regions of initial underdensities.
Filaments then connect dense regions together. Luminous matter,
which we observe in astrophysical objects such as stars and galaxies,
is also attracted together under the effects of gravity but is further
influenced by factors such as the effect of feedback associated with
both star formation and from AGNs (see e.g. Ceverino & Klypin
2009; Fabian 2012; Hopkins, Quataert & Murray 2012; Morganti
2017). Since galaxies form in dense regions, they trace peaks in
the underlying matter distribution, leading galaxies to be known as
biased tracers of the matter distribution in the Universe (see e.g.
Peebles 1980; Kaiser 1984; Mo & White 1996; Desjacques, Jeong &
Schmidt 2018).

On large scales, the galaxy overdensity, 8,(x, z), can be considered
to trace the matter overdensity, ,,(x, z), related by a quantity known
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as ‘galaxy bias’, b(z):
3g(x, 2) = b(2) 8m(x, 2). ey

To quantify galaxy bias, a common method is to first determine
the excess probability to observe galaxies within different spatial
separations, compared to if they were randomly distributed. This is
known as the spatial two-point correlation function (TPCF), &(r, z).
The redshift-dependent linear bias, b(z), can then be measured and
is related to the ratio of spatial clustering of galaxies, £(r, z), to the
clustering of matter, £\(7, z), as given by

"Eg(" ,2)
En(r,z)’
The spatial clustering of galaxies, &,(r), defines the excess clustering
of galaxies observed at a given spatial separation, compared to if
they were randomly distributed. Such measurements of the spatial
clustering rely on accurate redshifts and corrections due to peculiar
velocities. Where highly accurate redshifts are not available for
sources in a survey, it is still possible to estimate the spatial clustering
by combining the observed projected angular clustering of sources
with their redshift distributions using methods such as Limber
inversion (Limber 1953, 1954). Radio surveys provide excellent
catalogues to measure the large-scale structure of the Universe as
they predominately trace extragalactic sources over a broad redshift
range and over large areas, but typically rely on angular clustering
measurements instead of spatial measurements.

The angular two-point correlation function (w(0), see e.g. Tot-
suji & Kihara 1969; Peebles 1980; Cress et al. 1996; Blake &
Wall 2002; Overzier et al. 2003; Wang, Brunner & Dolence 2013)
does not rely on redshifts for its calculation and quantifies the
excess probability (dP) of pairs of sources observed within a survey
catalogue at a given projected angular separation, 6, compared to if
the sources were randomly distributed on the sky, with no intrinsic
large-scale structure. This is defined by

dP = N[l + w(6)]dS2, 3)

b (z) =

(@)

where dS2 is the solid angle of the observations and N is the mean
number of sources per unit area.

Radio continuum surveys rely on multiwavelength information
for redshifts (see e.g. Smolci¢ et al. 2017b; Prescott et al. 2018;
Algera et al. 2020), which are typically dominated by less accurate
photometric redshifts for a large fraction of the sources. For LOFAR,
in the first LoTSS data release (Shimwell et al. 2019), sources were
cross-matched to sources in surveys such as Pan-STARSS (Chambers
etal. 2016) and WISE (Wright et al. 2010; Williams et al. 2019), with
~50percent of LoTSS-DRI1 sources having redshift information
(see Duncan et al. 2019). Similarly for the LoTSS Deep Fields, the
wealth of multiwavelength data has been used to obtain redshifts for
97 per cent of sources across the multiwavelength defined regions
in the three fields LoTSS Deep Fields (see Duncan et al. 2021;
Kondapally et al. 2021; Sabater et al. 2021; Tasse et al. 2021) which
was used to help classify such sources (see Best et al. 2023). The
accuracy of redshifts for such radio sources will be improved upon
with future spectroscopic surveys (such as WEAVE-LOFAR; Smith
et al. 2016).

Combining measurements of the angular clustering and redshift
distribution, the spatial clustering for a population of sources can
be inferred. The spatial clustering can then be used to estimate the
galaxy bias of radio sources (as in Equation 2), this will be discussed
further in Section 5. Such clustering and bias measurements have
been presented in a number of works (see e.g. Magliocchetti et al.
1999, 2004; Negrello, Magliocchetti & De Zotti 2006; Lindsay et al.
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2014a; Nusser & Tiwari 2015; Magliocchetti et al. 2017; Hale et al.
2018; Siewert et al. 2020; Mazumder, Chakraborty & Datta 2022;
Tiwari et al. 2022). A number of such studies suggest an evolving
bias model for radio sources, suggesting radio sources are more
biased tracers of the underlying matter distribution at higher redshift.
Moreover, studies which further consider the bias for radio SFGs and
AGN separately have shown that these sources have different bias
distributions and trace different mass haloes (see e.g. Magliocchetti
et al. 2017; Hale et al. 2018; Chakraborty et al. 2020; Mazumder,
Chakraborty & Datta 2022). Such studies have shown that AGN
appear to inhabit more massive haloes than for SFGs at similar
redshifts, reflecting the fact that they preferentially inhabit massive
ellipticals. Further studies which classify AGN suggest that the
haloes hosting radio AGN may be related to the accretion mode
of AGN (using high-redshift analogues to high/low-excitation radio
galaxies, see Hale et al. 2018). Such differences in the bias of different
source populations can be advantageous for cosmological analysis,
using the multitracer techniques (see e.g. Raccanelli et al. 2012;
Ferramacho et al. 2014; Gomes et al. 2020). These techniques require
understanding of the bias evolution for different source populations
and make use of such difference to help place constraints on, for
example, non-Gaussianity.

Further cross-correlating radio data with other cosmological
tracers (see e.g. Allison et al. 2015; Alonso et al. 2021) can also
help remove some of the systematics which remain in the data and
have added further constraints on the galaxy bias evolution of radio
sources, and Alonso et al. (2021) further used this to place constraints
on the redshift distributions for radio sources, where no redshift
information was available. Measurements of bias have been used in
numerous studies to relate such measurements to the typical mass
of the dark matter haloes which are hosting such sources (see e.g.
those described in Mo & White 1996; Tinker et al. 2010), but there
are caveats to such measurements, especially if full halo occupation
models are not taken into account (see e.g. Aird & Coil 2021).

In this paper, we investigate the angular clustering of radio sources
within ~ 4500 deg® of the LoTSS-DR2 survey and use this to infer
the average bias of LoTSS-DR2 sources. The paper is arranged as
follows: In Section 2, we describe the LoTSS-DR2 data used in this
analysis, as well as the methods to measure the angular clustering
of radio galaxies in Section 3. This includes a detailed description
of the methods used in order to obtain accurate random sources that
mimic the distribution of observational biases across the field of
view, which develops the techniques used for LoTSS-DR1 (Siewert
et al. 2020). Then, in Section 4, we present our measurements
of the angular clustering of sources and our validation of these
measurements before presenting our methods to determine galaxy
bias in Section 5. This allows us to place constraint on how such
sources trace the underlying matter and dark matter haloes across
cosmic time. We then discuss our results in Section 6. We then go
on to draw final conclusions in Section 7. For this paper, we assume
standard cosmological parameters from Planck Collaboration (2020)
in a flat model Universe, specifically: Hy = 67.4kms~! Mpc~!,
Qp =0.0493, Q. =0.264, Q@ = Qb + Qc, 24 =1 — 2y, 1 = 0.965,
og = 0.811, unless otherwise stated.

2 DATA

For this work, we make use of the data and associated data products
from two LOFAR survey projects: (i) the large area LoTSS-DR2
survey (Shimwell et al. 2022) and (ii) the associated redshift
information from sources in the smaller LoTSS Deep fields (Duncan
etal. 2021).

MNRAS 527, 6540-6568 (2024)

2.1 LoTSS-DR2

The majority of data used in this work consists of images and
catalogues from the mosaics generated from combining 841 indi-
vidual pointings of LoTSS-DR2 (Shimwell et al. 2022) covering
~ 5600 deg® over two regions. The first of these is centred at 13h
in RA, covering 4178 deg?, and the second region is centred at an
RA of 1h, covering 1457 deg®. The data were reduced in a two-
stage process which consists of both a direction-independent and a
direction-dependent calibration pipeline. The former flags, calibrates
and averages the data in order to reduce the large data volumes,
whilst the latter does further calibration and imaging to account for
direction-dependent effects. This includes the effect of the varying
ionosphere across the field of view, which is more prominent at the
observing frequencies that telescopes such as LOFAR operate at,
compared to higher frequency radio observations. As presented in
works such as Williams et al. (2016), van Weeren et al. (2016),
Shimwell et al. (2019), and Tasse et al. (2021), such direction-
dependent calibration of LOFAR data is crucial for improving image
fidelity and for producing higher-resolution imaging of the field
at 6arcsec angular resolution, compared to 25 arcsec without this
accounted for (see e.g. Shimwell et al. 2017), when using only the
Dutch LOFAR stations. Source catalogues were generated using the
source finder PYBDSF (Mohan & Rafferty 2015) which detected a
total of ~4.4 million sources across the full LoTSS-DR2 coverage.
The distribution of these sources over the Northern hemisphere can
be seen in Fig. 1. This distribution varies significantly across the field
of view due to a combination of factors. These include intrinsic large-
scale structure, and non-uniform detection across the field of view
resulting from instrumental, calibration and source finding effects.
Understanding the factors which cause such non-uniformity in the
data are important in order to accurately measure the true angular
clustering of sources and will be discussed further in Section 3.2.
Unless otherwise stated, any mention of images and pointings from
LoTSS-DR2 refer to the mosaic images which are available from
https://lofar-surveys.org, and are the mosaiced region closest to the
pointing centre.

2.2 LoTSS Deep Fields

In order to relate any observed angular clustering to the spatial
clustering and bias, it is crucial to have knowledge of the redshift
distribution of the sources within the field. As there are not direct
measurements of redshifts for the full population of LoTSS-DR2
sources' we make use of the LoTSS Deep Fields data (Sabater
et al. 2021; Tasse et al. 2021) which targets a handful of fields
in the Northern hemisphere with an abundance of multiwavelength
data, these are observed to deeper sensitivities than in LoTSS-DR2.
Observations within these fields are important to help infer the
redshift distribution of the sources observed within LoTSS-DR2.
The first LoTSS Deep Fields data release consisted of three fields:
Bodtes, Lockman Hole, and the European Large-Area ISO Survey
Northern Field 1 (ELAIS-N1) field. These were observed for a total
of 80, 164, and 112 h, respectively, covering ~ 20 deg? in each field.

For each field, a smaller region was defined for which there
exists deep multiwavelength information. In such regions, the source

Redshifts for a number of sources will be available in the value-added
catalogue of Hardcastle et al. (2023) which is cross-matching sources >4
mly, to ensure accurate host positions for source >8 mJy. However, there
will be significant incompleteness compared to the full population of sources
used in this work.
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Figure 1. Sky density distribution of all sources in the LoTSS-DR2 survey (upper panel) from Shimwell et al. (2022) and for the random catalogues generated
for this work (lower; prior to any flux density, SNR or spatial cuts). This shows the two large regions covered by the survey, centred on right ascensions of
1h (15°) and 13h (195°). The figure is plotted in the Mollweide projection using HealPix (Gérski et al. 2005; Zonca et al. 2020) with an Ngge = 256. The

colour-scale indicates the source density per sq. deg across the field of view.

catalogues from PYBDSF were cross-matched to host galaxies
(Kondapally et al. 2021) using a wealth of ancillary data. This
cross-matched area constituted a total area of 8.6 deg” in the Bootes
field, 6.7 deg® in ELAIS-N1 and 10.3 deg? in the Lockman Hole
field, totalling 25.6 deg® across the three fields. For the cross-
matched sources, a redshift was also associated to the source using a
combination of template fitting to the multiwavelength data as well
as machine-learning methods in order to obtain probability density
functions (PDFs) for the redshift distributions, denoted p(z). A ‘best
redshift’ was then assigned to each source based on the PDF, or a
spectroscopic redshift if such was available for the sources. More
detail on this can be found in Duncan et al. (2021). We use these
redshift distributions to estimate the redshift distribution, p(z), for
sources in the wider LoTSS-DR2 survey. This will be discussed
further in Section 5.1.

3 ANGULAR CLUSTERING AND RANDOMS
GENERATION

3.1 Angular clustering

As discussed in Section 1, one way to investigate the clustering of
sources within a galaxy catalogue is through measuring the angular
two-point correlation function (TPCF), denoted by w(6). The TPCF
quantifies the excess clustering observed at a given angular separation
in the catalogue data, compared to what would be observed over the
field of view if there was no large-scale structure within the data.
Naively, such excess probability to detect galaxies in the data at a
given angular separation compared to the distribution from random
sources is given by :

_ﬁ(e)_l

“O = FR0)

(C))

In this estimator, D D(6) is the counts of pairs of galaxies within the
data catalogue at a given angular separation 6 (normalised such
that Xy DD(9) = 1) and RR() is the corresponding normalised
pair counts within a random catalogue. This random catalogue is
generated to mimic observational effects across the field of view. If
the data were indeed randomly distributed and exhibited no large-
scale structure behaviour, w(f) would fluctuate around a value of
0. Any deviation from this suggests intrinsic large-scale structure.
A number of predictions for galaxies as well as observations have
suggested that this angular clustering behaves as a power law
for galaxies and specifically radio sources (see e.g. Peebles 1980;
Blake & Wall 2002; Lindsay et al. 2014a; Magliocchetti et al. 2017,
but see Section 4). Whilst Equation 4 could be used to estimate w(8),
work by Landy & Szalay (1993) has shown that a more accurate
estimator of w(0) is given by:

DD(®) —2DR(9) + RR(6)

w0 = RR(O)

(%)
In this estimator, D R() is the corresponding normalised pair counts
between the data and random catalogues within a given angular
separation. This estimator has been shown to have minimal variance
and be less biased than other estimators such as Equation 4 (see
Landy & Szalay 1993). As such, we use Equation 5 to calculate w(6)
in this work.

To calculate w(f), a random catalogue must first be generated
to compare to the data. If source detection across the field of
view were uniform, such a random catalogue could be generated
through sampling random positions across the observed field of
view. However, the detection of sources is not uniform (see Fig.
1) and will be affected by a number of observational effects across
the sky. Thus, the generation of randoms which accurately mimic the
detection of sources across the sky is crucial to avoid observational
effects being mistaken for intrinsic large-scale structure. We therefore

MNRAS 527, 6540-6568 (2024)
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employ a number of methods (discussed in Section 3.2) to mimic such
observations across the field of view.

To measure w(8), we make use of the package TreeCorr (Jarvis
2015) to calculate the pairs of galaxies within angular separation
bins that are uniformly spaced bins in In (9) and cover the range of
angular scales possible with the data. Due to the large area coverage
of LoTSS-DR2, we ensure that the metric for calculating separations
within TreeCorr is set to *‘Arc’. This helps to more accurately
calculate separations across large fields of view, using great circle
distances. We also set the parameter bin_slop to 0 which enforces
that exact calculations are made to calculate the number of pairs of
sources within each angular separation bin, as opposed to the default
method which has some flexibility between the separation bins in
order to help speed up the calculation of pairs. Such parameters were
determined to be important in the work of Siewert et al. (2020),
where a non-zero bin_s1lop was found to introduce larger errors in
the measurement of w(6). The associated uncertainties in w(#) will
be discussed in greater detail in Section 3.4 and its connection to
linear bias also discussed in Sections 5.2-5.3.

3.2 Randoms

Asdiscussed in Section 3.1, in order to measure the angular clustering
from LoTSS-DR2, we need to have a catalogue of random sources
which mimics the detection of data across the field of view. Fig.
1 highlights the non-uniform detection of radio sources across the
field of view, due to a combination of factors including sensitivity
variations across the field of view due to bright sources, reduced
sensitivity with declination and smearing of points sources across
the field of view. In building our random catalogue, we will take a
series of steps to account for these effects. An outline of these steps,
as well as the section in which these shall be applied is as follows:

(1) Survey area — We generate randoms across the survey field
of view, ensuring we remove any masked regions within pointings
which are masked out due to failures within the data reduction
process. We consider this in Section 3.2.1.

(ii) Smearing — There may be position-dependent smearing effects
across the field of view of a pointing, as well across the 5600 deg?.
Smearing will affect the detection of sources (which is based on
signal-to-noise ratio ‘SNR’, defined here as peak flux density/rms
(root mean square noise), for which the Isl_rms column is used
for rms of the data®), and could arise from effects such as residual
calibration uncertainties and uncorrected smearing eftects inherent
to the data averaging. We model smearing across the field of view
and its dependence on field elevation and correct for this, which is
discussed in Section 3.2.2.

(iil) Incompleteness and measurement errors — The sensitivity
(rms) will vary across the survey area, such as with elevation or
declination (see Fig. 2 of Shimwell et al. 2019) or location within the
mosaic and proximity to bright sources, where the noise is known
to be elevated. Variations may also exist towards the edge of the
field, where there are fewer neighbouring pointings that can be
mosaiced together (as mosaicing would reduce the noise). This will
affect source detection and hence the completeness. Furthermore, the
source finder may have a completeness dependence with SNR and
its measurement errors can affect the properties such as flux density

2For the randoms, we use the pixel rms value at the source centre. Using a
central rms value for the data makes a negligible difference to the number of
sources when the final flux density and SNR cuts are applied are described in
Section 3.3.2
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associated with sources. We account for completeness as a function
of source input SNR and the effect that noise and the source finder
may have on the measured flux properties of sources in Section 3.2.3.
(iv) Additional spatial masking — Finally, there may be additional
spatial regions which should be masked to avoid regions such as the
unmosaiced edges of pointings; this is described in Section 3.3.

We note, though, that there may be limitations to generating
the randoms which may be more challenging to account for, es-
pecially over the large area of LoTSS-DR2. This includes residual
primary beam uncertainties which are unknown and that mosaicking
pointings together may cause additional smearing which can very
spatially due to pointing-dependent astrometric offsets. To minimize
the effects of these, additional flux limit and SNR limits can be
applied to both the data and random samples. Specifically, for our
final analysis, we limit the sample to >1.5mlJy and > 7.5¢0. We
discuss these and additional cuts in Sections 3.3.2-3.3.3.

3.2.1 Input simulated catalogue

The first step in generating accurate random catalogues for the
LoTSS-DR2 survey is to generate a sample of input positions which
are uniformly distributed across the field of view of LoTSS-DR2,
accounting for masked regions within the fields. For this work, we
generated random positions in the range: RA from 0° to 360° and
Dec. from 20° to 80°. This wide-area encompasses the full LoTSS-
DR2 footprint, but a significant fraction of such a region is not
covered by LoTSS-DR2. Therefore, we use the associated rms maps
of each individual pointing to identify the sources within the LoTSS-
DR2 area. We assign each random position an rms value, based on
the pixel value at the source location, using the rms map for the
closest pointing. This also allows sources within masked regions,
or regions not surveyed in LoTSS-DR2 to be identified. Random
sources falling within the surveyed region are retained and consist
of ~200 million input simulated positions across the field of view of
LoTSS-DR2.

To account for sensitivity variations and the effect that this has on
the detection of sources, we take a number of iterative steps. First,
we assign simulated properties of radio sources to each of the ~200
million random positions. Such properties include the flux density
of the simulated source, as well as source shape information. To
do this, we make use of the SKA Design Studies Simulated Skies
(SKADS; Wilman et al. 2008, 2010), which provide a simulated
catalogue of sources covering 100 deg® with multiple observable
properties for each simulated source. These properties include an
associated redshift, flux density measurements at several frequencies
in the range 151 MHz — 18 GHz, shape information and source
type (e.g. AGN or SFG). Recent observations suggest that SKADS
underestimated the number of SFGs at the faintest flux densities
(see e.g. Bonaldi et al. 2016; Smolci¢ et al. 2017a; Matthews et al.
2021; van der Vlugt et al. 2021; Best et al. 2023; Hale et al. 2023).
Therefore, we employ a modified version of the SKADS catalogue
where the number of SFGs in the original catalogue are doubled, as
also done in Hale et al. (2023). The source counts from the modified
SKADS catalogue better reflects deep data from the LoTSS Deep
Fields (Mandal et al. 2021), source counts presented for LoTSS-
DR2 (Shimwell et al. 2022) and data from other wavelengths scaled
to 144 MHz, assuming a spectral index® of a = 0.7, We initially

3We use this value for the spectral index unless otherwise stated, under the

convention S, o« v~ %.

20z AInp 21 uo Josn ABojouyoa | Jo apnysul eiuioyed Aq ZZ9€ L€2/0¥S9/E/2S/910IME/SeIUW/WOD dNO"DIWapEdE//:SdNY Wolj papeojumoq



use a minimum flux density of 0.1 mJy for the SKADS sources to
validate the randoms, but increase this to 0.2 mJy once flux density
cuts are applied (see Section 3.3.2). We note that the relatively
limited area of SKADS compared to LoTSS-DR2 means that the
contribution of the much rarer, bright sources may be undersampled
and so may differ from LOFAR observations. However, such bright
sources are rare in the observations and simulations and so will not
contribute largely to the clustering. Moreover, those sources will not
be sensitivity limited. Due to the nature of the large area of LoTSS-
DR2, SKADS sources will need to be repeated in our random sample,
to ensure both spatial coverage and to allow the random sample to
be significantly larger than the data. Whilst other simulated radio
catalogues exist, such as T-RECS (Bonaldi et al. 2019, 2023), we
will demonstrate later that the source counts used from this modified
SKADS model can accurately represent the source counts of our
data and other deeper observations, and have been shown to be
successful in estimating completeness in other studies (Hale et al.
2023). Therefore, we feel we are able to adopt SKADS for use in this
work. With future studies which split by source type and redshift,
it will become increasingly important to use simulated catalogues
which both have overall flux distributions which reflect the data
as well as reflect the evolving luminosity functions for different
populations.

As PYBDSEF relies on peak SNR in order to determine whether
a source is detected above the local noise, we need a peak flux
density for the simulated sources. For a given integrated flux density,
a point source is more likely to be detected than an extended source,
due to the decreasing peak SNR for more extended sources. To
assign a peak flux density to our simulated sources, we use the
component catalogue which corresponds to the modified SKADS
catalogue. The catalogue used for this work has a flux density limit
of 5wy at 1.4 GHz (~ 25 plJy at 144 MHz), and includes the shapes
and orientations of components that make up the individual sources
in the SKADS catalogue. Following Hale et al. (2021, 2023), we
model each SKADS source through combining the emission related
to the modelled components of a source. For each component,
we model this as an ellipse randomly positioned within a pixel
of the same pixel scale as the LOFAR observations. We convolve
this ellipse with a Gaussian kernel representing the restoring beam
which is an approximation to the point spread function (PSF) of the
LOFAR observations (6 arcsec) and sum these components together.*
This procedure provides an input catalogue of sources which have
information on the integrated flux density, redshift, source type and
peak flux density, which we can assign to our random catalogues.
Unlike in Hale et al. (2021, 2023), though, we do not inject sources
into the images and re-extract sources using the source finder,
PYBDSEF. This is due to the large area of the field being considered,
for which a significant computational effort would be required to
create sufficient random sources to measure the clustering. Instead
we make use of information from the simulations performed in
Shimwell et al. (2022) to account for incompleteness across the
sky. However, we must first account for smearing across the field
of view.

#We note that the knowledge of the true underlying source size distribution is
challenging to understand from current observations, due to complexities such
as source deconvolution and smearing in the image. Whilst SKADS provides
one source size model, knowledge of these for the data will be improved with
deep, high-resolution imaging of galaxies, such as with observations from the
LOFAR International stations (see e.g. Morabito et al. 2022; Sweijen et al.
2022).
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3.2.2 Smearing

Smearing effects can reduce the peak flux densities of sources, and
hence their detection. This smearing can originate from a range of
factors including: bandwidth and time smearing (Bridle & Schwab
1999); residual calibration errors; the size of the facets used in the
reduction; and residual effects from the ionosphere interacting with
the radio signals. The first of these, bandwidth and time smearing,
is described in detail in Bridle & Schwab (1999) and is related to
the averaging of data, which causes an increasing smearing with
distance from the pointing centre. In LoTSS-DR1, Shimwell et al.
(2019) suggested that the use of DDFacet reduced the effects of such
smearing at the largest angular separations compared to Bridle &
Schwab (1999) (see Fig. 10 of Shimwell et al. 2019). This is because
DDFacet uses a different PSF in each facet which can be used to
account for smearing in the data. The 6 arcsec restoring beam of
LOFAR images is then used uniformly across the images. However,
such a process leads to residual effects. For example, sources which
are not fully deconvolved may still exhibit smearing and as only
one PSF per facet is assumed, this can also lead to residual effects.
We do not adopt the relation for smearing as presented in fig. 10 of
Shimwell et al. (2019), but instead investigate the smearing for the
LoTSS-DR2 data and how it varies with observational properties.

Given the large survey area of LoTSS-DR2 (~ 5600 deg?), we
consider whether there is a possibility of smearing being a function
of position across the survey, in particular with the elevation of the
observations, as the primary beam size of an individual pointing
increases at low elevation with LOFAR as it is not a steerable
telescope, and as there are larger ionospheric effects, because more
of the Earth’s atmosphere is along the line of sight. This leads to
larger and more elongated PSF sizes and observational area at lower
declination (see LOFAR observations at lower declinations in Hale
et al. 2019). Therefore, we consider the dependence of the observed
smearing as a function of these parameters.

To investigate the relationship of the position-dependent smearing
we make use of sources from the Faint Images of the Radio Sky at
Twenty-cm survey (FIRST; Becker, White & Helfand 1995; Helfand,
White & Becker 2015) where we have overlap between the two
surveys (mostly in the 13h field). FIRST is a 1.4 GHz survey with
the VLA which observed the northern sky to o}.46n, ~ 0.15mly
at 5 arcsec resolution. To study the smearing, it is important to
identify sources which are believed to be unresolved. Such sources
should have a ratio of integrated to peak flux densities (SS—;) of
1, though scatter will exist due to the effects of noise at lower
SNR. Due to the higher angular resolution in FIRST compared
to LoTSS-DR2, we make the assumption that those sources which
are unresolved in FIRST will also be unresolved in LoTSS-DR2.
To identify unresolved sources in FIRST, we took those which are
isolated (no neighbours within 12 arcsec) and are high SNR (SNR
> 10). For those sources, we follow the methods of previous works
such as Smolci¢ et al. (2017a), Shimwell et al. (2019), Hale et al.
(2021) and use a 95 per cent SNR envelope of the form:

Sy _c
— =A£BxSNR™", (6)
Sp

where the =+ reflects the upper/lower envelopes. A is found using
the value of g—’ at high SNR, and sources with %1,» below A are used
to fit for B and C in order to define the envelope. The form of the
envelope fit for these sources can be seen in Fig. 2. Those FIRST
sources which are below the upper envelope are considered to be
unresolved. These unresolved FIRST sources are then cross-matched
within a 3 arcsec matching radius to LoTSS-DR2 sources which are

MNRAS 527, 6540-6568 (2024)
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Figure 2. SNR envelope for integrated to peak flux density ratio as a function
of SNR that is determined for isolated, high SNR sources in FIRST (see
Section 3.2.2). Sources in blue are considered to be unresolved and in red are
resolved. The model for the envelope is also provided.

isolated (again, within 12 arcsec), high-SNR sources (SNR > 20, to
ensure sources are less affected by Eddington bias, see Eddington
1913), and those sources which were considered single sources by
PYBDSF (i.e. S_Code = ‘S’).

We then consider the position-dependent median ratio of the
integrated-to-peak flux densities as a function of distance to the
nearest pointing centre and its dependence on RA, Dec., and mean
elevation of the field observation. Only those separation bins that
have at least 200 sources within them are presented in Fig. 3 and
error bars are generated by bootstrap resampling the sources within
the bin 100 times after resampling one-third of the sources.

Fig. 3, shows an increase in smearing across the field of view as
a function of distance from the pointing centre. However, there is
also an apparent dependence on the declination and elevation of the
field. The relationship with the right ascension of the observations is
more complicated. If we first consider the effects of declination,
the median flux density ratios appear to increase with declining
declination, whilst for the two lowest declination bins considered
there is similarity in the trend of the observed smearing as a function
of separation. If we consider the dependence on RA this does not
appear to have a clear trend, but at the largest RA considered the
smearing is minimised. However, we note that the comparison with
FIRST does not have sufficient RA coverage to investigate the full
RA range observed with LOFAR. Finally, if we investigated the
elevation dependence of this smearing, we see increasing smearing
with distance from the pointing centre, which also appears to decrease
with elevation above an elevation of >65°, and to be constant at
elevations below this. As the elevation of an observation is related to
the declination of the source combined with the time of observation,
such smearing effects are likely correlated. For this work, we only
consider the elevation-dependent smearing to correct the peak flux
densities of the random sources, using for a model of the form:
S Cy+e P @
Sp
where 6 is the angular separation (in degrees) from the pointing
centre of the nearest pointing and C, and D; are values to be fit.
We calculate the best-fitting values of C; and D, in bins of elevation
and then model the average distribution of these parameters using a
linear equation:

C1=(Xc+ﬁc><€, (8)
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and similarly for D,. Here, o and B are constants, and € is the mid-
point of the elevation bin in degrees. These are fit for elevation bins
with an elevation >60°. For those elevations <62.5°, we apply the
same relation to that fit for the 60—65° elevation range. These models’
are presented in Fig. 3. When applied to the random sources, angular
separations are measured to the nearest pointing centre and the mean
elevation is taken as that of the nearest pointing. As can be seen
from Fig. 3, this functional form appears to be a good visual fit to
the data. This smearing shows that for those sources at the largest
angular distances from the pointing centre have greater smearing
and so would be less easy to detect than for a source with the same
integrated flux density close to the pointing centre.

3.2.3 Correcting the simulations for completeness and source
measurement effects

Once we have information for the flux density properties (both
integrated and peak) for each simulated source, we consider the
likelihood a random source would be detected, accounting for
completeness. Due to the variations in rms across the image and
the source finder itself, the completeness will vary across the sky and
not all sources with intrinsic peak flux densities above 5o will be
detected by the source finder, and some source with intrinsic SNR
below the threshold will be pushed above the threshold. It is then
important to use this understanding of the completeness variation to
determine which of our simulated randoms would be detected if they
were observed through the LoTSS-DR2 survey.

To measure this, we make use of the image plane completeness
simulations which were presented and used in Shimwell et al. (2022)
and investigate the recovery of sources over a range of flux density
and source shapes. We use the output from these simulations in order
to investigate completeness and the source counts for the survey.
These simulations involved generating 10 simulated images for each
field in which sources of varying flux densities and shapes® are
injected within the residual images of the individual pointings. This
uses a source counts model from Mandal et al. (2021) to determine
the number of sources to inject into a field. PYBDSF is then used to
re-extract the sources over the simulated images. This then allows the
completeness to be measured, which is presented as a function of flux
density in Shimwell et al. (2022) for both point source completeness
and using simulations which include extended sources, which we
use for this work. These simulations can help quantify which of
our simulated sources are likely to be detected, but also to establish
what the ‘measured’ flux densities of these sources may be, if they
had theoretically been detected by the source finder. It is with a
combination of accounting for these two effects that we generate our
random catalogue of simulated sources.

Whilst the completeness is shown to have a large variation as
a function of flux density for each LoTSS pointing (see Shimwell
et al. 2022), the scatter is greatly reduced when its dependence on
SNR is considered (see Fig. 4). This smaller scatter is due to the

5The model parameters that we find and use in this analysis are ac = 0.506,
Bc = —0.004 28, ap = 0.0557, and fp = —0.000217 (to three significant
figures).

®We note these shapes are based on deconvolved source sizes, which may
have smearing effects. We also note the SKADS models use elliptical based
models, not Gaussians, and so this may lead to some residual differences
when comparing the detection of extended sources. We use these simulated
sources from Shimwell et al. (2022), though, as they are more appropriate
than point sources, and allow some indication of the effect of non-point-like
objects.
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Figure 3. The measured integrated to peak flux density ratio (an indicator of source smearing, y-axis) as a function of separation from the closest pointing centre
(x-axis). The dependence of such smearing is shown as a function of declination (left panel), RA (centre panel) and elevation (right panel). The dashed—dot line
in the right-hand panel indicates the elevation-dependent smearing model which will be used in this work. For elevation bins <65°, a constant model is used

(green, orange, and red data).
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Figure 4. Completeness as a function of peak SNR (x-axis) and as a function
of flux density (see colour bar) for sources across the 841 pointings of LoTSS-
DR2. Inset: the completeness as a function of SNR only for each individual
field (light blue) and the average across all fields (navy, dotted).

fact that source finding with PYBDSF uses thresholding which is
based on the peak flux density of pixels within a source, compared
to the local noise, i.e. SNR. Both the boundary of pixels which
contribute to a source island and the criteria which define which
sources contribute to the catalogue both use a SNR threshold. This
is a 30 and So thresholding limit, respectively, for the two criteria
defined. Therefore, while the rms values vary between the different
fields of LoTSS-DR2, so each field has a different flux density
dependence on completeness, the SNR dependence is more likely
to be consistent across the fields. This can be seen in the inset of Fig.
4 which also demonstrates that at a 5o limit, which is used to generate
the source catalogue, the completeness is in fact only ~50 per cent,
rising to ~95 per cent at 7o. Due to this consistency between fields,
we therefore believe that using completeness as a function of SNR
is a much more appropriate way to resample our simulated sources,
instead of using solely a flux density dependence.

However, it is possible that while the average completeness as
a function of SNR is consistent across the fields, it may be that
completeness has both a dependency on SNR and flux density. This
is because the intrinsic size distribution of sources is likely to have
a dependence on flux density, such as AGN (which may have jets
and be resolved) are likely to be brighter than SFGs. For extended
sources, these may be more likely to be detected at a given peak SNR
as the larger sizes means that while the peak of the sources may be
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Figure 5. Comparison of the measured to input simulated flux density as a
function of input SNR for the simulated sources in Shimwell et al. (2022) for
both the integrated (left panel) and peak (right panel) flux densities.

affected by a noise trough, pushing it below a detection limit, but the
large size means that other neighbouring pixels could push the source
above the detection limit, making it detectable. For smaller sources,
they may be less likely to have a pixel above the detection threshold,
given the smaller size. Therefore, we also consider the flux density
dependence of the completeness as a function of SNR (Fig. 4). As
can be seen in Fig. 4, there does appear to be a weak flux density
dependence of the completeness for the same SNR. For example at
5o, there is a variation in completeness from ~0.3 at ~0.2 mJy to
~0.65 at ~5 mly. This behaves in the way expected, as discussed
above, with larger sources better detected. However, at ~6-70 for
sources with the highest flux densities considered in Fig. 4 there is
the opposite behaviour, where the completeness appears to decrease
with increasing flux density of the simulated sources.

Moreover, the simulations from Shimwell et al. (2022) allow us to
also consider (i) the combined effects of Eddington bias (Eddington
1913), where faint sources are preferentially boosted to higher flux
densities, and (ii) source finder measurement errors. Combined, this
allows sources which would be inherently fainter than 5o to be
detected by PYBDSF but leads to sources at lower SNR to have
measured integrated and peak flux densities at values different to their
intrinsic values. Hence, we also consider the ratio of the measured
to input flux density for each simulated source as a function of input
SNR. This is shown for both the integrated and peak flux densities
in Fig. 5. As can be seen, at high SNR, the measured-to-input flux
density ratio tends to a value of 1, indicating that these sources can
be accurately characterised by the source finder. At lower SNR, there
is a scatter for both the integrated and peak flux density ratios which,
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Figure 6. Normalised distribution of the integrated (Int) to peak flux density
ratio for the data (blue) compared to the random sources (red). This is shown
for all sources in LoTSS-DR2 and also those sources when a SNR cut of 5o is
applied, and for the finally adopted cuts of 7.5¢, 1.5 mJy (see Sections 3.3.1—
3.3.3). A lighter colour indicates a higher SNR cut.

at the lowest flux densities, are biased to measured flux densities that
are larger than the intrinsic flux densities.
We therefore resample our randoms to correct for the effects of:

(i) The completeness as a function of both input SNR (peak flux
density/rms) and integrated flux density;

(i1) The ratio of the input simulated peak flux density (Sp;,) to the
measured peak flux density (Sp, meas) as a function of input SNR (to
obtain a ‘measured’ peak flux density);

(iii) The ratio of the input integrated-to-peak flux density ratio
to the measured integrated-to-peak flux density ratio (%) as
a function of input SNR (to obtain a ‘measured’ integreited flux

density).

We use the simulations of Shimwell et al. (2022) to take our input
simulated catalogues and resample them to determine which sources
are ‘detected’ based on their expected completeness, given their SNR
and integrated flux density. For those sources which were considered
to be detected, we calculate a ‘measured’ integrated and peak flux
density for the simulated source.

To generate the final catalogue of randoms to be used to investigate
the angular clustering, we therefore take the input catalogue of ran-
dom sources from SKADS discussed in Section 3.2.1 and calculate
the peak flux densities that have been corrected for smearing (see
Section 3.2.2). We also apply a further constant smearing ratio by
dividing the peak flux densities by a ratio of 0.95; this was found
to be essential to allow the peak of the integrated-to-peak flux ratio
of the simulated sources to match that of the data, see Fig. 6. The
value was chosen to align the peak of these ratios and likely reflects
a residual smearing issue from the data reduction processes such
as from the effects of the ionosphere or residual calibration errors.
Then, given the rms at the source location, it is possible to determine
an input SNR.

Using this input source SNR and integrated flux density for
an individual randoms source, we then calculate its completeness
through interpolating from a 2D grid of completeness as a function
of both SNR and flux density which have been calculated from
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the simulations of Shimwell et al. (2022), across all fields.” For
regions in SNR and flux density space where there is no or limited
information from the simulations of Shimwell et al. (2022) to
interpolate a completeness, we extrapolate to reflect the detection.
For example, at high SNR (>10) and high-flux densities where there
is limited simulation information (and so can be affected by smaller
number statistics), we assume all sources will be detected, and at
low SNR (<1), we assume the completeness is zero. From this
2D interpolation, we are able to calculate a probability associated
with the completeness which is compared to a randomly chosen
probability and is considered to be ‘detected’ if the completeness
value is larger than the random probability.

For these ‘detected’ random sources, we then determine the
‘measured’ peak and integrated flux densities for a source. This
is important to consider because if we want to apply flux density or
SNR cuts on the data (see Section 3.3) then such cuts would need
to be applied to the random sources as well. Therefore, we again
make use of the simulations of Shimwell et al. (2022) in order to
generate a simulated ‘measured’ peak and integrated flux density for
each random source. To do this we again take the simulations from
Shimwell et al. (2022) and construct a 2D histogram of the input
SNR distribution versus the ratio of the input to measured integrated
flux density distribution (or similarly for peak flux density), for each
pointing observed in LoTSS-DR2. To generate the measured flux
densities, we use the input SNR of each random source and use
random sampling to obtain a measured peak flux-density input-to-
output ratio and to obtain a ‘measured’ peak flux density. For the
integrated flux density, we sample to find the ratio between the
input-to-output peak flux density to integrated source flux density
ratio, given the source SNR. Again, we make sensible extrapolations
in those regimes where we have fewer sources, for example, at
high SNR. Using this combined method means that we now have
a distribution of random sources with not only positions, but also
knowledge of the ‘measured’ flux densities and SNR for the source.

3.2.4 Distribution of randoms

This methodology leads to a distribution of randoms that can be seen
in the lower panel of Fig. 1. This, in general, matches that of the data
(Fig. 1) in that both underdensity and overdensity within the data are
also apparent within the randoms in similar locations. This highlights
that the process we are using to generate the randoms appears to
broadly represent the observational biases across the field of view.
However, as we believe there is real structure within the distribution
of galaxies, there will be differences between the distribution of data
and randoms across the image. There may, however, be additional
SNR, flux density and positional cuts that need to be applied to the
data to ensure the randoms reflect the data. We discuss such additional
constraints in the next sub-section.

3.3 Additional positional constraints on the data and randoms

While these randoms have been generated across the full field of view
of the LoTSS-DR2 survey, it is important to apply additional position-
based constraints in order to account for known observational
systematics within the data.

7Above 5 mly, there is more uncertainty due to the smaller number
of simulated sources and so we assume the completeness variation with
integrated flux density does not change above the maximum flux density
shown.
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Table 1. Definition of inner regions used to mask both the data and random
catalogues as described in Section 3.3.

Region RA (°) Dec (°) Region RA (°) Dec (°)

[1,37] [25, 40] 5
[1,32] [19, 25] 6
[0, 1] [19, 35] 7
[113,127] [27.5, 39] 8

[127, 248]
[193, 208]
[248, 270]
[332, 360]

[30, 67]
[25, 30]
[30, 45]
[19, 35]
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Figure 7. Distribution of sources in the 1h (top panel) and 13h (bottom
panel) fields of LoTSS-DR2 for the full area (grey) and inner masked region
(blue) that is presented in Table 1. The black dots indicate the pointing centres
for each of the 841 fields observed. White regions indicate areas where the
images are masked or outside the coverage of LoTSS-DR2.

As discussed in Section 3.3.2 of Shimwell et al. (2022) and shown
in their Fig. 9, there appears to be variations in the flux scale across
an individual pointing within the LOFAR field. This appears to be a
result of differences in the model of the primary beam across the field
of view. Such flux scale variations were seen to reduce by Shimwell
et al. (2022) when pointings were mosaiced together. Therefore, we
only include regions where pointings have been mosaiced together
and by reducing the area of observations for both the data and the
randoms to remove the outer edges. Furthermore, and for a similar
reason, we want to remove those areas where there are a large number
of gaps within the images due to facets that failed the data reduction
process. These often, though not exclusively, lie towards the outer
edges of the observations.

The reduced area is defined in Table 1 and shown in Fig. 7,
alongside the locations of the centres of the 841 pointings which
make up the DR2 region. The RA and Dec cuts are chosen to ensure
that the data are at least a pointing radius from the outer edges of the
observations. These cuts are employed to be conservative and remove
regions where uncertainty may be introduced in the flux scale across
the image as the region is not mosaiced with neighbouring pointings.
With these cuts applied, we have ~80 per cent of the total area of
LoTSS-DR2 remaining. This reduces the number of pointings which
the data cover to 791.

Angular clustering in LoTSS-DR2 6549

3.3.1 Validation of randoms

In order to validate that our randoms are accurate before using
them and to determine any additional cuts to apply in order to
study the angular clustering, we first make comparisons to check
that the data and randoms have similar distributions, using those
within the region defined above (see Table 1). First, we consider
the apparent completeness produced by the random catalogues and
what this implies for the ‘intrinsic’ source counts that would be
estimated based on this completeness. We present the Euclidean
normalised source counts distribution in Fig. 8, where the raw data
are compared to the ‘detected’ random sources. As can be seen,
there is good agreement between the raw source counts from the
LoTSS-DR2 data and the ‘detected’ randoms to a flux density
of ~0.3mlJy. Below 0.3 mly, deviations likely arise from the fact
that the minimum flux density used for the random catalogues
was 0.1 mJy. Therefore, below ~0.3—0.4mlJy it is likely that the
corrections are mis-estimated as the full effects of detection biases
(e.g. measurement and Eddington biases) in the flux densities for low
SNR sources will not be probed fully. Further comparing the LoTSS
random completeness-corrected source counts to our input randoms
sources, there are similar discrepancies below ~0.3-0.4 mJy, which
combines the resultant effects of not fully probing the correction
for faint sources (as above) as well as the effect that the raw
LOFAR data include sources found from the wavelet fitting mode
of PYBDSF, which is not modelled by the randoms. The effect
of the wavelet fitting on the data can be better understood when
we consider the SNR envelope of the data, which we discuss
below.

We compare the SNR envelope of our data to that of the randoms
catalogue in Fig. 9. This presents the integrated to peak flux ratio
as a function of detected SNR (measured peak flux density/rms). In
theory, this would consist of sources with an integrated to peak flux
density ratio of 1 if they are unresolved or a ratio greater than 1 if
they are resolved. In reality, an envelope distribution is observed with
increasing scatter in the ratio at low SNR. Fig. 9 also shows there
are a wealth of LoTSS-DR2 sources with SNR < 5. These originate
from PYBDSF’s wavelet fitting mode which was used during the
source detection process. This is due to the fact that a new rms
map is recalculated for each wavelet fitting scale. This mode is used
for finding larger extended sources. However, the simulations from
Shimwell et al. (2022) use smooth models for their simulated sources,
so do not employ the wavelet fitting mode when source finding with
PYBDSF. Therefore, a SNR cut of at least 50 should be employed to
ensure we use sources not detected through the wavelet fitting mode
which have a different associated rms map that is not used here for
the randoms. We present the comparison of the SNR envelope at
>50 for both the randoms and the data in Fig. 9, which are in better
agreement and for the final cuts to the data which are discussed in
Sections 3.3.1-3.3.3.

Both of the comparisons presented in Figs 8 and 9 examine the
random populations as a whole, not as a distribution across the field
of view and so we also consider the distribution of randoms and data
across the field of view, within the inner regions bounded by the
ranges listed in Table 1. In Fig. 10, we present the distribution of the
ratio of normalised number of data sources (normalizing the number
of sources in a bin to total number of sources) to the normalised
number of randoms as a function of declination with various SNR and
integrated flux density cuts applied. As can be seen, the comparison
of data to randoms is shown both when the randoms are uniformly
distributed across the sky as well as the randoms generated from
the resampling process discussed in Section 3.2 above. An accurate
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Figure 8. Euclidean normalised source counts for the input and recovered randoms compared to that from previous data and simulated models. The randoms
that are used as an input model (pink, right-facing triangles) and recovered (red, left-facing triangles) are shown, both scaled to reflect the larger ratio of randoms
to data. The raw LoTSS-DR2 counts are also shown (black open circles) as well as the corrected source counts from the completeness derived from the recovered
randoms (navy crosses) and the corrected source counts from the raw counts across DR2 using the completeness from the simulations of Shimwell et al. (2022)
both accounting for flux shifts between the simulated and detected flux density for a source (light blue dotted line) and not accounting for flux density shifts (blue
solid line). Also shown are previous data from the LoTSS Deep Fields (Mandal et al. 2021, data — light grey stars and model — grey dot-dashed line) and source
counts converted to 144 MHz from (Smol¢i¢ et al. 2017a, dark grey squares) and (Matthews et al. 2021, grey triangles). Also compared is the source counts
model from the model of SKADS (Wilman et al. 2008, black dashed line) and modified SKADS model used in this work (black dotted line). Errors associated
with source counts not presented in previous papers are determined using the relations from Gehrels (1986). When applying completeness corrections, we do
not include uncertainty on the completeness as we only use a single randoms realization. We also include the LOFAR corrected source counts using the raw data
and completeness corrections from randoms when a 7.5¢ cut is applied over the inner region described in Table 1 (navy plus symbols, see Sections 3.3.1-3.3.3).

distribution of randoms which reflect the underlying observational 3.3.2 Additional SNR and flux density constraints
systematics should show a ratio which is close to, or scatters around,
a value of 1.

Fig.10, demonstrates that up to a 5-mJy flux density limit, there is
a clear difference between the uniform randoms and those which
have the systematics of the data taken in to account. With just
uniform randoms there is a clear declination dependence compared
to the data, which likely reflects sensitivity variations across the
sky. For example, the sensitivity becomes poorer at the lowest
declination, therefore the uniform randoms will appear to be much
more numerous than the sources observed in the data. However,
the randoms generated for this work which account for sensitivity
variations and observational systematics across the field of view
show a more similar distribution to the data, oscillating around a
value of 1. For higher flux density cuts, the comparison between the
data and randoms becomes more similar to a ratio of 1, staying
within ~5 percent of a ratio of 1 above a flux density cut of
1 mly.

Given the comparisons presented, it is clear that a 50 SNR (at
least) is needed to avoid using those sources fit within the wavelet
fitting mode of PYBDSF, whose rms maps will not reflect those used
in this work. Furthermore, from the source counts distribution it has
been discussed that at least a 0.3 mJy integrated flux density cut needs
to be applied.

Despite the more advanced random catalogues presented in this work
compared to Siewert et al. (2020) for the clustering of sources in
LoTSS-DRI1, we still may be limited by systematics in the data and
may need to include additional cuts on the data and randoms. While
Fig. 10 has demonstrated that our randoms are smooth across the field
of view as a function of declination, it cannot categorically show what
flux density and SNR cuts to apply to the data and randoms in order
to calculate the TPCF. We therefore consider the ratio across each
pointing of the numbers of real sources to randoms (both normalised
by the total numbers of real sources and randoms respectively)
across the observations as a function of SNR and flux density cuts,
specifically how the standard deviation in this ratio changes across
each pointings. We use standard deviation, as opposed to the mean
values as the mean values will fluctuate around a constant value, but
it is the deviations in these which illustrate the variation of fields
which appear to have an overdensity or underdensity of randoms
compared to data around a mean value. If there are observational
effects which are unaccounted for in the generation of our randoms,
these would cause larger standard deviations in the normalised ratios
of data to randoms across the sky coverage.

In Fig. 11, we present the variation of this ratio both across the full
field of view (all 841 fields) and within the subset of pointings for
which at least half of their sources lie within the inner region defined
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(dotted lines) for sources >5¢ (light blue), 7.5¢ (blue), and 100 (dark blue),
density cut applied when moving from top left to bottom right.

in Table 1 (where this limit is applied to avoid the effects of small
number statistics). As can be seen, at a given SNR cut, the standard
deviation declines with increasing flux density to ~ 2mly, where
it begins to flatten. The right-hand side of Fig. 11 shows how the
number of such sources in the data changes, given the cuts applied.
As a compromise to balance both the number of sources we have

respectively, in the regions defined by Table 1. This is shown with increasing flux

as well as the variation in data compared to randoms, we apply a
flux density limit of 1.5mJy and SNR cut of 7.5¢ for this work.®

8Given this higher flux density cut, we adopt a 0.2 mJy lower limit for our
randoms as opposed to the 0.1 mJy described earlier.
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Figure 11. Standard deviations in the field-to-field scatter of the ratio of the LoTSS-DR2 sources to randoms across each individual pointings for different flux
density and signal-to-noise cuts. Shown are the results for using the full field (dotted lines) and for those pointings which are within the inner region of Table 1
and contains at least 50 per cent of the data sources in that pointing contained within the inner region (solid lines). The right-hand figure uses the same colour
scheme, but instead indicates the number of LoTSS-DR2 sources available for analysis.

Table 2. Number of data and random sources used when different cuts to the data are applied: using the inner region, a SNR cut and a flux density cut. The
effects of these cuts on the data are presented individually as well as their combined effect on the catalogues (alongside the masking of 3 Healpix pixels, see the
text), in the bottom row. Presented are the number of data sources; the percentage of sources in the total catalogue that this consists of the number of random
sources; percentage of random sources compared to the initial (i.e. no cuts applied) random catalogue and the ratio of random sources to data sources with the

same cuts applied.

Per cent of Initial Data

Per cent of initial random

Cut applied Npata catalogue NRandom catalogue NRandoms/NData
No cuts 4396228 100 50336 145 100 114
Inner region 3696448 84 42655772 85 11.5
7.50 SNR cut 2160232 49 27364 838 54 12.7
1.5 mJy flux density cut 1401782 32 16206613 32 11.6
All cuts applied 903442 21 11378354 23 12.6

Referring back to Fig. 10, it is clear that the distribution as a function
of declination for such a SNR and flux density cut varies around a
ratio of 1 within £5 per cent. Hence, we believe this will be sufficient
and have a good reliability for our clustering measurements.
Therefore, we are still limited in this work to a similar high-
flux density cut (1.5 mJy) which is ~15—20 times the typical point
source sensitivity limit within the survey (70-100 pJy), despite our
additional investigations into generating accurate random sources.
We believe that contributing to this may relate to residual field-to-
field systematics across the field of view. Whether this relates to
flux scale differences between pointings, as presented in Fig. 9 of
Shimwell et al. (2022), imperfect primary beam models or another
residual observational systematic, remains unclear. Accounting for
such residual systematics is something which is challenging to do
within the simulations due to a lack of knowledge about, for example,
these flux scale variations as a function of pointing. In order to
assess any flux variations across the field of view, the LoTSS-DR2
sources would need to be compared with similar large area, deep
radio surveys across the field of view, using a catalogue with known
high flux density accuracy. However, such a similar large area, high-
resolution and moderately deep survey which allows a relatively large
number of sources at a similar frequency for flux density comparison
across the full field of view is not available at present. For those large
area surveys that are currently available, applying SNR cuts, isolation
criteria and other cuts to ensure accurate comparisons of source

MNRAS 527, 6540-6568 (2024)

flux densities between the two catalogues would lead to too few
sources to accurately study the flux variations across each pointing.
We therefore are reliant on applying flux density and SNR cuts
until we can fully understand and account for additional remaining
observational systematics.

3.3.3 Final data set

After applying the above SNR and flux density cuts as well as
restricting to an inner region and also flagging three HealPix pixels
(using Ngge = 256) which were contaminated by a nearby spiral
galaxy (see Pashapour-Ahmadabadi et al. in preparation), the number
of sources which are used for these clustering studies is reduced. We
present the number of data and random sources that are available
after applying such cuts in Table 2. Such cuts help produce a random
catalogue which we believe is accurate to measure the intrinsic large-
scale structure. The distribution of the final data and randoms used
in this analysis can be seen in Fig. 12.

3.3.4 Changes in the process to create randoms compared to
LoTSS-DRI and remaining limitations

As this paper follows on from the clustering studies within the
first data release of the LoTSS survey (DR1) (see cosmology
analysis presented in Siewert et al. 2020), we briefly summarize the
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Figure 12. Sky distribution of data (upper panel) and randoms (lower panel) used in this work after cuts are applied to the data. These are plotted using Healpy
(Zonca et al. 2020) in the mollweide projection. Note that the random sample is larger than the data sample, to minimize any Poisson errors associated with the

randoms.

developments in random catalogues generated in this work compared
to in Siewert et al. (2020) as well as the additional cuts applied to the
data. First, in Siewert et al. (2020), the assumption was made that
any sources above 5o are detected. However, as shown in the inset
of Fig. 4, at 50 the completeness is ~50 percent on average. This
work, instead, uses the completeness curves as a function of SNR
from Shimwell et al. (2022) which take into account the varying
completeness with SNR and, therefore, do not use a hard cut off.
This will result in fewer sources in the 5-100 range (based on
input signal to noise) being included within the random sample,
though with a 7.50 cut (on measured signal to noise), this will reduce
the impact of such effects. Secondly, we also take into account the
source sizes and do not assume all sources are point sources. This
aims to take into account the effects of resolution bias, which will
affect completeness within our catalogue, though it does rely on a
source shape model which has uncertainties in the true distribution.
Observations at higher angular resolution, such as sub-arcsecond
LOFAR surveys (see e.g. Sweijen et al. 2022), may aid with such
knowledge but will be affected by resolution bias. Finally, we also
calculate more accurately, for each random source, its ‘measured’
peak and integrated flux densities. In Siewert et al. (2020), a flux
density cut could be applied to the sources by ensuring the flux
density added to the sampled noise associated with each source
(which provides an estimate for a measured flux density) was greater
than a given flux density limit. However, this used the same noise
term which would be applied to the peak flux density. With this
work, we are able to calculate the simulated to detected flux ratio
as a function of SNR separately for the peak and integrated flux
densities. This allows both SNR and flux density cuts to be applied
on the appropriate ‘measured’ flux density value.

While we have endeavoured to improve the generation of such
random catalogues, residual caveats within the data still remain,
which we discuss here for full clarity. First, as discussed above,

residual uncertainties in the beam model, flux density scale across
the field of view and other un-accounted for observational biases
may impact the accuracy of the random catalogues. We believe that
these are a significant contribution to the inability to use fainter flux
density/SNR cuts. While such flux offsets will average out when
measuring, for example, source counts and declination dependencies
over a full population, these will still exist on a field-to-field level.
Furthermore, as we are not passing our randoms through a full end-
to-end pipeline, there may be issues from the full LOFAR data
reduction process, which we may not be fully able to account for
the effects of. These include the effect of the ionosphere across
each individual pointing, astrometric errors, the direction-dependent
calibration introduced by DDFacet or how individual fields are
mosaiced together. The latter, especially, can lead to smearing of
sources due to positional offsets within overlapping areas, which
cover a large fraction of the observations. This smearing of sources
may lead to a reduced sensitivity to detecting sources in the overlap
regions and may affect the smearing model used at the largest
distances from the pointing centre. These effects are challenging
to model, as are the uncertainties in the intrinsic size distribution
of radio sources. Whilst full end-to-end simulations (starting from
simulating sources in the uv-data) could help such understanding,
they are computationally expensive, especially for changes in the
input source models considered.

With the methods discussed we have aimed to characterize as
many of the systematics as possible in order to generate accurate
random catalogues. While the effectiveness of the detailed analysis
when creating random catalogues through mimicking observational
biases is reduced by the effect of the larger flux density and SNR
cuts adopted in this work, our presentation of a detailed discussion
of the methods employed to generate the randoms as an example of
methods which will be important for future analyses with deep radio
surveys.
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3.4 Errors on the TPCF

Once the randoms catalogues have been generated, it is possible
to calculate w(0) through Equation 5 and attribute uncertainties to
our measurements. We consider several methods for quantifying the
errors on the angular correlation function measurements. Possible
errors include those from Poissonian statistics (i.e. just based on the
number of sources observed within the data), bootstrap errors (where
a random number of sources are replaced across the field of view)
and jackknife errors (where regions are removed one area at a time
and the scatter on the measured TPCFs assessed). Poissonian errors
are known to underestimate the true errors (see e.g. Cress et al. 1996)
and do not take in to account systematic variations in the data. For the
naive estimate of w(6) given in Equation 4, these Poissonian errors
are given by
1+ w(9)
VDD®)
However, when including the cross-terms (DR) in with the Landy—
Szalay model, small changes to this are expected (see e.g. the
equations presented in Landy & Szalay 1993; Chen & Schwarz
2016). Either way, such estimates of the errors do not account for
potential systematics in the errors across the field. Therefore, we
consider several methods which resample the data to assess the errors
more accurately across the field of view. For bootstrap resampling,
~1/3 of sources are randomly removed from the data and randomly
replaced with the same number of randomly selected data sources.
This means that a source from the original catalogue may not be
in the bootstrap sample, be in it a single time, or multiple times.
This process is then repeated in order to make Np resamples. For
each resample, w(0) is then calculated using TreeCorr as used
for the original sample. The errors are then calculated from these
as in Barrow, Bhavsar & Sonoda (1984) and Ling, Frenk & Barrow
(1986):

®

SWpoisson 0) =

Np

> [wi0) — wpO)), (10)

i=1

dwp(0) = Np—1
where wg is the mean value across the bootstrap samples. However,
bootstrap resampling randomly removes sources and is not able to
trace systematic trends across the data. If such systematics exist or
if there is significant variation in source density across the field, it
is therefore possible that bootstrap resampling underestimates the
errors on w(0).

We therefore, also consider using jackknife errors (see e.g. Norberg
et al. 2009) which are calculated by splitting the field into a number
of sub regions (N,). One sub-region is then removed in turn and
we measure the w(0) from the remaining areas. The error is then
calculated as:

N;y—1
Ny

Ny
8w, (0) = D lwi0) — w0, (n
i=1

where w; is the mean value of the angular TPCF across the samples
where a sub-region has been removed.

For completeness, we present the errors measured for the TPCF
for jackknife resampled errors, using TreeCorr to calculate the
effect of changing the number of jackknife bins from 10 to 200.
Finally, we consider the effect of field-to-field variations between the
individual pointings of LoTSS-DR2. This method will directly probe
the variations introduced from uncertainties between the different

individual pointings of LoTSS-DR2. We calculate the errors from
this using each pointing as a jackknife sample. We note that jackknife
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Figure 13. Comparison of the ratio of errors from different resampling
methods. Shown are the naive Poissonian errors (black crosses, Equation
9), the shot noise errors measured for the sample using the Landy-Szalay
estimator in TreeCorr (grey crosses), bootstrap errors (red stars) and
Jackknife errors for 10 TreeCorr jackknife samples (light blue squares),
20 TreeCorr jackknife samples (light blue right triangles), 50 TreeCorr
jackknife samples (blue diamonds), 100 TreeCorr jackknife samples (blue
triangles), and 200 TreeCorr jackknife samples (navy circles) and field-to-
field variation (yellow open crosses).

errors typically use regions of similar areas when calculating such
errors, this will not be the case when calculating for the individual
LoTSS-DR2 pointings being removed in turn. The internal pointings
should be of roughly similar areas, but those towards the outside
of the regions defined in Table 1 could be significantly smaller.
However, such jackknife scales are more relevant to understand the
variation across the field of view. A comparison of these resampling
errors is presented in Fig. 13, relative to the Poissonian errors. The
relative sizes of the bootstrap and jackknife errors vary at different
angular scales. At the smallest angles, 8 < 0.1—0.2°, bootstrap errors
appear larger. At larger angular scales, the jackknife errors are, as
expected, significantly larger than found from bootstrap errors. This
likely reflects variations in the data across the field of view either
due to real variation across the field of view or systematics within
the survey across the field of view. The bootstrap errors are a factor
of ~2 larger than the Poissonian errors at angles < 1°, increasing
to a factor of ~5 at 10°. In contrast, the jackknife errors are similar
to within a factor of 2 to the Poissonian errors for 6 < 0.2°, rapidly
increasing to a factor of ~10 larger at angles of ~2°. In general,
since our fitting of w(0) will focus on the largest angular scales, our
comparison suggests we should use jackknife errors, compared to
bootstrap errors, in order to not underestimate uncertainties at large
angular scales 2 0.2°. These larger angular scales are important for
fitting linear bias, see Section 5.2.

The errors from jackknife resampling appear to be dependent on
the number of jackknife samples considered, with larger errors for
smaller samples and more comparable errors for 250 resamples.
The errors generated using the individual field-to-field variations are
comparable to those calculated using Treecorr when 100-200
resampling bins are used, which is expected as ~800 pointings are
used for the field-to-field variations. As the field-to-field sizes are
the most physically motivated binning as they are based off scales
of the pointings within the LoTSS-DR2 samples, we present result
using such errors. The covariance matrix for such errors is presented
in Fig. 14. We note that whilst the errors from TreeCorr compared
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Figure 14. Covariance matrix from resampling the errors using a Jackknife
approach where each individual observed LOFAR pointing (791 within the
inner region) is removed in turn.
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Figure 15. Angular TPCF, w(0) for the final LoTSS-DR2 sample used in
this work (black, see Section 3.3) from the range of 6: 5 x 1073 —10? °. Also
shown if the fit to w(8) of the form A6 ~%8 and the probability distribution in
the value of A is shown in the figure inset (top right panel). These are shown
for fitting over the angular ranges: 0.03-5° (red), 0.1-5° (blue), 0.5-5° (gold)
as well as for the range where we reduce the largest fitting angle 0.03-1°
(grey) both without (light colours) and with (dark colours) the full covariance
matrix, see Sections 4 and 5.2.

to the field-to-field variation presented in Fig. 13 appear similar for
Ny > 100, the covariance matrix using TreeCorr has a larger
contribution of off-diagonal covariance values, especially for small
Ny.ek- As such off diagonal covariance values can affect the fitting
of the source, we therefore will also briefly discuss the effect on the
measured bias values of instead assuming 100 jackknife bins as well,
in Section 6.

4 ANGULAR TPCF, w(6)

We present the angular TPCF for LoTSS-DR2 sources with S >
1.5mJy and SNR > 7.5 in Fig. 15. This is shown above a minimum
angular scale of ~3 times the PSF of the data (~3 x 6arcsec ~18
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arcsec). As discussed in many previous studies (e.g. Peebles 1975;
Roche & Eales 1999; Blake & Wall 2002; Brodwin et al. 2008;
Lindsay et al. 2014a; Hale et al. 2018), we can often describe the
angular clustering at small angular scales (8 < 7) as a power-law
distribution, given by

w(0) = A0, (12)

where A is the amplitude, 0 is measured in degrees, and the power-law
slope is given by 1 — y. Observations suggest y has a typical value
of ~1.8 (see e.g. Peebles 1975, 1980; Blake & Wall 2002; Wilman
et al. 2003), meaning that w(0) follows a power law of slope —0.8.

As can be seen in Fig. 15, our results for w(0) appear to follow a
power law with y = 1.8 over a large range of angular scales (0.03
< 6 < 1°), at larger angles (6 2 10°) there is more uncertainty on
the value of w(8) and so we do not present such scales in this work.
At small angles (0 < 0.03°), there is a deviation from this power-
law distribution. This could arise from a combination of factors: (a)
clustering of galaxies within the same dark matter halo and (b) the
effect of multicomponent sources.

The first of these contributions to the excess clustering at small
angular scales is related to whether the clustering of galaxies we
are observing is from sources that are residing within the same dark
matter halo (this is observed at small angular scales and is known as
the ‘1-halo’ clustering, see e.g. Zehavi et al. 2004). Measurements of
the ‘1-halo’ clustering require observations which are both sensitive
enough to observe multiple galaxies within the same dark matter
halo and also have the resolution to ensure any galaxies within the
same dark matter halo are not confused into a single source. In
the radio, this ‘1-halo’ clustering has been challenging to observe
due to the depths and resolutions of surveys previously observed,
however, it will become increasingly possible with future deep, high-
resolution radio surveys. When discussing clustering previously, we
have instead focused on the clustering from galaxies in different
dark matter haloes (known as the ‘2-halo’ clustering) which presents
as the power-law behaviour given in Equation 12 on large angular
scales).

The second contribution to the excess clustering at small angular
scales, on the other hand, relates to the source detection within radio
catalogues. For example, a jetted radio galaxy could be observed
to have a core and two lobes separated from it. Depending on the
separation of these lobes, conventional source finders (e.g. Whiting &
Humphreys 2012; Mohan & Rafferty 2015; Hancock, Trott &
Hurley-Walker 2018) may not be able to accurately characterize
the components of the radio galaxy into a single source. As such,
accurate cross-matching of radio components relies on techniques
such as visual identification (see e.g. Banfield et al. 2015; Williams
et al. 2019), or machine-learning/algorithm-based techniques (see
e.g. Galvin et al. 2020; Alegre et al. 2022; Barkus et al. 2022). If,
in this example, the three components of the single radio source are
catalogued to be different objects, then this will result in seeing an
apparent excess angular clustering at small angular scales (see e.g.
Blake & Wall 2002; Overzier et al. 2003), which can be described
as a power law with a steeper slope. To determine the angular scales
below which such multicomponent sources may become important
in our work we consider the clustering in LoTSS-DR1 with both the
raw PYBDSF catalogue and the value-added catalogue of Williams
etal. (2019), where PYBDSF source components were combined into
physical sources. We use the randoms generated for Siewert et al.
(2020) and apply a 1.5 mJy and 7.5¢ cut, as used in this work, and
present the clustering with and without source associations in Fig. 16.
This demonstrates a deviation between the raw and merged (source
associated) catalogues, for which a deviation is seen at angles below
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Figure 16. Comparison of w(@) for LoTSS-DR1 Data (Shimwell et al. 2019;
Siewert et al. 2020) for the raw PYBDSF catalogue compared to the source
associated and cross-matched catalogue described in Williams et al. (2019)
using a 1.5 mJy flux density cut and a 7.5¢ SNR cut and presented with
bootstrapped uncertainties.

0203. This therefore suggests that the impact of multicomponent
sources is likely important below such an angular threshold and so
we should not fit our w(#) for LoTSS-DR2 below this scale.

We fit w(6) using Equation 12, with a maximum angular separation
of 5° and a minimum angular separation of either (i) 0.03°, below
which multicomponent source clustering becomes important; (ii)
0.5° below which models that include both 1- and 2-halo clustering
can diverge (see Section 5.2 for fitting with the cosmology code CCL,
Chisari et al. 2019)° and (iii) 0.1° as a compromise between the two
angular fitting ranges. Finally, we also include an angular fitting range
of 0.03 < 0 < 1° to reflect the fact that the approximation of a power-
law model for w(6) breaks down at large angles. In our model, we also
include an extra term known as the integral constraint which accounts
for finite field sizes (see e.g. Roche & Eales 1999). We therefore
calculate the x? through the difference between the observed data
and the model (with the integral constraint subtracted'?), using two
methods. The first method, that we adopt, solely accounts for the
diagonal elements of the errors (6w, as compared in Fig. 13), defining
x?2 as:

Y0 [ w(6) — om(6))?
sy () =

i=1
where wy(6;) is the model for the angular clustering, as in Equation
12, for a given angular bin (9;) and is fit across the Ny bin in
the angular range considered. This does not encapsulate the full
systematic correlations between 6 bins, but allows for a comparison
to previous works who use such methods for fitting w(6). The second
method uses the full covariance matrix, which allows correlations
between 6 bins to be accounted for. For this method, we calculate x>
as:

x> =@ — @u) Cov™ (& — @), (14)

where Cov is the associated covariance matrix for our measurements
of w(0), as calculated by TreeCorr. The T indicates that the
transpose is being used. We fit a model for w(0) using both Equations

9Which makes use of CAMB (Lewis, Challinor & Lasenby 2000) and CLASS
(Lesgourgues 2011).

10We note that the integral constraint will be very small due to the large field
of observation in LoTSS-DR2, on the scales considered.
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13 and 14 to highlight the differences of accounting for the full
covariance.

When fitting solely for A (and fixing y to 1.8), we measure the
variation in x? when fitting the data using values of log;o(A) which
are uniformly sampled from —4 to —2. From the x 2 distribution, we
calculate a probability distribution (P e/ 2) and use aresampling
method with 5000 samples to calculate a median value and associated
error bars from this sample. The results are presented in Table 3 and
Fig. 15. As can be seen in Fig. 15, the chosen angular scale below
which we do not fit the data, 8 < 0.03°, appears to be an appropriate
scale to restrict the fitting over. Below these angular scales, we
observe a significant increase in w(6), which we attribute to the
contribution of the combination of multicomponent sources and 1-
halo clustering. Fig. 15 shows the best-fitting models to the clustering
amplitude, logo(A), of —2.50 £ 0.01 (using x2 as in Equation 13)
and -2.54 £ 0.01 (using the full covariance) when fit over the largest
angular range (0.03-5°). When fitting to the lower maximum angular
scale (0.03 < 6 < 1°) we find little difference to that when fitting
in the range 0.03 < 6 < 5°. Whilst fitting w(0) using Equation (13)
shows a good fit to the data on a large range of angular scales, there
is a deviation from such a power law around 1°. This results in an
increased clustering amplitude when fitting across the largest angular
scales only 0.5-5°, which then overestimates clustering on smaller
scales. This may suggest some excess residual systematics in the
data, on the scale of ~1°. The fits using Equation 14 also appear
to underestimate the values for w(6) to more of an extent than with
Equation 13.

To test whether the assumed slope of -0.8 is suitable for this work,
we also fit w(6) for both A and 1 — y, using a fitting range of —4 to
—1, for log;p(A) and —2 to O for 1 — y. We fit this using the Markov
chain Monte Carlo code, emcee (Foreman-Mackey et al. 2013). We
fit using 100 walkers, each with 5000 chain steps and remove the first
90 per cent of chains as burn in. From this, we fit for A and y using
likelihoods based on the x? described in Equations 13 and 14. The
results for such fitting across the angular ranges described above are
presented in Fig. 17 which, for the majority of angular scales, find
avalue of 1 — y ~ —0.6 to —0.75, shallower than the —0.8 slope
assumed when fixing 1 — y. However, previous measurements of
1 — y using radio surveys (see e.g. Lindsay et al. 2014a; Lindsay,
Jarvis & McAlpine 2014b; Magliocchetti et al. 2017) have found that
such slopes (1 — y) observed for radio surveys are typically closer to
—1.2 to —0.8. The differences observed here may therefore relate to
a combination of factors, such as residual systematics in the data (as
discussed above and in Section 3.3.4) as well as effects of combining
multiple source populations in our measurement of w(6). As such,
we will predominately use our measurements where we fix the slope
of y in order to measure bias, though in Sections 5 and 6, we will
discuss the effect on the bias of assuming a variable slope.

4.1 Variation with location and flux density

In order to investigate the uniformity of w(@) given the possibility of
systematics we are unable to correct for, we also present comparisons
of the angular clustering of the LoTSS-DR2 data as a function
of Right Ascension, Declination and position within the full field
of view. To do this, we consider the TPCF in RA angular ranges
spanning 40° and declination in angular ranges spanning 10° and
finally within nine different regions spread across the field of view
in RA and Dec. bins as presented in Fig. 18. Uniform RA and Dec
ranges are used to generate the RA and Dec bins, this will lead to
significant differences in the number of sources in each of the bins
which will have a more substantial impact on the measured () in
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Table 3. Results from fitting w(6) for models across a range of angular fitting ranges. Presented is the fitting range, Fitting type, amplitude of power law (A) as
in Equation 12, clustering length, rp, and bias, by, from Limber inversion using both a comoving (c) and linear (1) assumption. Bias values are evaluated at the
median value of the median redshifts (zq,) from the p(z) resamples, as in Fig. 20, z, ~ 0.89. This is for both the case where the full covariance matrix is (with

Cov) and is not (without Cov) used.

6 range Fitting type logio(A) ro,c (Mpc) be(zm) ro,1 (Mpc) bi(zm)
©)
0.03-5.00 Without Cov —2.507001 11554092 2.5810% 15414199 1774920
0.10-5.00 Without Cov —2.47+001 12.02+0% 2.687035 16.04+2% 1831020
0.50-5.00 Without Cov 2381002 13.5170 41 2,972 18.037233 2.041023
0.03-1.00 Without Cov -2.50%001 11.4875:92 2.5710%3 1532719 1767539
0.03-5.00 With Cov —2.541001 10.96+088 2461931 14.6341% 1.697019
0.10-5.00 With Cov —2.521002 11.22+091 2515931 14.97+19 1727019
0.50-5.00 With Cov 2424003 12.837]53 2.847929 17.147%28 1957022
0.03-1.00 With Cov 2541000 10.967538 2.461021 14.6271 58 1697019
regions where there are fewer sources. This analysis, follows on from
mm 6: 0.03-1.00° the comparisons of Siewert et al. (2020), in which three regions were
= Z: bpdbiped used to consider the variation in the angular clustering of LoTSS-
B 0: 0.50-5.00° DRI1.
o Z; g:g; : ;:gg: x:z: Ez: The resulting variations in w(0) are presented in Fig. 19. As can
6: 0.10 - 5.00° with Cov be seen, the variation of the angular clustering is typically restricted
6: 0.50 - 5.00° with Cov to larger angles 6 2 0.5°, whilst smaller angles are typically in much
better agreement with one another. Whilst there are no apparent
: : trends with RA, there may be a suggestion of a systematic trend in the
angular clustering observed with declination, with higher observed
S angular clustering at typically lower declinations. However, this is
S not seen at all angular scales. We also see there is more variation in the
N o measured w(6) when split into RA ranges and the regions presented
4 /&\ in Fig. 18. As discussed in Sections 3.3.2 and 3.3.4, we believe there
are still limitations in the data which the randoms do not account for,
QQQ i such as individual flux shifts between pointings, uncertainty in the
d = beam models and remaining systematics not modelled as full end-to-
T A T T T T y end simulations were not used to generate the random sources. It is
/,L‘.’Jb /,LPg’ /,LP‘Q /,»’?J’L P > /Q"’Q /Q'\(O /QQ’Q possible that the effect of these can be a cause of the variation of w()
0910 (4) 1oy when split by these sky regions however, true underlying large-scale

Figure 17. Angular TPCF-fitting parameter constraints for both A and y
(with contours at 1o and 30) for fitting over the angular ranges: 0.03-5°
(red), 0.1-5° (blue), 0.5-5° (purple) as well as for the range where we reduce
the largest fitting angle 0.03—1° (black) both without (dark colours) and with
(light colours) the full covariance matrix, see Sections 4 and 5.2.

75°

Dec (°)

Region

Figure 18. Regions used to investigate the TPCF variation as presented in
Fig. 19. Each colour indicates a different region used to quantify the TPCF.

structure may also play a role. The spread with declination is much
smaller, with w(0) in the Dec: 60-70° bin showing the most variation,
likely due to the smaller area and number of sources in this region.
This smaller variation is likely due to the corrections implemented for
elevation-dependent smearing, which is related to the declination for
fields observed with a good hour angle coverage. If there are residual
systematics relating to flux shifts between pointings (as described in
Shimwell et al. 2022), these are challenging to identify and model
using available radio surveys. These effects and a combination of
other residual systematics may relate to why there can be variations
between w(0) in different regions of the data. Identifying the cause of
these and making further corrections may be possible in the future,
with further understanding of the systematics.

5 GALAXY BIAS

Whilst fitting a clustering amplitude, A, allows for a comparison
with previous work, it is also challenging to compare with previous
studies due to its dependence on flux density, luminosity and source
type within the same sample (see e.g. Overzier et al. 2003; Wilman
et al. 2003; Magliocchetti et al. 2017; Hale et al. 2018; Chakraborty
et al. 2020). We calculate the more physical parameter of bias, b(z).
As discussed in Section 1, bias traces the clustering compared to
matter and can be used to estimate the typical dark matter halo mass
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Figure 19. The clustering variation between regions which are split based on their right ascension (left panel), declination (centre panel) and their location
within the DR2 region as presented in Fig. 18 (right panel). The colour of the lines present the RA range, Dec range or region being considered and the results
of the full area of the survey are shown in grey (stars). Only the w(6) value is presented for each subset, not the associated errors.

hosting a population of sources (see e.g. Berlind & Weinberg 2002;
Zehavi et al. 2004). By calculating the bias, we not only calculate a
more physical parameter, but also account for the redshift distribution
of the sources being investigated. However, this will also have a
dependence on flux density, as the relative contribution of different
source types to the overall population (e.g. AGN and SFGs) varies
with flux density (see Best et al. 2023, for a comparison of this in
the LoTSS Deep Fields). These populations can have different bias
values and so will affect the bias measured for a full population (see
e.g. Magliocchetti et al. 2017; Hale et al. 2018; Chakraborty et al.
2020).

In order to obtain measurements of the bias for the LoTSS-DR2
sources, knowledge of the redshift distribution, p(z), for the data
are required. This is because w(6) is a projected measurement of
the clustering of galaxies over the sky, and to understand the bias,
we need to understand the true spatial distribution. Using a given
p(z), we then take two approaches to modelling the clustering: (1)
fitting using the cosmology code, CCL (Chisari et al. 2019) and
(2) using the power-law model fit for the amplitude, described in
Section 4, and using Limber’s inversion (see Limber 1953, 1954;
Peebles 1980, assuming a power-law model for w(6) to calculate
a clustering length, ry, and subsequently a measurement of the
bias), as has been commonly employed in clustering studies for
radio surveys (see e.g. Magliocchetti et al. 2004; Lindsay et al.
2014a; Magliocchetti et al. 2017; Hale et al. 2018; Chakraborty et al.
2020; Mazumder, Chakraborty & Datta 2022). We will describe
both approaches, below, however, we first describe how the redshift
distribution, p(z), for the data are obtained, as this is critical for both
approaches.

5.1 Redshift distribution

In order to calculate the bias, we must assume a redshift distribution
for the sources in our sample, which is not possible from radio
continuum measurements alone. Instead, a catalogue where radio
data and multiwavelength data have been cross-matched together (as
with LoTSS-DR1, see Duncan et al. 2019; Williams et al. 2019),
may provide redshifts for some sources, however, redshifts are not
currently available for a relatively complete population of LoTSS-
DR2 sources. Therefore, in order to estimate the expected redshift
distribution of the sources observed in LoTSS-DR2, we make use of
the LoTSS Deep Fields observations (Duncan et al. 2021; Kondapally
et al. 2021; Sabater et al. 2021; Tasse et al. 2021). The LoTSS Deep
Fields data are more sensitive than in LoTSS-DR2 (reaching an rms
~ 2040 uJy beam™!) over three extragalactic fields (see Section 2.2
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for details). For the Deep Fields sources, 97 percent have been
cross-matched to a multiwavelength host galaxy (Kondapally et al.
2021) and have an associated redshift (Duncan et al. 2021). A full
probability distribution for the photometric redshift, p;(z), of those
sources with an associated host galaxy is presented in Duncan et al.
(2021), which we use in this work.

To determine the redshift distribution for the sources observed
here, we first apply a 1.5 mJy flux density cut to the cross-matched
radio deep-field catalogues, matching that used here for LoTSS-DR2.
Specifically, we take an individual field and generate Ny estimates
for the redshift distribution, where N; across the three fields totals
1000 samples. The N; values are weighted for each field to gives
more samples where there are larger number of § > 1.5 mJy sources
in the field. To make a single resample within a field, we use those
sources which have § > 1.5 mJy and generate a resampled redshift for
those sources through the following process. For those sources with a
photometric redshift, we sample from the full p;(z) distribution for the
individual source. For those sources where a spectroscopic redshift
exists, we instead consistently use the spectroscopic value. From the
resampled redshifts for the § > 1.5 mJy sources, we create a p(z)
by binning the redshifts and normalizing the resultant distribution.
When binning the redshift distribution, we use bins which have more
frequent binning at low redshifts (z < 1, using 6z = 0.02, where we
have more accurate spectroscopic information) and coarser binning
at higher redshifts (z > 1, using 6z = 0.1).!! To generate the redshift
distribution across the fields, we combine the samples from each
field to produce 1000 resampled p(z) distributions. From this, we are
able to determine a mean p(z) distribution and associated errors from
the standard deviations of the sample. The final p(z) and errors is
presented in Fig. 20.

To use this p(z) in our fitting and modelling of b(z), we generate
1000 resampled p(z) distributions using the mean and standard
deviation across each redshift bin. We do this, as opposed to using
the 1000 samples combined from the three fields, to avoid extreme
models in each field that are driven by cosmic variance affecting
such measurements, as well as the effects of multiwavelength data
availability. In order to ensure that such randomly sampled values
does not lead to a highly varying p(z) and satisfies P(0) = 0. We
model the resampled redshift distribution using a functional form

'We note that low redshifts also have an important contribution to w(6) on
larger angular scales [~O(1°)], and we found that averaging in larger redshifts
bins affected the fitting of w(#) on such scales.
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Figure 20. Weighted redshift distribution generated from combining redshift
distributions in the LoTSS deep fields (grey) as described in Section 5.1. The
distribution of models fit to the resampled p(z) as described in Section 5
are presented as the median in blue (solid line) alongside the 16th and 84th
percentiles, respectively (as dashed lines).

given by

@ o = [x (—i>+ r ] (15)
PR P\ 7)) T a0

which we normalize such that it becomes a PDFs.

Such a functional form is found to appropriately represent the
redshift distribution, and was chosen to allow contributions from
AGN and SFGs to the full redshift distribution. The form reflects
the probed volume of a ACDM model at small redshifts with the
exponential and power-law terms representing the high-luminosity
cut-offs at large redshifts of SFGs and AGNs, respectively (for more
description see Nakoneczny et al. 2023). The model parameters (zo, 7,
and a) are fit for each resample using scipy’s curve_£fit function.
The range of the modelled redshift distribution from these resamples
are presented in Fig. 20.

We note that with this method, the ~5 per cent of LoTSS Deep
Fields sources above 1.5mly which have no associated redshift
distribution cannot be included in p(z). This may bias the results
slightly, likely by missing some very high-redshift AGN or SFGs
and those which are dust obscured. Furthermore, there are potential
biases in the p(z) due to the band selection and magnitude limits of the
multiwavelength data. For example, sources may not be detectable in
all bands and there is differing availability of multiwavelength data in
the three deep fields, both of which will affect constraints which can
be placed on their redshift distributions. Moreover, the deep fields
are much smaller areas than the full LoTSS-DR2 survey, and so
are more likely to be affected by variances in large-scale structures,
however, we mitigate this by averaging across the three fields. Finally,
it is challenging to apply similar SNR cuts to the deeper LoTSS
Deep Fields data, which may lead to residual systematics in the p(z)
models. However, this combined p(z) is the best model available
for a representative radio population and those sources without any
redshift information only represent a very small fraction of sources
in the data.

5.2 Measuring b(z) using CCL

In the first method to determine b(z), we use CCL to fit w(f), assuming
a bias model. For this work, we follow the work of Alonso et al.
(2021) and assume two possible bias models either (i) a constant
bias i.e. b(z) = by or (ii) an evolving bias of the form by/D(z), where
D(z) here is the normalised (to z = 0) growth factor as described in,
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for example, Hamilton (2001). We also consider two matter power
spectrum models (i) a ‘linear’ model where only linear perturbation
theory was assumed and (ii) a ‘HaloFit’ (Smith et al. 2003; Takahashi
et al. 2012) model where non-linear effects within a dark matter halo
are also accounted for. Both models are considered as we may not
expect to observe a strong contribution from ‘1-halo’ clustering at
the depth of this survey, or that if such 1-halo contribution does exist
that this may dominate predominately in the angular region where
effects of multicomponent sources is also important (see Fig. 16).
We use the ¢ range 1 < £ < 10000 in 256 logarithmically spaced
bins to generate the C, power spectrum with CCL and then use this to
determine w(0) over the 6 range used in this work using a Legendre
polynomial transform given by

0 ! 204+ 1)C,y P, % 16
w()—MZK} + 1)C, Pi(cos 6). (16)
Such a conversion from C, to w(0) was also used in Siewert et al.
(2020). To obtain C,, we use the conversions in CCL which convert
the 3D power spectrum to C, using the equations in Section 2.4.1 of
Chisari et al. (2019), but assuming the redshift-space distortion and
magnification bias terms can be neglected:

d (+1/2
C4=/7§q2(x)P<k= +x/ ,z(x)>, (17

where x is the comoving radial distance, P(k, z) is the matter power
spectrum, and the radial kernel g(x) is:
H(

q(x) = TZ) b(z) p(2), (18)

with H(z) is the Hubble parameter. This relation relies on Limber’s
approximation (Limber 1953, 1954), which is valid for the broad
redshift distribution explored here.

We fit for by through calculating w(6) with CCL and fitting to
the data using Equations 13 and 14. Again, when fitting the data we
consider three angular ranges: 0.03—5°,0.1—5° and 0.5—5°. We also
consider all possible combinations of linear and HaloFit models with
the two bias evolutionary models. To determine by, we use the 1000
redshift resamples described in Section 5.1. First, we calculate w(6)
for each resampled redshift distribution, assuming by = 1 (denoted
here as wy,=1(0)). Using this, we select random bias values within
the range 0.5-3.5 and generate a model w(9) through multiplying
wp,=1(6) by b%. Using such a predicted model and comparing to
the data, we then calculate the associated x> across the angular
fitting ranges described above and calculate this both assuming only
diagonal elements as well as using the full covariance matrix. The
full covariance will highlight if there are correlations in the w(6)
values at different 6 which can affect the fitting of b. In both cases,
we take the ‘model’ to be the model produced from CCL with the
integral constraint as modelled in Roche & Eales (1999), though the
contribution of an integral constraint will be negligible. Using such a
x? value we then calculate an associated probability for by assuming
P(by) xe™* e (which makes the assumption that errors on the data
can be approximated as Gaussian).

To determine final values of by found from fitting our observations
we then resample from P(b). To do this, we consider two possibilities
of how to include the redshift distribution to determine by. The
first case assumes that the individual redshift resamples described
in Section 5.1 are all equally probable. In this case, any differences
which may remain between the model and observations will reflect
residual systematics in the data which are unaccounted for in
the random catalogues or that a different bias evolution model is
appropriate. For this method, we renormalize the P(b) model from
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Table 4. Results from fitting bias with CCL across a range of angular fitting scales, with both the linear (b1,) and HaloFit (by1) models of CCL. These are both
given by their value at z = 0 and, for the evolving bias model, are evaluated at the median value of the median redshifts (zp,) from the p(z) resamples, as in
Fig. 20, zm = 0.89. These are given for both the case where the full covariance matrix is not used and where it is included (denoted by Cov). For each model,
the median reduced x2 (x%/DOF) from the resampled bias values is also given. This will be larger than the best-fitting model found across the samples, but is
provided to show representative values for the fit. A fit type is given by the combination of the bias evolution type (E = evolving, C = constant) and redshift

resampling method [U = unweighted, i.e. all p(z) samples weighted equally and W = weighted, i.e. preferential p(z) resamples are selected].

6 Range Fit bo,L bL(zZm) X3/ bo,n bu(zm) x5! bo,L br(zm) X2/ bo,n bu(zm) xZ/
©) type DOF DOF Cov Cov DOF Cov Cov DOF
Cov Cov
0.10 0.15 0.12 0.19 0.08 0.13 0.11 0.18
0.03-5.00  B/U 1907070 2970012 934 1511000 2370000 13.69  1.83%00s 2.871013 1050  L41fp ) 221702 443
0.10 0.16 0.13 0.21 0.08 0.13 0.12 0.18
0.10-5.00  B/U  1.83%010 2870018 412 15710 246107 1458 173%00s 2717013 273 141Egs 2218018 552
0.20 0.32 0.21 0.33 0.15 0.24 0.16 0.25
0.50-5.00  E/U  2.047070 3207037 353 2.04%07; 320103 449 179700 281755 3.8 L75%) % 2741032 4.05
0.19 0.20 0.17 0.19
0.03-5.00 C/U 23711 - 1274 1.79%57 - 1140 23671 - 1401 1.68% 1, - 3.95
0.10-5.00 C/U 2277012 - 224 1.8779% - 162 2217518 - 305 1.697539 - 4.81
0.28 0.30 0.22 0.24
0.50-5.00  C/U 23357 - 176 2.32007% - 263 2.14755% - 181 2.07705; - 2.79
0.05 0.07 0.01 0.02 0.09 0.14 0.08 0.13
0.03-5.00  E/W  1.987000 3.117000  7.81  L18¥gg  1.84t)Us 1027 1.97T002 3.09T00s  9.07  135F0% 2111013 419
0.04 0.06 0.06 0.09 0.07 0.11 0.08 0.13
0.10-5.00  E/W  1.69100; 2.66700% 146 1217005 1.90T 0 1149 L7100 2.68%0 0 215 13355 2.09%)3 5.8
0.15 0.24 0.14 0.22 0.12 0.19 0.12 0.19
0.50-5.00  E/W 18170 284707 146 178%)17 2797077 259 167115 2.62401 186 L.62f) T 2547010 3.1
0.03-5.00 C/W  2.77%041 - 9.54  1.4979% - 920  3.04700 - 1063 1.677517 3.83
0.10-5.00 C/w  2.28%013 168 1.57T020 1056 2.337013 - 259 1657318 - 4.65
0.50-5.00  C/W  2.15T011 - 074 2.10791% - 167  2.02707 - 103 1.947517 - 2.24

each redshift sample to 1. The second case assumes that there are
no remaining systematics and so redshift resamples which better fit
the data reflect the intrinsic p(z) of our sample can be determined.
In this case, we do not normalize P(b) for each sample to 1 before
resampling and instead retain the difference in probabilities based on
the magnitude of the x2.

Through resampling the data, we determine by accounting for the
uncertainty in p(z) models. In the first method, this means that the
contribution of p(z) samples from those models which satisfy the
resampling criteria are approximately evenly distributed across the
1000 redshift resamples and, as such, some p(z) samples may lead
to large x? values where the magnitude of the x? for such a p(z)
was large. In the second method, there will instead be preferred p(z)
samples and others may not have any (or very little) contribution
to the bias values which satisfy the resampling criteria, whilst other
p(z) models may substantially dominate the sample. This can lead
to only a small fraction of p(z) samples actually contributing to the
fit, especially when the fit is poor. Due to this method, the associated
x2 values of the fit will be lower to that of the previous method.
The by values these are quoted as the median value with errors
measured from the 16th and 84th percentiles and are presented
in Table 4 and Fig. 22. To present associated models of w(0) we
use 10000 realizations of the final by sample to determine w(6)
models, this is shown in Fig. 21 for the evolving and constant bias
models.

5.3 Fitting b(z) using Limber’s equation for a power-law model
of w(0)

The second commonly used method to infer the spatial cluster-
ing of galaxies from the angular clustering is by using Limber’s
equations after assuming a power-law model for w(6) (see e.g.
Limber 1953, 1954; Peebles 1980). This method has been fre-
quently employed in studies of the clustering of galaxies both at
radio frequencies (see e.g. Lindsay et al. 2014a; Hale et al. 2018;
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Chakraborty et al. 2020; Mazumder, Chakraborty & Datta 2022)
and other frequencies (see e.g. Puccetti et al. 2006; Starikova et al.
2012; Cochrane et al. 2017). To quantify b(z), we use the fitting of
w(0) as described in Equation 12, discussed in Section 4, with the
parametrisation of the spatial clustering:

— r _y_ r _yl y—(3+e€) 19
ég(r)—(ro(z)> _(E) (1+2) , (19)

where ry is a spatial clustering length which parameterises the
clustering of galaxies and € describes the evolving clustering model.
&4(r) is the spatial clustering of galaxies, as introduced in Section 1.
We present ry and b measurements using two assumptions for
€: (i) assuming ‘comoving’ clustering, where ¢ = y — 3, to
make comparisons with previous studies (e.g Lindsay et al. 2014a;
Lindsay, Jarvis & McAlpine 2014b; Hale et al. 2018; Mazumder,
Chakraborty & Datta 2022) and (ii) assuming ‘linear’ clustering,'?
where € = y — 1, which probes a different range of bias evolution,
see Lindsay et al. (2014a). In order to determine the spatial clustering,
we need both knowledge of y and A from Equation 12 as well as p(z)
to determine the spatial clustering length, ry. As discussed, in the
majority of cases we fix y to a value of 1.8, though we also consider
the case for a variable y for comparison. The value of ry, can then
be calculated using Limber’s equation (see e.g. Limber 1953, 1954;
Peebles 1980):

o] 2 %
"0=( e U ro) ) o
Hy Hy [;° E(2)2 p(2)*x(2)'77 (1 4 2)r~C+9dz

where c is the speed of light in km s™!, E(z) = Qn(1 +2)* + (1 —
Q) and x(z) is the comoving distance at redshift, z. A, is related

12We note that “linear’ here does not refer to the mode used in CCL described
earlier, but refers to an assumption of growth under linear perturbation theory,
as discussed in Lindsay et al. (2014a).
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Figure 21. Comparisons of w(#) for LoTSS-DR2 and their modelled fits (subtracting the integral constraint) assuming errors without accounting for covariance
between 6 bins (upper row of each sub figure) and using the full covariance matrix is shown (lower row of each sub figure). These models are shown for the
angular fitting ranges 0.03 — 5 © (left panel), 0.1 — 5° (centre panel) and 0.5 — 5° (right panel), with the dashed vertical lines indicating the angular scales used
for fitting. Black stars correspond to the measurements from LoTSS-DR2, and the shaded regions correspond to (i) the linear constant bias model (red), (ii) the
HaloFit constant bias model (yellow), (iii) the linear evolving bias model (blue) and (iv) the HaloFit evolving bias model (purple). The upper panel presents the
results when all redshift resamples are weighted equally, whilst the lower panel allows preferential p(z) resamples to be weighted preferentially.

to the amplitude (A) in Equation 12 when 6 is in the unit of radians.
Finally, H, is given by
r(Hret
=) e
I'(3)

where I" represents the gamma function. As described in Section 1
and Equation 2, the spatial clustering of galaxies can be related to that

of matter to parameterise galaxy bias. Following analysis from Pee-
bles (1980) and discussed and used in works such as Koutoulidis et al.
(2013), Lindsay et al. (2014a), Hale et al. (2018), and Mazumder,
Chakraborty & Datta (2022), the bias can then be inferred from ry
using:

r0(2)
ba) = (SM(I))ch—‘

v/2 g
> i , (22)
a3 D(z)/D(0)
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Figure 22. Comparisons of the bias models fit (using the full covariance) for the data for a constant bias model and evolving bias model for the three angular
fitting ranges: 0.03 — 5° (red), 0.1 — 5° (blue) and 0.5 — 5° (yellow) for linear (lighter colours) and HaloFit (darker colours) models. The left panel shows
the results when each p(z) resample is weighted as equally probable (method 1, Section 5.2) and the centre panel shows the results when preferential p(z)
models are upweighted (method 2, Section 5.2). This is presented alongside previous measurements from Nusser & Tiwari (2015) (grey dashed line), Lindsay
et al. (2014a) (grey pentagons), Hale et al. (2018) (grey triangles), Chakraborty et al. (2020) (grey squares) and Mazumder, Chakraborty & Datta (2022) (grey
diamonds). Also shown are the fitting of b(z) from Equation (22) using the angular fitting range 0.03—1° (evaluated at the median redshift of the sample) for
the fixed slope (y) model (black) and 2 parameter model (magenta) for both the comoving (diamond) and linear (circle) Limber models. The right-hand panel
shows a comparison of the bias values (evaluated at zmeq &~ 0.89) from CCL (in the 0.5-5° fitting range) using the linear constant (up facing triangle), HaloFit
constant (right facing triangle), linear evolving (down facing triangle) and HaloFit evolving (left facing triangle) with and without covariance (indicated by a
fainter symbol). The filled markers for the CCL fitting represent those models where the p(z) samples are uniformly weighted and open markers indicate where
a preferential p(z) model was preferentially selected. These are presented alongside the Limber comoving linear models across the three angular fitting ranges.

Values on the right-hand panel are shown with an arbitrary offset on the y-axis to highlight the differences in the values.

where D(z) is the growth factor, and J, is given by W
and z is evaluated at the median redshift of the redshift distribution
(which is found here to be z,, ~ 0.9 for the full redshift distribution).

In order to perform this fitting, we use the fit for w(6) described in
Section 4 and the modelled resampled redshift distributions (using
Equation 15) described in Section 5.2. We calculate ry and b and their
associated uncertainties by using 5000 random values of log;o(A)
(and y for a two-parameter model) from our sample which were
generated to fit A in Section 4 and evaluate these using the random
samples for the p(z) distribution to then quantify b(z). Using this
method, we have no reason a priori to assume a certain redshift
distribution and so use the 1000 modelled p(z) resamples equally to
calculate b. This is therefore most comparable to the first resampling
method described in Section 5.2. From the ry and b samples, we then
quantify the median value as well as the errors from the 16th and
84th percentiles.

We note though, that using Limber inversion used in this method
does make assumptions, which could affect the results presented.
These assumptions include that the angles considered are small. At
larger angles, approximations in Limber’s equation break down and
w(0) deviates from a power law. For the majority of angular fitting
ranges considered (up to 5°), these use large scales where deviations
from a power law are expected. Therefore, we also considered the
fitting range for the power-law fitting of A, 0.03 <0 < 1°, as discussed
in Section 4 where such a power-law distribution appears appropriate.
Moreover, assumptions are used to obtain Limber’s equation, which
can include that 7 is independent of luminsosity; this is likely not be
the case (see e.g. Zehavi et al. 2011; Cochrane et al. 2017), however,
without an ability to split by luminosity for our sources, our analysis
will give an average value across the population. We continue to
present the bias measurements from this method as a number of
previous radio clustering papers (as well as at other wavelengths,
see e.g. Lindsay et al. 2014a; Magliocchetti et al. 2017; Hale et al.
2018; Chakraborty et al. 2020; Mazumder, Chakraborty & Datta
2022) all determine ry and bias through this method and so allows
for comparison with previous works.
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We note that CCL also uses Limber’s inversion in order to obtain
a measurement of the bias, but does not rely on assumptions about
a power-law functional form for w(6) and &,(r, z) and accounts
for the deviation from a power law at the largest angular scale.
Therefore, different results for the bias may be obtained through
these different models and we present results for measurements
of b from both methods to make direct comparison of the results
obtained.

5.4 »(#) and b(z) models

We present the results from fitting w(6) assuming the evolving bias
and constant bias model in Fig. 21. For each model, we present
the fits using the three different angular ranges described above, for
both the diagonal only errors and also the full covariance array. The
associated bias models are then presented in Fig. 22 along with the
values from the Limber method assuming a power-law distribution of
w(#), with additional comparisons to previous results from analysis
of the large area NVSS survey (Nusser & Tiwari 2015) as well as
other individual measurements of bias evaluated at specific redshifts
from Lindsay et al. (2014a), Hale et al. (2018), Chakraborty et al.
(2020), and Mazumder, Chakraborty & Datta (2022). The results
of such fitting for both the power-law amplitude, spatial clustering
length (rp) and bias for both the Limber- and CCL-derived bias
models are also provided in Tables 3 and 4. A comparison of the
amplitude fit assuming a power-law distribution as in Equation 12
is also presented in Fig. 24 compared to the work of Lindsay et al.
(2014a), Hale et al. (2019), Siewert et al. (2020), Bonato et al. (2021),
and Mazumder, Chakraborty & Datta (2022). As these surveys are
at different frequencies and flux density limits (shown in the inset),
this may affect the populations observed and hence the estimated
biases for such sources, and so an equivalent survey limit scaled to
144 MHz is used. We note that Fig. 22 includes the bias values from
the two-parameter-fitting model compared to the fixed slope model,
which appear in good agreement.
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Figure23. p(z)for the data (grey) compared to the range of p(z) models when
uniformly sampling the data (blue) compared to allowing the p(z) resamples
to preferentially selected in the fitting process (see Section 5.2) for a linear
model across the angular range 0.5-5° using the full covariance array with
an evolving (red) and constant (yellow) bias model. All models are shown in
the range given by the 16th and 84th percentiles.

6 DISCUSSION

In this section, we shall discuss our results in context of the different
models used to fit the data as well as comparing to previous studies
of the angular clustering of radio sources.

6.1 Comparing CCL-derived models for »(0) and b(z)

First, we compare the fitting of (@) using the linear and HaloFit
models of CCL. As can be seen in Fig. 21, the fit of w(f) using
the linear model appears to have relatively good agreement with the
data across the angular range 0.06—1° using all three angular fitting
ranges considered in this work when using the more simplistic x 2 for
both the evolving and constant bias models. Above 1°, the evolving
bias model appears to underestimate slightly w(6), compared to the
constant bias model, especially when using fitting ranges that cover
the largest angular range and the full covariance is considered. As the
full covariance accounts for correlations between different angular
bins, this allows the model to underpredict w(0) on these scales
relative to what might be expected by simply looking at minimizing
x? using the diagonal errors on w(@) only. However, such an effect
is less notable in Fig. 21(b) where we allow the p(z) resamples to
be preferentially selected to best fit the model. Below 0.06°, the
measured value for w(0) appears to be larger than expected from the
linear model for both the evolving and constant bias models, with an
even larger discrepancy for 6 < 0.03°, where we believe the effect of
multicomponent sources within the LoTSS-DR2 survey is important.
On the contrary, the HaloFit model, shows greater agreement with
w(0) for 6 < 0.06° when fitting with minimum angular scales 6
< 0.1°. However, in doing so these models greatly underestimate
() on the majority of larger angular scales (6 > 0°1), which is
where linear bias is dominating. This results in significantly larger
reduced x? values compared to the linear models. For the narrowest
angular fitting range (fitting between 0.5-5°), instead, there is much
better agreement with the measured w(f) on the largest angular
scales (comparable to that when using a linear model), but the model
significantly over predicts the clustering at angles < 0.5°.

Angular clustering in LoTSS-DR2 6563

This comparison suggests that neither the linear or HaloFit models
can completely reproduce the measured w(8) across the full range of
angular scales presented in Fig. 21, though above the angular scale
where we believe the effects of multicomponent sources is negligible
(6 > 0.03°), the linear models are able to much more accurately fit the
data across a wider range of angular scales using both p(z) resampling
methods. The linear and HaloFit models should agree on the largest
angular scales and only deviate at small angular scales due to the ‘1-
halo’ clustering from sources within the same dark matter halo. When
measuring the linear bias, where we measure the ‘2-halo’ clustering
relating to galaxies in different dark matter haloes, it is important
that the model w(6) from the fitting be an accurate representation
on the largest angular scales. Therefore, the bias measured by the
HaloFit models using the angular ranges 0.03-5° and 0.1-5° appears
to underestimate w(8) on the largest angular scales compared to the
linear models and so will underestimate the linear bias. These should
therefore not be used to draw conclusions of by. When fitting for
angular scales of & > (0.5° there is better agreement between the
linear and HaloFit models and so measurements of bias from such
models are more likely to represent the true bias.

Given that cross-matched data for the LoTSS-DR2 is not currently
available for the full LoTSS-DR2 sample, and instead cross-matching
is only complete above 8 mJy (Hardcastle et al. 2023), it is not
possible to conclusively determine whether we do have a significant
contribution of 1-halo clustering to w(9) in this work. However,
from the LoTSS-DR1 clustering measurements shown in Fig. 16,
the correction for multicomponent sources is relatively small and
would be insufficient to explain the excess clustering seen here at
small angular scales (6 < 0.03°). This therefore suggests that we are
indeed observing some 1-halo clustering within LoTSS-DR2. Given
the uncertainty in the effect of multicomponent sources, however, we
are also unable to do a full halo occupation distribution modelling
(HOD:; see e.g. Berlind & Weinberg 2002; Zheng et al. 2005) in
order to determine properties of the haloes which allow them to host
multiple radio sources of the type observed in this data.

At the largest angular scales, we note that the linear and HaloFit
models are slightly lower than the measured w(f) from the data
when the full covariance is used (especially when uniform weighting
is used for each p(z) resample). This may suggest that residual
systematics remain within the data which are not fully captured by
the randoms but are accounted for by the covariance. Alternatively,
it could also represent a contribution of the radio dipole to the
observed TPCF, which can cause an excess clustering at larger
angular scales (see Chen & Schwarz 2016), but is not included in our
models. More likely, these differences could suggest the assumed bias
models used in this analysis may be too simplistic for the sources
observed in this work. Our sample is a combination of different
sources types and luminosities which dominate at different redshift
ranges and so contribute differently across the redshift distribution.
Such sub-populations have different bias evolution models (see e.g.
Magliocchetti et al. 2017; Hale et al. 2018; Chakraborty et al.
2020; Mazumder, Chakraborty & Datta 2022), which are complex
to combine when considering only a single population. As we are
unable to separate the LoTSS-DR2 sources into different source
classes, we rely on more simplistic models to probe the population
as an average population, until the time where such sources can be
studied in greater detail, split by source type. Such studies which
account for differences in bias models are more beneficial for those
data where sources have been associated with a galaxy host, assigned
a redshift and source classification has been undertaken to identify
the source type. This will be aided in future over such large sky areas
with WEAVE-LOFAR (Smith et al. 2016), where spectra can be used
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Figure 24. Comparison of the w(f) from this work (black stars) compared
to previous power-law fitting from the studies of Siewert et al. (2020)
using a 2mlJy (solid purple) cut as well as the works of Hale et al. (2019)
(turquoise dotted), Bonato et al. (2021) (dark red dot—dashed), Mazumder,
Chakraborty & Datta (2022) (orange dashed) and Lindsay et al. (2014a) (light
grey dotted). Inset: Amplitude variation as a function of flux density compared
to the fitting here using the simple x> method across the three fitting ranges:
0.03-5.00° (red), 0.10-5.00° (yellow) and 0.50-5.00° (black). The quoted
flux limits are scaled to 144 MHz to allow more equivalent comparisons.

to attribute redshifts to sources and to classify the source type. At
present, though, such studies should focus on deep, multiwavelength
fields, as in the recent works of Hale et al. (2018), Chakraborty et al.
(2020), and Mazumder, Chakraborty & Datta (2022).

Alternatively, if the systematics within the data have been fully
accounted for it could imply that the true p(z) is different from
that currently estimated from the LoTSS Deep Fields. Fig. 23
shows the preferred p(z) models (using a linear model, fit over
the angular range 0.5-5°), which favour a model with a greater
fraction of sources at these low redshifts. As discussed, this provides
a much better fit to the data at the largest angular scales than
using a uniform weighting of our resampled p(z) models, reflected
in the smaller average x2/DOF values for our samples. For other
angular fitting ranges which may give poorer fits to the data, the
preferred p(z) may shift to higher or lower redshifts, however, we
present the 0.5-5° range which we believe is the most trustworthy
to measure linear bias. We note that over the 0.5-5° fitting range,
the measured bias values presented in Table 4 are lower using
the weighted p(z) resampling, but are consistent with one another
within ~ 1o. Discerning between whether we expect a p(z) with a
stronger preference to low-redshift sources or that there are residual
systematics in our data are challenging, but will be aided with future
spectroscopic surveys such as WEAVE-LOFAR (Smith et al. 2016).

Next, we consider the comparison between the evolving, b(z) =
bo/D(z), and constant, b(z) = by, bias models for our data, as
presented in Fig. 22. The model used in analysis of NVSS in Nusser &
Tiwari (2015) was an evolving bias model and we also note that
for previous measurements using Limber inversion, the choice of
comoving clustering assumes a non-evolving ry and so an evolving
bias model inversely proportional to the growth factor, as can be
seen in Equation 22. As can be seen in Fig. 21, both the evolving
and constant bias model appear to accurately recreate the observed
angular TPCF across a diverse range of angular scales (~0.07—1°).
However, whilst at § ~ 1—5° the model for w(#) using the constant
bias model (and assuming equal weighting for our p(z) resamples,
see Fig. 21a) can be seen to better model w(6) at the largest angular
scales, the evolving bias model underpredicts the observed angular-
TPCEF. This would therefore imply that a constant bias model appears
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to more accurately represent the measurements made in this work.
However, in the literature, bias models which evolve and increase
with redshift have typically been assumed due to expectations that
at higher redshifts a halo of the same mass represents a more
extreme fluctuation from the average, and so is more biased. In
SKADS (Wilman et al. 2008), the authors used an assumption
of a constant mass haloes for each different source population,
these result in an evolving bias model for such an assumption.
These models have been used in numerous cosmology forecasts
(Raccanelli et al. 2012; Ferramacho et al. 2014; Square Kilometre
Array Cosmology Science Working Group et al. 2020). The model
used in the analysis presented in this work, however, includes a
more simplistic evolving bias model, inversely proportional to the
growth factor, and more complicated evolutionary models taking
into account the contributions of different source populations are
likely more appropriate. If the p(z) resamples are allowed to be
preferentially chosen to best fit the data (see Fig. 21b), the constant
and evolving bias models both appear to become more similar
compared to the measurements of w(8).

Finally, comparisons can be made for the results when using the
full covariance matrix, compared to errors based on the diagonals of
the covariance matrix. Work such as Lindsay et al. (2014a) and Hale
et al. (2018) have followed methods where only the uncertainties on
a 0 bin and not the full covariance matrix was assumed, which could
affect the measurements of bias. As can be seen in Figs 21 and 22
and in Tables 3 and 4, there do exist differences in the measured bias
and w(f) models depending on whether or not the full covariance
matrix is provided. These often find a lower bias value when the full
covariance matrix is used, although the values are typically consistent
within 1-20. Differences between the results with and without the
full covariance imply a correlation between angular scales which
needs to be accounted for in the fitting of w(6). We therefore use
the models in which the full covariance is incorporated for drawing
conclusions. We also note that when weighting all p(z) resamples
equally (and modelling these as in Equation 15), the results when
using the covariance matrix from TreeCorr (with Ny, = 100)
were consistent within ~1o and using a 6z = 0.1 binning for the
p(z) from the LoTSS Deep fields also resulted in by values consistent
within ~1—1.5¢ to those presented in this work.

6.2 Comparison of b(z) to other surveys

We next present comparisons to the results made from previous
measurements with similar large-area surveys. As this work follows
from the previous work of LoTSS-DR1 presented in Siewert et al.
(2020), we first make comparisons to the results found in that work.
In Siewert et al. (2020), redshifts were not available for the full
population of LoTSS-DRI1 sources and no redshift data for LOFAR
sources in the Deep Fields were available at that time. Therefore, for
bias measurements this relied on those sources which had cross-
matched hosts (from Williams et al. 2019) and redshifts (from
Duncan et al. 2019). This meant that approximately 50 per cent
of sources had redshifts available, but that measurements of bias
in redshift bins were skewed to those sources. Therefore, it is
challenging to make direct comparisons to that work. However, it
is possible to make comparisons to the fitting parameters for w(6)
provided in Siewert et al. (2020).

In Fig. 24, we present comparisons of the best-fitting models to
Siewert etal. (2020) as well as a number of other previous works from
Lindsay et al. (2014a), Hale et al. (2019), Bonato et al. (2021), and
Mazumder, Chakraborty & Datta (2022). For these works, we include
an indication of the equivalent flux limit used, scaled to 144 MHz.
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For those with fainter populations, we note that differences in the
populations being observed, which will be increasingly dominated by
SFGs below 1 mly, will affect the comparison of such measurements.
As can be seen from Fig. 24, our work finds a smaller clustering
amplitude to that found in Mask 1 used in Siewert et al. (2020)
at 2mly (their best model from their paper). We do note that our
result is in excellent agreement to that of Siewert et al. (2020) using
their 2mlJy cut in Mask d (not shown in Fig. 24), which used a
less conservative masking of regions they considered to have ‘good’
sensitivity. As discussed though in Section 3.3.4, there are differences
introduced in this work for the method of generating random sources
compared to that in Siewert et al. (2020), which may also affect
comparisons of the measurements, as systematics in the data were
accounted for using some different methods.

At both similar flux densities and a similar frequency to this work
is the clustering presented in Hale et al. (2019). In their work, the
clustering of sources within the XMM-LSS field as observed with
LOFAR was presented, and Hale et al. (2019) found a clustering
amplitude approximately three times larger to the work presented
here. These difference could arise from cosmic variance as the
XMM-LSS field covers a much smaller area (~25 deg?) compared
to the ~5000 deg2 used in this work. However, we also note that
Hale et al. (2019) discuss the fact that the corrected source counts
appear to suggest that the completeness corrections applied are an
underestimation. This could affect the measurement of w(0) in their
work. Our work is consistent with that of Lindsay et al. (2014a), who
study the clustering of sources in FIRST (Becker, White & Helfand
1995; Helfand, White & Becker 2015) with an equivalent limit at
144 MHz of ~ 5 mly, yet there are large uncertainties in their work.
We derive a larger amplitude than that of Mazumder, Chakraborty &
Datta (2022), who use 325-MHz observations of the Lockman Hole
field which are the equivalent of ~3 times more sensitive than for
LoTSS-DR2, but restricted over smaller areas. Whilst previous work
has investigated how the amplitude of clustering changes with flux
density (see e.g. Overzier et al. 2003; Wilman et al. 2003), who find a
typical declining amplitude at smaller flux densities, the complication
between the different populations introduced and changes in redshift
distribution as flux limits decrease means that discussion of the
power-law amplitude is complicated to make direct comparisons.
We provide the inset in Fig. 24 to show the flux density dependence
in context with the other work presented.

Next, comparing the bias evolution models implied from this work
to those from other works, we note that again there exists challenges
when making comparisons due to the variety of radio populations,
and their variation with flux density. Radio surveys are dominated by
AGN at the brightest flux densities, with SFG dominating at fainter
flux densities (see e.g. SmolCi¢ et al. 2017b; Algera et al. 2020;
Hale et al. 2023) and Best et al. (2023). For example, Nusser &
Tiwari (2015) used a quadratic polynomial model to investigate
an evolving bias model for NVSS sources with S; 4gu, > 2.5 mJy.
This is an equivalent flux density limit of ~ 12.5 mJy at 144 MHz,
approximately eight times the flux density limit used in this work.
These sources will be dominated by AGN and have very little
contribution of SFG, whereas we expect a much larger contribution
of SFGs within this work. As shown in radio clustering studies such
as Magliocchetti et al. (2017), Hale et al. (2018), and Mazumder,
Chakraborty & Datta (2022), these two populations are believed to
have different biases and so by investigating the bias for a source
population as a whole, the bias measured will be an average between
the bias of the two populations. Moreover, if such previous studies
use comoving clustering, these should be compared to the evolving
bias models instead of a constant bias model. Therefore, the results
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shown for the Limber-derived bias values for comoving clustering
in this work are only comparable for the evolving bias model and
not the constant model. Our measurements of bias with Limber’s
equation (when assuming a power-law spatial clustering model) can
underestimate the bias model (if comparing to those from CCL),
though these are typically consistent within 1-2¢°. The remaining
differences highlight the challenges when making comparisons of
bias evolution models using these different approaches.

Evolving bias models (with the covariance) are consistent with
some of the measured values from Chakraborty et al. (2020) and Hale
etal. (2018) as well as the evolving bias model from NVSS (Nusser &
Tiwari 2015), especially when the linear model is assumed. We
note that whilst for Hale et al. (2018) we present results for the
full population in Fig. 22, the results for Chakraborty et al. (2020);
Mazumder, Chakraborty & Datta (2022) are separated by source type,
with those for SFGs found to have lower bias values. Therefore,
our agreement with Chakraborty et al. (2020) is to their AGN
population measurements and similarly, as discussed, NVSS will
also be dominated by AGN at the flux densities applied. Recent
work from Best et al. (2023) for the LoTSS Deep Fields, suggests
~20 per cent of SFGs and ~6 per cent of radio quiet quasars (RQQs,
which become more important at faint flux densities, see e.g. Jarvis &
Rawlings 2004) at the limiting flux density used in this work.

Itis also important to compare to the results of Alonso et al. (2021)
who used a combination of LoTSS-DR1 and CMB measurements to
jointly constrain both p(z) and b(z) (for sources >2 mly). Their
results suggested that for an evolving bias model, the value of by is
expected to be ~1.2—1.7, assuming a redshift distribution similar to
that of Smolci¢ et al. (2017b) using an appropriate flux density cut.
Our measurements over the 0.5-5° angular fitting range using the full
covariance matrix to determine b are slightly larger than the results
of Alonso etal. (2021) (when the p(z) samples are equally weighted),
though our results are consistent with their upper limits within our
1o uncertainties. However, when we allow more preferential p(z)
models to be weighted, we find by ~ 1.6—1.7, consistent with the
work of Alonso et al. (2021). In their work, Alonso et al. (2021) fit for
both the p(z) and b(z) model, and so are more comparable to when
we allow preferential selection of the p(z) samples. For the constant
bias models, on the other hand, our b, values are typically lower than
those found in (Alonso et al. 2021, who find by ~ 2.3—4). However,
their redshift distribution which they find for such a constant bias
model is skewed to a much higher redshift than shown in Fig. 20.
Our redshift distribution peaks significantly below z ~ 1, similar
to the evolving bias model of Alonso et al. (2021), whereas their
constant bias model predicts a redshift distribution peaking at z ~
1—2. From Fig. 23, we see that the LoTSS Deep Fields data do not
indicate such a peak at higher redshifts. Therefore, to have agreement
between this work and that of Alonso et al. (2021) this suggests
a preference towards an evolving bias model for LoTSS sources
assuming a redshift distribution similar to that of the LoTSS Deep
Fields.

7 CONCLUSIONS

The LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2;
Shimwell et al. 2022) provides a catalogue of ~4.4 million low-
frequency radio sources over ~ 5600 deg?, making it an ideal data
set for radio cosmology studies of the large-scale structure of the
Universe. In this work, we provided analysis of the angular clustering
of sources in the LoTSS-DR2 survey and comparison of the bias
models implied for such sources. We provide a comprehensive
description of the methods used to improve upon the accuracy of
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the random catalogues generated in this work compared to those
used in the LoTSS-DRI1 clustering analysis of Siewert et al. (2020).
Our random catalogues account for a variety of observational biases
within the data including: rms sensitivity variations across the field of
view; resolution bias; smearing variations across the observations;
detection completeness of PYBDSF; and the effect of Eddington
and measurement biases on the measured flux density properties of
sources.

Using the random catalogues generated, we measure the angular
TPCF, w(f), for sources with SNR > 7.5 and integrated flux
density >1.5 mJy, which shows an approximate power-law behaviour
(w(8) o< 8'~7) over the angular scales between 0.03 and 2°. We
model w(0) using a variety of models which account for both an
evolving and constant bias model as well as using matter power
spectrum models which account for linear effects only (‘linear’) or
with non-linear effects also included (‘HaloFit’). Our results show
that in order to best model the w(f) measured from LoTSS-DR2
across a range of angular scales (~0.1—1°), the linear model is
preferred, which suggests that at the sensitivities probed by this work,
we are typically only observing a single radio source per dark matter
halo, and do not have a strong contribution from ‘1-halo’ clustering.
However, we note that the linear model underestimates the clustering
at smaller angular scales, where a combination of 1-halo clustering
and multicomponent source clustering may play a role.

Comparing bias evolutionary models with the linear halo model,
assuming the models based on the redshift distributions from the
LoTSS Deep Fields accurately represent that of our data, our work
suggests that for an evolving bias model of the form b(z) = by/D(z),
the best-fitting value of by ~ 1.7—1.8 over the angular scales which
we believe are most accurate for measuring bias (0.5-5°). Instead
for a constant bias model, of the form b(z) = by, we find by ~ 2.1.
At the largest angles (>1°), we see that the constant bias model
provides a slightly better fit to the observed data when we use
equally weighted p(z) models from the LoTSS Deep fields to measure
bias. Such differences are reduced if we allow our models to have
preferential p(z) models, based on the fit to the data. Where we allow
our p(z) model to be preferentially selected, the bias values in both
the constant and evolving bias models also reduced slightly, to by ~
1.6—1.7 in an evolving model, and by ~ 2.0 for a constant model.
Assuming an evolving bias model and taking into account the full
covariance matrix, we find good agreement with the results from
NVSS of Nusser & Tiwari (2015) up to z ~ 1 and previous results
from Hale et al. (2018) and Chakraborty et al. (2020), though we note
that these probe different populations at both different frequencies
and different equivalent sensitivities to that used in this work.

Moreover, in comparison with work, from LoTSS-DR1 of Alonso
et al. (2021) who used both CMB and LOFAR measurements to
jointly constrain the redshift distribution and bias evolution model
of LoTSS-DR1 sources (>2 mly), we find that given the greater
knowledge of the redshift distributions contributed by the LoTSS
Deep Fields (see Duncan et al. 2021; Sabater et al. 2021; Tasse et al.
2021), an evolving model from Alonso et al. (2021) is necessary to
reflect the redshift distribution found in their work. We find that the
bias values presented from Alonso et al. (2021) for their evolving
model is similar to that of the evolving bias models presented in
this work, especially when we allow p(z) models to be preferentially
determined during the fitting process. Using a linear model for the
matter power spectrum to fit across the largest angular scales (0.5—
5°) and equally weighting p(z) models from the LoTSS Deep Fields,
we find, for an evolving bias model, a value of by = 1.797( 13 which
is equivalent to by = 2.81J_r8:§‘2‘ at the median redshift of our sample,
Zm ~ 0.9 when we do not show a preference to the p(z) models,
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reducing to by z = 1.67712 which is equivalent to bg = 2.627012

and byc = 2.027)17 when we allow our measurements to suggest
preferential p(z) models,' which are found to peak more strongly at
lower redshifts.

Observations from future spectroscopic surveys such as WEAVE—
LOFAR (Smith et al. 2016) will allow us to more accurately
determine the redshift distribution of LOFAR sources at low redshifts
and allow more understanding of the p(z) models we expect for the
sources observed in this work. This will allow us to disentangle
whether small systematics remain within our data or we have a
population of radio sources which are more highly skewed to low
redshifts (e.g. from SFGs). As the low redshift p(z) appears important
for this work in modelling w(9) at the larger angular scales, such
accurate redshifts at z < 1 are important for constraining the results
of future studies. This work has highlighted how a number of
observational systematics can be corrected for future deep radio
cosmology studies, whilst also demonstrating that the understanding
of systematics in wide-field mosaiced images is complex, and needs
deep understanding for use in cosmological studies.
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