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ABSTRACT

Existing tiered memory systems all use DRAM-Preferred as their al-
location policy, whereby pages get allocated from higher-performing
DRAM until it is filled, after which all future allocations are made
from lower-performing persistent memory (PM). The novel insight
of this work is that the right page allocation policy for a workload
can help to lower the access latencies for the newly allocated pages.
We design, implement, and evaluate three page allocation policies
within the real system deployment of the state-of-the-art dynamic
tiering system. We observe that the right page allocation policy can
improve the performance of a tiered memory system by as much
as 17x for certain workloads.
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1 INTRODUCTION

In tiered memory systems, optimizing dynamic page migration
has received substantial attention. The state-of-the-art tiered mem-
ory systems such as MULTI-CLOCK, AutoTiering, AMP, Nimble,
and others [6] dynamically reorganize the pages across memory
tiers based upon the accesses to the pages. These systems improve
the overall performance of the dynamic workloads by periodically
scanning/sampling the page accesses to determine page importance
and perform page selection followed by page migration to move the
page(s) to an appropriate tier. However, to our surprise, we noticed
that all the existing tired memory systems allocate the new pages
in DRAM until full and then allocate the remaining new pages
throughout the workload from the lower tier (i.e., the tier with
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Figure 1: Page Selection (a) and migration (b) Overhead.

higher access latency compared to DRAM). In the rest of this paper,
we refer to this as the DRAM-Preferred allocation policy. Hence, in
the steady state of any workload when DRAM is fully utilized, the
important pages get accessed from the slower tier until the page
is selected and promoted to the faster tier. The novel insight of this
research is that with the right page allocation policy in addition to
tiering algorithm, the workload performance can be further improved
by the lower access latencies as well as reduced page selection and
migration overheads for the newly allocated pages.

The page allocation policy of a tiered memory system determines
which tier new page allocations are made from prior to engaging
page migration mechanisms. Fig. 1(a) shows the page selection
overhead of the dynamic tiered systems, with the number of page
access on the X-axis and the percentages of total pages on the Y-
axis for Twitter cluster traces [5]. The dashed line presents the
required number of page accesses (i.e., 2) for Multi-Clock to select
the page to migrate. From Fig. 1(a), we can see that the accesses to the
67% of the total pages for cluster 50, 57% for cluster 26, and 38% for
cluster 45 depend on the initial placement of the pages due to the page
allocation policy used. These pages would not even be considered
for migrations as these pages have a total access count less than the
required threshold. Fig. 1(b) shows the time taken to demote and
promote a page in most of the dynamic tiering systems [6]. With the
default DRAM-Preferred allocation policy, hot pages that are allocated
after the DRAM is filled will trigger migration. Thus, the number of
initial demotions and promotions can be hundreds of millions for
workloads like the Twitter clusters where the working set size of a
cluster can reach terabytes [1]. These demotions and promotions would
require a significant amount of time just for the migrations. The above
overheads can be significantly reduced by choosing the right tier to
allocate new pages.

In this work, first, we design and implement three different allo-
cation policies. Second, we integrate the above allocation policies
with the state-of-the-art dynamic tiering systems deployed using
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Figure 2: Page allocation policies.
Linux kernel to study the impact of allocation policies within tier-
ing systems using various real workload traces and several popular
benchmarks.

We find that the page allocation policy is as important as the
dynamic tiering policy. Allocation policies can impact the tiering
system performance by up to 17x. While all of the state-of-the-
art tiering mechanisms use the DRAM-Preferred allocation policy,
we find that no single allocation policy performs the best for all
workloads.

2 ALLOCATION POLICIES

DRAM-Preferred: All new pages are allocated from the DRAM tier
as long as it has free space. Once the DRAM is filled, new pages are
allocated from the PM tier. Fig. 2(a) illustrates this allocation policy.
DRAM-Always: All new pages are allocated from the DRAM, even
if the DRAM is already filled. As Fig. 2(b) shows, when DRAM is
filled, new page allocations force the demotion of cold pages to the
PM tier.

PM-Preferred: New pages are allocated from the PM tier as long as
the PM has free space. Once it is filled, new pages are then allocated
from the DRAM tier. Fig. 2(c) shows how page allocations get made
with the PM-Preferred policy.

PM-Always: Always allocates new pages from the PM tier as shown
in Fig. 2(d). With PM-Always, in the Linux kernel, we observe that
allocating new pages from the swap space while DRAM space is
free often causes an Out Of Memory (OOM) error which kills the
running application. Hence, in the rest of the paper, we focus our
experiments on the remaining three allocation policies.

3 EXPERIMENT SETUP

All experiments are performed using an Intel Xeon Gold 5218 dual-
socket processor with 16 cores per socket, i.e., 32 cores in total. The
system is configured with twelve DDR4 DIMMs, totaling 192GB of
DRAM, and 4 Intel Optane DC Persistent Memory (DCPM) DIMMs
totaling 512GB of PM. We implemented the allocation policies in
Linux kernel version 5.3.1. We used SPEC [7], NAS [2], YCSB [4],
and GAPBS [3] benchmarks to evaluate the performance of the
allocation policies.

4 IMPACT OF ALLOCATION POLICIES

Fig. 3 shows the large variation in performance that we can ob-
tain by changing the allocation policy for various workloads. For
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Figure 3: Impact of allocation policy on the dynamic tiered
memory system.

example, in Fig 3, the performance of the dynamic tiering can signif-
icantly improve if the default allocation policy of DRAM-Preferred
is replaced by the DRAM-Always allocation policy for the YCSB.D
workload. In YCSB workload D, new items are added, and the most
recent items are the most popular items [4]. With DRAM-Preferred,
since new pages are allocated from the PM once the DRAM is filled,
the newer popular pages would get accessed from the PM. On the
other hand, with DRAM-Always allocation policy, newer pages con-
taining popular items are allocated and accessed from the DRAM.
Thus, the allocation policies can significantly impact the performance
of the tiered memory systems. Furthermore, we observed that no
single allocation policy always performs best for different types of
workloads.
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5 CONCLUSION

In this work, we investigated the problem of page allocation in tiered
memory systems, which was previously unexplored. We introduced
several allocation policies and evaluated the performance of these
allocation policies in dynamic tiered memory systems by using
a variety of workloads. We observed that allocation policies can
significantly impact the performance of tiered memory systems.
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