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Abstract

Optical surveys have become increasingly adept at identifying candidate tidal disruption events (TDEs) in large
numbers, but classifying these generally requires extensive spectroscopic resources. Here we present tdescore,
a simple binary photometric classifier that is trained using a systematic census of ∼3000 nuclear transients from the
Zwicky Transient Facility (ZTF). The sample is highly imbalanced, with TDEs representing ∼2% of the total.
tdescore is nonetheless able to reject non-TDEs with 99.6% accuracy, yielding a sample of probable TDEs with
recall of 77.5% for a precision of 80.2%. tdescore is thus substantially better than any available TDE
photometric classifier scheme in the literature, with performance not far from spectroscopy as a method for
classifying ZTF nuclear transients, despite relying solely on ZTF data and multiwavelength catalog cross matching.
In a novel extension, we use “Shapley additive explanations” to provide a human-readable justification for each
individual tdescore classification, enabling users to understand and form opinions about the underlying
classifier reasoning. tdescore can serve as a model for photometric identification of TDEs with time-domain
surveys, such as the upcoming Rubin observatory.

Unified Astronomy Thesaurus concepts: Tidal disruption (1696); Time domain astronomy (2109); Black holes
(162); Galaxy nuclei (609); Sky surveys (1464)

1. Introduction

Tidal disruption events occur when stars pass too close to
supermassive black holes (SMBHs). The tidal force exerted by
the SMBH exceeds the self-gravity holding the star together,
and the star disintegrates (Rees 1988). Much of the resulting
stellar debris remains gravitationally bound to the SMBH and is
ultimately accreted onto the black hole. These TDEs can
generate luminous emission across the entire electromagnetic
spectrum, from radio to soft gamma rays, and in recent years,
all-sky surveys have become increasingly adept at finding the
previously elusive class of transients (see Gezari 2021 for a
recent review). TDEs offer a unique probe of otherwise-
quiescent SMBHs residing in galaxies and can be used to study
a variety of areas such as astrophysical jet launching, SMBH
demographics, and accretion disk formation.

There are now100 TDEs in the literature, the vast majority of
which are identified by optical surveys. In particular, the Zwicky
Transient Facility (ZTF; Bellm et al. 2019; Dekany et al. 2020) at

Palomar Observatory conducts an all-sky survey that has detected
∼90 TDEs since 2018 (see, e.g., van Velzen et al. 2021;
Hammerstein et al. 2023; Yao et al. 2023). With this large sample,
we now know that at least some TDEs emit quasithermal optical
flares with high apparent temperature that rise on a timescale of
weeks and fade more slowly over a timescale of months with little
apparent temperature evolution (Gezari 2021). These optical
TDEs appear to have a marked preference for “green-valley”
galaxies (see, e.g., Arcavi et al. 2014; French et al. 2016; Graur
et al. 2018; Hammerstein et al. 2021a).
Despite a nominal survey depth of 20.5 mag (Graham et al.

2019), the ZTF TDE program remains incomplete below a
magnitude of ≈19.1 mag due to limited spectroscopic
resources (Yao et al. 2023). This spectroscopic bottleneck will
become even more severe with upcoming instruments and
observatories such as the Vera C. Rubin Observatory (Ivezić
et al. 2019) and ULTRASAT (Shvartzvald et al. 2024), which
are expected to detect thousands of TDEs each year (see, e.g.,
Bricman & Gomboc 2020; Shvartzvald et al. 2024).
There is thus increasing need for the development of TDE

selection methods that do not rely on expensive spectroscopic
follow-up. However, photometric classification of nuclear
transients remains in its infancy. Although some effort has
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been devoted to finding TDEs as part of generic multimodal
transient classifiers (see, e.g., Muthukrishna et al. 2019;
Graham et al. 2023), the only effort in the literature that was
specifically tailored to TDEs was Gomez et al. (2023).

In this Letter, we introduce a novel binary machine-learning
photometric classifier, tdescore, trained with the sample of
ZTF nuclear transients to identify TDEs. The code itself is
already available on GitHub16 and Zenodo (Stein 2024), while
the corresponding training data will be released in a dedicated
future publication (S. Reusch et al. 2024, in preparation). In
Section 2 we introduce this ZTF Nuclear Sample, and in
Section 3 we describe the process of generating high-level
“features” from the available data. We then outline the
tdescore classifier itself (Section 4), and explore the
reasoning behind the corresponding classifications
(Section 5). Finally, in Section 6, we highlight the relevance
of tdescore to both existing and future surveys.

2. The ZTF Nuclear Transient Sample

The first photometric optical search for TDEs was conducted
by van Velzen et al. (2011) using archival searches of Sloan
Digital Sky Survey data (York et al. 2000), finding that TDEs
can be differentiated from supernovae using light-curve
evolution. Photometric identification of TDEs at Palomar
began with the predecessor survey to ZTF, the intermediate
Palomar Transient Factory (iPTF) survey (Kulkarni 2013). A
systematic census of nuclear transients in 4800 deg2 of iPTF
data was used to develop simple algorithmic cuts yielding
candidate TDEs with a precision of 20%, which was
sufficiently high to serve as a model for spectroscopic surveys
(Hung et al. 2018). For the ZTF survey, looser cuts were paired
with light-curve analysis for the nuclear transient filter (van
Velzen et al. 2019), which has been used to identify dozens of
TDEs over the course of the survey (van Velzen et al. 2021;
Hammerstein et al. 2023; Yao et al. 2023). The filter was
implemented in AMPEL, a real-time data analysis framework
and ZTF alert broker (Nordin et al. 2019). The nuclear transient
filter itself is an open-source Python script,17 which broadly
selects candidates based on

1. estimated “nuclearity” of the flux-weighted ZTF transient
position using proximity to sources detected by the
deeper Pan-STARRS1 (PS1) survey (Chambers et al.
2016);

2. probability of detection being “real” based on machine-
learning RealBogus/DeepRealBogus classification
of images (Duev et al. 2019; Mahabal et al. 2019) and
algorithmic cuts on image detection parameters;

3. rejection of stellar sources via the machine-learning
sgscore classification (Tachibana & Miller 2018) of
underlying PS1 sources (Chambers et al. 2016), measured
parallax in GAIA DR2 (Gaia Collaboration et al. 2018),
and cuts on bright hosts (m < 12);

4. rejection of Galactic sources by requiring Galactic
latitude |b|> 5; and

5. rejection of moving objects by requiring multiple time-
separated detections of a source.

These cuts are designed to be loose and inclusive,
prioritizing recall over precision. As part of the ongoing ZTF
TDE program, additional light-curve analysis and ranking are
performed to highlight potential TDE candidates (van Velzen
et al. 2021), which are then vetted by humans and assigned
additional follow-up observations for classification. In many
cases, a spectrum is required to resolve ambiguity. With
tdescore, we aim to develop an alternative to this resource-
intensive process using a machine-learning approach.
The nuclear transient filter has been iteratively modified over

the course of the survey to improve the false-positive or false-
negative rate. To develop tdescore, we start with the latest
version of the filter, which was developed and applied to all
archival ZTF alert data, yielding a uniform sample of 11699
nuclear transients discovered in ZTF-I, from 2018 April 1 to
2020 September 30, and in ZTF-II from 2020 October 1 to
2022 April 30 (S. Reusch et al. 2024, in preparation).
We extract any available classifications for these transients

from the ZTF Fritz Marshal18 (van der Walt et al. 2019;
Coughlin et al. 2023) and the predecessor ZTF GROWTH
Marshal (Kasliwal et al. 2019). In general, these are
accumulated human-assigned classifications that can be based
on spectra (including public ones taken from, e.g., the
Transient Name Server, and host spectroscopy from the Sloan
Digital Sky Survey, York et al. 2000), light-curve evaluation,
or other contextual information. We verify each of these human
classifications (see Appendix A for details) and recover 5264
classified sources, of which 86 are classified as TDEs. This
includes 30 sources from ZTF-I presented in van Velzen et al.
(2021) and Hammerstein et al. (2023), 17 additional bright
ZTF-II TDEs from Yao et al. (2023), as well as 39 additional
faint or recent TDEs from ZTF-II that have not yet been
published.

3. Feature Extraction

3.1. Light-curve Analysis

To develop a flexible framework that could be easily
generalized to other surveys, we use a Gaussian Process to
convert the extensive photometry from ZTF into more survey-
independent, high-level physical features such as peak
magnitude and fade rate. We specifically design a multistep
fitting procedure tailored to the known characteristics of TDEs,
namely that they are blue, long-lived transients with little
apparent color evolution. Beyond this, the fitting procedure is
agnostic about any underlying physical model for TDE
emission and can therefore capture the full diversity of TDE
optical emission, including observed TDE outlier behavior
such as multiple peaks or long plateaus.
We use the alert photometry provided directly by ZTF as the

basis of the analysis. No K-correction is applied to the data, but
we do correct for Galactic extinction using results from
Schlafly & Finkbeiner (2011) and the extinction law from
Fitzpatrick (1999). We perform a series of cuts similar to those
in the nuclear filter to remove detections that are not well
subtracted, returning a subset of “clean” photometry for each
source. We specifically require an FWHM < 5″, no bad pixels,
a Real/Bogus score >0.3, a pixel distance to host < 1″, and a
difference image depth of at least 19.0 mag to reject images
taken under poor conditions. Though ZTF provides some16 https://github.com/robertdstein/tdescore

17 https://github.com/AmpelAstro/Ampel-nuclear/blob/main/ampel/
nuclear/t0/NuclearFilter.py 18 https://fritz.science/
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(sporadic) i-band coverage as part of the partnership surveys,
we only consider the g-band and r-band data, which are
primarily provided in a uniform 2 day cadence by the ZTF
MSIP public survey.

Our data set is three dimensional (detections have a flux,
wavelength, and time), so we cannot directly apply a simple
univariate Gaussian process. While multivariate Gaussian
processes have been applied for astronomical data sets, they
require a customized covariance matrix to balance variation
between bands against variation in time (see, e.g., Aigrain &
Foreman-Mackey 2023 for a recent review). Moreover, multi-
variate Gaussian processes have more associated uncertainty in
cases such as here, where the bands are not sampled uniformly.

Instead, we simplify the problem and fit flux in one band as a
function of time with a univariate Gaussian process. Given that
TDEs are generally blue, we first fit the g-band data with a
univariate Gaussian process model implemented in scikit-
learn (Pedregosa et al. 2011), using a “radial basis function”
(RBF) kernel restricted to timescales of 50–500 days, and an
additional white-noise component equal to at least 0.1 mag to
account for systematic uncertainty and prevent overfitting.
After obtaining a model for the g-band data, we then perform a
least-squares minimization fit of the r-band data to this g-band
light-curve model, under the assumption that the data follow a
linear color evolution of the form

m t m t C C t , 1r g 0 1= + + ´( ) ( ) ( ) ( )
where C0 and C1 are fit parameters derived for each source and
t is the observer time in days. After obtaining these coefficients,
we estimate the g-band magnitude of the source for each r-band
detection.

We then fit the combined (g-band and converted r-band)
light curve with the same univariate Gaussian process
procedure. This provides our final model for each source light
curve. An example of this fitting is shown in Figure 1 for a real
TDE with sparse early data where the joint fit is required to
constrain the g-band rise and fade.

With these light-curve fits, we can extract high-level
parameters for each source. We specifically extract

1. the peak magnitude in g-band.
2. the time of peak in g-band.
3. the color at g-band peak.
4. the color change rate (C1).
5. fade time (defined as the time in for the g-band light

curve to return from peak to 0.5 mag below peak).
6. the RBF length scale from the Gaussian process fit.
7. the RBF amplitude from the Gaussian process fit.
8. the Gaussian process “score,” which quantifies how well

the model describes the data.
9. the number of inflection points in the light-curve fit that

occur prepeak, and the number of postpeak inflection
points, to fully capture the multiple peaks that can be
exhibited by many active galactic nuclei (AGN) and
some transients.

10. the mean detection cadence (total number of detections
divided by time in days between first and last detection).

Entirely independently of the above procedure, we also try to
fit the light curves with SALT2 supernova Type Ia (SN Ia)
models (Guy et al. 2007) using sncosmo (Barbary et al. 2016)
and retrieve the underlying c/x1 parameters, as well as the χ2,
to serve as a proxy for the “Ia”-ness of the light curve.
When run on a standard MacBook Pro without any

parallelization, the Gaussian process analysis requires ∼3 s
per transient on average. The time varies somewhat between
individual transients, with more light-curve detections leading
to longer process times. sncosmo is faster, requiring ∼1 s on
average per source. The light-curve analysis procedure is thus
fast enough to scale to deeper surveys such as Rubin. For
surveys with more than two bands, the model in Equation (1)
could be generalized to a thermal model with a temperature and
linear temperature evolution.

3.2. Additional Features

In addition to parameters directly extracted from the ZTF
photometry, additional contextual information is extracted for
each source. The ZTF alerts themselves (Masci et al. 2019;
Patterson et al. 2019) provide the cataloged “sgscore” value
for the source host (a binary machine-learning classification
score based on morphology to distinguish stars from galaxies,
Tachibana & Miller 2018). Each individual detection also
contains

1. distpsnr1—distance of detection to PS1 host in arcse-
conds, from which we calculate a median.

2. distnr—pixel distance to nearest source in reference
image, from which we calculate a median.

3. sumrat—the ratio of summed pixels values in a detection
to the sum of absolute pixel values, serving as a proxy for
yin-yang subtraction artifacts. We calculate a median
sumrat for each source.

4. classtar—star/galaxy classification score from Sour-
ceExtractor (Bertin & Arnouts 1996).

5. isdiffpos—Boolean value for whether the detection is
positive or negative, from which we calculate an overall
fraction of positive detections.

We also crossmatch the sources to their underlying PS1
hosts (Chambers et al. 2016), yielding g− r, r− i, i− z, and
z− y host colors. By construction, all sources will be close to a

Figure 1. An example of the light-curve fitting procedure on a real TDE,
ZTF20achpcvt/AT2020vwl (Hodgkin et al. 2020; Hammerstein et al. 2021b),
for which limited data were available at peak. Using the two-step fit, the
approximate g-band peak time and the color at peak can be inferred for use in
classification. AT2020vwl is relatively red with (g − r) ≈ 0, but bluer TDEs
with (g − r) > 0 are detected more frequently in g-band. Nonetheless, the
fitting procedure still works well for this TDE.

3

The Astrophysical Journal Letters, 965:L14 (10pp), 2024 April 20 Stein et al.



source with at least one PS1 detection. We also crossmatch to
mid-infrared host colors (W1–W2, W3–W4) from WISE
(Wright et al. 2010) and to underlying W1 variability using
WISE+NEOWISE (Mainzer et al. 2014), similar to Yao et al.
(2023). We also crossmatch to the Milliquas catalog to
known radio/X-ray-selected AGN (Flesch 2023), yielding a
boolean has_milliquas flag.

4. tdescore

4.1. ZTF Nuclear Machine Learning (ML) Data Set

From the nuclear sample, we have 5264 sources with
classifications that could in principle be used for analysis. The
sample is dominated by the 4218 AGN (80.1%) but also
includes 213 core-collapse supernovae (CCSNe; 4.0%), 708
SNe Ia (13.4%), 39 variable stars (0.7%), and 86 TDEs (1.6%).
Additional quality cuts are then applied to select a sample of
nuclear transients with uniformly derived properties. In
particular, we restrict ourselves to sources that passed the
light-curve fitting described in Section 3 and had a significantly
measured fade time (i.e, were detected at least 0.5 mag below
peak). In practice, this requires sources to be detected multiple
times in both g and r bands and to have a detection at least 0.5
mag below g-band peak. Of the initial 5264 classified nuclear
sources, only 3040 pass this additional “fade and color change”
cut. All sources passing this step also have the other relevant
light-curve parameters such as score, color at peak, etc.

From these 3040 sources with high-quality light curves, we
additionally select those for which all WISE host colors and
PS1 host colors were available and for which sncosmo
successfully ran. Overall, half of the AGN (2153) and core-
collapse supernovae (106) pass all cuts, along with 60% of SNe
Ia (427) and 64% of TDEs (55). However, only ∼8% variable
stars (3) pass, due primarily to their erratic light curves. This
ultimately leaves 2744 sources in our final “nuclear ML
sample,” of which 55 are TDEs and the remaining 2689 are
non-TDEs. The share of TDEs thus increases slightly from
1.6% of classified sources to 2.0% of the “nuclear ML sample.”
These steps are illustrated in Figure 2.

4.2. Training and Testing Sets

Given the small number of TDEs (55) in the data set, it
would not be possible to measure classifier performance with
reasonable accuracy using a simple division into separate
training and testing sets. Even if 20% of the sources were
reserved for testing, this would correspond to just ∼11 TDEs,
with consequently high uncertainty for metrics such as recall.
Furthermore, given the small number of TDEs, the perfor-
mance of a classifier on the test sample will be strongly
influenced by the randomly varying composition of the sample.
If “atypical TDEs” were randomly to be allocated to the
training set, classifier performance would be much better than if
they were allocated to the test set.

Instead, to maximize the number of TDEs available for
training and to minimize stochasticity, we employ the “leave
one out” k-fold stratified cross validation to create testing and
training sets (see, e.g., Hastie et al. 2009). We randomly divide
our sample into 55 different, equally sized groups, each
containing one TDE. The non-TDEs are randomly sorted and
then allocated evenly to one of these groups. As 2689 is not
exactly divisible by 55, some groups have 48 non-TDEs, while
others have 49 non-TDEs. We select one group to be our test

data set and use the remaining 54 groups as a training set. After
training, we can derive performance metrics on the test data set.
We can then repeat the process on a second group, again

using the other 54 groups as a training set. This process is
repeated for every single group in the data set, meaning that 55
different classifiers are trained, with each source being tested
once and used for training 55 times. To further reduce the
variance in metrics, we repeat the process ten times, each with a
different random sorting of the data. By using the average
performance of classifiers across groups and iterations, we can
obtain more robust estimates of performance and be certain that
any outlier sources are fairly represented.

4.3. Data Set Augmentation

Given the severe class imbalance in nuclear transients, where
TDEs represent a tiny minority (∼2% of the total), any
classifier that simply rejected all candidate TDEs would already
have an accuracy of ∼98%. To mitigate this effect, we employ
synthetic minority oversampling technique (SMOTE) to
generate a balanced training set (Chawla et al. 2002). With
SMOTE, for each of the k-fold training sets, we randomly
select pairs of TDEs and generate new pseudo-TDEs with
properties lying a random distance between the two real TDEs.
This process is repeated until the training set contains as many

Figure 2. Top: breakdown of the various cuts applied to the ZTF nuclear
sample. Of 11,699 ZTF sources; 5264 have a secure classification; 3040 also
have a well-measured fade; and 2744 sources pass all cuts. Bottom: of these
2744 sources used to train tdescore, 55 (2.0%) are TDEs.
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TDEs as non-TDEs (and is thus composed of 50% non-TDEs,
∼2% real TDEs, and ∼48% pseudo-TDEs). Once trained on a
fold, a classifer can then be tested on the test data, which
contains only non-TDEs and real TDEs, to assess its
performance. The process of generating pseudo-TDEs via
SMOTE is repeated from scratch for each k-fold permutation
on the train set, excluding the sources in the test set, so there is
no contamination from test data in the training sample.

4.4. Classifier Architecture and Performance

With the balanced training sets built in Sections 4.1–4.3, we
can train the tdescore classifier. tdescore is built with the
XGBoost algorithm (Chen & Guestrin 2016), which employs
a gradient-boosted decision tree architecture to build a
classifier. For tdescore, we use the python implementa-
tion with 27 features. Given the risk of overfitting on our
relatively small data set and the lack of an independent
validation set to measure performance, we generally do not
modify the default settings in XGBoost.19 We use 100
estimators, and to mitigate overtraining, we further adopt a
subsampling rate of 70% for XGBoost to employ in each
iteration of the boosting procedure. During training, we use the
area under the precision-recall curve as the optimization metric.
Use of this metric ensures that both false positives and false
negatives are minimized. The augmentation, training, and
testing are rapid, requiring approximately 5 s for a single
iteration on a typical MacBook Pro.

Having trained our classifier and applied it to the entire
nuclear ML sample, we then require a threshold score to
determine to which class each source is assigned. The precision
and recall as a function of possible threshold is illustrated in
Figure 3. As our base case, we adopt a threshold at which
>80% precision20 is achieved, with the corresponding confu-
sion matrices shown in Figure 4. With this cut, 77.5% of TDEs
are successfully recovered (∼43 TDEs). The classifier
efficiently rejects non-TDEs, with 99.6% being correctly
classified, while just 0.4% are misclassified as TDEs (∼11

non-TDEs). Given the unbalanced sample, this results in 80.2%
of tdescore-selected candidates being real TDEs, with
19.8% being non-TDEs.
The appropriate threshold for classifiers such as tdescore

ultimately depends on the intended scientific application. A
high-precision sample with lower recall21 may be preferable for
rate studies or other population analysis, whereas a high recall
might be desired to generate a complete, spectroscopically
classified TDE sample where some contamination is accep-
table. We consider an alternative stricter threshold, chosen such
that at least 95% of tdescore-selected TDEs would be
genuine. Applying this higher threshold produces a very clean
sample of probable TDEs, which nonetheless retains a recall of
73.3% (∼40 TDEs and ∼2 non-TDEs). This confirms that
nearly three-quarters of genuine TDEs are confidently
identified, receiving very high classifier scores. We also
consider a loose threshold that is nearly complete, chosen such
that a recall of at least 95% is achieved. With this loose cut,
only ∼5% of TDEs are lost (∼3 TDEs), but the background is
rejected with such efficiency (97.4%) that the share of TDEs in
the sample reaches 45.7% (∼52 TDEs and ∼62 non-TDEs),
versus just 2.0% in the parent training sample. tdescore is
thus able to reject most of the background at very little cost to
completeness. Further tests of tdescore using subsets of the
parameters are detailed in Appendix B, which confirm that
much of the background can be rejected even before light-curve
information is available.
As a cross-check, we repeat the tdescore training without

using the SMOTE augmentation described in Section 4.3. For
the balanced threshold (defined as >80% precision), recall
slightly increases from 77.5% to 79.5%, but for the clean
threshold, recall falls from 73.3% to 72.0%. For the inclusive
threshold (defined as >95% recall), precision falls substantially
from 45.7% to 29.5%. Overall, the area under the precision/
recall curve decreases from 0.893 to 0.882. The data
augmentation step thus provides clear performance improve-
ments for cases prioritizing either high recall or precision.

5. Understanding Classifier Reasoning

To have confidence in the results of tdescore, it is
important to understand whether classifications are based on
sound reasoning. The global importance of different features
are listed in Table 1. In agreement with Gomez et al. (2023), we
find that color at peak is an important discriminator, confirming
the well-known property that TDEs are atypically blue
relatively to most other transients. However, given the
overwhelming dominance of AGN as contaminant nuclear
sources, we find that WISE W1–W2 color is by the far the most
important feature in identifying TDEs. This is not unexpected,
given the ubiquity of WISE color cuts as a method of selecting
AGN (Stern et al. 2012). We also find that sncosmo analysis
can be a useful tool, with the resultant χ2 values being useful
proxies for both SNe Ia (with good fits) and AGN (with
poor fits).
tdescore also attempts to overcome the “black box

problem” by incorporating explainable AI. We analyze the
tdescore classifier using Shapley additive explanations
(SHAP) Python package (Lundberg & Lee 2017). SHAP
explains the output of ML classifiers for individual objects
by estimating the local importance of each feature for a given

Figure 3. Precision and recall as a function of tdescore threshold. The
balanced threshold (chosen such that precision is at least 80%) is illustrated by
the central dotted vertical line. The inclusive (>95% recall) and clean (>95%
precision) thresholds are illustrated by the left and right dotted vertical lines,
respectively. The corresponding confusion matrices for these three scenarios
are shown in Figure 4.

19 For a full explanation of available settings, see https://xgboost.readthedocs.
io/en/stable/python/python_api.html#xgboost.XGBClassifier.
20

“Precision” is often called “purity” in astronomical contexts. 21
“Recall” is synonymous with “completeness.”
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Figure 4. Prediction-normalized confusion matrices (left) and truth-normalized confusion matrices (right), showing the performance of tdescore on the real data for
different thresholds. The data set is highly imbalanced, as seen in Figure 2. The source shuffling is performed ten times, yielding averaged performance across the
iterations, with the average expected number of sources for each category shown in parentheses. Top: an inclusive threshold, optimized for recall. At the cost of 5%
loss of TDEs, a sample is produced with a TDE fraction increased from ∼2% to ∼46%. Center: an intermediate threshold, chosen to achieve >80% precision. It
achieves relatively high recall (77.5%). Bottom: a strict threshold, optimized for precision. >70% of TDEs pass this requirement, yielding a clean sample with <5%
contamination rate.
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source. This means that every individual tdescore classifi-
cation can readily be understood and sanity checked by
humans. An illustration of tdescore reasoning for classify-
ing a TDE and an SN Ia, are shown in Figure 5. In these cases,
tdescore follows a decision-making process very similar to
that employed by human scanners in ZTF.

6. Discussion and Conclusion

tdescore is a novel photometric classifier developed with
the explicit aim of approximating the human scanning
employed in ZTF. Our ZTF sample provides the largest
homogeneous sample of nuclear transients by far (Yao et al.
2023) and thus presently serves as the best template for
developing techniques to detect TDEs. tdescore combines
well-tested algorithmic cuts to robustly identify nuclear
transients, an agnostic light-curve analysis technique using
Gaussian processes, and a simple binary tree-based classifier
using physically motivated features.

The sole other dedicated TDE classifier in the literature,
fleet (Gomez et al. 2023), is based on an adapted SN
classifier. Gomez et al. (2023) began with a sample of
spectroscopically classified transients from the Transient Name
Server, rather than a dedicated sample of nuclear transients as
presented here. In other respects Gomez et al. (2023) followed
a similar procedure to the one presented here, with an
imbalanced sample of transients that are first analyzed for
light-curve and host galaxy properties, augmentation via

SMOTE, and then performance assessment via k-fold cross
validation. fleet achieved just ≈40% recall with ≈50%
precision for a loose selection, or alternatively ≈30% recall
with ≈80% precision for a stricter selection, in contrast to the
∼80% recall and ∼80% precision in the tdescore balanced
case. However, the performance is not directly comparable
because fleet was applied to only 40 days of photometry,
rather than the full light-curve history employed here. For a
TDE such as that in Figure 1, 40 days would be insufficient to
adequately measure fade or color evolution. As detailed in the
Appendix B, the performance of tdescore is closer to
fleet if late-time data is ignored.
Looking further ahead, tdescore can serve as a template

for obtaining a photometrically selected sample of TDEs from
surveys such as the Legacy Survey of Space and Time (LSST)
with the Vera C. Rubin Observatory (Ivezić et al. 2019). In
combination with photometric redshifts, an ML-based approach
like tdescore could enable us to perform large-sample TDE
demographic studies for the first time without use of any
spectroscopic observations. In particular, Bricman & Gomboc
(2020) estimated that LSST should detect >3000 TDEs per
year, under the assumption of a conservative detection
requirement of 2 mag above the median 5σ limit. Pushing 1
magnitude deeper, to match the cuts employed by this work,
would increase this number even further. The performance of
tdescore suggests such a depth would be plausible using

Table 1
Relative Importance of all 27 Features in tdescore

Feature Description Importance
(%)

w1_m_w2 WISE W1–W2 host color 32.4
peak_color Color at g-band peak 16.0
has_milliquas Has milliquas crossmatch? 9.3
color_grad Rate of color change 7.8
sncosmo_chisq sncosmo χ2 5.9
sncosmo_c sncosmo c parameter 4.6
fade Fade from G.P. 3.8
det_cadence Mean detection cadence 2.4
pre_ inflection Number of prepeak inflections 2.3
distpsnr1 Distance to PS1 host 1.8
length_scale Length scale from G.P. 1.6
y_scale Y scale from G.P. 1.6
sncosmo_x1 sncosmo X1 parameter 1.6
w3_m_w4 WISE W3–W4 host color 1.2
post_inflection Number of postpeak inflections 1.0
g-r_MeanPSFMag PS1 host g − r color 0.9
sumrat “Sum ratio” 0.9
score Score from G.P 0.8
classtar SourceExtractor variable 0.8
positive_fraction Fraction of positive detections 0.6
w1_chi2 WISE W1 χ2 0.6
distnr Pixel distance to nearest source 0.6
z-y_MeanPSFMag PS1 host z − y color 0.4
sncosmo_chi2pdof sncosmo χ2 per d.o.f 0.4
i-z_MeanPSFMag PS1 host i − z color 0.2
r-i_ MeanPSFMag PS1 host r − i color 0.1
sgscore1 Star/galaxy score for PS1 host 0.1

Note. Calculated by XGBoost (Chen & Guestrin 2016) using the standard
averaging of importance across all decision trees in the final model (see, e.g.,
Hastie et al. 2009).

Figure 5. “Waterfall plots” produced by SHAP for a TDE (top) and an SN Ia
(bottom), demonstrating the thinking behind the tdescore classifications. In
both plots, red/right is more TDE-like, while blue/left is less TDE-like. The
four most salient features for each source are shown, with the actual value for
each parameter given in the leftmost column. Top: the TDE (ZTF19aapreis) has
WISE colors inconsistent with an AGN host (W1–W2 = 0.0), has a blue color
at peak (g − r = −0.3), is very nuclear (0 1 offset to PS1), and has very little
cooling (0.003 mag per day). All these variables lead to a TDE classification.
Bottom: the SN (ZTF19aanyuyh) also has WISE colors inconsistent with an
AGN host (W1–W2 = 0.0) and a high detection rate (one data point per
1.3 days), supporting a possible TDE classification. However, the source also
fades very rapidly (9.3 days), and is somewhat offset from its PS1 host (0 4).
In combination, these other variables lead to a non-TDE classification. In both
cases, the tdescore use of features closely approximates the reasoning that
would be employed by an astronomer.
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photometric selection, with the slow evolution of TDEs being
well suited to the expected LSST cadence.

The performance of tdescore with real-time ZTF data
will be the subject of a future publication. There are many other
possible uses of photometrically selected TDEs, for example, to
build a much larger sample of probable TDEs to test possible
multimessenger correlations between neutrinos and TDEs (see,
e.g., Stein 2019), for which there is growing evidence (Stein
et al. 2021; Reusch et al. 2022; Jiang et al. 2023; van Velzen
et al. 2024). Another use is to quickly identify candidate TDEs
among transients detected by surveys at other wavelengths
through crossmatching to probable ZTF TDEs found by
tdescore. We will use this method to aid searches for
dust-obscured TDEs with the Wide-Field Infrared Transient
Explorer (Lourie et al. 2020), a newly commissioned near-
infrared survey telescope at Palomar Observatory.

Building broader TDE samples is important because by
construction, tdescore will not find TDEs that differ
substantially from the existing ZTF TDE sample. In particular,
given the importance of the W1–W2 color, tdescore is
likely to be heavily biased against finding TDEs in AGN. This
is a direct consequence of the parent sample of ZTF TDEs,
none of which occur in AGN-like hosts with W1–W2 > 0.7
(Stern et al. 2012). To find such “AGN−TDEs” (or other
outliers such as red TDEs or fast TDEs), we would first require
a handful of spectroscopically confirmed ZTF examples. As
our understanding of TDE diversity improves, tdescore can
be retrained to find a broader selection of TDEs.

Applying tdescore directly to future optical surveys
should be relatively straightforward because the classifier is
trained almost exclusively on light-curve features that are
generic and do not encode any specific ZTF survey informa-
tion. However, there is also substantial scope for improvement
in performance. While all ZTF light curves were analyzed here
in observer frame units, with no correction for redshift, ongoing
industrial spectroscopic surveys such as DESI (DESI Colla-
boration et al. 2016) mean that spectroscopic redshifts will be
available systematically for much of the local Universe. Even
in the LSST/Rubin era, widespread adoption of photometric
redshifts would enable intrinsic rest-frame properties such as
peak luminosity to be employed for classification. Additionally,
TDEs are generally characterized by luminous UV emission,
and u-band color is an excellent discriminator to find TDEs
(see, e.g., van Velzen et al. 2011). While no UV observations
were used for tdescore, due to a lack of systematic
coverage, Rubin will have u-band coverage of all transients
on a ∼weekly cadence. At higher redshifts, much of the TDE
rest-frame emission at UV wavelengths will also be detectable
with optical LSST filters. There are thus many reasons to be
optimistic that future iterations of tdescore will be able to
outperform the classifier presented here.
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Appendix A
Classification of ZTF Nuclear Transients

With the 11,699 transients in our sample, we employ a two-
step process to assign classifications to each source. We extract
available classifications for these transients from the ZTF
Fritz Marshal (van der Walt et al. 2019; Coughlin et al.
2023) and the predecessor ZTF GROWTH Marshal (Kasliwal
et al. 2019). However, these classifications have been assigned
by human scanners in a variety of heterogeneous ways. While
our sample of TDEs has been thoroughly vetted, we cannot vet
the justification and reliability of each individual classification
assigned for the >5000 non-TDEs in this way. Instead, we
independently classify this sample of nuclear sources using
objective contextual data, and cross-check to confirm that the
classifications agree with the human-assigned labels.
We follow a hierarchical approach for the non-TDEs, and first

consider classifications based directly on spectra of transients:

1. Transient Name Server (TNS) Spectra. Transients that are
classified on TNS require an accompanying spectrum.
We assume that these TNS classifications are accurate. A
total of 953 transients have a TNS classification.

2. ZTF Spectra. We assume that internal ZTF classifications are
reliable if at least one spectrum of the source is available. A
total of 328 transients are not classified on TNS but do have
an internal ZTF classification and spectrum.

We further consider sources that have archival spectroscopy
confirming a variable host:

8

The Astrophysical Journal Letters, 965:L14 (10pp), 2024 April 20 Stein et al.



1. SDSS Spectra. We crossmatch every source to the catalog of
SDSS spectra (York et al. 2000). We assume that the
classifications are reliable if a human scanner has classified a
source as variable and the source also has a spectroscopic
classification confirming it as variable (AGN or stellar) from
SDSS. There are 1653 such sources.

Finally, we consider sources that are very likely to be
variables:

1. Milliquas AGN. We consider a classification to be reliable
if a source is listed in of the “Million Quasar Catalog”
(Milliquas V8) of known AGN (Flesch 2023) and has
been also classified by a human as an AGN. Six hundred
eighty-eight sources meet this criteria.

2. WISE AGN. We consider sources with very AGN-like
WISE colors (W1–W2) > 0.8 to be reliably classified
(Stern et al. 2012). There are 973 such sources classified
via WISE colors.

3. Gaia QSOs. We consider Gaia-Data Release 3 cataloged
QSOs (Gaia Collaboration et al. 2023) as AGN if this
agrees with a human classification. Six hundred sixty-
nine sources meet this criteria.

After following this procedure, a total of 5264 sources have a
verified classification. We omit the remaining ambiguous
sources, and treat these 5264 verified-classification sources as
our final sample of “classified sources.” The breakdown in
classification origin is given in Figure 6.

Appendix B
Performance of tdescore with Different Parameter

Subsets

We tested the performance of tdescore using subsets of
parameters listed in Table 2. For consistency, we measure

performance on the same 2744 sources for which all
information is available. The parameters were grouped into
“Host Only,” “Early,” “At Peak,” and “Full,” where “Full”
corresponds to the complete parameter set described in
Section 3. The parameter sets were cumulative, with, e.g., the
“Early” set including all “Host” parameters to provide an
estimate of performance over time as available data increased.
We measure the performance of tdescore using each of

the four data sets, with the precision/recall area and “receiver
operating characteristic curve” (ROC) area listed in Table 2.
We also show the full precision and recall of each classifier in
Figure 7. As expected, performance improves with increased
parameter numbers. However, we note that using only data
available after first detections, a recall of ∼50% and
precision of ∼30% is still achieved. tdescore can thus
identify candidate TDEs with a moderate false-positive rate at
this stage, making triggered follow-up of “infant TDEs”
feasible.

Figure 6. Breakdown of the validation method for classifications, as described
in Section A. Each source requires both a human-assigned classification and a
second piece of confirmatory evidence to be considered reliably classified.

Table 2
Performance of tdescore for Four Parameter Sets

Parameter Set New Parameters
Total

Parameters
ROC
Area

Precision/
Recall Area

Host Only sgscore1 9 0.91 0.20
w1_m_w2
w3_m_w4
w1_chi2

has_milliquas
g-r_MeanPSFMag
r-i_MeanPSFMag
i-z_MeanPSFMag
z-y_MeanPSFMag

Early distpsnr1 13 0.95 0.30
classtar
sumrat
distnr

At Peak peak_color 18 0.96 0.63
pre_inflection

positive_fraction
det_cadence
y_scale

Full color_grad 27 0.99 0.89
fade

length_scale
post_inflection

score
sncosmo_chisq

sncosmo_chi2pdof
sncosmo_x1
sncosmo_c

Note. Information only about the host, information available shortly after
discovery, information available by the time of peak, and the full parameter set.
The performance of tdescore improves substantially with more data, but
high performance is only achieved for the full data set.
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