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ABSTRACT

We observe that accurate and fast tracking in Internet of Things

(IoT) devices is still a challenging problem. Several deep learning

models have emerged which provide higher accuracy scores in ob-

ject detection and tracking, however, due to their computationally

expensive nature they are not useful in enabling real-time track-

ing at IoT devices. Correlation �lters have emerged to show better

speed in real-time tracking and provide good tracking results in

cases of occlusion, rotation, illumination and other distractions. To

get better speed as well as accuracy we use combination of corre-

lation �lter and deep learning methods. We propose a distributed

tracking and verifying (DTAV) framework. Speci�cally, we run two

object tracking algorithms, one on the client and another on the

server. The algorithm run on the client is referred to as the Tracker,

which is based on correlation �lter and runs easily in real-time. The

server hosts the veri�er algorithm which performs high accuracy

veri�cation. Thus, while the client performs fast object tracking,

the server’s tracking algorithm veri�es the output and corrects the

server whenever required tomaintain the accuracy of themodel.We

present our edge computing-based framework and discuss the mo-

tivation, system setup and series of experiments performed for the

framework and present our experimental results. DTAV achieved

7.78% improvement on accuracy and 15% improvement in FPS.

CCS CONCEPTS

• Human-centered computing→ Ubiquitous and mobile comput-

ing systems and tools; • Computing methodologies→ Tracking;

• Computer systems organization → Client-server architectures.
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1 INTRODUCTION

Visual object tracking has a major role to play in video analytics.

However algorithms observe a trade o� between speed, accuracy or

real time tracking. This is because object tracking can be challeng-

ing due to factors like object illumination, deformation, rotation

or pose variation. Object tracking is signi�cantly used in �elds

like surveillance, human computer interaction, tra�c monitoring

and robot vision. In a given video we provide bounding box for

the object to be tracked in �rst frame. In real time, our algorithm

should be able to track this object across all frames in given video.

This brings in challenges due to presence of similar looking ob-

jects and background clutter. Some deep learning methods have

attempted to solve this issue and have obtained signi�cantly higher

accuracy. However, these methods face challenges in real time track-

ing due to computationally expensive property of deep learning

models. IoT devices are often unable to host such computationally

expensive algorithms, since they have limited processing capacity,

limited memory and power supply. Moreover latency is also a issue.

Researchers are exploring light weight algorithms which can be

deployed on IoT devices. This helps the algorithms to be deployed

in embedded systems. However, the obstacle occurs in providing

both accuracy and speed.

To address real-time and high-accuracy dilemma in tracking, we

propose a distributed tracking and verifying (DTAV) framework,

inspired from the parallel tracking and verifying algorithm (PTAV)

framework [? ]. DTAV uses a fast discriminative scale space track-

ing (fDSST) algorithm [? ], called tracker, running in the IoT device,

and a more accurate Siamese network, called veri�er, running at

the backend server, to verify the outputs generated by the fDSST.
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fDSST uses correlation �lters since they are successful representa-

tive adaptive discriminative tracker to get real-time tracking results.

Emerging edge computing is proposed to address the processing

capacity of IoT devices and thus gain better speed and more accu-

racy.

Our objective is to provide real-time and high-accuracy visual

tracking with the proposed DTAV framework in IoT device with

emerging edge computing. In speci�c, we address the optimal con-

�guration optimization in various edge computing scenarios. If

the algorithms are not implemented in an optimised manner, edge

computing will lead to sub-optimal results. Therefore, to gain speed

in real time tracking, but at the same time we choose optimum pa-

rameters which provide boost to the accuracy scores. We perform

experiments by varying di�erent network parameters in order to

reach the optimum network setup and accuracy. We optimize the

client server settings by optimizing the communication network

parameters like bandwidth, veri�cation intervals and frames per

second (FPS).

Our contributions are summarized as follows.

• We present a distributed tracking and verifying framework

to visual object tracking by edge computing, which achieves

high accuracy and high speed visual tracking framework for

IoT at the same time.

• We present a scalable solution. Our framework can be ex-

tended to IoT devices such as mobile devices or drones. Thus,

we present a solution to achieve higher accuracy without

having to compromise on the speed in real time tracking.

• We validated the proposed DTAV approach, which obtained

accuracy of 86.90% and showed improvement of 7.78%.

2 RELATED WORKS

In IoT applications [? ], visual tracking has been widely employed

as cloud computing is not always feasible for real-time inference

due to poor latency and coverage. Generally, there is a trade-o�

between speed/frame rate, accuracy, robustness and generality in

tracking algorithms.

In [? ], the authors assessed the state-of-the-art in single object

tracking in a video, with an emphasis on the accuracy and the ro-

bustness of tracking algorithms. In short, for visual object tracking,

simple algorithms work e�ectively when the target is moving at

slow speed, and the background noise and clutter is signi�cantly

less. However, in cases where the target moves fast or there are

distractions in background. Using deep learning algorithms which

have strong discriminative power might help increase the robust-

ness of the algorithm but greatly impacts the speed and hampers

real-time performance. Therefore, providing the bene�ts of both

simple and computationally expensive algorithms became a hot

area recently.

In recent years, there have been advances in improving the

deep learning inference time by splitting the Deep Neural Net-

work (DNN) between client and server or by distributing the DNN

on an IoT device cluster. Papers like Neurosurgeon [? ], Deep Things

[? ], DADS [? ], QDMP [? ], Auto-Split [? ], DNN schedule [? ], etc.,

have proposed di�erent splitting/distribution techniques to perform

this edge cloud partitioning like layer-based splitting, graph-based

splitting, fused tile partitioning etc. The underlying motivation is

Figure 1: Object tracking performance comparison of fDSST

and Siamese network results on OTB 2015 dataset, where

the big bounding box is the fDSST algorithm result, and the

small bounding box is the Siamese network result.

the same across all techniques - reduce total inference time and

possibly bandwidth consumption by implementing some form of

dynamic partitioning framework over the network.

Parallel Tracking and Mapping (PTAM) algorithm [? ] by split-

ting the role of tracking and its corresponding mapping algorithm

into two parallel threads. The mapping does not take place for every

frame. Taking inspiration from this work, PTAV framework was

further developed to perform veri�cation only on certain frames.

Our work is closely related to and inspired by the PTAV framework

in [? ], with the following major di�erence. We aim to implement

the framework in a distributed fashion - with a client-server ar-

chitecture and consisting of IoT/edge devices. Because we need

to communicate between client and server, another parameter of

network bandwidth gets introduced which wasn’t the case in PTAV

as it was run on two threads on the same machine.

3 PROBLEM STATEMENT

The objective of this paper is to build a real-time and high-accuracy

visual tracking system that works on IoT devices. Our proposed

method consists of two tracking algorithms. A fast but low-accurate

tracking algorithm called tracker does inference in real-time A high-

accurate but slow tracking algorithm, called veri�er, veri�es and

corrects the results of the tracker. As we see in Figure 1, the re-

sults obtained from the tracker may sometime need correction.

This is where the veri�er contributes by providing its feedback.

The entire framework would run as a client-server based system,

with the tracker running on the client, which is an IoT/edge device

and the veri�er running on a server. Tracking and verifying run

asynchronously as verifying is more expensive computationally

compared to tracking, so verifying is usually done at regular inter-

vals. The main challenges in such a system is to dynamically adjust

its con�guration in di�erent con�gurations like veri�cation inter-

val, speed at which the client and server perform inference, network

bandwidth and observe their impact on the FPS and accuracy of

our framework.

The main challenges in such a system is to dynamically adjust its

con�guration in di�erent con�gurations like veri�cation interval,

speed at which the client and server perform inference, network

bandwidth and observe their impact on the FPS and accuracy of

our framework.



Distributed Tracking and Verifying: A Real-Time and High-Accuracy Visual Tracking Edge Computing Framework for Internet of ThingsACM/IEEE SEC’23, December 06–09, 2023, Wilmington, DE

Figure 2: DTAV Overview

4 DISTRIBUTED TRACKING AND VERIFYING
(DTAV) METHOD

The overall design of DTAV is shown in Fig. 2. In DTAV, the tracker

maintains a bu�er of frames which makes the tracing back e�cient.

The veri�er uses Siamese network to perform object tracking. We

initialise a thresholdĐ1. If the veri�cation result from the tracker is

less than this threshold, then veri�er will consider this as a tracking

failure. Now, the veri�er performs object tracking and generates its

results. The frame is passed to the trained Siamese network which

tracks the object and produces output score. If the score for this

result is less than the threshold Đ2, then the tracking result is not

changed. Instead we decrease the veri�cation interval. This helps

in increasing the local region to track the target. This process is

repeated until the veri�cation score is greater than the threshold

Đ2. These Đ1 and Đ2 values are taken as 1.0 and 1.6 respectively.

The original veri�cation result is restored after this. If the object

tracking results generated by the fDSST algorithm on the client

side are close to the score generated by the Siamese network, then

the Server sides provides a positive feedback. In the other case, the

server’s feedback contains the corrected coordinates for the given

input frame.

However, deploying DTAV in an IoT setup is challenging because

we need to consider parameters such as heterogeneous client-server

speed, network environment etc. We perform a series of experi-

ments to decide the optimal parameters for our communication

channel. In a client-server setup it is critical to determine the net-

work parameters like communication frequency, bandwidth and

FPS.

First, the correct veri�cation interval for communication be-

tween the client and server is very important. It is critical to deter-

mine the optimal veri�cation interval for the setup. Larger veri�-

cation intervals can lead to decrease in the accuracy of the model.

This is because if an object is moving relatively faster in the video

frames, then having a larger veri�cation interval may lead to skip

the object tracking veri�cation. For example, consider a scenario

Algorithm 1 DTAV: Client side process

1: for every the x-th frame in video do

2: tracker algorithm processes xth frame

3: if msg received from server side : then

4: if veri�er needs to correct tracker result for a frame :

then

5: trace back to the frame

6: correct results

7: resume tracking

8: end if

9: end if

10: if x%veri�cation interval==0 : then

11: send the client side result and frame to server side for

veri�cation

12: end if

13: end for

Algorithm 2 DTAV: Server side process

1: if request received from client side then

2: process the frame by veri�er algorithm

3: if veri�cation passed : then

4: send positive feedback to client

5: end if

6: if veri�cation not passed : then

7: send correct tracking results as feedback to client

8: end if

9: end if

where client side veri�es output with the server at every 20th frame,

but a tracker object appears and disappears from the frame before

20th frame. Thus, this object would skip the veri�cation from the

server side. Additionally, a smaller veri�cation interval would lead

to decrease in FPS which could a�ect the accuracy. It would de-

crease the speed of execution because smaller interval means more

frequent communication between client and server.

Second, how to update the veri�cation interval is very important.

This is because, when the veri�er provides its feedback to the client.

But, if the veri�cation interval is too large, the veri�er would not

be able to provide the correct score. Thus, we prefer to make the

veri�cation interval adjustable. Depending upon the veri�cation

score, the interval is kept on decreasing if required, till the score

generated by the veri�er passes thresholdĐ2. This concept is further

discussed in the experimental setup section.

5 PERFORMANCE EVALUATION

In this section, we begin by describing our system implementation

followed by discussing the experiments performed. In order to

understand the e�ciency of our approach, and to �t the correct

parameters we run the experiment in di�erent scenarios and pick

the most optimum values.

5.1 System Implementation

We have implemented this client-network architecture using gRPC,

an open-source high-performance Remote Procedure Call (RPC)
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Figure 3: Veri�cation Interval vs FPS vs Accuracy

framework developed by Google that can run in many environ-

ments such as C, Go, Python, Java etc. For simplicity and ease of

implementation, we have chosen a Unary RPC approach where the

client sends a single request and gets back a single response. The

client invokes a stub (server) method with a Request message object.

Once the server has the client’s request message, it does whatever

work is necessary to create and populate a response. The response(if

successful) is then returned to the client which completes the call

on the client side. Once the gRPC setup is done, we need to tune

our setup with optimum bandwidth, veri�cation interval and client

and server speeds.

5.2 Experimental Setup

We performed a series of experiments to determine the optimum

network parameters to get best performance for the PTAV client

server setup. We varied the veri�cation interval and observed the

changes in accuracy and bandwidth. Through these experiments

we were able to chose the optimum veri�cation interval values.

Moreover, we run the experiment in di�erent bandwidth settings to

simulate the performance of the network setup in di�erent devices.

Further we also compare the performance of our proposed PTAV

with the default PTAV in client server setup.

5.3 Experimental Results

E�ect of Veri�cation Interval on Accuracy: As we discussed

in the previous section, the client sends frame to the server on

regular intervals which are prede�ned. Veri�cation interval has a

signi�cant role to play in determining the accuracy. This is because

the algorithm hosted by server, corrects and veri�es the tracking

results obtained from the algorithm hosted by the client. Figure 3

shows the e�ect of veri�cation interval on accuracy. We observe

that if the veri�cation interval is too large, for example more than

20, then some of the real time tracking results will not be accurate.

Else, if the veri�cation interval is small, for example less than 5,

then this would have e�ect on the real time tracking. FPS and hence

the real time tracking would be a�ected. We empirically derive the

optimum accurate veri�cation interval to begin with, which is 10

from Figure 3.

E�ect of Veri�cation Interval on FPS: Veri�cation interval

has e�ect on speed of the framework. Figure 3 shows the e�ect of

veri�cation interval on FPS. We observe that smaller veri�cation

Figure 4: Simulating di�erent server speed

interval, has smaller FPS. This is because smaller veri�cation inter-

val causes the algorithm to be computationally expensive. Larger

veri�cation interval implies less communication between the client

and server which leads to faster FPS, but this reduces the accuracy.

From the graph, we also see that, FPS increases up to a certain value

depending upon the system limitations. In our case the highest FPS

achieved was 20 and then the value is constant, this is because of

system limitations.

Adjust Communication frequency vs non-adjustment:Client

and server communicate at �xed interval and exchange the ob-

ject tracking information. This �xed interval communication (non-

adjustment) has disadvantages. Running DTAV in non-adjusting

setup gave accuracy of 82% while running DTAV in adjusting setup

gave accuracy of 86.90%. This is because if the target appearance is

changing quickly, then a �xed veri�cation interval will not be able

to adjust itself to capture it. Hence, a threshold is de�ned which

determines from accuracy score whether the veri�cation interval

needs to be reduced. In such cases, the veri�cation interval is de-

creased till the accuracy score is above the threshold. This helps in

sharing more details of the local region with the server (ver�er).

After we obtain a valid result, the veri�cation interval is restored.

Hence, the adjusting veri�cation interval is implemented in the

algorithm.

Impact of Server Speed: We highlight the impact of server

speed on the accuracy. We simulate di�erent client speeds, by using

sleep functionality. In Figure 4 we plot accuracy on y-axis and plot

the inverse of server sleep time on x-axis. As we expected, we

observe that e�cient server can help achieve better accuracy. This

is because we run the Siamese network on the server side, which is

computationally heavier than the correlation based fDSST tracker

used on the client side.

Comparison of PTAV andDTAV:We compare our results with

the results of PTAV framework. While PTAV framework achieves

accuracy of 79.12% on OTB2015 dataset with highest 17 fps, our

framework obtains accuracy of 86.90 % with 20 fps. These results

were achieved with 18.8 Mbps bandwidth. Further, we compare the

PTAV approach versus the performance of DTAV. We observe that

the values and patterns derived from the series of experiments have

resulted in signi�cant increase in the FPS and accuracy. Further,

our framework would be useful in deploying this algorithm on

embedded devices in di�erent network setups. Di�erent embedded

devices operate on di�erent bandwidths. We choose to setup the



Distributed Tracking and Verifying: A Real-Time and High-Accuracy Visual Tracking Edge Computing Framework for Internet of ThingsACM/IEEE SEC’23, December 06–09, 2023, Wilmington, DE

Figure 5: Accuracy vs FPS for di�erent Veri�cation intervals

and di�erent bandwidths

di�erent bandwidths as CAT1 0.13 Mbps, 3G 1.1 Mbps, 4G 5.85

Mbps, Wi-Fi 18.88 (Mbps). We simulate di�erent bandwidths to

check the performance of our algorithm on such devices. Moreover,

it is generally seen that the client speed is generally lesser than

the server speed. To setup such real world scenarios, we reduce

the speed of our client by 0.25x by adding latency in the Siamese

network veri�er algorithm. In the Figure 5, we observe how the

change in bandwidths a�ect on the veri�cation interval and accu-

racy. Moreover, in Figure 5 we also display the variations in FPS

with respect to the Veri�cation interval. We observe that band-

widths 5.85 Mbps and 18.88 Mbps give nearly the same values in

the graph. For comparative study between the behavior of default

client server PTAV setup versus our proposed client server PTAV

setup, we compare their behaviors in 18.88 Mbps and 1.1 Mbps

bandwidth as shown in Table 1. From Table 1, it is clear that DTAV

outperforms DTAV in both tracking accuracy and tracking speed.

In particular, DTAV can improve 33% FPS in the best scenario.

6 CONCLUSION

In this paper we present a distributed approach to perform visual ob-

ject tracking. The distributed framework approach discussed in this

paper aims to address speed and accuracy trade o� challenge faced

by other tracking algorithms. We run fDSST tracking algorithm on

the client side which communicates with the Siamese network algo-

rithm on the server to obtain accurate and faster results. We further

perform a series of experiments to determine the optimum band-

width and veri�cation interval for our setup to provide better speed

and accuracy. The experimental results show that DTAV achieved

7.78% improvement on accuracy and 15% improvement in FPS. This

attributed approach is useful for e�cient tracking algorithms to be

deployed on IoT devices like smartphones.
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2*Veri�cation Interval Accuracy FPS

PTAV DTAV PTAV DTAV

2 72.40 81.20 5 10

4 73.71 81.67 5 12

6 74.12 82.78 8 12

8 74.13 85.01 10 12

10 76.09 83.09 12 14

12 73.89 83.71 12 14

14 73.72 83.94 15 16

16 75.76 86.90 15 20

18 76.59 83.12 16 20

20 79.12 82 17 20

2*Veri�cation Interval Accuracy FPS

PTAV DTAV PTAV DTAV

2 65.49 69.17 5 10

4 66.02 70.23 5 12

6 67.12 71.39 8 12

8 68.98 72 10 12

10 69.11 74.90 12 14

12 71.21 75 12 14

14 72.67 76.13 15 16

16 73 77.21 15 20

18 75.34 79.32 16 20

20 76 79.29 17 20

Table 1: Comparison of DTAV method with PTAV method

with bandwidth 18.8 Mbps (First Table) and with bandwith

1.1 Mbps (Second Table)
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