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Abstract

A major obstacle hindering the application of orbital-free density functional theory

(OF-DFT) to all metals is the lack of accurate local pseudopotentials (LPSs), especially

for transition metals. In this work, we developed high-quality LPSs for all simple and

transition metals by fitting the atomic eigenvalues and the orbital norms beyond cutoff

radii. Due to the lack of non-locality in LPSs, it is very challenging to simultaneously

fit the semicore and outermost valence orbitals of transition metals. We overcame

this issue by excluding the semicore orbitals from the LPS optimizations. This allows

us to achieve excellent fittings of the outermost valence orbitals that are responsible

for chemical bonding. The norm-conserving condition is then well satisfied, leading to

high-quality LPSs. To construct LPSs for magnetic systems, we introduce an additional

metric: the atomic spin-polarization energy. By including this metric in the fitting, the

LPSs reasonably reproduced many properties of magnetic metals and alloys. The high-

quality LPSs developed in this work bring it one step closer to large-scale, reliable

OF-DFT simulations of all metals and their alloys.
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1 Introduction

Following the Hohenberg–Kohn theorem,1 the orbital-free density functional theory (OF-

DFT)2,3 formulates a system’s energy only in terms of the electron density. This bypasses

the computational complexities in the orbital-based methods, making OF-DFT a promising

method for large-scale material simulations. The accuracy of OF-DFT is determined by the

kinetic energy density functional (KEDF) which approximates the Kohn-Sham (KS) kinetic

energy.4 It is challenging to develop a universal KEDF for both metallic and insulating

systems, due to the significant difference in their linear response functions. 5,6 However, OF-

DFT should be applicable to all metals, since there is only one bond type: metallic bonds.

The capability to perform large-scale, accurate simulations of metals and their alloys will

open the door to many exciting applications, such as predicting the magnetic phase diagrams

of magnetic alloys7–10 and the surface morphology of high-entropy alloy nanoparticles for

catalysis.11–13

For simple metals, high-quality KEDFs based on the linear response function of the free

electron gas (FEG) have been developed in the past.14–22 However, developing KEDFs for

transition metals is more challenging due to the localized d orbitals. To overcome this ob-

stacle, a density-decomposition scheme was introduced, 23 which makes it one step closer to

applying OF-DFT to all metals. In the scheme, a transition metal’s electron density is par-

titioned into localized and delocalized components. The delocalized component was treated

by a FEG-based KEDF. For the localized component, we do not need to compute its kinetic

energy, since it is frozen during OF-DFT calculations. The accuracy of this decomposition

scheme is mainly determined by the approximation used for calculating the interaction en-

ergy between the localized and delocalized densities. It was found that the interaction energy

can be reasonably treated even by a linear combination of the Thomas-Fermi 24,25 and von

Weizsäcker26 KEDFs, which suggests ample room for improving this scheme. This density-

decomposition scheme gave satisfactory predictions for various properties of silver. For the

formation energies of Ag-Al alloy, the errors were mainly from silver’s local pseudopotentials
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(LPSs). This is the motivation for developing highly accurate LPSs in this work: removing

the last obstacle for achieving OF-DFT simulations of all metals.

Many methods for constructing LPSs have been developed in the past by fitting against

various properties, such as atomic eigenvalues, 27–29 atomic orbitals,30 band structures,31 form

factors,32 binding energies and interstitial electron numbers, 33 resistivities and Fermi surface

distortions.34 Recently, LPSs were also constructed by fitting other material properties, such

as lattice parameters, bulk modulus, relative phase energies, and atomic forces. 35–37 Another

class of methods inverted LPSs from atomic or bulk electron densities. 22,38–46 A recent work

integrated non-local pseudopotential into OF-DFT by approximating the non-interacting

density matrix with a density functional. 47

In this work, we develop a new method for constructing high-quality LPSs for all metals

by fitting the atomic eigenvalues and the orbital norms beyond cutoff radii. Our method

is inspired by the work of Starkloff and Joannopoulos, 29 who demonstrated that it was

possible to approximately reproduce the eigenvalues of the semicore and valence orbitals of

a transition metal atom using an LPS. The major difference between their work and ours

is that we exclude semicore orbitals from the LPS optimizations. The rationale is that the

semicore orbitals do not contribute much to bonding, and their role is only to push the

valence orbitals outwards. After excluding the semicore orbitals, we can achieve excellent

fittings for the outermost valence orbitals, resulting in high-quality LPSs. Another important

development in this work is the introduction of a new metric, the atomic spin-polarization

energy, for constructing LPSs for magnetic systems. This metric is defined as the energy

difference between the high-spin and low-spin states of an atom. By fitting against this

metric, LPSs well reproduce many properties of magnetic systems, such as iron, nickel, and

their alloys.

The paper is organized as follows. First, we explain the method for constructing LPSs.

We then discuss how to build LPSs for simple and transition metals. The LPSs are tested

by calculating various properties of metals and alloys, as well as surface energies, with the
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benchmarks from the projector augmented wave (PAW) 48 calculations. In the end, we show

some preliminary results for building an LPS for a lanthanide element cerium and a non-

metal element carbon.

2 Theoretical Methods

The first step for building LPSs is to perform all-electron (AE) KS-DFT calculations on an

atom. The atom’s electron density and KS effective potential are assumed to be spherically

symmetric. As a result, the KS orbitals can be separated into the angular and radial com-

ponents.49 The next step is to define the valence orbitals for constructing the LPS. Different

elements have different choices of valence orbitals. For transition metals, their semicore elec-

trons are included to make sure that the lowest pseudo orbital is of s type. For example,

silver’s valence orbitals contain its 4s, 4p, 4d, 5s, and 5p orbitals. The definitions of the

valence orbitals for all elements are given in the “Supporting Information” (SI).

The atom’s KS potential (vKS) is then unsceened by only removing the valence electrons’

Hartree and XC potentials as

vval(r) = vKS(r)− vval,H(r)− vval,XC(r) (1)

where r is the radial coordinate. vval,H and vval,XC are the Hartree and XC potentials of the

valence electron density, respectively. A cutoff radius rcut is defined. The LPS is required to

match vval beyond rcut and is expanded using the Legendre polynomials {Pi(t)} inside rcut

as

vLPS(r) =


vval(r) r < rcut∑Nbasis

i=0 ciPi(t) r ≥ rcut

(2)

where t = 2r/rcut − 1 to ensure that t is in the definition domain [−1, 1] of the Legendre

polynomials.
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The LPS needs to satisfy the following conditions:

vLPS(rcut) = vval(rcut) (3)

v′LPS(rcut) = v′val(rcut) (4)

v′′LPS(rcut) = v′′val(rcut) (5)

v′LPS(0) = 0 (6)

v′′LPS(0) = 0. (7)

The first three conditions ensure that vLPS transitions smoothly to vval at rcut. The fourth

(zero slope) and fifth (zero curvature) conditions help produce smooth pseudo-orbitals near

r = 0 in order to reduce the number of plane waves in later DFT simulations. These two

conditions are inspired by the Troullier-Martins (TM) scheme. 50 The difference is that, in the

TM scheme, the conditions are imposed on screened pseudopotentials, while in our scheme

the conditions are imposed on unscreened pseudopotentials.

In addition, we also require the LPSs to well reproduce the valence orbitals’ eigenvalues

{ϵi} and the orbital norms beyond rcut, which is achieved by minimizing the cost function F

F =
∑
i

pi(ϵ
AE
i − ϵPS

i )2 +
∑
i

qi(N
AE
i −NPS

i )2 (8)

where i runs over all valence orbitals. pi and qi are weight coefficients. NAE
i and NPS

i

are obtained by integrating ϕAE
i (r)2 and ϕPS

i (r)2 from rcut to ∞, with ϕAE
i (r) and ϕPS

i (r)

denoting the AE and pseudo orbitals, respectively. Note that the norm-matching condition

does not ensure the pseudo-orbitals match the AE orbitals beyond rcut. However, in practice,

we find that the pseudo-orbitals agree very well with the AE orbitals for r > rcut for nearly

all elements, except Fe, Co, Cs, and Ba. For these four elements, we also attempted to build

the LPSs without the norm-matching conditions, instead directly matching the pseudo and

AE orbitals beyond rcut. The pseudo-orbitals were not improved much. This is actually
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expected, since the orbital-matching condition is more difficult to meet than the norm-

matching condition. Nevertheless, the mismatching between the pseudo and AE orbitals for

these four elements is still acceptable.

In practice, we find that an accurate reproduction of eigenvalues is critical for building

high-quality LPSs. Therefore, for cases where it is difficult to simultaneously reproduce both

the eigenvalues and the orbital norms, we focus on fitting eigenvalues by reducing qi (with

pi fixed to 1). How to choose pi and qi is discussed in later sections. In Eq. 2, the number

of basis functions (Nbasis) for expanding vLPS is usually equal to the number of terms in F .

Nbasis, rcut, pi, and qi for all elements are given in the SI.

With the expansion of vLPS in Eq. 2, F is a function of {ci}. In practice, we minimize

F against {c0, c1, . . ., cn−5}, and other coefficients {cn−4, cn−3, cn−2, cn−1, cn} can be solved

based on the following linear equations (after inserting Eq. 2 into Eqs. 3-7)

n∑
i=n−4

ciPi(1) = vval(rcut)−
n−5∑
i=1

ciPi(1) (9)

n∑
i=n−4

ciP
′
i (1)α = v′val(rcut)−

n−5∑
i=1

ciP
′
i (1)α (10)

n∑
i=n−4

ciP
′′
i (1)α

2 = v′′val(rcut)−
n−5∑
i=1

ciP
′′
i (1)α

2 (11)

n∑
i=n−4

ciP
′
i (0) = −

n−5∑
i=1

ciP
′
i (1) (12)

n∑
i=n−4

ciP
′′
i (0) = −

n−5∑
i=1

ciP
′′
i (0) (13)

with α = 2/rcut.

While the above method yields good-quality LPSs for non-magnetic systems, for magnetic

systems (e.g., Fe, Co, and Ni) the LPSs from the above method often give inaccurate energy

differences among different magnetic phases. This issue can be resolved by introducing an

additional metric: the atomic spin-polarization energy (Em), which is defined as the energy
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difference between an atom’s high-spin and non-spin states:

Em = Enon−spin − Ehigh−spin. (14)

High-spin states are usually prepared by saturating the spin-up d orbital, with the remaining

d electrons assigned to the spin-down d orbitals. The electrons in s and p orbitals are

distributed evenly among the two spin channels. More details on preparing high-spin states

are given in Section 4.2. The augmented cost function is

F =
∑
i

pi(ϵ
AE
i − ϵPS

i )2 +
∑
i

qi(N
AE
i −NPS

i )2 + wm(E
AE
m − ELPS

m )2 (15)

where ELPS
m is from the LPS calculations. wm controls how well EAE

m is reproduced. While

a larger wm improves the fitting of EAE
m , it can deteriorate the fittings of eigenvalues and

orbital norms. To achieve a good balance, we gradually increase wm from zero until EAE
m

is reasonably reproduced without significantly deteriorating the fittings of eigenvalues and

orbital norms.

3 Numerical Details

LPSs are generated using a modified FHI98PP program. 51 The cost functions defined in Eq. 8

and Eq. 15 are minimized using the limited-memory Broyden–Fletcher–Goldfarb–Shanno

method,52,53 with the gradients calculated using the central finite difference method. All KS-

DFT calculations are performed using the Perdew-Burke-Ernzerhof GGA XC 54 functional.

Metals and alloys are calculated using a Fermi-Dirac smearing with a smearing width of 0.1

eV. Benchmarks are calculated using the PAW method using either ABINIT 55,56 or Vienna

Ab initio Simulation Package (VASP) programs. 57–59 GBRV pseudopotentials60 are used for

ABINIT benchmark calculations. The kinetic energy cutoffs are 600 eV and 4000 eV for

PAW and LPS calculations. We employ Monkhorst-Pack k-point meshes61 of 16 × 16 × 16
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for body-centered cubic (BCC), face-centered cubic (FCC), and simple cubic (SC) structures,

and 12×12×12 for cubic diamond (CD) and hexagonal close-packed (HCP) structures. For

alloys, k-point meshes61 of 12×12×12 are used. For surface calculations, k-point meshes61 of

12×12×1 are used. The simulation box of each surface is set based on the lattice constants

of the corresponding bulk without further relaxation, and the atoms are fully relaxed. For

both FCC and BCC surfaces, the (1 × 1) lateral unit cells are used with seven layers in

the z direction. A 10 angstrom vacuum is added to reduce the interaction between periodic

images.

4 Results and Discussions

4.1 Build local pseudopotentials for transition metals: the non-

spin-polarized case

An LPS is built for a set of valence orbitals. The valence electrons are defined so that the

lowest eigenstate is of s type, which is required for any spherically symmetric potential. This

means that semicore orbitals need to be included for transition metals. For example, silver’s

valence orbitals contain its 4s, 4p, 4d, 5s, and 5p orbitals. The general rule is that we select

the third and fourth shells for the fourth-row transition metals, the fourth and fifth shells

for the fifth-row transition metals, and the fifth and sixth shells for the sixth-row transition

metals.

LPSs are constructed by minimizing F defined in Eq. 8. A major step during the min-

imization is to perform self-consistent KS-DFT calculations on an atom for a trial LPS.

If the trial LPS is not very physical, the calculation may diverge. The divergence can be

largely avoided by working on a slightly positively charged atom. For example, silver’s LPS

is built based on the electronic configuration [Kr]4d105s0.55p0, where [Kr] denotes the elec-

tronic configuration of the Krypton atom. The atom is positively charged by 0.5e by setting

the occupation number of 5s to 0.5. Nearly all LPSs are built by using slightly positively
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charged atoms. Their electronic configurations are given in the SI.

Another challenge is that it is very difficult to effectively minimize F , due to the lack of

non-locality in LPSs. To resolve this issue, we have to remove some terms in F . The key

observation in this work is that semicore s and p orbitals do not participate much in bonding

and can be safely excluded from the LPS optimizations. Taking silver as an example, its 4s

and 4p’s eigenvalues and orbital norms are not included in the LPS optimization by setting

their pi and qi parameters to zero. However, the 4s and 4p orbitals are still included as the

valence electrons and change as the LPS is optimized. The only role of the 4s and 4p orbitals

is to push the outermost valence orbitals (4d, 5s, and 5p) outwards.

Even after excluding semicore s and p orbitals, sometimes the minimization of F can

still be difficult, and we need to remove more terms from F . We find that, by setting qi = 0

for the outermost p orbital, F can be effectively minimized. For example, for silver, we set

qi = 0 for its 5p orbital. This still produces highly accurate LPSs, which should be due to

the fact that the outermost p orbitals of transition metals have zero occupation numbers and

contribute less to bonding than the outermost s and d orbitals. Note that the eigenvalue of

the outermost p orbital is still included in the fitting. Let’s summarize the settings for silver:

(a) the semicore s and p orbitals (4s and 4p) are excluded from the fitting by setting their pi

and qi to zero; (b) the eigenvalues of 4d, 5s, and 5p orbitals are fitted by setting their pi to

one; (c) the outer norms of 4d and 5s are fitted by setting their qi to 0.01; and (d) the outer

norm of 5p is not fitted by setting its qi to zero. The settings for other transition metals are

similar and are given in the SI.

Figure 1(a) shows silver’s LPS. By construction, vLPS matches vval beyond rcut = 2 Bohr.

Inside rcut, vLPS is repulsive because the valence orbitals undergo the following pseudization:

4s → 1s, 4p → 2p, 4d → 3d, 5s → 2s, and 5p → 3p. Therefore vLPS only needs to push

the pseudo orbitals out of the core region. Figure 1(b) and (c) compare the AE and pseudo

orbitals. Since 4s and 4p orbitals are not included in the fitting, the agreement between AE

and LPS is not very good. On the other hand, the 4d and 5s orbitals beyond rcut are well
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reproduced by the LPS. Note that even if the outer norm of the 5p orbital is not included

in the fitting, it is still well reproduced by the LPS.

Figure 1: (a) Silver’s LPS and unscreened AE valence potential. (b) Silver’s 4s and 4p
orbitals from AE and LPS calculations. (c) Silver’s 4d, 5s, and 5p orbitals from AE and LPS
calculations.

Table 1 compares the eigenvalues, the orbitals at rcut, and the orbital norms beyond rcut

from AE and LPS calculations. The 4s and 4p orbitals are poorly reproduced by the LPS,

since they are not included in the LPS optimization. The 4d, 5s, and 5p orbitals at rcut

and their outer norms are all well reproduced by the LPS. As a result, the norm-conserving

condition49 is nicely satisfied for 4d, 5s, and 5p, leading to a transferable LPS.

Table 1: Eigenvalues (ϵ in eV), rϕ(r) (in a.u.) at rcut = 2 Bohr, and the norms (N) beyond
rcut for silver’s 4s, 4p, 4d, 5s, and 5p orbitals from AE and LPS calculations.

4s 4p 4d 5s 5p
ϵAE -98.980 -62.511 -11.368 -7.715 -3.344
ϵLPS -109.603 -69.881 -11.368 -7.715 -3.344
rϕAE(r) 0.1528 0.2460 0.5199 0.5899 0.3348
rϕLPS(r) 0.1286 0.2151 0.5201 0.5906 0.3359
NAE 0.9952 0.9843 0.8363 0.1711 0.0486
NLPS 0.9968 0.9888 0.8363 0.1711 0.0458
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4.2 Build local pseudopotentials for transition metals: the spin-

polarized case

In what follows, we take Fe as an example to discuss the procedure for building LPSs by

fitting against the atomic spin-polarization energy (Em). Fe’s LPS is built for the valence

configuration: 3s23p63d5.54s24p0. The atom is charged by 0.5e to avoid possible divergence

during the LPS optimization. Similar to the silver case, the semicore 3s and 3p orbitals are

excluded in the LPS optimization. pi is 1 for 3d, 4s, and 4p orbitals. qi is 0.01, 0.01, and 0.0

for 3d, 4s, and 4p orbitals, respectively. To compute Em for Fe, we take [Ar]3d5↑3d0.5↓ 4s24p0

as the high-spin state and [Ar]3d2.75↑ 3d2.75↓ 4s24p0 as the non-spin state. We then perform AE

calculations on these two spin states and obtain EAE
m = 4.974 eV.

Figure 2 shows the impact of wm on the LPS prediction for Em (denoted as ELPS
m ), as

well as the energy differences among Fe’s BCC, FCC, and HCP structures. By increasing

wm, ELPS
m approaches EAE

m , and in the meanwhile the correct energy ordering of Fe’s FCC

and HCP structures is restored. The relative energies between these structures are much

improved by fitting against Em.

While a large wm improves the fitting of Em, it can worsen the fittings of eigenvalues

and orbital norms. In practice, we keep wm as small as possible. The optimal wm can be

determined based on Figure 2, in which both Em and the relative energies are not improved

much for wm > 0.2. Therefore, the optimal wm is set to 0.2. This gives ELPS
m = −4.982 eV,

compared well to EAE
m = −4.974 eV. With this wm, the eigenvalue errors for 3d, 4s, and 4p

orbitals are still below 1 meV.

Fe’s FCC structure has two competing magnetic phases: a low-spin phase and a high-spin

phase. The low-spin phase, with a slightly smaller lattice parameter, is predicted by PAW

to be only 4 meV/atom lower than the high-spin phase. Thus, these two phases are excellent

examples to show the importance of including Em in the LPS optimization. Without fitting

against Em, LPS only gives the high-spin phase. After fitting against Em, the low-spin

phase emerges. The LPS prediction for the energy difference between these two phases is 3
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Figure 2: (a) The LPS prediction for Em as a function of wm. The benchmark EAE
m = −4.974

eV is marked by the dashed lines. (b) The energy difference between Fe’s FCC (high-spin)
and BCC structures and the energy difference between the HCP and BCC structures, as a
function of wm. The benchmarks from PAW calculations are marked by the dashed lines.
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meV/atom, very close to the PAW prediction (4 meV/atom).

The procedure for building LPSs for Co and Ni is similar to Fe. For Co, the high-spin

state is [Ar]3d5↑3d1.5↓ 4s24p0. The calculated EAE
m is 3.097 eV. The optimal wm is 0.1, which

gives ELPS
m = 3.138 eV. For Ni, the high-spin state is [Ar]3d5↑3d2.5↓ 4s24p0, and the calculated

EAE
m is 1.621 eV. Since ELPS

m does not change much (only from 1.681 eV to 1.641 eV) against

a large variation of wm (from 0 to 1), we then simply set wm = 0 for Ni.

4.3 Build local pseudopotentials for main group metals

We also have to include the semicore orbitals for defining the valence electrons for the

following main group metals: Li, Rb, Cs, Ca, Sr, and Ba. The 1s orbital is included for Li

because its 2s orbital has a large overlap with the 1s orbital. For Rb, 4s, 4p, and 4d are

included, since its 4d has a higher eigenvalue than its 5s and 5p. For Cs, its 5s, 5p, and 5d

orbitals are included, since its 5d’s eigenvalue is higher than its 6s and 6p orbitals. For Ca,

Sr, and Ba, since their semicore d orbitals have lower energies than the outermost p orbitals,

we include 3s and 3p for Ca, 4s and 4p for Sr, and 5s and 5p for Ba. In addition, sometimes

we need to set qi = 0 for all valence orbitals to effectively minimize F (see SI for details).

Nevertheless, the obtained LPSs are still of high quality.

4.4 Basic properties of metals

We first test LPSs by calculating the basic properties of metals, with the benchmarks from

the PAW calculations. The results on lattice constants are summarized in Figure 3. The

agreement between LPSs and PAWs is good, with most of the errors within 3%. For transition

metals, we observe an interesting zig-zag pattern in these errors. For example, the large

positive errors in Figure 3(a) are all from the fourth-row transition metals, the errors of the

fifth-row transition metals are closer to zero, and the sixth-row transition metals have the

most negative errors. This suggests that the valence electrons of the fifth-row transition

metals are more separable from the core electrons and their LPSs are easier to build.
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Figure 3: Lattice constants of FCC, BCC, SC, and CD structures from PAW and LPS
calculations. The relative errors are calculated as 100× (aLPS − aPAW)/aPAW.
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Bulk modulus is examined in Fig. 4. A good agreement between LPS and PAW is also

observed. For most elements, the relative errors are within 10%. Note that the small moduli

of group I and group II metals are well reproduced by the LPSs. Some large errors are seen

for the cubic diamond structures of Ba and Sc. This is mainly because their bulk moduli are

small. The absolute errors are actually small. For Ba, the LPS and PAW predictions are 6.4

GPa and 4.2 GPa, respectively. For Sc, the LPS and PAW predictions are 8.7 GPa and 12.6

GPa, respectively.

Figure 4: Bulk moduli of FCC, BCC, SC, and CD structures from PAW and LPS calculations.
The relative errors are calculated as 100× (BLPS − BPAW)/BPAW.

Accurate predictions of the energy differences between different structures are crucial

for many applications, such as searching for most stable structures. Table 2 shows the
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energies of HCP, BCC, SC, and CD structures, with all referenced to the FCC structures.

All calculations are non-spin-polarized, except Fe, Co, and Ni. LPSs well reproduce these

energy differences. Particularly, they perform well in many challenging cases, such as the

small energy differences between HCP and FCC for group I and II metals, the small energy

differences between BCC and FCC for group I atoms, and the small energy differences

among Hg’s HCP, BCC, and SC structures. For magnetic metals (Fe, Co, and Ni), LPSs are

obtained by fitting against Em and also perform well. They well reproduce the small energy

differences between Fe’s BCC and HCP, Co’s HCP and FCC, and Ni’s FCC and HCP.

Table 2: Energies (in eV) per atom of HCP, BCC, SC, and CD structures. All energies are
referenced the FCC structures. The mean absolute error (MAE) for each structure is shown
at the end.

HCP BCC SC CD
LPS PAW LPS PAW LPS PAW LPS PAW

Li -0.0004 -0.0004 0.0020 0.0048 0.1226 0.1228 0.5159 0.5169
Na 0.0002 0.0003 0.0019 0.0020 0.1144 0.1191 0.3233 0.3396
K -0.0003 -0.0085 0.0003 0.0002 0.0913 0.0960 0.2590 0.2880
Rb -0.0132 -0.0132 0.0008 0.0008 0.0831 0.0830 0.2507 0.2505
Cs -0.0003 -0.0003 0.0006 0.0004 0.0944 0.0946 0.2556 0.2588
Be -0.0872 -0.0870 0.0252 0.0205 0.8620 0.9228 1.4499 1.5553
Mg -0.0112 -0.0090 0.0212 0.0175 0.3531 0.3674 0.7280 0.7537
Ca 0.0054 0.0072 0.0125 0.0125 0.4053 0.3852 1.0526 1.0305
Sr 0.0050 0.0046 0.0071 0.0070 0.3880 0.3879 0.9524 0.9519
Ba -0.0024 -0.0022 -0.0085 -0.0105 0.3063 0.3036 0.9719 0.9600
Sc -0.0488 -0.0485 0.0330 0.0476 0.7286 0.7048 1.9641 1.9333
Y -0.0331 -0.0314 0.0806 0.0822 0.7591 0.7561 1.9579 1.9487
Ti -0.0388 -0.0415 0.0505 0.0443 0.8313 0.7752 2.3712 2.2718
Zr -0.0303 -0.0283 0.0431 0.0407 0.8491 0.8381 2.3827 2.3547
Hf -0.0531 -0.0527 0.1067 0.1070 1.0172 1.0196 2.6116 2.6078
V 0.0332 0.0070 -0.2045 -0.2416 0.6968 0.6191 2.2747 2.1424
Nb -0.0356 -0.0326 -0.3274 -0.3236 0.6761 0.6708 2.2322 2.2049
Ta 0.0294 0.0433 -0.2467 -0.2335 0.8992 0.8976 2.6562 2.6558
Cr 0.0227 0.0188 -0.4513 -0.3648 0.6750 0.6502 1.7748 1.7552
Mo 0.0204 0.0251 -0.4094 -0.4064 0.7567 0.7432 1.8380 1.8097
W 0.0156 0.0205 -0.4765 -0.4673 0.9737 0.9733 2.1850 2.1726
Mn -0.0191 -0.0265 0.0904 0.0784 0.9291 0.8840 1.3632 1.3479
Tc -0.0622 -0.0628 0.1925 0.1875 1.0185 0.9915 1.4136 1.3756
Re -0.0683 -0.0615 0.2374 0.2567 1.3446 1.3285 1.5927 1.5611
Fe -0.0509 -0.0631 -0.1276 -0.1425 0.5532 0.6204 0.9997 1.0939
Ru -0.0283 -0.0287 0.5064 0.5045 1.0390 1.0257 1.0798 1.0671
Os -0.0249 -0.0174 0.7633 0.7575 1.4426 1.4071 1.1877 1.1479
Co -0.0134 -0.0139 0.0756 0.0709 0.7520 0.7044 1.2673 1.1840
Rh 0.0419 0.0417 0.3446 0.3425 0.8104 0.7959 1.1235 1.1014
Ir 0.0828 0.0826 0.6516 0.6281 1.0441 1.0117 1.0248 1.0089
Ni 0.0144 0.0191 0.1018 0.0935 0.6983 0.6895 1.1678 1.1920
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Pd 0.0323 0.0357 0.0639 0.0660 0.5365 0.5397 1.1344 1.1397
Pt 0.0773 0.0767 0.1257 0.1200 0.4985 0.4741 1.0746 1.0543
Cu 0.0144 0.0118 0.0364 0.0383 0.4431 0.4784 0.9777 1.0427
Ag 0.0069 0.0031 0.0332 0.0237 0.3362 0.3243 0.7814 0.7645
Au 0.0104 0.0106 0.0254 0.0263 0.2134 0.2077 0.7314 0.7122
Zn -0.0225 -0.0270 0.0618 0.0649 0.1664 0.2042 0.3871 0.4392
Cd -0.0098 -0.0107 0.0497 0.0524 0.1156 0.1206 0.3090 0.3250
Hg -0.0139 -0.0138 -0.0130 -0.0098 -0.0110 -0.0006 0.0747 0.0694
Al 0.0432 0.0386 0.1068 0.0967 0.3506 0.3684 0.7217 0.7315
Ga 0.0180 0.0171 0.0094 0.0150 0.0590 0.0626 0.2408 0.2523
In 0.0102 0.0104 0.0097 0.0093 0.0986 0.0943 0.3320 0.3215
Tl -0.0156 -0.0143 -0.0124 -0.0125 0.1175 0.1165 0.3507 0.3442
Sn 0.0285 0.0281 0.0170 0.0164 0.0167 0.0133 -0.0554 -0.0500
Pb 0.0276 0.0282 0.0448 0.0447 0.1934 0.1927 0.2695 0.2608
Bi -0.0270 -0.0254 -0.0517 -0.0514 -0.1356 -0.1347 0.0094 0.0047
MAE 0.005 0.015 0.023 0.036

One future goal is to perform large-scale OF-DFT simulations of magnetic alloys. It is

then important for LPSs to accurately predict magnetic properties. Table 3 examines the

magnetic moments of Fe, Co, and Ni across different structures. For Fe’s HCP structure,

the type-I antiferromagnetic phase is used. All magnetic moments are well reproduced by

LPSs.

Table 3: Magnetic moment (in µB/atom) for different structures of Fe, Co, and Ni from LPS
and PAW calculations. LS and HS denote the high-spin and low-spin phases of Fe’s FCC
structure.

FCC HCP BCC SC CD
Fe LPS 1.01(LS), 2.60(HS) 0.0 2.21 2.44 0.0

PAW 0.95(LS), 2.55(HS) 0.0 2.20 2.39 0.0
Co LPS 1.67 1.73 1.78 1.87 1.72

PAW 1.61 1.59 1.73 1.82 1.68
Ni LPS 0.67 0.71 0.60 0.76 0.82

PAW 0.60 0.61 0.53 0.57 0.77

4.5 Surface energies

Accurate surface energies are important for predicting the surface morphology of metal

nanoparticles, which are promising for catalysis and plasmonics. Table 4 compares LPS

and PAW surface energies for four FCC metals (Al, Ni, Cu, and Au) and three BCC metals
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(Fe, Cr, and W). For Fe and Ni surfaces, spin-polarized calculations are performed. Overall,

LPSs capture the energy ordering of various surfaces.

Table 4: Surface energies (mJ/m2) calculated using LPSs and PAWs. The PAW results are
in parenthesis.

FCC(111) FCC(100) FCC(110)
Al 841 (793) 960 (897) 1022 (1003)
Ni 1812 (1960) 2128 (2182) 2172 (2226)
Cu 1225 (1290) 1372 (1441) 1449 (1519)
Au 668 (694) 846 (861) 883 (888)

BCC(110) BCC(111) BCC(100)
Fe 2223 (2366) 2480 (2639) 2280 (2412)
Cr 3155 (3091) 3445 (3383) 3447 (3372)
W 3234 (3180) 3634 (3599) 3892 (3862)

4.6 Alloys

Another future goal is to investigate alloys, especially high-entropy alloys, using OF-DFT. In

what follows, we test LPSs on several non-magnetic and magnetic alloys. We are especially

interested in the alloy formation energies, which are important for various applications such

as calculating the phase diagrams of alloys. Alloy formation energies are calculated as

the energy difference between the alloy and the constituent elements in their lowest-energy

structures. For simplicity, all alloys take the FCC structure, and a unit cell contains four

atoms.

Table 5 and 6 summarize the results for several Cu-based and Fe-based alloys. For Fe-

based alloys, all the constituent elements’ LPSs are built by fitting against Em, except for Ti

and W for which wm = 0 already gives reasonable Em. Overall, LPSs yield reasonable alloy

formation energies, bulk moduli, magnetic moments, and equilibrium volumes. In particular,

the LPSs can successfully predict the magnetic-to-nonmagnetic transition in Ti-Fe alloys as

the Ti concentration increases. We also performed extensive tests on Ni-based alloys, with

the results summarized in the SI. LPSs also performed satisfactorily in these tests.
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Table 5: Formation energies (Ef , eV), bulk moduli (B, GPa), and the equilibrium volumes
(V0, Å3/cell) of several Cu-based binary alloys calculated using LPSs and PAWs. The PAW
results are in parentheses. All alloys have the FCC structure. The MAEs are given in the
last row. For V0, the MAE is for the relative errors.

Ef B V0

AlCu3 -0.889 (-0.712) 127 (131) 52.05 (50.30)
Al2Cu2 -0.790 (-0.593) 110 (111) 55.69 (54.21)
Al3Cu -0.285 (-0.158) 93 (92) 62.33 (60.76)

TiCu3 0.328 (0.434) 121 (127) 56.33 (53.97)
Ti2Cu2 -0.214 (-0.195) 122 (126) 60.40 (57.12)
Ti3Cu 0.057 (0.011) 112 (119) 65.93 (62.40)

NiCu3 0.124 (0.060) 144 (152) 48.91 (46.69)
Ni2Cu2 0.268 (0.177) 159 (165) 47.73 (45.54)
Ni3Cu 0.254 (0.147) 175 (178) 46.54 (44.56)

ZnCu3 -0.205 (-0.267) 119 (126) 52.13 (50.05)
Zn2Cu2 -0.306 (-0.339) 106 (112) 54.85 (52.39)
Zn3Cu -0.076 (-0.119) 83 (91) 58.29 (55.42)

ZrCu3 0.269 (0.421) 114 (115) 62.50 (61.25)
Zr2Cu2 -0.634 (-0.499) 116 (116) 70.93 (70.23)
Zr3Cu 0.034 (0.103) 96 (96) 81.00 (80.53)

AgCu3 0.239 (0.317) 119 (122) 55.72 (54.02)
Ag2Cu2 0.294 (0.389) 109 (110) 61.01 (59.88)
Ag3Cu 0.212 (0.285) 100 (99) 66.29 (65.78)

SnCu3 0.124 (0.174) 102 (107) 60.63 (58.74)
Sn2Cu2 0.679 (0.772) 70 (72) 78.08 (76.49)
Sn3Cu 0.792 (0.864) 54 (55) 97.03 (95.78)
MAE 0.089 3 3.2%
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Table 6: Formation energy (Ef , eV), bulk modulus (B, GPa), equilibrium volume (V0,
Å/cell), and magnetic moment (M , µB/cell) of Fe-based binary alloys calculated using LPSs
and PAWs. The PAW results are in parentheses. All alloys take the FCC structure. The
MAEs are given in the last row. For V0, the MAE is for the relative errors.

Ef B V0 M
CoFe3 0.342 (0.386) 108 (105) 51.15 (46.01) 9.3 (9.1)
Co2Fe2 -0.238 (-0.205) 180 (191) 49.88 (45.87) 9.0 (8.9)
Co3Fe 0.018 (0.043) 183 (195) 48.23 (44.53) 7.5 (6.9)

CrFe3 0.062 (0.105) 105 (124) 49.31 (44.72) 2.9 (2.7)
Cr2Fe2 0.389 (0.411) 206 (224) 48.97 (44.59) 1.4 (1.3)
Cr3Fe 0.854 (0.925) 203 (229) 50.69 (45.96) 0.5 (0.4)

MoFe3 0.113 (0.360) 233 (221) 48.89 (46.99) 1.9 (2.1)
Mo2Fe2 0.340 (0.670) 242 (227) 53.06 (52.48) 1.5 (1.5)
Mo3Fe 0.927 (1.116) 222 (221) 57.76 (58.90) 1.4 (1.7)

CuFe3 0.491 (0.494) 125 (137) 50.66 (46.93) 7.5 (7.4)
Cu2Fe2 0.583 (0.579) 137 (147) 51.15 (47.85) 5.3 (5.3)
Cu3Fe 0.850 (0.805) 130 (137) 51.50 (48.67) 2.7 (2.6)

TiFe3 -0.694 (-0.363) 124 (141) 52.67 (49.59) 5.5 (5.5)
Ti2Fe2 -2.054 (-1.622) 192 (197) 53.34 (51.18) 0.0 (0.0)
Ti3Fe -0.676 (-0.280) 134 (125) 60.23 (59.48) 0.1 (0.0)

WFe3 0.014 (0.219) 254 (243) 49.19 (47.08) 1.8 (2.0)
W2Fe2 0.404 (0.676) 266 (263) 53.92 (52.92) 1.1 (0.8)
W3Fe 1.099 (1.246) 250 (251) 60.01 (60.01) 1.8 (2.1)

NiFe3 0.147 (0.174) 128 (137) 49.70 (46.06) 8.3 (8.1)
Ni2Fe2 -0.235 (-0.210) 172 (180) 48.48 (45.21) 6.6 (6.4)
Ni3Fe -0.292 (-0.303) 183 (192) 47.20 (44.50) 4.9 (4.7)
MAE 0.138 10 5.9% 0.17
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We also performed tests on several Al-based alloys. We summarized the results below,

with the details given in the SI. The LPSs give reasonable predictions, except for the forma-

tion energies of Al-Mg and Al-Cr alloys. They are small and challenging to reproduce. PAW

(LPS) formation energies of Al3Mg, Al2Mg2, and AlMg3 are -0.004 (0.035), -0.011 (0.028),

and 0.020 (0.046) eV, respectively. While the LPS predictions for Al3Mg and Al2Mg2 are

wrong in sign, the energy ordering among these alloys is well reproduced. We have a similar

observation for Al-Cr alloys. PAW (LPS) predictions are 0.051 (-0.046), 0.000 (-0.097), and

0.333 (0.225) eV for Al3Cr, Al2Cr2, and AlCr3, respectively. Again, LPSs give incorrect signs

for Al3Cr and Al2Cr2 but correctly reproduce the subtle energy ordering.

Next, we examine the performance of LPSs on several medium-entropy alloys as listed

in Table 7. Cu-Zn-Al is a shape-memory alloy. Fe-Co-Ni is a soft magnetic alloy. We

also examine alloys formed by randomly choosing four elements from Ag, Au, Cu, Pd, and

Pt. This is motivated by recent work on the high-entropy Ag-Au-Cu-Pd-Pt nanoparticles

for catalyzing CO and CO2 reduction reactions.62 Several Fe-Co-Ni-based alloys are also

examined. They are related to the Cantor high-entropy alloy (CrMnFeCoNi) 63 and other

FeCoNi-based high-entropy alloys.64–67 Since all these alloys are predominantly FCC-type,

we employ FCC unit cells in all calculations. For the magnetic alloys, their constituent

elements’ LPSs are built by fitting against Em.

Table 7 shows that LPSs well reproduce the bulk moduli and equilibrium volumes for

these alloys. It is exciting to see that the magnetic moments are also well reproduced by LPSs.

Even though the formation energies of Au-Ag-Pt-Pd-Cu systems are accurately captured by

LPSs, we want to point out that the formation energies of AuAgPtPd and CuAgPtPd are

small and sensitive to Pt’s rcut. If we set rcut to 2.0 Bohr, the LPS formation energies are

wrong in sign. Accurate results can be obtained by reducing rcut to 1.5 Bohr. This raises

a question: how can one identify the element causing the problem? The trick is to perform

calculations with mixed LPSs and non-local pseudopotentials (NLPP). For example, by using

NLPP for Au, Ag, and Pd and using LPS for Pt, we can assess the quality of Pt’s LPS. If the
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Table 7: Formation energy (Ef , eV), bulk modulus (B, GPa), equilibrium volume (V0,
Å/cell), and magnetic moment (M , µB/cell) of several medium-entropy alloys from LPS
and PAW calculations. The PAW results are in parentheses. For non-magnetic alloys, their
magnetic moments are marked by “-”. The MAEs are given in the last row. For V0, the MAE
is for the relative errors.

Ef B V0 M
Cu2ZnAl -0.606 (-0.609) 111 (117) 54.78 (52.72) -
CuZn2Al -0.114 (-0.102) 86 (89) 59.60 (57.41) -
CuZnAl2 -0.184 (-0.129) 89 (91) 61.04 (59.18) -

Fe2CoNi -0.063 (-0.029) 169 (172) 49.09 (45.44) 7.5 (7.4)
FeCo2Ni -0.058 (-0.101) 185 (194) 47.79 (44.38) 6.5 (6.2)
FeCoNi2 -0.158 (-0.213) 184 (194) 47.42 (44.38) 5.7 (5.6)

AuAgPtPd -0.029 (-0.026) 154 (156) 66.03 (66.13) -
AuCuPtPd -0.234 (-0.215) 167 (171) 61.51 (61.14) -
AuAgCuPd -0.298 (-0.270) 130 (132) 63.46 (63.18) -
AuAgPtCu -0.079 (-0.072) 146 (149) 63.78 (63.34) -
CuAgPtPd -0.025 (-0.029) 151 (155) 61.59 (60.83) -

FeCoNiCr -0.058 (-0.045) 218 (179) 46.45 (44.75) 0.7 (0.8)
FeCoNiMo -0.054 (0.119) 230 (229) 48.36 (46.86) 0.9 (0.9)
FeCoNiCu 0.181 (0.196) 167 (176) 48.77 (45.61) 5.1 (5.0)
FeCoNiTi -1.325 (-1.104) 176 (181) 50.17 (47.64) 2.6 (2.6)
FeCoNiW -0.165 (-0.032) 255 (256) 48.50 (46.79) 0.8 (0.7)
FeCoNiMn -0.026 (-0.070) 163 (171) 47.98 (45.02) 0.0 (0.1)
MAE 0.051 7 3.8% 0.1
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formation energy deviates much from the benchmark, Pt’s LPS needs to be improved. The

easiest way to improve the transferability of an LPS is to reduce its rcut. For FeCoNi-based

alloys, the formation energies are reasonably reproduced by the LPSs, except FeCoNiMo.

In general, predicting formation energies for magnetic systems is more challenging for LPSs

compared to non-magnetic systems.

We also examine the forces from LPS calculations. A Cr7V8 alloy, with the BCC struc-

ture, is constructed. The unit cell contains 16 lattice sites and 15 atoms, with one Cr atom

removed to form a vacancy. The Cr atoms randomly occupy seven lattice sites. The system

is first fully relaxed and then a molecular dynamics (MD) simulation is performed at 1000

K with a step size of 2 fs. We take 16 consecutive snapshots from the MD trajectory to ex-

amine the total energy per atom and the forces on one Cr atom that is close to the vacancy.

Fig. 5(a) shows the total energy per atom. The LPS energy at the first step is shifted to

match the PAW energy for a better comparison. After 16 MD steps, the two methods differ

by merely 0.01 eV/atom. Fig. 5(b), (c), and (d) show the forces. The deviations between

the two methods are much larger than the energy case, due to the fact that forces are more

sensitive to the quality of LPSs.

4.7 Preliminary results on lanthanides and non-metal elements

At last, we report some preliminary results on constructing LPSs for lanthanides and non-

metal elements. Lanthanides are useful for many applications, such as rare earth magnets 68

and high-performance magnesium-rare-earth alloys. 69 For lanthanides, we need to include

one more shell for building the LPSs. Taking cerium as an example, its entire fourth shell

is included, and the valence configuration is 4s24p64d105s25p65d16s24f 1. The reason is that

4f ’s eigenvalue is lower than 5p. We then need to include the fourth shell to ensure that the

lowest p orbital has a lower energy than 4f . We have constructed an LPS for cerium with

rcut = 2.2 Bohr. Similar to transition metals, only the outermost valence orbitals (5p, 6s, 5d,

and 4f) that are responsible for chemical bonding are included in the LPS optimization. The
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Figure 5: Compare energy per atom and forces for a Cr7V8 alloy. The forces are calculated
for a Cr atom near the vacancy.

LPS performs well on cerium’s FCC, BCC, SC, and CD structures. For bulk modulus, The

LPS (PAW) predictions for FCC, BCC, SC, and CD structures are 38 (36), 33 (37), 41 (47),

and 56 (69) GPa, respectively. The LPS also well reproduces the energy ordering. The LPS

(PAW) predictions for the energy differences EBCC −EFCC , ESC −EFCC , and ECD −EFCC

are 0.197 (0.200), 0.425 (0.337), 0.867 (0.717) eV, respectively. It is encouraging to see that

the small energy difference between BCC and FCC is captured by the LPS. In general, the

error gradually increases for more open structures (i.e., SC and CD). The LPS errors for the

lattice parameters of FCC, BCC, SC, and CD are 1.9%, 1.0%, 3.7%, and 3.3%, respectively.

We are still improving the LPS by testing different qi and rcut values. The final LPSs for

lanthanides will be published in a future work.

For non-metal elements, we show some preliminary results for carbon, which is a challeng-

ing case due to the strong interaction between the 1s, 2s, and 2p orbitals. Due to this strong

interaction, we include the 1s orbital in the valence orbitals for building the LPS. rcut is set
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to 0.7 Bohr. The LPS optimization only focuses on fitting 2s and 2p’s eigenvalues. The LPS

inside rcut is expanded by two basis functions. The eigenvalues of 2s and 2p are reproduced

very well by the LPS. The 2s and 2p orbitals outside rcut are reasonably reproduced. This

LPS has been tested on the FCC, BCC, SC, and CD structures. The performance is good.

The bulk moduli of FCC, BCC, SC, and CD from LPS (PAW) predictions are 108 (107),

157 (159), 316 (310), and 410 (420) GPa, respectively. The energy differences EFCC −ECD,

EBCC − ECD, and ESC − ECD from LPS (PAW) are 4.515 (4.638), 4.246 (4.362), and 2.439

(2.501) eV, respectively. The relative errors for the equilibrium volumes of all structures are

within 2%.

5 Conclusion

We have developed high-quality LPSs for the main group and transition metals. The LPSs

are required to reproduce the atomic eigenvalues and the outer norms of the valence orbitals.

The key finding of this work is that high-quality LPSs for transition metals can be constructed

without fitting the semicore orbitals. This lets us achieve excellent fittings for the outermost

valence orbitals that are responsible for chemical bonding. The norm-conserving condition

is then well satisfied, which leads to high-quality LPSs. Another important development is

the introduction of a new metric, the atomic spin-polarized energy, for optimizing LPSs for

magnetic systems. Using this metric, LPSs give good predictions for many magnetic systems.

All LPSs can be downloaded from an online repository. 70 By combining the high-quality

LPSs developed in this work with the previously developed density-decomposition scheme, 23

it now becomes possible to achieve large-scale, sufficiently accurate OF-DFT simulations of

all metals and their alloys.
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