
RogueOne: Detecting Rogue Updates
via Differential Data-flow Analysis Using Trust Domains

Raphael J. Sofaer, Yaniv David
{r.j.sofaer,yaniv.david}@columbia.edu

Columbia University
New York, NY, USA

Mingqing Kang, Jianjia Yu,
Yinzhi Cao

{mkang31,jyu122}@jhu.edu
yzcao@cs.jhu.edu

Johns Hopkins University
Baltimore, MD, USA

Junfeng Yang, Jason Nieh
{junfeng,nieh}@cs.columbia.edu

Columbia University
New York, NY, USA

ABSTRACT

Rogue updates, an important type of software supply-chain attack
in which attackers conceal malicious code inside updates to benign
software, are a growing problem due to their stealth and effective-
ness. We design and implement RogueOne, a system for detecting
rogue updates to JavaScript packages. RogueOne uses a novel dif-
ferential data-flow analysis to capture how an update changes a
package’s interactions with external APIs. Using an efficient form of
abstract interpretation that can exclude unchanged code in a pack-
age, it constructs an object data-flow relationship graph (ODRG)
that tracks data-flows among objects. RogueOne then maps objects
to trust domains, a novel abstraction which summarizes trust rela-
tionships in a package. Objects are assigned a trust domain based
on whether they originate in the target package, a dependency,
or in a system API. RogueOne uses the ODRG to build a set of
data-flows across trust domains. It compares data-flow sets across
package versions to detect untrustworthy new interactions with
external APIs. We evaluated RogueOne on hundreds of npm pack-
ages, demonstrating its effectiveness at detecting rogue updates
and distinguishing them from benign ones. RogueOne achieves
high accuracy and can be more than seven times as effective in
detecting rogue updates and avoiding false positives compared to
other systems built to detect malicious packages.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; • Security and privacy → Malware and its mitigation;
Information flow control.

KEYWORDS

JavaScript, Malicious updates, Malware detection, Node.js, Supply-
chain security
ACM Reference Format:

Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao,
and Junfeng Yang, Jason Nieh. 2024. RogueOne: Detecting Rogue Updates
via Differential Data-flow Analysis Using Trust Domains. In 2024 IEEE/ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04
https://doi.org/10.1145/3597503.3639199

46th International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3597503.3639199

1 INTRODUCTION

Modern application development is accelerated by vast public reg-
istries of open-source software packages. These registries have
libraries of every size and style, for practically every purpose. Node
Package Manager (npm) [26], the package manager for Node.js,
has over 3.1 million JavaScript packages. To save development and
ongoing maintenance effort, a developer can search for a third-
party package on the registry before implementing a new feature
themselves. A fully featured application can now be built with a
fraction of the code that might have been formerly required.

Attackers are exploiting the open and trusting policies of these
registries by mounting supply-chain attacks. Adversaries plant ma-
licious code in publicly available packages and trick developers
into downloading and incorporating them into their projects. The
payload may target the development environment, the server on
which the application is deployed, or the client of a web application.
Anyone can create a package, and updates are immediately avail-
able without review, meaning that updating a dependency package
or installing the wrong package is enough to be compromised.

The growing number of, and public interest in, supply chain at-
tacks have inspired the development of tools for detecting malicious
packages. Maloss [17] repurposes existing vulnerability-detection
techniques and looks for typosquatting attacks in which an attacker
names their packages to target common typos in names of widely
used packages [77]. Amalfi [60] applies machine learning on fea-
tures extracted from a package’s code, along with metadata such as
time between updates. These approaches are effective at detecting
malware such as those from automated typosquatting attack cam-
paigns, but not rogue updates, which embed malicious code inside
existing packages. We show that Amalfi fails to detect almost
all rogue updates whileMaloss can mistakenly flag most benign
updates yet miss detecting the majority of rogue updates. Unlike
inherently malicious packages which are easier to avoid, rogue up-
dates are potentially much more insidious as they can affect benign
packages that are actually already widely used by developers.

One of the highest impact rogue updates to date was against the
event-stream package on npm. event-stream is a toolkit for work-
ing with streaming data, which at the time had 4000 dependent
packages. The developer of event-stream was no longer maintain-
ing the library and gave custody of it to a new contributor who
offered to take over. The new maintainer added a new feature by

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639199&domain=pdf&date_stamp=2024-04-12


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, and Junfeng Yang, Jason Nieh

adding a dependency with an obfuscated malicious file. The update
had no unusual metadata and was a small change to a complex
but benign code base. Neither Amalfi nor Maloss can detect it.
The attack remained undetected for a month [16] and was down-
loaded 8 million times, allowing attackers to steal from end-users
through CoPay, a Bitcoin wallet application using event-stream as a
dependency. Each of the 4000 dependent packages had many more
transitive dependents, every one of which caused more users to be
instantly exposed to malware.

We present RogueOne, a system that detects rogue updates by
flagging changes in data-flows from one version of a package to
another. RogueOne examines the initial and updated versions of
a package and uses abstract interpretation to build a fine-grained
trace of data-flows among objects. It determines if an update is rogue
by detecting new data-flows between system APIs or packages
which may steal sensitive data or inject malicious code.

A key challenge is determining if an update is malicious without
knowing how the package is used. Unknown code (callers) may
call into the package in a myriad of ways, and the package may call
into many other packages (dependencies), whose code may not be
available or may be infeasible to analyze. We solve this problem by
introducing three key ideas: a comprehensive notion of data-flow,
differential data-flow analysis, and trust domains.

RogueOne uses a comprehensive notion of data-flow that tracks
all data and includes potential data-flows in callers and dependen-
cies, not just the package’s own code. RogueOne tracks data-flows
that (1) begin with any data, including any static literals such as con-
stant strings or numbers, because any of them may be malicious,
(2) end with any object external to the package being analyzed,
including all functions of other packages, Node.js built-ins, and
the unknown caller of the analyzed package. It is comprehensive
in tracking data-flows that begin with any data because a rogue
update can insert or modify any code in a package, not just affect
inputs from outside the package. It is also comprehensive in track-
ing data-flows through property references, such as o1.prop := o2,
because such an assignment allows external unknown code with
a reference to object o1 to receive any data sent to o2, resulting in
potential data-flows in callers and dependencies even if the ana-
lyzed package never accesses the property. This detailed view of a
package’s data-flows enables effective detection of malware in the
presence of unknown callers and unavailable dependencies.

RogueOne introduces differential data-flow analysis to examine
data-flow changes between the original and updated versions of
a package. It exploits the fact that any rogue update must change
some data-flow in the target package to introduce malicious func-
tionality. While the idea is intuitively simple, benign updates can
also change data-flows, so flagging any change in data-flows would
create an unmanageable number of false positives. To apply differ-
ential data-flow analysis effectively to complex JavaScript packages,
RogueOne introduces a novel abstraction: trust domains.

Trust domains express the intuitive idea that objects originating
in the same dependency package have a common developer who
controls the values and code of all those objects. RogueOne assigns
these objects to the same trust domain since trusting one object
created by a package is equivalent to trusting any other object from
the same package.

RogueOne identifies changes in data-flows across trust domains
to flag rogue updates based on the observation that benign up-
dates rarely introduce new data-flows across trust domains. This
approach allows effective detection of malware without RogueOne
incorporating any deny-list of ‘suspicious’ APIs.

RogueOne introduces an Object Data-Flow Relationship Graph
(ODRG) to capture how trust domains send and receive data to each
other. It uses abstract interpretation to construct ODRGs for the
original and updated versions of a package, then detects changes
in the data-flows between ODRGs to flag rogue updates. Our im-
plementation of RogueOne uses a modern JS abstract interpreta-
tion engine based on ODGen [42] and FAST [32], which allows
RogueOne to correctly handle JavaScript features such as dynamic
typing and prototypical inheritance. RogueOne analyzes a pack-
age in an update-aware manner, skipping unchanged code when
appropriate to avoid unnecessary work. To further increase preci-
sion, RogueOne recursively analyzes a package’s transitive depen-
dencies if their code is available and computes cross-domain flow
summaries at the package level, striking a good balance between
precision and analysis cost.

We compare the effectiveness of RogueOne to Maloss and
Amalfi on hundreds of benign and rogue updates drawn from
npm’s most popular packages, random packages, and research
datasets of malware. RogueOne can detect over 75% of rogue up-
dates while keeping false positives under 5%. It is more than twice
as effective at detecting rogue updates compared to the closest ex-
isting system, and in some cases can be seven times more effective
than existing systems. It is also more than seven times as effective
in minimizing false positives compared to existing systems.

2 THREAT MODEL

We follow the taxonomy for supply-chain attacks introduced by
Ohm et al. [50], which distinguishes between malicious updates
to an existing (benign) package versus new malicious packages.
RogueOne focuses on the former, specifically Ohm et al.’s “Inject
into Source” and “Inject into Repository System” categories. Mali-
cious new packages such as typosquatting attacks are out of scope;
such attacks are easier to detect and existing tools such as Maloss
already catch them.

We assume that the malicious payload contained in a rogue up-
date has some external effect, either through a system API or a
chain of dependencies that reaches a system API. This threat model
is common, as demonstrated in attacks such as the event-stream

attack [65]. Denial-of-service attacks (e.g., Overson, J. [52]) and
developer deletion of package functionality are out of scope. These
attacks cause damage, but they are less severe, rare, and quickly
detected by developers. Similarly, common software vulnerabilities,
such as cross-site scripting [8], prototype pollution [33], and arbi-
trary code execution [67], are out of scope because such packages
are attacked during runtime, and many existing tools can already
detect such vulnerabilities [68].

3 OVERVIEW

RogueOne distinguishes between rogue and benign updates by
comparing sets of data-flows between trust domains, an abstraction
for groups of objects that share an origin such as a package. Unlike

2



ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 1: RogueOne architecture.

static analysis approaches that aim to detect vulnerabilities such as
taint-analysis, RogueOne cannot restrict itself to data-flows from
suspect API sources to sinks in the code being analyzed because a
rogue update can be anywhere in the code of a package. Instead, it
aims to capture all existing and potential data-flows in and out of the
target package and represent them in ODRGs. Fig. 1 shows the high-
level steps for this process: (i) update-aware abstract interpretation,
(ii) ODRG construction, (iii) cross-trust-domain data-flow detection,
and (iv) differential data-flow analysis.

To explain these steps, we use two examples shown in Fig. 2.
Fig. 2a shows a rogue update inspired by real-world rogue updates.
Before the update, this code fetches a secret from an environment
variable (line 1) and uses it to configure (sets the authentication
key) a client for a secure store (line 3) provided by the secure-store
package (imported at line 2). The code also accesses a public store
(lines 5-6) provided by the public-store package (imported at line
4). An attacker adds a one-line rogue update to leak the secret key
to the public store (line 7). Fig. 2b shows a benign update based
on an Axios HTTP client example [5]. Before the update, this code
imports a package (line 1) that enables performing an HTTP GET
(line 6) and writes external data (response.data at line 8) to the
filesystem (using fs.writeFileSync from the fs package imported
at line 2). The one-line update writes external data (error.data at
line 11) to the filesystem, but this flow of information between the
remote server and the filesystem, or more specifically, between the
axios and fs packages, already existed at line 8.
Update-aware abstract interpretation RogueOne examines
a target package in isolation, as the identity of the calling pack-
age is unknown. To provide a comprehensive notion of data-flow,
RogueOne invokes an abstract interpretation engine for the pre-
and post-update versions of a package while avoiding analyzing
unchanged files between versions of the package to avoid state
explosion and prohibitively long analysis times.

RogueOne uses abstract interpretation to reduce complex JS
semantics to four high-level operations sufficient for tracking data-
flows among objects, including potential data-flows in callers and
dependencies, as discussed in §4.1. For example, line 6 in Fig. 2a
shows data retrieved using the secure-store package, then pub-
lished back to the web using the public-store library. Showing that
this data-flow originateswith secure-store and reaches public-store
involves the following four operations:

• Package import, e.g., require(‘secure-store’)
• Property retrieval, e.g., secret is the same object as

process.env[‘SECRET_KEY’]

• Property assignment, e.g., secClient → secClient.key

1 secret = process.env['SECRET_KEY'];
2 secClient = require('secure-store');
3 secClient.key = secret;
4 pubClient = require('public-store');
5 result = secClient.query('User Query');
6 pubClient.publish(result.publicData);
7 + pubClient.publish(secret);

(a) A rogue update example: the added line 7 leaks a secret key

through the call to pubClient.publish.

1 const axios = require('axios');
2 const fs = require('fs');
3 const instance = axios.create({
4 baseURL: 'https://example.com/api/',
5 });
6 instance.get('/data')
7 .then(function (response) {
8 fs.writeFileSync('response.log', response.data)
9 })
10 .catch(function (error) {
11 + fs.writeFileSync('error.log', error.data);
12 })

(b) A benign update example: the added line 11 adds a second call

to fs.writeFileSync. However, as the data-flow between axios
to fs existed in the first call to fs.writeFileSync, it does not

represent a new cross-trust-domain data-flow.

Figure 2: Two update examples, both adding new data-flows,

depict the difficulty of flagging only rogue updates.

• External function calls, e.g.,
secClient.query → result and
result.pubData → pubClient.publish(result.pubData).

For example, by tracking data-flows through property assignment,
RogueOne can identify that any code with a reference to secClient

may read whatever data is stored in secret to capture potential
data-flows in callers and dependencies even if the target package
in Fig. 2a itself never accesses the property.
ODRG construction Using the set of high-level operations gen-
erated by abstract interpretation, RogueOne constructs an ODRG
for each version of the package, which it later uses to extract cross-
trust-domain data flows. Fig. 3a and Fig. 3b show the ODRGs cor-
responding to Fig. 2a and Fig. 2b, respectively. The nodes in the
graph correspond to objects created during the code’s execution,
and are connected by owns and data-flow edges. An owns edge
from object A to object B indicates that the code that created A can
control B and determine its value. A data-flow edge from object
A to object B indicates that the value of B depends on the value
of A. Every owns edge has a corresponding data-flow edge, but a
data-flow edge may exist without an owns edge. For example, in
Fig. 3a, there is a data-flow edge from secret to publish(secret)

because the value of the latter depends on the value of former, but
3



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, and Junfeng Yang, Jason Nieh

(a) The rogue update adds the highlighted ‘publish(secret)’ node.

Since the ‘secret’ node was not previously connected to the

public-store trust domain, a new cross-trust-domain data-flow

is created from process to public-store and the update is flagged.

Static data nodes are omitted for clarity.

(b) The benign update adds the ‘error.data’ node, as well as the lower

call to fs.writeFileSync. The new data-flow is across the same trust

domain pair that existed in the earlier version, so the update is not

flagged. Static data and the region of the require(‘axios’) nodes
are omitted for clarity.

Figure 3: Object Data-Flow Relationship Graphs for the rogue update and benign update provided in Fig. 2. Shaded areas depict

the regions of the object graph ‘owned’ by a trust domain. If data from one trust domain reaches (solid arrows) the ‘owned’ area

of another trust domain, a cross-trust-domain data-flow is created.

the code for the former does not control the value of the latter. §4.2
provides further details about the ODRG creation process.
Cross-trust-domain data-flow detection After constructing
each ODRG, RogueOne uses them to detect data-flows across trust
domains. RogueOne defines trust domains by annotating a set of
nodes in an ODRG as trust domain roots of a specific trust domain.
These are objects of known origin whose values are determined
by code from that trust domain. The most common example is
the object resulting from importing a package, such as in line 1
of Fig. 2a. Nodes that are reachable through owns edges from a
trust domain root are considered part of the same trust domain. In
Fig. 3, reachability frontiers for owns edges are marked as shaded
rectangles annotated with their trust domain.

RogueOne extracts cross-trust-domain data-flows by recording
each node which is accessible by data-flow edges from a root of
one trust domain and owns edges from a root of another trust
domain. For example, in the rogue update depicted in Fig. 3a,
there are four cross-trust-domain data-flows. Three exist before the
update: (process → secure-store) and (secure-store → process)
are created by the presence of secret in both trust domains, and
(secure-store → public-store) is created by the data-flow from
require(‘secure-store’) to publish(publicData). Onemore results
from the update: (process → public-store) is created by the addi-
tion of the new publish(secret) node and accompanying data-flow
edge from secret.
Differential data-flow analysis RogueOne compares the cross-
trust-domain data-flows before and after the update. The rogue
update in Fig. 3a is flagged, since the cross-trust-domain data-flow
(process → public-store) is new. However, the benign update in
Fig. 3b is not flagged, since the ‘new’ cross-trust-domain data-flow
(axios → fs) was already present in the previous version.

4 DESIGN

4.1 Update-Aware Abstract Interpretation

RogueOne employs abstract interpretation to obtain all object data-
flow relations from an npm package. An abstract interpretation

engine [11] simulates the execution of code, maximizing code cover-
age by executing the code with different abstract values to explore
all code paths. This captures a superset of the program’s possible
states. The superset will be closer to the actual set of possible states
if the abstract interpretation engine is more precise in its simulation.
Precision can include being flow-sensitive so that the simulation
depends on the control flow of the code, path-sensitive so that the
simulation does not evaluate mutually exclusive paths of code to-
gether, and context-sensitive so that the simulation of a function
accounts for its calling context.

To more precisely track object data-flow relations, RogueOne
employs a flow-sensitive, path-sensitive, and context-sensitive ab-
stract interpretation engine for npm packages, ODGen. We use
ODGen to refer to the latest version of the engine, including the
FAST [32] improvements, implemented as a patch to ODGen. Nor-
mally, ODGen starts the simulation in the package’s main entry
point and calls every function in the package’s API [25] to maximize
branch and state coverage. When encountering abstract values used
as callees in call sites,ODGen creates abstract results, and simulates
the execution of passed callbacks. During its simulation, ODGen
meticulously records every operation performed on each object at
every statement, following each execution path and tracking states,
call stacks, and control flow. For example, ODGen allows travers-
ing from a variable to every object which has been referred to by
that variable. ODGen is a cloning-based analysis, meaning each
different possible value for a variable is represented independently
in its result.

Abstract interpretation engines like ODGen strive for precision,
but this design choice has a price: real-world code bases can cause
state-explosion and require significant time to conclude their anal-
yses. To tackle this problem, RogueOne invokes ODGen’s abstract
interpretation engine in an update-aware manner to side-step its in-
herent limitations, allowing RogueOne to examine updates to large
complex packages. RogueOne focuses ODGen on parts of the code
that change as a result of an update so fewer states are explored
and less code requires simulation. To do this, RogueOne begins
analyzing a package by examining the two versions and building a

4



ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 // process is a built-in global object treated as imported
2 process := require('node:process'); // L1
3 env := process.env; // L1
4 secret := env.SECRET_KEY; // L1
5 secClient := require('secure-store'); // L2
6 secClient.key := secret; // L3
7 pubClient := require('public-store'); // L4
8 secQuery := secClient.query; // L5
9 // The implied `this` is treated as a parameter.
10 result = secQuery(secClient, 'User Query'); // L5
11 pubData := result.publicData; // L6
12 publish := pubClient.publish; // L6
13 pubResult1 := publish(pubClient, pubData); // L6
14 pubResult2 := publish(pubClient, secret); // L7

Figure 4: High-level object and data-flow operations resulting

from abstract interpretation of rogue update in Fig. 2a.

list of changed files. Then, RogueOne interposes itself in ODGen’s
simulation of code importing statements (require and import). Im-
port attempts against large unchanged files may be aborted to save
analysis effort. This results in an opaque imported abstract value,
whose properties are themselves abstract values. These are manip-
ulated as required by ODGen, which still tracks data-flow into and
out of the imported object.

By invokingODGen’s abstract interpretation engine, RogueOne
obtains a record of JavaScript execution for a package, from which
it extracts just the object and data-flow related operations necessary
and sufficient for trust domain analysis. This reduces the complex
semantics of JavaScript to four high-level operations: (1) Package
import: o := require(package), (2) Property retrieval: o2 := o1.prop,
(3) Property assignment: o1.prop := o2, and (4) External function
call: result := func(p1,p2,...). Package import must be included
to determine when external code enters the target program. Object
property relationships defined by property retrieval and assignment
operations must be included since any code with a reference to
a parent object naturally has a reference to all properties of that
object, and can read and write the data inside. External function
calls must be included to model the APIs of imported packages,
system APIs, and core operations such as addition and subtraction.
All other elements of JavaScript semantics either do not affect the
value of an object or can be modeled with these operations.

For example, RogueOne’s use of abstract interpretation on the
rogue update example in Fig. 2a results in the set of operations
shown in Fig. 4, with a comment on each line indicating from
which original line of code in Fig. 2a it was obtained. The built-in
process global is modeled as a package import, property access
is decomposed into separate operations for simplicity, and each
function call has the implicit this moved into the parameter list.
In a more complex program, branches, internal function calls, and
loops would all be unrolled into one series of object operations.

4.2 ODRG Construction

Using the set of high-level operations that result from abstract
interpretation, RogueOne constructs an ODRG, which captures
captures relations between the objects created by the code in the
package, as well as objects passed as input to and from the package.
The ODRG’s nodes represent objects connected by two sets of edges:
data-flow and owns. We write the former as → and the latter as
𝑜𝑤𝑛𝑠−−−−→. RogueOne processes the above-mentioned four operations
to construct the ODRG as follows:

(1) Package import o := require(package): Creates a new node
representing o, containing the imported external package
object.

(2) Property retrieval o2 := o1.prop: Finds the set of objects ref-
erenced by o1.prop in the ODRG and makes them available
as o2. If no child object node is present in the ODRG (e.g., o1
is passed in as a parameter), creates one and adds an owns
edge o1

𝑜𝑤𝑛𝑠−−−−→ o2 and a data-flow edge o1 → o2. If one or
more objects are already present in the ODRG as o1.prop,
this statement does not change the ODRG.

(3) Property assignment o1.prop := o2: Adds o2 to the set of
objects reachable through o1.prop showing that o2may carry
data from o1, and an owns edge o1

𝑜𝑤𝑛𝑠−−−−→ o2 showing that
later code which holds a reference to o1 may read o2.

(4) External function call result := func(p1,p2,...): Adds data-
flow edges func → result, p1 → result, p2 → result,... be-
cause the function and the parameters all influence result.
Adds an owns edge func

𝑜𝑤𝑛𝑠−−−−→ result because func controls
result and can receive future data flows into result. Fig. 3b
shows an example as the return value of instance.get(‘data’)
must be part of the axios trust domain, since it carries data
and functions from axios.

For example, RogueOne follows these steps to construct the
post-update ODRG in Fig. 3a from the set of operations in Fig. 4 for
the rogue update example. The pre-update ODRG is constructed in
a similar manner. Since none of these processing steps overwrite the
values of objects or remove information from the resulting graph,
order is not important. As a result, the input to ODRG construction
can be regarded as an unordered set of operations.

4.3 Cross-Trust-Domain Data-Flow Detection

Data-flow extraction After building each ODRG, RogueOne
computes the set of cross-trust-domain data-flows. First, RogueOne
designates all objects created via the require(package) operation as
trust domain roots, and tags them with package. Each trust domain
root ’owns’ the nodes reachable through owns edges; these nodes
are part of that root’s trust domain. Similarly, each trust domain
root may send data to any node reachable through data-flow edges.
The flow set is calculated accordingly:

𝑂𝑤𝑛𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑡𝑟𝑢𝑠𝑡𝐷𝑜𝑚𝑎𝑖𝑛) := {obj |
obj is reachable along owns edges from a root of 𝑡𝑟𝑢𝑠𝑡𝐷𝑜𝑚𝑎𝑖𝑛 }

𝐷𝑎𝑡𝑎𝐹𝑙𝑜𝑤𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑡𝑟𝑢𝑠𝑡𝐷𝑜𝑚𝑎𝑖𝑛) := {obj |
obj is reachable along data-flow edges from a root of 𝑡𝑟𝑢𝑠𝑡𝐷𝑜𝑚𝑎𝑖𝑛 }

𝐹𝑙𝑜𝑤𝑠 (𝑂𝐷𝑅𝐺 ) := { (𝐴 → 𝐵) | ∃ obj such that
obj ∈ 𝐷𝑎𝑡𝑎𝐹𝑙𝑜𝑤𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝐴) ∧ obj ∈ 𝑂𝑤𝑛𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝐵) }

The result is a set of cross-domain data-flows for the target package:
{(t1 → t2), (t3 → t4),...}.

For example, for the rogue update in Fig. 2a, three trust domains
are present: process, secure-store, and public-store. For each trust
domain, we calculate the two sets of reachable nodes described
above, described here using the names in Fig. 4, with the node

5



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, and Junfeng Yang, Jason Nieh

added in the update in asterisks:

𝑂𝑤𝑛𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ) = {𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑒𝑛𝑣, 𝑠𝑒𝑐𝑟𝑒𝑡 }
𝑂𝑤𝑛𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑠𝑒𝑐𝑢𝑟𝑒-𝑠𝑡𝑜𝑟𝑒 ) = {𝑠𝑒𝑐𝐶𝑙𝑖𝑒𝑛𝑡, 𝑠𝑒𝑐𝑟𝑒𝑡, 𝑠𝑒𝑐𝑄𝑢𝑒𝑟𝑦, 𝑟𝑒𝑠𝑢𝑙𝑡,

𝑝𝑢𝑏𝐷𝑎𝑡𝑎}
𝑂𝑤𝑛𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑝𝑢𝑏𝑙𝑖𝑐-𝑠𝑡𝑜𝑟𝑒 ) = {𝑝𝑢𝑏𝐶𝑙𝑖𝑒𝑛𝑡, 𝑝𝑢𝑏𝑙𝑖𝑠ℎ, 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡1,

∗ 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡2∗}
𝐷𝑎𝑡𝑎𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ) = {𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑒𝑛𝑣, 𝑠𝑒𝑐𝑟𝑒𝑡, ∗𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡2∗}

𝐷𝑎𝑡𝑎𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑠𝑒𝑐𝑢𝑟𝑒-𝑠𝑡𝑜𝑟𝑒 ) = {𝑠𝑒𝑐𝐶𝑙𝑖𝑒𝑛𝑡, 𝑠𝑒𝑐𝑟𝑒𝑡, 𝑠𝑒𝑐𝑄𝑢𝑒𝑟𝑦, 𝑟𝑒𝑠𝑢𝑙𝑡,

𝑝𝑢𝑏𝐷𝑎𝑡𝑎, 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡1}
𝐷𝑎𝑡𝑎𝑅𝑒𝑎𝑐ℎ𝑒𝑠 (𝑝𝑢𝑏𝑙𝑖𝑐-𝑠𝑡𝑜𝑟𝑒 ) = {𝑝𝑢𝑏𝐶𝑙𝑖𝑒𝑛𝑡, 𝑝𝑢𝑏𝑙𝑖𝑠ℎ, 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡1,

∗ 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡2∗}

Then, for each ordered pair of distinct trust domains we observe if
and where that cross-trust-domain data-flow occurs:

(𝑝𝑟𝑜𝑐𝑒𝑠𝑠 → 𝑠𝑒𝑐𝑢𝑟𝑒-𝑠𝑡𝑜𝑟𝑒 ) : Occurs at 𝑠𝑒𝑐𝑟𝑒𝑡
(𝑠𝑒𝑐𝑢𝑟𝑒-𝑠𝑡𝑜𝑟𝑒 → 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ) : Occurs at 𝑠𝑒𝑐𝑟𝑒𝑡

(𝑠𝑒𝑐𝑢𝑟𝑒-𝑠𝑡𝑜𝑟𝑒 → 𝑝𝑢𝑏𝑙𝑖𝑐-𝑠𝑡𝑜𝑟𝑒 ) : Occurs at 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡1
(𝑝𝑟𝑜𝑐𝑒𝑠𝑠 → 𝑝𝑢𝑏𝑙𝑖𝑐-𝑠𝑡𝑜𝑟𝑒 ) : Occurs post-update at ∗ 𝑝𝑢𝑏𝑅𝑒𝑠𝑢𝑙𝑡2∗

Cross-package data-flow elimination The cross-domain data-
flow algorithm is specific to one package and yields a package-
granularity depiction of data-flows. These data-flows may be to
and from packages that can themselves be analyzed by RogueOne.
Many packages on npm have no external effects; they expose an
API that performs some calculation and returns a value. By ana-
lyzing a dependency and observing that there would be no transi-
tive cross-domain data-flows through it, RogueOne can eliminate
cross-domain data-flows to that dependency from the flow set. This
reduces false positives, especially those resulting from new depen-
dencies, as discussed in §7.3. Where possible, RogueOne performs
cross-package analysis as follows:

(1) When an update is analyzed, all available dependencies and
transitive dependencies of the pre- and post-update versions
are also analyzed, resulting in a list 𝐹𝑙𝑜𝑤𝑆𝑒𝑡𝑠 of data-flow
sets, along with 𝐹𝑙𝑜𝑤𝑠 (𝑇 ) for the original target package.

(2) If, for any dependency 𝐷 :

𝐹𝑙𝑜𝑤𝑠 (𝐷 ) ⊆ ({ (𝑇 → 𝐷 ), (𝐷 → 𝑇 ) } ∪ 𝐹𝑙𝑜𝑤𝑠 (𝑇 ) )

then 𝐷 is a dead-end for data-flows. Consider an update
to the target package which adds the data-flow (𝑋 → 𝐷),
where 𝑋 is some trust domain. To have a malicious effect,
data must eventually reach some external API. However,
since the flows in𝐷 are a subset of the flows in the target and
dependencies (other than flows to and fromD), we know that
data from𝑋 cannot go anywhere it did not go before. No data-
flow to 𝐷 can cause information to reach new un-analyzed
code, including any system API. RogueOne removes 𝐷 from
𝐹𝑙𝑜𝑤𝑆𝑒𝑡𝑠 and deletes any data-flow containing 𝐷 from all
elements of 𝐹𝑙𝑜𝑤𝑆𝑒𝑡𝑠 and 𝐹𝑙𝑜𝑤𝑠 (𝑇 ).

(3) The previous step is repeated until no such ’dead end’ de-
pendencies remain.

The resulting 𝐹𝑙𝑜𝑤𝑠 (𝑇 ) is used for differential analysis.

4.4 Differential Data-Flow Analysis

The set of cross-domain data-flows for a typical JavaScript package
is large, and any particular data-flow which might be used by a
malicious package will also be used by many benign packages. To
overcome this challenge, RogueOne takes advantage of the stabil-
ity of the cross-domain flow set of a typical package. RogueOne
assumes that the earlier version of a package is benign, and is
looking for a malicious update. It calculates the set difference of
cross-domain data-flows to find new cross-domain data-flows re-
sulting from an update:
𝑛𝑒𝑤𝐹𝑙𝑜𝑤𝑠 := 𝑓 𝑙𝑜𝑤𝑠𝐴𝑓 𝑡𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒/𝑓 𝑙𝑜𝑤𝑠𝐵𝑒 𝑓 𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒 .
If the set of new flows is empty, the package update is considered
benign. Otherwise, the update is flagged as a rogue update. Refer-
ring back to the flows detected in §4.3, we see that (𝑝𝑟𝑜𝑐𝑒𝑠𝑠 →
𝑝𝑢𝑏𝑙𝑖𝑐-𝑠𝑡𝑜𝑟𝑒) only occurs in the post-update version, and the up-
date is flagged.

5 IMPLEMENTATION

The RogueOne implementation consists of 13K Lines of Code (LoC),
mainly Python and JS, to support update-aware abstract interpre-
tation, construct the ODRG, perform trust domain analysis, and
perform differential analysis. Our engine is a fork of the open-source
ODGen repository [40], to which we add update-aware analysis,
ODRG construction, and trust domains. The upgrades to ODGen
described in FAST [32] have also been merged [31].

The current implementation supports JavaScript features up to
ECMAScript 5 with limited support for features up to ECMAScript
2018. JavaScript behavior ismodeledwithinODGen using a statement-
by-statement simulation of the behavior of Node.JS when running
the target code. All objects which may be created by the program
in all possible branches are modeled symbolically. Newer features
such as dynamic imports are not supported but can be converted via
transpilers such as Babel. When unsupported features of JavaScript
are encountered, they may have no effect or may cause errors.
Extracting the ODRG We augment ODGen by tracking several
new object relationships. These include: (1) Linking an external
(code not within the scope of analysis) function object to each
possible return value. (2) Linking an external function object to
the parameters of callbacks passed to that function object (see
Fig. 2b). (3) Labelling objects accessible through module.exports.
(4) Labelling function objects not linked to definitions. However,
these additional edges only require the addition of record-keeping to
ODGen, no additional simulation is necessary. With these additions,
the set of object operations discussed in §4 is complete, and all data
needed for RogueOne’s analysis is present.
Handling Prototypical Inheritance In all JavaScript runtimes,
upon creation, every object contains a obj.__proto__ property con-
necting it to its class’ prototype chain[47]. Traversing the obj.__proto__
chain to its end will always reach Object.prototype. This is a stum-
bling block for our information flow analysis, as to handle a case
like the one seen on line 3 of Fig. 2a, we must consider data-flows
that happen exclusively across object property connections,

𝑜𝑤𝑛𝑠−−−−→
connections in the ODRG. To prevent every trust domain from
simultaneously owning Object.prototype, RogueOne maintains a
list of built-in objects which are present before any code is executed

6



ICSE ’24, April 14–20, 2024, Lisbon, Portugal

and do not normally carry information. These include the Object,
Function, String, Number, and Array prototypes. In addition, the
data-flow properties of the built-in functions in the Array and String
prototypes are explicitly modeled. Data stored in these prototypes
is still tracked, but cross-domain data-flows do not occur solely
because of the convergence of object prototype chains.
Additional Trust Domain Roots In §4.2 we describe trust do-
main roots which are created through package import. In our im-
plementation, three more cases must be considered. First, built-in
objects. Before the first line of a JavaScript program is executed,
the global and module scopes are populated with numerous ob-
jects [24]. These objects provide OS-related data like process or
code generation APIs like eval that RogueOnemust track dataflow
into. Therefore, our implementation tags many built-in objects mod-
eled by ODGen with trust domains as if they were the result of
external imports.

Next, RogueOne considers data which comes from the caller and
the surrounding program which has imported the target program.
When the caller imports the package under analysis, they receive
a reference to the module.exports object. This is the object which
contains all the APIs the package exports, and which ODGen uses
to simulate all entrypoints of a package. The caller can access all
properties of it, call functions stored in it, etc. That means the caller
owns any object which is accessible through module.exports, and
supplies the parameters to any function call to the module.exports

object any of its properties. These objects are tagged with a special
:caller 1 trust domain. This allows RogueOne to track data-flow
not only to packages imported by the target program, but also to
the package which imported the target program.

The final source of non-import trust domains is local data. The
model language in §4 contains no values like strings or numbers, but
malware often introduces new values such as attacker IP addresses
or obfuscated code to by unpacked. To detect if these values are
passed to external APIs, each static value in a program is treated
as having a :local trust domain, as if the string ‘example.com’ was
created by a require(‘:local:example.com’) statement. The exact
trust domains which are created can be configured as a tradeoff
between precision and sensitivity. By default, RogueOne places all
local values into one trust domain: :local. In our evaluation we
also demonstrate an alternate ‘Paranoid’ configuration in which
each value has a unique trust domain, giving greater sensitivity at
the cost of precision.

6 LIMITATIONS

When analyzing arbitrary code, it is necessary to accept some draw-
backs in order to analyze even a reasonable portion of target code
[19]. RogueOne is unsound and can have both false positives and
false negatives. Like all malware detection techniques, RogueOne
can be evaded.

6.1 Limitations of Abstract Interpretation

Timeouts Any abstract interpretation or symbolic execution sys-
tem must contend with the fact that a complete analysis of a pro-
gram cannot be guaranteed to terminate. Although ODGen models

1The ‘:’ character is used as it is excluded from Node.js package names.

many complex JavaScript features, the main causes of incomplete-
ness and unsoundness in ODGen are the same language features
which inhibit analysis in any language: unbounded loops and recur-
sion, race conditions. In particular, loops with heavily branching
bodies that require the abstract interpretation engine to explore an
exponentially expanding tree of branches can stop abstract inter-
pretation from completing.2

FAST Analysis Scaling In FAST [32], the authors improve the
ability of ODGen to scale across a large dataset by targeting par-
ticular APIs such as child_process.spawn and pruning execution
paths which cannot lead to the APIs of interest. This approach does
not apply to RogueOne as nearly all external APIs must be tracked,
so almost no execution paths are pruned. Although these mitiga-
tions are included in RogueOne, they are not enabled by default as
they increase analysis time overall. Future work might adapt them
to improve performance for RogueOne. Instead, RogueOne uses
update-aware analysis that excludes unchanged code to mitigate
timeouts. The current implementation excludes unchanged code
at file granularity; excluding unchanged code at function or scope
granularity is left to future work.
Loop Abort JavaScript packages such as web servers or parsers
may have unbounded inputs and outputs. Abstract interpretation
of such a package must restrict its fidelity to complete the analysis
without timing out. ODGen measures statement coverage during
consecutive loop or recursive evaluations to restrict branch ex-
ploration and abort loop evaluation once no new code is being
evaluated. This can result in code not being evaluated (being incor-
rectly ignored as dead), if the abort heuristic is triggered before the
problematic code is reached. An attacker could use this to construct
an update which evades RogueOne by delaying the malicious func-
tionality until after a state change which ODGen does not model,
such as a change in the result of a system API. Such an attack would
create a new trigger of the timeout mitigation, which could be used
as an additional flagging criterion in future work.
Race Conditions JavaScript’s built-in asynchronous features
make some code execution non-deterministic. By creating a set
of callbacks which are unpredictably interleaved, the programmer
can create a large number of implicit branches through race condi-
tions.3 Exploring all possible interleavings of asynchronous code is
obviously infeasible. For simplicity, ODGen assumes that all call-
backs are executed after the current entry point (exported function
or module level scope) is complete. Future work may draw on race
condition detection work such as NodeRacer[18] to identify what
interleavings should be tested to find new behavior.

6.2 Other Limitations

Update-Aware Imprecision If RogueOne excludes unchanged
code from abstract analysis, analysis of changed code may become
less precise if it called into the excluded code. This is beneficial if
a timeout can be avoided by the exclusion, but a disadvantage if
no timeout would have occurred. The current criteria RogueOne
uses to exclude files are targeted at large unchanging ’vendored’

2An example of this can be seen in the package jade, included in our artifact.
3For example, see tests/dataflow_fixtures/dual_version/design_ex in
our artifact.

7



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, and Junfeng Yang, Jason Nieh

libraries such as jQuery, which tend to be intractable. There is
an inherent tradeoff in the choice of criteria: The more files are
excluded, the less timeouts will be encountered, but the more false
positives will occur. In addition, the presence of a vulnerability such
as unsanitized dynamic access to eval or require in the excluded
code could make RogueOne unable to detect a malicious data-flow.
Improving the granularity of code exclusion and the resilience of
the abstract interpretation engine to timeouts will help eliminate
these cases.
Unseen Mutations RogueOne’s threat model is targeted at a
particular update, which may or may not be malicious. As a result,
we assume that when an object is passed to an external trust domain,
the foreign code does not mutate the object it has received. This can
result in a break in a multi-package data flow which occurs through
mutation of a local object. If a dependency had such behavior,4 it
would create an invisible mutation to a local object, which could
create a new data-flow if it were subsequently passed to another
trust domain. Detecting these data-flows would require RogueOne
to record new data flow edges from a function tomutable arguments
to that function. If a dependency mutates its input in a way that
enables an attack, RogueOne cannot detect that mutation. New
dependencies, such as flatmap-stream in the event-stream attack,
will be detected.
False Positives RogueOne gives a false positive whenever a
package makes a benign change that creates a cross-trust-domain
data-flow. For example, a package may add a new option to save
its output to a file, creating an innocuous but flagged data-flow
to fs. Future work may restrict analysis to entry points actually
called by the RogueOne user, eliminating new branches that are
not reached in the actual application. The remaining false positives
represent changes in functionality, in which case RogueOne may
assist developers in quickly locating and analyzing the changes.
Obfuscation Benign andmalicious JavaScript packages on npm are
frequently obfuscated using a variety of tools and techniques[46].
We did not observe any effect from common transformations such
as minification and control flow flattening on our analysis. In ad-
dition, where two malicious samples contained obfuscated and
unobfuscated versions of the same payload, the analysis result
was unaffected. However, some obfuscation techniques such as
global arrays will cause over-approximation and spurious cross-
trust-domain data-flows, concealing new data-flows. The addition
of an obfuscated payload to an unobfuscated package would still
be detected.

7 EVALUATION

We evaluate the effectiveness of RogueOne at detecting rogue up-
dates and compare it against state-of-the-art approaches for detect-
ing malicious packages. We also measure the runtime performance
of RogueOne.

7.1 Experiment Setup

Datasets. We collected two datasets with a mix of benign and
rogue updates and one consisting of all presumed benign updates.

4tests/dataflow_fixtures/single_version/third_party_injection
in the artifact.

Each data point consists of two consecutive versions of a package,
e.g., (0.1.1,0.1.2).
• Multi-version dataset with 333 updates from 12 distinct packages.
This dataset was used by the authors of Amalfi for evaluating
their system and includes multiple updates per package of which
at least one is rogue.5

• Single-update dataset with 341 updates, each from a distinct pack-
age. We constructed this dataset by collecting the latest update
from 150 “most depended upon” packages [34], 150 randomly
selected packages from the npm repository, 29 rogue updates
from the Backstabber’s Knife [50] malware collection, and 12
other publicly reported rogue updates.

Evaluation methodology. Experiments were performed on a
machine with a 32-core i9-13900KF and 128 GB of RAM, running
Ubuntu 22.04. We enforced a timeout of one hour for processing
one update for all competing systems; errors or timeouts were
considered benign updates by default to reflect the most likely
mode of use of a malware-finding tool in the software development
industry.
Baselines. We evaluated RogueOne against two other systems:
• Amalfi [60] (a state-of-the-art ML-based system). The Amalfi
artifact provides classification results (but not code or models) on
the multi-update dataset with three different classifiers, Bayes,
D-Tree, and SVM. The Amalfi authors indicated[57] that they
could not provide their code or trained model for legal reasons;
therefore, we could only report the results for Amalfi for their
own dataset and could not evaluate Amalfi on any other dataset.

• Maloss [17] (a state-of-the-art malicious package detection sys-
tem). TheMaloss system is composed of three analysis com-
ponents: (1) static, (2) dynamic, and (3) metadata. The static
analysis component examines suspect packages by detecting
calls to suspicious APIs and taint-flows between them and is re-
ported as Maloss-STATIC. We also show results from Maloss’s
static differential mode under the nameMaloss-SDIFF6, which
accepts two versions of a package and only flags new suspicious
APIs.Maloss’s dynamic analysis component installs the target
package in a sandbox and records all network communication,
file access, and process creation. Dynamic analysis detects in-
stall time attacks[50], not require-time attacks like event-stream.
The combination of static and dynamic analysis is reported as
Maloss. In our evaluation, we did not run Maloss’s metadata
analysis component as it is ineffective against rogue updates. We
usedMaloss’s published docker image on DockerHub (Digest
69de276a4552) and ran it with the default configuration settings
providing the updated package toMaloss and the original and
updated version to Maloss-SDIFF as inputs.

Configurations. We evaluated two RogueOne configurations:
• RogueOne. The default version of RogueOne assigns all static
objects and literals in the update itself to a single :local trust
domain (See trust domain assignment: §5).

• RogueOne-Paranoid. RogueOne-Paranoid employs the oppo-
site strategy, by assigning every static object and literal a unique
trust domain for maximum sensitivity. RogueOne-Paranoid
creates detailed descriptions of program data-flows usable for

5We omit any package without updates.
6In theMaloss system this component is called compare-ast.

8



ICSE ’24, April 14–20, 2024, Lisbon, Portugal

System Rogue Updates Benign Updates
Flagged Missed Correct FalsePos

RogueOne 7 100% 0 0% 309 94.8% 17 5.2%
RogueOne-Paranoid 7 100% 0 0% 243 74.5% 83 25.5%
Amalfi-Bayes 2 28.6% 5 71.4% 314 96.3% 12 3.7%
Amalfi-DTree 1 14.3% 6 85.7% 285 87.4% 41 12.6%
Amalfi-SVM 0 0% 7 100% 320 98.2% 6 1.8%
Maloss 7 100.0% 0 0.0% 54 16.6 % 272 83.4%
Maloss-STATIC 2 28.6% 5 71.4% 241 73.9% 85 26.1%
Maloss-SDIFF 1 14.3% 6 85.7% 324 99.4% 2 0.6%
Table 1: Classification Accuracy on Multi-version Dataset

System Rogue Updates Benign Updates
Flagged Missed Correct FalsePos

RogueOne 31 75.6% 10 24.4% 286 95.3% 14 4.7%
RogueOne-Paranoid 38 92.7% 3 7.3% 180 60.0% 120 40.0%
Maloss 14 34.1% 27 65.9% 190 63.3% 110 36.7%
Maloss-STATIC 13 31.7% 28 68.3% 197 65.7% 103 34.3%
Maloss-SDIFF 5 12.2% 36 87.8% 292 97.3% 8 2.7%
Table 2: Classification Accuracy on Single-update Dataset

post-processing heuristics commonly used in the security indus-
try for directing manual examination efforts.

7.2 Detecting Rogue Updates

Table 1 presents the number of benign and rogue updates that
were classified correctly in the multi-version dataset. All configu-
rations of RogueOne correctly identified all rogue updates in the
dataset while controlling false positives. Maloss detects all rogue
updates but flags most (83%) benign updates as rogue, while the
other baselines detected two at best. RogueOne exhibits a false pos-
itive rate that is equivalent on average to Amalfi’s variants, while
Maloss-STATIC suffers from a false positive rate that is similar to
RogueOne-Paranoid without the sensitivity. §7.3 provides further
details with a breakdown (Table 4) and discussion of false positives.

Table 2 presents the number of benign and rogue updates that
were classified correctly in the single-update dataset. Amalfi is
excluded since the Amalfi classifier is not publicly available. This
experiment showcases the trade-off of sensitivity with false pos-
itives provided by RogueOne and Maloss. RogueOne correctly
detects more than 70% of rogue updates while suffering only 5% false
positives. The even more sensitive RogueOne-Paranoid detects
almost 93% of rogue updates yet suffers from 40% false positives. In
contrast, the most sensitive variant of Maloss detects 32% of rogue
updates with a similar false positive rate (37%).Maloss-SDIFF is
less prone to false positives (2.7% of benign updates), but detects
only 12% of rogue updates. Errors and timeouts were considered to
be benign for classification purposes. 11 benign updates and one
rogue update caused errors for Maloss, while nine benign updates
caused errors for RogueOne.

The results across both multi-version and single-update datasets
show that RogueOne identifies more rogue updates than other sys-
tems while maintaining similar false positive rates. It is important
to note that theMaloss system, including the metadata analysis
component, was designed to detect packages which were malicious
at the moment of publishing, leading to degraded performance on
this subset of malware.

Attack Multi Single Total RogueOne-Paranoid RogueOne
C-Harvest 0 22 22 100% 100%
CC-Harvest 0 10 10 80% 0%
S-Harvest 2 1 3 100% 100%
Dependency 1 1 2 100% 100%
M-FS-Access 1 3 4 75% 75%
Remote Ctrl 3 4 7 100% 100%
Total 7 41 48 94% 79%

Table 3: True Positives and Effectiveness By Attack Type

Table 3 provides a breakdown of the types of rogue updates in
both datasets and RogueOne’s overall detection effectiveness for
each type of attack. We describe all of them, as well as the cause of
any false negatives, below.
Client-side Data Harvest (C-Harvest) A client-side data har-
vest attack steals sensitive user data—e.g., passwords, credit card
numbers, and session tokens—from browser forms, AJAX requests,
and cookies, and sends it to the attacker’s server. An adversary
injects their malicious payload as a rogue update into JavaScript
code meant for the browser. RogueOne in all its configurations
flags all 22 of these packages, with the typical triggering data-flow
being :local to :JS:frontend:document.
Camouflaged Client-side Data Harvest (CC-Harvest) A vari-
ant of the client-side data harvest attack places the payload into
benign code which already has cross-domain data-flows corre-
sponding to the attack. In other words, the APIs used for ma-
licious functionality are already in use. Default RogueOne can-
not detect these attacks because with all string literals contracted
into the :local trust domain, the new data-flows, e.g. :local to
:JS:frontend:document, already exist in the previous program or
a dependency. As a result, default RogueOne has ten false nega-
tives from this category. This highlights the utility of RogueOne-
Paranoid. By increasing the granularity of the trust domains of
local data, RogueOne-Paranoid recognizes that the data flows to
those APIs are from new static strings, and flags all examples of this
attack for which our analysis completes. Abstract interpretation
fails to correctly handle branching loops in code unrelated to the
payload for two of these samples (§6.1), causing false negatives for
RogueOne-Paranoid as well.
Server-side Data Harvest (S-Harvest) A server-side attacker
can also execute a data harvest attack. They must use two sets of
APIs: data harvesting (e.g., via process.env) and data exfiltration
(e.g., via https). RogueOne detects all of these samples, most often
by the data-flow from :local (the attacker’s hard-coded server) to
the exfiltration API. In one case RogueOne detects the data-flow
public-ip to :local, as the updated malware begins collecting the
public IPs of victims.
Malicious Dependency (Dependency) This attack hides the mali-
cious payload in another package, then updates the target package
by adding a require call that triggers the run-time import and exe-
cution of the malicious dependency. This is how the event-stream

project was attacked [16]. Since there is no actual use of the mali-
cious dependency, there is no call to any dependency methods. In
this case, the dependency is added and assigned to a property of
module.exports, making it available to the caller. RogueOne recog-
nizes that in addition to the new package, there is a data-flow from

9



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, and Junfeng Yang, Jason Nieh

FP Cause Multi Single Total RogueOne-Paranoid RogueOne
Dependencies 14 27 41 6.5% 2.1%
System APIs 3 5 8 1.3% 0.8%
New Data 43 84 127 20.3% 0.0%
Install Scripts 14 0 14 2.2% 0.8%
Built-ins 3 1 4 0.6% 0.6%
Flow Analysis 6 3 9 1.4% 0.5%
Total 83 120 203 32.4% 4.8%

Table 4: False Positives Across RogueOne Configurations

flatmap-stream to :caller, due to the caller receiving the exported
library object.
Malicious Filesystem Access (M-FS-Access) This attack mali-
ciously modifies the file system, e.g., sabotaging another npm pack-
age if it exists, or appending the attacker’s ssh key to local
/home/*/.ssh/authorized_keys files. The default RogueOne detects
three out of four such attacks via data-flows that begin or end at fs.
The last one uses JavaScript syntax unrelated to the payload that
our abstract interpretation engine does not support. This causes
abstract interpretation to fail, giving a false negative result.
Remote Control (Remote Ctrl) This attack establishes a long-
term hold on the victim computer (e.g., via a reverse shell or cryp-
tocurrency miner). To do this, the attacker must use one or more
of the network, filesystem, or OS process (such as child_process)
APIs. RogueOne detects the APIs used by the malware and fully
captures the attacks in the ODRG, representing them as data-flows
from :local to the package used to control the network, filesystem
or OS interaction. For example, a static IP address string would be
in the :local trust domain and may flow to http, causing a flag.

7.3 False Positives and Causes

Table 4 lists false positives across both configurations of RogueOne,
divided into six different causes which are described below. Since
RogueOne-Paranoid has the highest number of false positives,
the total counts necessarily correspond to its false positives, with
RogueOne having less. The first three causes are related to trust
domain analysis, and the last three are related to abstract interpre-
tation.
• New Dependencies. RogueOne recursively analyzes dependen-
cies and composes trust domain relationships. If a dependency
cannot be analyzed due to a timeout or unsupported JavaScript
feature, it is left as a ’black box’ and treated identically to a system
API. Then, any new cross-domain data-flow to or from the depen-
dency will be flagged, causing a false positive if the dependency
is actually benign.

• New System API Use. RogueOne considers any update that
introduces new system APIs such as network and filesystem
access to be rogue. Updates to mature packages which use new
system APIs are rare, but when they happen they can only be
distinguished from malicious additions by manual analysis. At
the same time, the output generated by RogueOne can greatly
assist the manual examination of these cases.

• NewData. This cause is specific to RogueOne-Paranoid, which
marks every piece of data in a program as a potential threat.
However, these potential threats could be as simple as changed
logging messages, references to renamed files, or adjusted regular

expressions. As a result, over the two datasets, 173 additional
packages are flagged over RogueOne.

• Incomplete modeling of install scripts. npm provides package
developers with “Install hooks”[27] which execute arbitrary code
during package install. RogueOnemodels these hooks as require
calls when they run JavaScript files, but non-JavaScript scripts
result in RogueOne flagging the update as rogue.

• Unrecognized Built-ins. RogueOne assumes that any unrecog-
nized built-in function is a sensitive external API, which leads to
false positives.

• Incomplete Flow Analysis. The underlying abstract interpreta-
tion engine thatRogueOne uses does not support all of JavaScript.
This results in disrupted data flows, which create false positives.

Reviewing a false positive typically takes nomore than twominutes,
and was done through a simple custom web interface displaying
new trust domain relations and a diff.

7.4 RogueOne Performance and Efficiency

RogueOne’s abstract interpretation engine aspires to high fidelity,
making timeouts inevitable. However, we do not observe any rogue
update in the wild in which the malicious payload causes a time-
out. In the two datasets together, five updates timed out in 1 hour.
Among the rest, the average processing time was 226.7 seconds, of
which 84%was abstract interpretation and 16%was post-processing.
95% of packages finish analysis in less than 30 minutes, and 90%
take less than four seconds. In the cross-package portion of our
analysis, we use a shorter 20 minute timeout and cache analysis
results for use by any dependents. Using a multi-core harness, pro-
cessing all updates across both datasets takes approximately 11
hours. Without our update-aware optimizations, ODGen times out
on 140 samples in the single-update and multi-version datasets.
With update-aware abstract interpretation, this is reduced to five.

8 RELATED WORK

Software supply-chain attacks. Software supply-chain attacks
have become a popular topic in recent years [38, 51] Such supply-
chain attacks could range from developing malicious package from
scratch [50] to name confusing (e.g., Typosquatting [71] and Brand-
jacking [62]). Various tools attempt to detect and negate these at-
tacks [17, 21, 28, 60, 76].Maloss repurposed vulnerability detection
and monitoring tools to find and characterize malicious packages.
Amalfi [60] and JStap [21] apply machine learning techniques to im-
prove the performance of program-analysis-based malicious code
detectors. Our results show that Amalfi and Maloss are effective
on malware in general, but ineffective for detecting rogue updates.
JStap also trains its classifier on control and data-flow information,
but HideNoSeek [20] shows that machine learning-based methods
are vulnerable to rogue updates that camouflage themselves within
the AST of the target. HideNoSeek’s method of camouflage does
not affect RogueOne because it does not conceal data-flows.

Software isolation is a popular defense to isolate potentially ma-
licious scripts that has been applied to supply-chain attacks. JSIso-
late [76] extracts the dependency relationship of different JavaScript
components for functionality-wise isolation to defend against ma-
licious code executing in the browser, but does not detect rogue

10



ICSE ’24, April 14–20, 2024, Lisbon, Portugal

updates. Enclosure [28] replaces static policy inference with ex-
plicit inline policies for Python and Go but requires developers
to write policies, which is not common practice. Other software
isolation approaches focus on vulnerabilities and do not address
supply-chain attacks. MIR [72] performs language-runtime-level
software isolation via file-based policies limiting the usage of exter-
nal code, preventing the exploitation of vulnerabilities to call other
external APIs. sysfilter [14] restricts the syscalls available to an
application to prevent the exploitation of vulnerabilities in benign
native applications. These techniques are vulnerable to the camou-
flaged client-side data harvest attacks in our evaluation, which fit
within the existing “permissions” of the victim package.
Information flow analysis. Static and dynamic information flow
analysis are used for vulnerability discovery, test and input gen-
eration, and malware analysis. Taint analysis, a form of informa-
tion flow analysis, is common in security applications. Examples
include [70] presents TAJ, a static taint-analysis tool based on slice-
construction balancing context-sensitive and insensitive analysis,
and [58] a dynamic taint-analysis engine that runs parts of the
program using forward symbolic execution. Later, [29] performed
unified taint analysis with points-to-analysis, an important sub-
problem. StubDroid [4] produces data-flow summaries for Android
libraries. Unlike these approaches and others that attempt to extract
input-output relations or connect inputs with covered paths in the
program, RogueOne captures all flows, including to and from ex-
ternal packages, with less regard for how specific values affect the
execution. Our evaluation compares RogueOne to Maloss, which
employs static taint analysis as well as dynamic analysis, and shows
the advantages of our approach.
Abstract interpretation. Abstract interpretation has been ap-
plied to JavaScript static analysis [30, 35, 48]. Recent works build
various forms of graphs for various applications, especially vulnera-
bility detection [32, 41, 42].ODGen [42] uses abstract interpretation
to construct an Object Dependence Graph which enables queries
for the offline detection of a wide range of Node.js vulnerabilities.
RogueOne modifies ODGen to track more data-flows and adopts
update-aware analysis to prioritize code that is related to changes
in the target. This reduces the likelihood of timeouts. FAST[32]
mitigates timeouts in ODGen by pruning code which does not lead
to APIs of interest. Empirical evaluation of the FAST mitigations in
RogueOne shows that when considering all possible external APIs,
the overhead of FAST outweighs the benefit. RogueOne is the first
of its kind to use abstract interpretation for rogue update detection.
Static or dynamic analysis of JavaScript. Static and dynamic
program analysis have been used to detect a wide range of vulner-
abilities, such as browser extension vulnerabilities [22], Regular
Expression Denial of Service (ReDoS) [7, 13, 66], debloating [37],
hidden property abuse [74], and prototype pollution [3, 33, 63].
These tools do not work for rogue update detection, in which mali-
cious code is embedded into the program and possibly obfuscated,
rather than being injected in through a vulnerability.

SAFE [39] and SAFEWAPI [6] convert JavaScript to an Interme-
diate Representation (IR) form for further static analysis to detect
bugs in JavaScript code, but are restricted toWeb-IDL specified APIs
and do not detect rogue updates. SAFE𝐷𝑆 [53] adopts Jalangi [61] ,
a dynamic analysis tool which selectively records and replays front-

and back-end JavaScript programs, to build dynamic shortcuts on
top of SAFE, which speeds up static analysis of large packages such
as Lodash. SAFE𝐷𝑆 presents an alternate approach to optimizing
abstract interpretation using external knowledge, but is not appli-
cable to rogue updates as they often use conditional triggers to hide
from dynamic analysis tools.

JavaScript call graph construction [1, 2, 9, 15, 23, 49, 59, 69]
using static [1], dynamic [69], or hybrid [2] analysis, is usually
the first step of static analysis, including for RogueOne’s abstract
interpretation engine. JavaScript symbolic execution [45, 55, 56]
has also been used for static analysis.
Patch analysis. Patches, e.g., those related to security updates,
are often studied to fix security vulnerabilities. Approaches include
hot-patching [10, 54, 75] and backporting security patches [64]. Sim-
ilarly, approaches have been developed to infer correct patches from
normal test cases [36, 73] or existing human-written patches [43, 44].
Recently, UPGRADVISOR [12] employed differential analysis to
determine whether a dependency update will break a Python ap-
plication, using a combination of static analysis and a hardware-
based tracer for interpreted languages. All of these works assume
patches are benign and do not detect rogue updates. In contrast, in
RogueOne’s threat model patches may be malicious.

9 CONCLUSIONS AND FUTUREWORK

RogueOne is the first system designed to automatically detect
rogue updates to npm packages. It uses update-aware abstract in-
terpretation to capture all existing and potential data-flows in and
out of packages with a high-degree of precision while avoiding
timeouts even when analyzing large, complex packages. It con-
structs object data-flow relationship graphs for pre and post-update
versions of a package, and groups objects in trust domains to ex-
press trust among objects of a common origin. It then uses the
graphs and trust domains to detect data-flows across trust domains
and applies differential data-flow analysis to identify changes in
cross-trust-domain data-flows, reflecting changes in data-flows to
and from external APIs. RogueOne uses the data-flow changes
to flag potential rogue updates. Our evaluation across hundreds
of npm packages shows that RogueOne can detect over 75% of
rogue updates while keeping false positives under 5%. Compared to
other malware detection tools, RogueOne can be seven times more
effective at detecting rogue updates and minimizing false positives.

While RogueOne focuses on npm packages, future work will
consider other languages and repositories, such as Rust/Cargo and
Ruby/Rubygems. JavaScript’s dynamic prototype-based type sys-
temmakes data-flow analysis challenging, andwe believeRogueOne
would be even more effective in a less dynamic language.

ACKNOWLEDGMENTS

Matthew Luo assisted with system implementation and experi-
ment scaling. This work was supported in part by NSF grants
CNS-2046361, CNS-2052947, CNS-2154404, CNS-2247370, and CCF-
2124080, DARPA contract N66001-21-C-4018, a DARPA Young Fac-
ulty Award, as well as research awards and gifts from Google, Ama-
zon, Accenture, and Visa.

11



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, and Junfeng Yang, Jason Nieh

REFERENCES

[1] Gábor Antal, Péter Hegedus, Zoltán Tóth, Rudolf Ferenc, and Tibor Gyimóthy.
2018. Static JavaScript Call Graphs: A Comparative Study. In Proceedings of the
2018 IEEE 18th International Working Conference on Source Code Analysis and
Manipulation (SCAM ’18). Madrid, Spain, 177–186. https://doi.org/10.1109/SC
AM.2018.00028

[2] Gábor Antal, Zoltán Tóth, Péter Hegedűs, and Rudolf Ferenc. 2020. Enhanced
bug prediction in JavaScript Programs with Hybrid Call-Graph Based Invocation
Metrics. Technologies 9, 1 (2020), 3. https://doi.org/10.3390/technologies9010003

[3] Olivier Arteau. 2018. Prototype Pollution Attack in NodeJS Application. NorthSec.
Retrieved 2 Feb 2023 from https://github.com/HoLyVieR/prototype-pollution-ns
ec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf

[4] Steven Arzt and Eric Bodden. 2016. StubDroid: Automatic Inference of Precise
Data-Flow Summaries for the Android Framework. In Proceedings of the 38th In-
ternational Conference on Software Engineering (ICSE ’16). Austin, Texas, 725–735.
https://doi.org/10.1145/2884781.2884816

[5] Axios 2024. Minimal Example | Axios Docs. Axios. Retrieved 12 Jan 2024 from
https://axios-http.com/docs/example

[6] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. 2014. SAFE-
WAPI: Web API Misuse Detector for Web Applications. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE ’14). Hong Kong, China, 507–517. https://doi.org/10.1145/2635868.2635916

[7] Zhihao Bai, KeWang, Hang Zhu, Yinzhi Cao, and Xin Jin. 2021. Runtime Recovery
of Web Applications under Zero-Day ReDoS Attacks. In Proceedings of the 2021
IEEE Symposium on Security and Privacy (SP ’21). San Francisco, CA, 1575–1588.
https://doi.org/10.1109/SP40001.2021.00077

[8] Yinzhi Cao, Chao Yang, Vaibhav Rastogi, Yan Chen, and Guofei Gu. 2015. Abusing
Browser Address Bar for Fun and Profit - An Empirical Investigation of Add-
On Cross Site Scripting Attacks. In Proceedings of the International Conference
on Security and Privacy in Communication Networks. Beijing, China, 582–601.
https://doi.org/10.1007/978-3-319-23829-6_45

[9] Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Has-
sanshahi. 2022. Automatic Root Cause Quantification for Missing Edges in
JavaScript Call Graphs. In Proceedings of the 36th European Conference on
Object-Oriented Programming (ECOOP ’22), Vol. 222. Berlin, Germany, 3:1–3:28.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3

[10] Yaohui Chen, Yuping Li, Long Lu, Yueh-Hsun Lin, Hayawardh Vijayakumar, Zhi
Wang, and Xinming Ou. 2018. InstaGuard: Instantly Deployable Hot-patches for
Vulnerable System Programs on Android. In Proceedings of the 25th ISOC Network
and Distributed System Security Symposium (NDSS ’18). The Internet Society, San
Diego, CA. https://par.nsf.gov/servlets/purl/10053521

[11] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’77). Los Angeles, California, 238–252.
https://doi.org/10.1145/512950.512973

[12] Yaniv David, Xudong Sun, Raphael J Sofaer, Aditya Senthilnathan, Junfeng Yang,
Zhiqiang Zuo, Guoqing Harry Xu, Jason Nieh, and Ronghui Gu. 2022. UPGRAD-
VISOR: Early Adopting Dependency Updates Using Hybrid Program Analysis
and Hardware Tracing. In Proceedings of the 16th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’22). Carlsbad, CA, 751–767.
https://par.nsf.gov/biblio/10356086

[13] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time for
JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler Poison-
ing. In Proceedings of the 27th USENIX Security Symposium (SEC ’18). Baltimore,
MD, 343–359. https://www.usenix.org/conference/usenixsecurity18/presentatio
n/davis

[14] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.
Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity Soft-
ware. In 23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID ’20). Virtual, 459–474. https://www.usenix.org/conference/raid
2020/presentation/demarinis

[15] J Dijkstra. 2014. Evaluation of static JavaScript call graph algorithms. Ph. D.
Dissertation. Software Analysis and Transformation.

[16] dominictarr. 2023. event-stream. Retrieved 2 February 2023 from https://github
.com/dominictarr/event-stream/issues/116

[17] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltafor-
maggio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on
Package Managers for Interpreted Languages. In 28th Annual Network and Dis-
tributed System Security Symposium (NDSS ’21). The Internet Society, Virtual.
https://doi.org/10.14722/ndss.2021.23055

[18] André Takeshi Endo and Anders Møller. 2020. NodeRacer: Event Race Detection
for Node.js Applications. In IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST ’20). Porto, Portugal, 120–130. https://doi.org/
10.1109/ICST46399.2020.00022

[19] Dawson Engler, Ben Chelf, Andy Chou, and Seth Hallem. 2008. A Couple Billion
Lines of Code Later: Static Checking in the Real World. In 17th USENIX Security

Symposium (SEC ’08). San Jose, CA. https://www.usenix.org/conference/17th-
usenix-security-symposium/couple-billion-lines-code-later-static-checking-
real-world

[20] Aurore Fass, Michael Backes, and Ben Stock. 2019. HideNoSeek: Camouflaging
Malicious JavaScript in Benign ASTs. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19). London, United
Kingdom, 1899–1913. https://doi.org/10.1145/3319535.3345656

[21] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: A Static Pre-Filter
for Malicious JavaScript Detection. In Proceedings of the 35th Annual Computer
Security Applications Conference (ACSAC ’19). San Juan, Puerto Rico, 257–269.
https://doi.org/10.1145/3359789.3359813

[22] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. 2021. DoubleX:
Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21). Virtual, 1789–1804. https://doi.org/10.1145/3460120.3484745

[23] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013.
Efficient Construction of Approximate Call Graphs for JavaScript IDE Services. In
Proceedings of the 2013 35th International Conference on Software Engineering (ICSE
’13). San Francisco, CA, 752–761. https://doi.org/10.1109/ICSE.2013.6606621

[24] OpenJS Foundation. 2023. Global objects | Node.js v21.1.0 Documentation. Re-
trieved 13 November 2023 from https://nodejs.org/api/globals.html

[25] OpenJS Foundation. 2023. Modules: CommonJS modules | Node.js v21.2.0 Docu-
mentation. Retrieved 15 November 2023 from https://nodejs.org/api/modules.h
tml#moduleexports

[26] OpenJS Foundation. 2023. npm. Retrieved 4 February 2023 from https://www.
npmjs.com

[27] OpenJS Foundation. 2023. scripts | npm Docs. Retrieved 12 April 2023 from
https://docs.npmjs.com/cli/v9/using-npm/scripts

[28] Adrien Ghosn, Marios Kogias, Mathias Payer, James R Larus, and Edouard
Bugnion. 2021. Enclosure: language-based restriction of untrusted libraries.
In Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’21). Virtual,
255–267. https://doi.org/10.1145/3445814.3446728

[29] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint
Analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article 102 (Oct 2017), 28 pages.
https://doi.org/10.1145/3133926

[30] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis
for JavaScript. In Proceedings of the 2009 International Static Analysis Symposium
(SAS ’09). Los Angeles, CA, 238–255.

[31] Mingqing Kang. 2023. fast. Retrieved 14 November 2023 from https://github.c
om/fast-sp-2023/fast

[32] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, V.N. Venkatakr-
ishnan, and Yinzhi Cao. 2023. Scaling JavaScript Abstract Interpretation to De-
tect and Exploit Node.js Taint-style Vulnerability. In Proceedings of the IEEE
Symposium on Security and Privacy (SP ’23). San Francisco, CA, 1059–1076.
https://doi.org/10.1109/SP46215.2023.10179352

[33] Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-
Side Prototype Pollution Vulnerabilities of One Million Real-world Websites. In
29th Annual Network and Distributed System Security Symposium, (NDSS ’22).
The Internet Society, San Diego, CA. https://www.ndss-symposium.org/ndss-
paper/auto-draft-207/

[34] Andrei Kashcha. 2023. npm rank. Retrieved 2 February 2023 from https:
//gist.github.com/anvaka/8e8fa57c7ee1350e3491

[35] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, BenWiedermann, and Ben Hardekopf. 2014. JSAI: A Static Analy-
sis Platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE ’14). Hong Kong, China,
121–132. https://doi.org/10.1145/2635868.2635904

[36] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned fromHuman-written Patches. In Proceedings of the 2013
35th International Conference on Software Engineering (ICSE ’13). San Francisco,
CA, 802–811. https://doi.org/10.1109/ICSE.2013.6606626

[37] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID ’20). Virtual, 121–134. https:
//www.usenix.org/conference/raid2020/presentation/koishybayev

[38] P. Ladisa, H. Plate, M. Martinez, and O. Barais. 2023. SoK: Taxonomy of Attacks on
Open-Source Software Supply Chains. In Proceedings of the 2023 IEEE Symposium
on Security and Privacy (SP ’23). San Francisco, CA, 1509–1526. https://doi.org/
10.1109/SP46215.2023.10179304

[39] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012.
SAFE: Formal specification and implementation of a scalable analysis framework
for ECMAScript. In 19th International Workshop on Foundations of Object-Oriented
Languages (FOOL ’12), Vol. 10. Tuscon, AZ. https://github.com/sukyoung/safe

[40] Song Li. 2021. ODGen Source Code. Retrieved 11 January 2024 from https:
//github.com/Song-Li/ODGen/.

[41] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.Js
Prototype Pollution Vulnerabilities via Object Lookup Analysis. In Proceedings

12



ICSE ’24, April 14–20, 2024, Lisbon, Portugal

of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2021). Athens,
Greece, 268–279. https://doi.org/10.1145/3468264.3468542

[42] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js
Vulnerabilities via Object Dependence Graph and Query. In 31st USENIX Security
Symposium (SEC ’22). Boston, MA, 143–160. https://www.usenix.org/conferenc
e/usenixsecurity22/presentation/li-song

[43] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017). Paderborn, Germany,
727–739. https://doi.org/10.1145/3106237.3106253

[44] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’16). St. Petersburg, FL,
298–312. https://doi.org/10.1145/2837614.2837617

[45] Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: Practical
Symbolic Execution of Standalone JavaScript. In Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN ’17).
Santa Barbara, CA, 196–199. https://doi.org/10.1145/3092282.3092295

[46] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
Proceedings of the 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’21). Taipei, Taiwan, 569–580. https://doi.org/10.110
9/DSN48987.2021.00065

[47] Mozilla. 2023. Inheritance and the prototype chain - JavaScript | MDN. Retrieved
13 November 2023 from https://developer.mozilla.org/en-US/docs/Web/JavaScri
pt/Inheritance_and_the_prototype_chain

[48] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.
Nodest: Feedback-Driven Static Analysis of Node.Js Applications. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19). Tallinn,
Estonia, 455–465. https://doi.org/10.1145/3338906.3338933

[49] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. 2021. Modu-
lar Call Graph Construction for Security Scanning of Node.Js Applications. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’21). Virtual, 29–41. https://doi.org/10.1145/3460319.3464836

[50] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. In
Proceedings of the 17th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA ’20). Lisbon, Portugal, 23–43.
https://doi.org/10.1007/978-3-030-52683-2_2

[51] Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and James C.
Davis. 2022. SoK: Analysis of Software Supply Chain Security by Establishing
Secure Design Properties. In Proceedings of the 2022 ACM Workshop on Soft-
ware Supply Chain Offensive Research and Ecosystem Defenses (SCORED’22). Los
Angeles, CA, 15–24. https://doi.org/10.1145/3560835.3564556

[52] Jarrod Overson. 2021. How Two Malicious NPM Packages Targeted & Sabotaged
Others. Retrieved 2 February 2023 from https://jsoverson.medium.com/how-
two-malicious-npm-packages-targeted-sabotaged-one-other-fed7199099c8

[53] Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu. 2021. Ac-
celerating JavaScript Static Analysis via Dynamic Shortcuts. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’21). Athens,
Greece, 1129–1140. https://doi.org/10.1145/3468264.3468556

[54] Mathias Payer and Thomas R Gross. 2013. Hot-patching A Web Server: A
Case Study of ASAP Code Repair. In Proceedings of the 11th Eleventh Annual
Conference on Privacy, Security and Trust (PST ’13). Tarragona, Spain, 143–150.
https://doi.org/10.1109/PST.2013.6596048

[55] José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and
Philippa Gardner. 2018. Symbolic Execution for JavaScript. In Proceedings
of the 20th International Symposium on Principles and Practice of Declarative
Programming (PPDP ’18). Frankfurt am Main, Germany, Article 11, 14 pages.
https://doi.org/10.1145/3236950.3236956

[56] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A Symbolic Execution Framework for JavaScript. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP ’10). Oakland,
CA, 513–528. https://doi.org/10.1109/SP.2010.38

[57] Max Schaefer. 2023. Amalfi Classifier. Private email communication.
[58] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In Proceedings of the 2010 IEEE
Symposium on Security and privacy (SP ’10). Oakland, CA, 317–331. https:
//doi.org/10.1109/SP.2010.26

[59] Dominik Seifert, MichaelWan, JaneHsu, and Benson Yeh. 2022. AnAsynchronous
Call Graph for JavaScript. In Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22). Pittsburgh,
PA, 29–30. https://doi.org/10.1145/3510457.3513059

[60] Adriana Sejfia andMax Schäfer. 2022. Practical Automated Detection of Malicious
Npm Packages. In Proceedings of the 44th International Conference on Software
Engineering (ICSE ’22). Pittsburgh, PA, 1681–1692. https://doi.org/10.1145/3510
003.3510104

[61] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE ’13). Saint Petersburg, Russia, 488–498. https:
//doi.org/10.1145/2491411.2491447

[62] Ax Sharma. 2020. Trick or treat: that ‘twilio-npm‘ package is brandjacking
malware in disguise! Retrieved 10 March 2023 from https://blog.sonatype.com/
twilio-npm-is-brandjacking-malware-in-disguise

[63] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent
Spring: Prototype Pollution Leads to Remote Code Execution in Node.js. In
Proceedings of the 32th USENIX Security Symposium (SEC ’23). Anaheim, CA. https:
//www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov

[64] Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, Yinzhi Cao, Ziwen Wang,
Yudi Zhao, Zongan Huang, and Min Yang. 2022. Backporting Security Patches
of Web Applications: A Prototype Design and Implementation on Injection
Vulnerability Patches. In 31st USENIX Security Symposium (SEC ’22). Boston,
MA, 1993–2010. https://www.usenix.org/conference/usenixsecurity22/present
ation/shi

[65] Snyk. 2022. A post-mortem of the malicious event-stream backdoor | Snyk.
Retrieved 2 February 2023 from https://snyk.io/blog/a-post-mortem-of-the-
malicious-event-stream-backdoor

[66] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study
of ReDoS Vulnerabilities in JavaScript-based Web Servers. In Proceedings of the
27th USENIX Security Symposium (SEC ’18). Baltimore, MD, 361–376. https:
//www.usenix.org/conference/usenixsecurity18/presentation/staicu

[67] Liran Tal. 2019. Malicious remote code execution backdoor discovered in the
popular bootstrap-sass Ruby gem. Retrieved 1 August 2023 from https://snyk.io/
blog/malicious-remote-code-execution-backdoor-discovered-in-the-popular-
bootstrap-sass-ruby-gem

[68] Matthew Taylor, Ruturaj K. Vaidya, Drew Davidson, Lorenzo De Carli, and
Vaibhav Rastogi. 2020. Defending Against Package Typosquatting. In Proceedings
of the 14th International Conference on Network and System Security (NSS ’20),
Vol. 12570. Springer, Melbourne, Australia, 112–131. https://doi.org/10.1007/978-
3-030-65745-1_7

[69] Tajkia Rahman Toma and Md Shariful Islam. 2014. An efficient mechanism of
generating call graph for JavaScript using dynamic analysis in web application.
In Proceedings of the International Conference on Informatics, Electronics & Vision
(ICIEV ’14). Dhaka, Bangladesh, 1–6. https://doi.org/10.1109/ICIEV.2014.6850807

[70] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: effective taint analysis of web applications. ACM Sigplan Notices 44, 6
(2009), 87–97. https://doi.org/10.1145/1542476.1542486

[71] Ruturaj K. Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi. 2021.
Security Issues in Language-based Software Ecosystems. arXiv:1903.02613
http://arxiv.org/abs/1903.02613

[72] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing Dynamic
Library Compromise on Node.Js via RWX-Based Privilege Reduction. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21). Virtual, 1821–1838. https://doi.org/10.1145/3460120.3484535

[73] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (ICSE ’18).
Gothenburg, Sweden, 1–11. https://doi.org/10.1145/3180155.3180233

[74] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, HongHu, Guofei Gu,
andWenke Lee. 2021. AbusingHidden Properties to Attack the Node.js Ecosystem.
In Proceedings of the 30th USENIX Security Symposium (SEC ’21). Virtual, 2951–
2968. https://www.usenix.org/conference/usenixsecurity21/presentation/xiao

[75] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao Xia, Chenfu Bao, Zhi Wang,
and Yang Liu. 2020. Automatic Hot Patch Generation for Android Kernels. In
29th USENIX Security Symposium (SEC ’20). Virtual, 2397–2414. https://www.us
enix.org/conference/usenixsecurity20/presentation/xu

[76] Mingxue Zhang and Wei Meng. 2021. JSISOLATE: Lightweight in-Browser
JavaScript Isolation. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’21). Athens, Greece, 193–204. https://doi.org/10.1145/34
68264.3468577

[77] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Smallworld with High Risks: A Study of Security Threats in the npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC ’19). Santa Clara, CA, 995–1010. https://www.usenix.net/system/files/sec19-
zimmermann.pdf

13


