
GAMMA: Graph Neural Network-Based Multi-Bottleneck
Localization for Microservices Applications

Gagan Somashekar
gsomashekar@cs.stonybrook.edu
PACE Lab, Stony Brook University

Stony Brook, NY, USA

Anurag Dutt
adutt@cs.stonybrook.edu

PACE Lab, Stony Brook University
Stony Brook, NY, USA

Mainak Adak
madak@cs.stonybrook.edu

PACE Lab, Stony Brook University
Stony Brook, NY, USA

Tania Lorido Botran
tbotran@roblox.com

Roblox
San Mateo, CA, USA

Anshul Gandhi
anshul@cs.stonybrook.edu

PACE Lab, Stony Brook University
Stony Brook, NY, USA

ABSTRACT

Microservices architecture is quickly replacing monolithic and

multi-tier architectures as the implementation choice for large-scale

web applications as it allows independent development, scalability,

and maintenance. However, even with careful node scheduling and

scaling, the microservices applications are still vulnerable to perfor-

mance degradation due to unexpected (dependent or independent)

events like anomalous node behavior, workload interference, or

sudden spikes in requests or retries. These events can adversely

affect the performance of one or more microservices (bottlenecks),

degrading the overall application performance. To ensure a good

customer experience and avoid revenue loss, it is crucial to detect

and mitigate all bottlenecks swiftly.

This work introduces GAMMA, a novel, explainable graph learn-

ing model that integrates a mixture of experts to detect multiple

bottlenecks. We evaluated GAMMA using a popular open-source

benchmarking application deployed on Kubernetes under various

practical bottleneck scenarios. Our experimental evaluation results

show that GAMMA provides significantly better performance (46%

higher F1 score) than existing works that employ deep learning,

machine learning, and statistical techniques, demonstrating its abil-

ity to detect multiple bottlenecks by learning complex interactions

in a microservices architecture.

The dataset is made publicly available [49] for reproducibility

and further research in the field.

CCS CONCEPTS

· Software and its engineering→ Softwaremaintenance tools;

· Computing methodologies→ Neural networks; · Computer

systems organization→Maintainability and maintenance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13ś17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645665

KEYWORDS

microservices applications, bottlenecks, anomalies, graph neural

network, dataset

ACM Reference Format:

Gagan Somashekar, AnuragDutt,MainakAdak, Tania Lorido Botran, andAn-

shul Gandhi. 2024. GAMMA:GraphNeural Network-BasedMulti-Bottleneck

Localization for Microservices Applications. In Proceedings of the ACM Web

Conference 2024 (WWW ’24), May 13ś17, 2024, Singapore, Singapore. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3589334.3645665

1 INTRODUCTION

Microservice architecture (MSA) is quickly becoming the choice of

implementation for large-scale web applications owing to its mod-

ular nature [1, 9, 19, 24, 33, 34, 37, 54ś56, 60]. Indeed, MSA is re-

placing monolithic and multi-tier application architectures as MSA

designs applications as fine-grained, modular, and independent

services called microservices, enabling independent development,

scalability, and maintenance [19, 24, 33]. Even existing web and

online gaming applications implemented using monolithic archi-

tecture are being transformed to MSA [1, 16, 21, 30, 36].

A critical problem for online web applications is performance

management as it affects customer experience and revenue [10].

Among various aspects of performance management, detecting per-

formance degradation and identifying the sources of performance

degradation are crucial for providing a consistent user experience.

We define anomaly detection as the process of detecting an applica-

tion’s performance degradation at the level of individual requests

or over a time period, and bottleneck localization as the process of

identifying which specific microservices are affecting the applica-

tion’s performance. Despite careful application design and proactive

capacity planning, performance anomalies still happen due to un-

expected surges in load or workload interference [24, 33, 56]. For

that reason, bottleneck localization is a must. The microservices

with degraded performance, i.e., performance bottlenecks, often arise

due to resource saturation, resource contention, or microservice

application misconfiguration [19, 20, 43, 51], and do not necessarily

lead to errors or faults, making them difficult to detect.

Anomaly detection and bottleneck localization in MSA appli-

cations are challenging for various reasons. Firstly, bottlenecks

can manifest in different ways, impacting one or more microser-

vices, even propagating across microservices over time and sus-

taining even after the source of anomaly is mitigated [19, 23, 50].

WWW ’24, May 13ś17, 2024, Singapore, Singapore Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran, and Anshul Gandhi

This exacerbates bottleneck localization, multiplies the engineer-

ing hours needed to mitigate with time, and delays the restoration

of applications’ performance. Secondly, the effect of performance

anomalies (e.g., host interference) differs across microservices. For

example, two microservices hosted on the same node that is experi-

encing CPU saturation will react differently in terms of degradation

depending on how compute-bound the microservices are. This

necessitates solutions that learn the unique characteristics of the

microservices. Thirdly, complex interactions among the microser-

vices can complicate bottleneck localization. The dynamicity that

arises from asynchronous calls, caching, queues, feature additions,

deprecations, and design changes can further complicate these in-

teractions. As such, the solution must utilize and learn from the

interactions of these microservices. Lastly, the absence of publicly

available datasets with metrics, traces, and logs containing multiple

bottlenecks from various sources has hindered the ability of re-

searchers to evaluate their methods for multi-bottleneck detection

and localization [28].

The key challenge, and the focus of this paper, is the presence of

multiple bottlenecks in MSA applications. Existing works, includ-

ing those in recent editions of The Web Conference, have primarily

focused on single bottlenecks and have ignored the practical case of

multiple bottlenecks [34, 47, 58]. There are different ways in which

multiple bottlenecks can arise in practice.

• Multiple, independent bottlenecks arise in one or more microser-

vices. For example, a microservice responsible for logins could

be bottlenecked due to a sudden spike in user logins, while si-

multaneously, another microservice could be bottlenecked due to

resource contention at its host node. In such cases, all bottlenecks

must be (independently) detected and mitigated.

• Multiple, dependent bottlenecks arise in one or more microser-

vices, due to the same underlying problem. For example, if the un-

derlying VM that hosts multiple microservices is under resource

contention from different colocated VMs, then all microservices

on this VM can experience performance degradation.

• Multiple, cascading bottlenecks appear in sequence in multiple

microservices. For example, a database microservice that is ex-

periencing workload interference can result in request queues

building up in dependent microservices, causing their perfor-

mance to degrade as well. Undetected, these bottlenecks can

cascade to interacting microservices, increasing the number of

bottlenecks over time. In such cases, it is important to first detect

all bottlenecks, and then alleviate them to quickly revive the

application performance.

Prior works in this space have mainly focused on anomaly de-

tection [31, 58, 59] or providing solutions for single bottleneck

localization that cannot be easily adapted for multiple bottleneck

localization [18, 20, 22, 28, 34]. Even solutions that are capable (with

some effort) of detecting multiple bottlenecks are not evaluated on

traces or datasets with multiple bottlenecks [47]. FIRM [43] evalu-

ates multi-bottleneck localization [43] but is not effective (Section 4)

as it does not utilize the distributed traces to learn the complex in-

teractions among microservices. To the best of our knowledge, our

solution is the first work specifically designed with multi-bottleneck

anomaly detection and bottleneck localization for MSA in mind.

This work introduces and evaluates GAMMA, a novel model

to detect anomalies and multiple bottlenecks in web applica-

tions implemented using the microservices architecture. Specifi-

cally, GAMMA uses (a) an attention-based graph convolution net-

work to learn the complex interactions between microservices, (b) a

holistic multi-source end-to-end joint training framework to detect

the presence of bottlenecks in an explainable manner, and (c) a mix-

ture of experts to account for possibly multiple bottlenecks across

microservices.

In designing and evaluating GAMMA, this work makes the fol-

lowing key contributions:

(1) We present the design of GAMMA, a holistic multi-source end-

to-end joint training framework that learns complex interac-

tions between microservices using an attention-based graph

convolution trained over distributed traces of observable met-

rics (e.g., CPU and memory utilization), which are readily avail-

able in production systems [35]. Further, it uses a mixture of

experts to learn the unique characteristics of microservices and

account for possibly multiple bottlenecks across microservices.

(2) To evaluate GAMMA, we generate and open-source a dataset

consisting of around 40 million request traces [49].

(3) We evaluate GAMMA against existing techniques on the above

bottleneck dataset; we also extend a seminal prior work [20]

created for localizing single bottlenecks to localize multiple

bottlenecks.

(4) We perform a detailed ablation study to understand and explain

the impact of telemetry on evaluation results.

Our experimental evaluation results show that GAMMA pro-

vides an F1 score of up to 0.92 and 0.89 for anomaly detection

and bottleneck localization, respectively. GAMMA significantly

exceeds the performance of prior works (3ś4× improvement for

anomaly detection and 46% improvement for bottleneck localiza-

tion) based on deep learning, machine learning, and statistical tech-

niques, demonstrating its ability to detect multiple bottlenecks by

learning complex interactions in microservices architecture.

Our analysis reveals that the performance gap between GAMMA

and other baselines increases with the increasing complexity of

the evaluation scenario. While existing works perform reasonably

well when there is a single source of anomaly, their performance

drops when evaluated in scenarios consisting of multiple sources

of anomaly, unlike GAMMA. Further, while existing works can

perform better if they are separately trained on each source of

anomaly, GAMMA provides consistently better performance de-

spite not being trained separately on individual anomaly sources,

making GAMMA easier to deploy in practice. Finally, we show that

GAMMA can provide explainability with its bottleneck localization,

thereby aiding the bottleneck mitigation task.

2 RELATED WORK

Related prior works can be broadly categorized into (a) anomaly

detection works, and (b) bottleneck localization (or root cause anal-

ysis) works. Since there are numerous prior works in these general

areas, we limit our discussion below to closely related works and

refer readers to relevant surveys for further detail [48].

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications WWW ’24, May 13ś17, 2024, Singapore, Singapore

2.1 Anomaly Detection

DeepTraLog [59] uses a unified graph embedded with log events,

called trace event graphs, to represent the complex interaction

among microservices. It finds anomaly scores for each trace or re-

quest by training a gated graph neural network-based deep support

vector data description model on the trace event graphs. Trace-

VAE [58] is an unsupervised anomaly detection model that uses a

novel dual-variable graph variational autoencoder with Negative

Log-Likelihood (NLL) as the anomaly score. TraceAnomaly [31] is

an unsupervised anomaly detection system that uses novel trace

representation and deep Bayesian networks with posterior flow.

The model is trained offline periodically to learn normal patterns

in traces and then classifies traces as anomalous when they deviate

from these learned patterns.

2.2 Bottleneck Localization

Groot [55] is Ebay’s graph-based framework for bottleneck localiza-

tion in MSA applications. Groot constructs a causality graph with

events that include anomalies in metrics, abnormal log statements,

etc., as the nodes and causal links between these nodes are based

on domain knowledge. However, Groot requires domain knowl-

edge for creating links between nodes and additionally requires

continuous human involvement to track changes to the causal links

between nodes. CRISP [60] is Uber’s tool for critical path analysis

over traces from MSA applications which can be used for anomaly

detection and bottleneck localization. The critical paths in MSA,

however, are dynamic [43], requiring constant recomputation of

critical paths. Murphy [22] is an automated performance diagnosis

system that detects bottlenecks in complex enterprise environments

by monitoring data to define associations between entities in an

MSA application. However, Murphy uses a linear model that cannot

capture the complexities in production microservices [22, 23].

FIRM [43] proposes a Support Vector Machine (SVM) model for

detecting bottlenecks on the critical path in the call graph. The

SVMmodel is trained on hand-crafted features that capture the per-

critical-path and per-microservice performance variability. FIRM

only considers latency as a feature and also ignores the structural

information in the call graphs of the MSA application, limiting its

ability to detect multiple bottlenecks (as we show in Section 4.4).

Seer [20] is an online performance debugging system that lever-

ages deep learning to detect and mitigate bottlenecks in MSA. Seer

uses a hybrid network of Convolutional Neural Networks (CNN)

and Long Short-Term Memory (LSTM) networks to learn spatial

and temporal patterns that lead to bottlenecks. However, analy-

sis of Alibaba’s production systems suggests that CNN-based ap-

proaches fail to characterize complex graph dynamics and do not

apply to real-world applications; instead, the authors suggest us-

ing GNNs [33]. Our evaluation of Seer on a dataset consisting of

multiple bottlenecks further substantiates this claim (Section 4.4).

𝜖-diagnosis [47] uses a threshold technique to detect anomalies

and distance correlation [53] to compare metrics of anomalous

traces and normal traces for localizing bottlenecks. The localization

algorithm runs on each microservice without utilizing any struc-

tural information available through distributed tracing. As we show

in Section 4.4, this and other drawbacks significantly impact the

performance of 𝜖-diagnosis in the case of multiple bottlenecks.

Figure 1: A simultaneous failure in machines M3 and M4 will

affect the RPC calls in the invocation chain while other RPC

calls in the call graph are not affected.

AutoMAP [34] relies on a heuristic algorithm using forward, self,

and backward random walks on a graph representing the interac-

tion between services to localize bottlenecks. Since it is a heuristic,

AutoMAP may not be accurate and can suffer for large call graph

sizes [6, 60]. B-MEG [50] is a two-staged graph-learning-based clas-

sifier that does anomaly detection and bottleneck localization in

the first and second stages, respectively. However, B-MEG is only

designed to detect single bottlenecks. Eadro [28] is a framework

that uses traces, logs, and metrics along with multiple models to

learn representations, which in turn are used to detect anomalies

and localize bottlenecks jointly. The framework, owing to the series

of models it uses, makes it difficult to interpret the results. Mi-

croCU [25] is a framework that uses API logs and Granger causal-

ity to detect bottlenecks. Ablation studies on the importance of

telemetry, traces, and logs in detecting bottlenecks reveals that logs

provide the least information to detect bottlenecks [28]. Sage [18]

uses a Causal Bayesian Network (CBN) to capture the dependencies

between microservices. However, the assumption in Sage that the

latency of non-leaf nodes in the call graph is determined by the

wait time of its child nodes might not always hold (e.g., when a

non-leaf child node is a message queue [33]). Moreover, Sage [18]

can only work on call graph DAGs (no cycles), but call graphs in

production systems have cycles [22, 33].

In summary, prior works provide solutions or evaluate their

solutions only for single bottlenecks [18, 20, 28, 34, 43, 47, 50, 55]

and do not fully utilize the rich telemetry and distributed tracing

that is part of the MSA [25, 35, 43, 47]. Our work, described next,

addresses this important gap by using a graph learning module to

understand the complex interaction among microservices and a

mixture of experts model to detect multiple bottlenecks effectively.

3 DESIGN OF GAMMA

Traditional bottleneck localization techniques (deep learning or

heuristic-based) often operate in a linear or isolated manner, failing

to capture the dependencies and interactions inherent in MSA [39].

Consider Figure 1, which shows a small subgraph of the entire social

network call graph fromDeathStarBench suite [19]. A simultaneous

failure in Machines 3 and 4 will impact the corresponding on-chain

RPC calls but will not affect the off-the-chain ones.

Graph Neural Networks (GNNs) are ideally suited to model such

intricacies in graphical data and to capture dependencies between

nodes [20, 50]. GNNs are designed to naturally assimilate and pro-

cess information from nodes and their respective neighborhoods

WWW ’24, May 13ś17, 2024, Singapore, Singapore Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran, and Anshul Gandhi

Figure 2: Architectural overview of GAMMA.

in a graph. GNNs can also handle the complexities of enterprise

environments, especially cycles in the call graphs [57].

The key idea behind GAMMA is to understand patterns in call

graphs using inputs from multiple system metrics and the graph

dependency structure; this information can help identify the in-

terconnections among microservices and guide system diagnosis.

Figure 2 shows the architectural overview of GAMMA, which is

broadly divided into 4 stages: Multi-Source Temporal Embeddings

Learning, Graph-Representation Learning, Anomaly Classifier, and

Bottleneck Localizer.

3.1 Multi-Source Temporal Embeddings
Learning

Capturing temporal patterns helps to reveal the dynamic nature

of system performance, highlighting fluctuations and evolving

trends over time. Since bottlenecks may be induced due to episodic

anomalies in the system, analyzing temporal chunks allows us

to capture correlations and sequences across requests while also

providing macroscopic trends in the system for the anomalous

episodes [13, 59]. Multi-input temporal embeddings encapsulate the

spatio-temporal behavior of a system, providing a comprehensive

view of spatial relations and time-evolving patterns within a given

window. Consider a call-graph with 𝜂 microservices. For the mi-

croservices, we organize the system metrics into an 𝜂-dimensional

time-seriesM𝜂 . The system metrics (e.g., RPC latency, CPU usage)

act as our model features. We split the entire feature tensorM𝜂 into

windows of length 𝜏 , thus giving us window inputs of sizeM𝜂𝑥𝜏 .

The parameter 𝜏 is trainable and is decided based on validation met-

rics during training. Analyzing windows as opposed to individual

traces allows us to aggregate the temporal dynamics of the system.

The input tensor is processed using a Multivariate Temporal

Convolution Attention Network, which is designed to recognize

patterns over time. This network employs Dilated Causal Convolu-

tion (DCC), a method that efficiently captures relationships within

and between features over time. DCC is highly scalable, and it has

proven to be superior to traditional methods, like CNNs and LSTMs,

especially when predicting future events based on past data. For a

more detailed explanation of DCC, please refer to Appendix E.1.

3.2 Graph Representation Learning

In this stage, our goal is to understand the end-to-end status of

the MSA application and provide a detailed overview of the entire

system including the dependent interactions between the microser-

vices themselves. This requires three key actions: (1) merging the

multi-channel embeddings generated in the previous stage to get

concatenated embeddings for each microservice; (2) incorporat-

ing the microservice call-graph and the concatenated embeddings

to generate the dependency graph and microservice-level status

representations (node representations) for the application; and (3)

modeling this dependency graph. We begin by creating a directed

graph from the call-graph that illustrates how microservices are

interconnected. Next, we integrate the output embedding sourced

from earlier stages into unified node representations, showcasing

the status at the microservice-level. Information within this graph

is then channeled through a GNN, enabling the understanding of

neighboring interconnections and interactions.

3.2.1 Generating the Dependency Graph. The process of extracting

a call graph from microservices traces can be systematically under-

stood by visualizing microservices as nodes and their invocations

as directed edges. A dependency graph 𝐺 = {𝑉 , 𝐸} can be derived

from traces, where 𝑉 denotes the set of nodes with |𝑉 | = 𝑀 , with

𝑀 being the total number of distinct microservices. 𝐸 represents

the set of edges; an edge 𝑒𝑎,𝑏 = (𝑣𝑎, 𝑣𝑏) ∈ 𝐸 indicates a directed re-

lationship from node 𝑣𝑎 to node 𝑣𝑏 , implying that the microservice

associated with node 𝑣𝑏 has made an invocation to that associated

with node 𝑣𝑎 at least once in recorded history.

Since it is essential for us to calculate temporal representations of

microservices that capture both inter- and intra-feature correlations

for our inputs, we concatenate our embeddings at an intermediate

stage before we generate our dependency graph [26, 28]. Studies

in cross-modal learning [27, 32, 38] hint that intermediate fusion

tends to be more effective for processing temporal representations.

Initially, we concatenate ([·∥·]) the representations of each mi-

croservice acquired from the prior phase, ensuring comprehensive

data retention. The resulting tensor is then projected on a lower

dimensional subspace by passing it through a fully-connected layer

and subsequently passed through a Gated Linear Unit to fuse the

representations while controlling for vanishing gradients and in-

creasing resiliency to gradient forgetting [15]. The microservice

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications WWW ’24, May 13ś17, 2024, Singapore, Singapore

levels concatenated embeddings O𝜂×𝜖 serve as node embeddings

for the GNN with each node 𝜂𝑛 having the embedding vector O𝜖𝜂𝑛 .

3.2.2 Graph-Attention Network. We employ the Graph Attention

Network (GAT) [12], a specialized GNN variant that offers several

advantages in the context of microservices [28]. Unlike traditional

GNNs, GAT is capable of learning node and edge representations

while dynamically assigning importance weights to neighboring

nodes. This attention mechanism ensures that the network can

focus on more influential or anomalous microservices, potentially

acting as communication hubs or displaying abnormal behavior

patterns. The local representation O𝜖𝜂𝑛 encapsulates the feature set

for individual nodes. The model digests this information and learns

a holistic representation of the entire graph. For a more detailed

explanation of Graph Attention, please refer to Appendix E.2.

3.3 Detection and Localization

In the final phase, GAMMA performs two functions: it predicts if a

given observation window indicates an anomaly (anomaly detec-

tion), and if so, it discerns which microservices are the root cause

(bottleneck localization). Contrary to traditional approaches [20, 43]

which treat anomaly detection and bottleneck localization as sepa-

rate functionalities, GAMMA adopts a holistic approach to leverage

the knowledge of the inter-related functionalities.

Leveraging the earlier acquired representation O𝜁 , an initial de-

tector performs a binary assessment to ascertain the presence of any

anomalies. If the outcome is negative, GAMMA directly presents

the results. However, if an anomaly is detected, a subsequent lo-

calizer arranges the microservices in order of their likelihood to

be the origin of the issue. This two-step mechanism, comprising

the detector and the localizer, employs multiple experts comprising

of connected neural networks followed by a binary classifier. Each

microservice in the call-graph has a dedicated expert assigned to

predict if the microservice is bottlenecked or not. Both these com-

ponents, the detector and localizer, are trained in tandem with a

shared goal. The model’s primary focus is to curtail the total binary

cross-entropy loss of the detector (𝜆𝑑) and localizer (𝜆𝑙). The joint

loss function is given as:

𝜆𝑡𝑜𝑡𝑎𝑙 = 𝛼 · 𝜆𝑙 +
∑︁

𝑘∈𝜂

(1 − 𝛼)
𝜂

· 𝜆𝑘 , (1)

where 𝜆𝑙 =
∑

𝑘∈𝜂 𝜆𝑘 ; and 𝛼 is a hyperparameter to tune the con-

tribution of 𝜆𝑙 and 𝜆𝑑 towards the total loss. Should an anomaly

be detected, GAMMA outputs a binary vector of 0s and 1s which

predicts the bottleneck and non-bottlenecked microservices. We

defer the details of hyperparameter tuning to Appendix C.

4 EVALUATION

We now present our experimental evaluation results for GAMMA

under various bottleneck scenarios. We also compare GAMMA’s

performance with that of recent works on bottleneck localization.

4.1 Experimental Setup

We evaluate GAMMA on a cluster of 17 VMs (4 vCPUs, 8GB mem-

ory) managed by Kubernetes. The VMs are synchronized via NTP

for accurate measurements. The metrics (CPU, memory, network)

are collected via Prometheus [44], while Jaeger [4] collects dis-

tributed traces. To generate a variety of bottlenecks, we use a CPU

load generator [2] and stress-ng tool to generate interferences on

one or more host VMs. This generates multi-bottlenecks of varying

intensities and duration that may overlap in time.

We use the popular social networking benchmark from Death-

StarBench [19] that consists of 28 microservices implementing

several features of real-world social networking applications. The

constituent microservices are Nginx, Memcached, MongoDB, Redis,

as well as microservices that implement the logic of the application.

The workload consists of Compose requests that create a post, User

requests that read the timeline of other users, and Home requests

that read the user’s own timeline. We use wrk2 [7] to generate

workloads of different intensities. We benchmark the application to

find the peak load (800 requests per second, or RPS) beyond which

it is unstable. We use different intensities in the range of 100ś800

RPS. We deploy monitoring services like Prometheus and Jaeger on

a separate VM to avoid unintended interference. We provide more

details about the social networking application in Appendix A.

4.2 Dataset Creation

A key contribution of this work is constructing a dataset for re-

search on anomaly detection and multi-bottleneck localization.

Prior works have noted that existing public traces [42] on anomaly

detection and bottleneck localization only contain single, severe

bottlenecks that are not representative of real-world scenarios [50].

When such a bottleneck is introduced, the resulting latency in-

creases by an order of magnitude (100×), making it trivial to detect

that singe bottleneck using a simple grid search or threshold-based

approaches.

To create a more realistic dataset that includes traces with mul-

tiple bottlenecks at different intensities, we carefully benchmarked

the social networking application under different interference in-

tensities and duration of interference. We chose intensities and

duration values that degrade the application performance but do

not cause any faults or errors that can be trivially detected. We

induced interference on different VMs at different times and also

simultaneously. A single VM could be induced with different types

of interference (e.g., CPU and memory), resulting in the hosted

microservices experiencing a mixture of interference patterns. The

resulting dataset consists of around 40 million request traces along

with corresponding time series of CPU, memory, I/O, and network

metrics. The dataset also includes application, VM, and Kubernetes

logs. Appendix D provides additional information about the dataset.

We have open-sourced the dataset [49] to facilitate further research

in the area of performance management of microservices.

4.3 Metrics and Baselines

For evaluation of anomaly detection and bottleneck localization,

we use the following performance metrics:

• Recall is the ratio of true positive predictions to the total number

of positive data points. It measures how many of the positive

data points were classified as positive by the model. A high recall

is essential for MSA-based web application deployments as it is

important to detect all anomalies and bottlenecks.

WWW ’24, May 13ś17, 2024, Singapore, Singapore Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran, and Anshul Gandhi

F1 score Recall Precision0.00

0.25

0.50

0.75

1.00
_diag GAMMA

(a) Compose request type.

F1 score Recall Precision0.00

0.25

0.50

0.75

1.00
_diag GAMMA

(b) User request type.

F1 score Recall Precision0.00

0.25

0.50

0.75

1.00
_diag GAMMA

(c) Home request type.

Figure 3: F1 score, Recall, and Precision for anomaly detection over the entire dataset.

• Precision is the ratio of true positive predictions to the total posi-

tive predictions. It measures how many of the data points that

were classified positive by the model are actually positive. A high

precision is desirable as it implies fewer engineer hours wasted

investigating false positives.

• F1 score is the harmonic mean of precision and recall. It is a metric

that balances the trade-off between precision and recall.

We experimentally compare the performance of GAMMA with

the following state-of-the-art baselines from recent works:

(1) FIRM is a framework that uses SVM and hand-crafted features

to localize bottlenecks on the critical path. We use Scikit-learn

library [41] to implement FIRM’s SVM model.

(2) 𝜖-diagnosis performs both anomaly detection and bottleneck

localization. It uses a simple threshold scheme for anomaly de-

tection and distance correlation for bottleneck localization. We

use the dcor [46] library to implement the 𝜖-diagnosis’ localiza-

tion module.

(3) Seer is an online bottleneck localization framework that uses

CNN and LSTM to learn spatial and temporal features, respec-

tively, to recognize patterns that lead to anomalies. We imple-

ment Seer using Pytorch [40].

(4) Seer* is our modified version of Seer for multi-bottleneck local-

ization which works by adapting softmax to individual binary

classification for each microservice in the call-graph and replac-

ing cross-entropy loss with hinge-loss [14].

To evaluate 𝜖-diagnosis and FIRM on multi-bottleneck data, we

run these baselines on all the microservices serially. Since the orig-

inal Seer model cannot be directly applied for multi-bottleneck

localization, we evaluate how well it localizes the most dominant

bottlenecked microservice. We tune the hyperparameters of all

baselines and present the best results in our evaluation.

4.4 Results

4.4.1 Aggregate results for anomaly detection. We start by evaluat-

ing GAMMA and the baselines using our entire dataset (with all

resource bottleneck traces). Figure 3 shows the F1 score, Recall, and

Precision for anomaly detection using the entire trace dataset for

GAMMA and 𝜖-diagnosis. Note that 𝜖-diagnosis is the only baseline

among those considered that does anomaly detection. Starting with

Figure 3a, which shows the results when analyzing Compose traces,

we see that GAMMA provides significantly better results than 𝜖-

diagnosis. The F1 score, Recall, and Precision values for GAMMA

are 0.91, 0.89, and 0.94, respectively.

By contrast, the corresponding values for 𝜖-diagnosis are lower

by 78%, 87%, and 6%, respectively. We do observe that 𝜖-diagnosis

achieves reasonable Precision because of the low confidence thresh-

old that its localizer uses, which ensures the quality of predictions.

Recall, from Section 2, that 𝜖-diagnosis does not leverage any struc-

tural information about the application, thus losing out on impor-

tant information. Further, 𝜖-diagnosis uses a static threshold to

detect anomalies. While this threshold might work well for scenar-

ios where only a single, severe performance bottleneck exists, this

static threshold does not adapt to the more realistic case of multiple,

different bottlenecks. In fact, when we evaluated 𝜖-diagnosis for

the simpler, pathological dataset where a single bottleneck exists

that causes performance to degrade significantly [43], 𝜖-diagnosis

resulted in near-perfect F1 scores. This underscores the difficulty

in anomaly detection when multiple bottlenecks exist.

Results are similar for User (Figure 3b) and Home (Figure 3c)

requests, with GAMMA significantly outperforming 𝜖-diagnosis

and achieving high performance values. Specifically, in Figure 3b,

GAMMA’s F1 score (0.91) is 355% higher than that of 𝜖-diagnosis

(0.20). Likewise, in Figure 3c, GAMMA’s F1 score (0.92) is 441%

higher than that of 𝜖-diagnosis (0.17). We note that User and Home

requests have smaller call graphs than Compose. Additionally, Com-

pose has asynchronous calls, caches, queues, and other complexities,

that are inherent in MSA applications, making Compose a popular

choice for analysis in prior works [28, 43]. While we experimented

with all request types, due to lack of space, we will primarily focus

on the complex Compose request type in our results.

4.4.2 Aggregate results for bottleneck localization. Figure 4 shows

our results for the more challenging bottleneck localization task

using the entire trace dataset for GAMMA and all baselines. Across

all request types, GAMMA outperforms all other baselines for all

performance metrics. In particular, GAMMA achieves a high F1 score

of 0.83ś0.87 across Figures 4aś4c. Further, GAMMA also achieves

a high Recall of 0.77ś0.84 and a high Precision of 0.90ś0.92 across

all subfigures.

Starting with Figure 4a, we see that GAMMA outperforms all

other baselines under all metrics. GAMMA achieves an F1 score,

Recall, and Precision of 0.83, 0.77, and 0.91, respectively. 𝜖-diagnosis

again performs poorly, with an F1 score of only 0.1; this is due to the

weaknesses of 𝜖-diagnosis identified above which limit its accuracy

for the multi-bottleneck scenario.

FIRM performs better than 𝜖-diagnosis, but still only achieves

an F1 score of 0.57 compared to the 0.83 (46% higher) obtained

by GAMMA. This is likely because FIRM does not leverage the

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications WWW ’24, May 13ś17, 2024, Singapore, Singapore

F1 score Recall Precision0.0

0.5

1.0
_diag

FIRM
Seer
Seer*

GAMMA

(a) Compose request type.

F1 score Recall Precision0.0

0.5

1.0
_diag

FIRM
Seer
Seer*

GAMMA

(b) User request type.

F1 score Recall Precision0.0

0.5

1.0
_diag

FIRM
Seer
Seer*

GAMMA

(c) Home request type.

Figure 4: F1 score, Recall, and Precision for bottleneck localization over the entire dataset.

CPU Mem Net CPU+Mem
Interference type

0.0

0.5

1.0

F 1
 sc

or
e

_diag
FIRM

Seer
Seer*

GAMMA

Figure 5: Bottleneck localization results by interference type.

structural information in the call graphs of the MSA application

or resource metric timelines, unlike GAMMA. We note that FIRM

can perform quite well if we only consider single bottleneck traces,

again highlighting the challenge of dealing with multiple bottle-

necks.Whenwe evaluated FIRM for the simpler, pathological dataset

where a single, severe bottleneck exists [43], FIRM resulted in a

much higher F1 score of 0.83 with a Recall and Precision of about

0.7 and 0.9, respectively.

Seer also performs poorly, with an F1 score of only 0.16. This

is to be expected, however, as the unmodified Seer only focuses

on localizing one bottleneck. Since real-world request traces may

contain multiple bottlenecks (e.g., our traces contain as many as 12

bottlenecks each), Seer’s performance is limited. To account for this

shortcoming, we extended Seer to Seer* by replacing softmax in

the prediction layer with individual binary classification for every

microservice in the call graph, and then replaced cross-entropy loss

with hinge-loss [14], as discussed in Section 4.3. With this extension,

Seer* performs better, with an F1 score of 0.51. However, this is still

significantly below GAMMA’s F1 score of 0.83. We believe this is

because while Seer* does leverage multiple neural network models,

it does not make use of GNNs, which are ideally suited to MSA

application call graphs [33]. As we show later in Table 3, the GNN

component of GAMMA is crucial for good performance.

The results for User (Figure 4b) and Home (Figure 4c) request

types are qualitatively similar to that of Compose in Figure 4a, with

GAMMA outperforming all other baselines for all metrics.

4.4.3 Results per bottleneck source. We now evaluate GAMMA and

the baselines by separately training and testing over traces that

contain bottlenecks from a specific source (CPU, Memory, Network,

CPU+Memory). This will allow us to assess the performance under

specific bottleneck types. Figure 5 shows the F1 score for GAMMA

and all baselines for bottleneck localization (under Compose request

type) separated by the interference type that creates the bottleneck.

(GAMMA continues to be significantly better than 𝜖-diagnosis for

anomaly detection so we omit those results.)

Across all subfigures, we see that GAMMA is always superior to

the other baselines with an F1 score of at least 0.77 and as much as

0.89 (for Network interference type). However, the performance of

each baseline does differ across the subfigures. For example, FIRM

performs much better when the bottlenecks are caused by CPU

interference as opposed to other interference types. Seer* has the

opposite behavior, with performance being close to that of GAMMA

for non-CPU interference types, but worse for CPU interference.

This suggests that specific baselines may perform better if they

are separately trained for each source of bottleneck. However, this

is tedious in practice. By contrast, GAMMA shows consistently

good performance whether it is trained on each interference type

(Figure 5) or more efficiently trained once on all interference types

(Figure 4).

4.4.4 Overhead analysis. To compare the overhead of GAMMA and

the baselines, we computed the average inference time across all

traces for the combined tasks of anomaly detection and bottleneck

localization, as applicable. Table 1 shows the overhead time in

seconds for processing each window; for Seer*, which operates at

the granularity of traces, we converted the times to per window by

normalizing by the average number of traces in a window.

GAMMA 𝜖-diagnosis FIRM Seer*

3.87 × 10−5 2.75 × 10−3 1.30 × 10−6 5.78 × 10−6

Table 1: Average inference time (seconds) per window.

We see that GAMMAhas amuch lower overhead than 𝜖-diagnosis,

but is slower than FIRM and Seer*. Given the design of GAMMA,

and its superior performance compared to FIRM and Seer*, we con-

sider the larger inference time as a trade-off between performance

and overhead. Regardless, we note that the overhead for GAMMA

per 1s window is only about 38.7𝜇s, representing a 0.004% overhead

for each second of window length.

4.4.5 Explainability of GAMMA. A key advantage of GAMMA is

its ability to not just localize bottlenecks, but also aid in identifying

the source of the bottlenecks. Utilizing multi-source data-based

approaches, such as GAMMA, offers a significant advantage over

other approaches that only rely on latency traces to identify and

localize bottlenecks. System metrics, such as CPU usage and net-

work congestion, can offer crucial insights, such as trends, thresh-

old breaches, and correlations, in detecting bottlenecks for large

WWW ’24, May 13ś17, 2024, Singapore, Singapore Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran, and Anshul Gandhi

MSA applications. GAMMA effectively integrates multiple system

metrics with the microservice-dependency graph to understand

cross-modal and temporal patterns for system interactions. To high-

light this ability, we run GAMMA with different subsets of features.

The intuition is that the feature whose omission causes a significant

drop in performance is likely the source of the bottleneck.

Feature

Omitted

CPU inter-

ference

Memory in-

terference

CPU+Memory

interference

None 0.851 0.844 0.771

CPU 0.693 0.805 0.714

Memory 0.789 0.573 0.600

Network 0.919 0.838 0.764

CPU & Mem 0.646 0.459 0.438

Table 2: Illustrating GAMMA’s explainability by evaluating

F1 score when specific features are omitted from GAMMA.

The rows in Table 2 show the F1 score when GAMMA is run

with a specific subset of features for bottleneck localization. We

consider three different bottleneck source scenarios, one per col-

umn: bottlenecks caused by (a) only CPU interference, (b) only

Memory interference, and (c) CPU and Memory interference.

Starting with the only CPU interference scenario in the first

column, we see that GAMMA’s F1 score drops from 0.851 to 0.693

when the CPU feature is omitted, but only drops to 0.789 when the

Memory feature is omitted. When omitting the Network feature,

the F1 score actually increases to 0.919, suggesting that Network

feature data may be hurting performance in this case. Overall, the

results show that the CPU feature has a larger impact, suggesting

that CPU saturation is the source of the bottleneck. We see similar

trends across the other two columns in the table.

We acknowledge that the term łexplainabilityž is broader than

our focus, as it provides the reasoning behind a model’s decision-

making process. By design, GAMMA can provide the probability

of confidence in its predictions since we essentially use binary

classification in the last stage for both the anomaly detector and

bottleneck localizer. For example, on average, the anomaly detector

has a probability of prediction close to 0.72 and 0.84 for traces

with memory and CPU interference, respectively. This probability

metric can be obtained at the trace level for anomaly detection and

bottleneck localization.

4.4.6 Ablation study for GAMMA. The GAMMA core model in-

volves a few stages, as discussed in Section 3. Two specific stages of

interest are the Graph Attention Network (which combines Graph

Convolution with an attention mechanism allowing nodes to ag-

gregate information from their most insightful neighbors) and Self

Attention in context of causal convolution (which allows a tem-

poral sequence to weigh the importance of its own past values).

The former provides the ability to capture the interactions between

microservices by leveraging the dependency structure. The latter

ensures that the 1D-convolution operation, which is inherently

local, is guided by a global understanding of the entire temporal

sequence, ensuring a context-aware feature extraction.

To validate our design choices, we performed an ablation study

by replacing the two specific stages of GAMMA with alternative

ones. Table 3 shows our results over the entire dataset. Comparing

Stage Omitted F1 score Recall Precision

None 0.830 0.87 0.83

Graph Attention 0.669 0.69 0.65

Self Attention 0.695 0.71 0.68

Table 3: Ablation study to highlight the importance of spe-

cific stages of GAMMA.

row 1 (GAMMA, as-is) and row 2 (GAMMA with Graph Attention

replaced with a standard fully-connected linear layer), we clearly

see that the performance numbers drop significantly, indicating

the importance of Graph Convolution in the design of GAMMA.

Similarly, comparing row 1with row 3 (GAMMAwith Self Attention

removed), we again see a drop in performance for all three metrics.

This highlights the significance of self-attention in the design of

GAMMA.

Wefind thatwhile replacingGATwith a linear layer, the dependency-

agnostic representations are not as helpful for localizing bottlenecks

as GAMMA loses the ability to factor-in the neighborhood interac-

tions in its inference. Removing self attention also has an adverse

effect on the performance of GAMMA as the model becomes my-

opic, limited by the filter-size of the convolution layers, and loses

its ability to hold long-term patterns.

5 CONCLUSION

Online web applications are increasingly adopting the microser-

vices architecture (MSA). While modular and flexible, MSA applica-

tions have numerous microservices that interact with each other

in complex ways, making it difficult to identify and pinpoint per-

formance bottlenecks. Further, since multiple bottlenecks can arise

independently or dependently for an MSA application, it is crucial

to accurately detect and localize all performance bottlenecks.

This work focuses on the key gap in this problem spaceÐthe

ability to detect multiple bottlenecks efficiently for MSA appli-

cations, a realistic use-case that has been mostly ignored by prior

works. Our solution framework, GAMMA, learns complex inter-

actions between microservices using graph neural networks and

integrates this with a mixture of experts to enable multiple bot-

tleneck localization. Evaluation results using the DeathStarBench

Social Networking application highlight the superiority of GAMMA

compared to several existing techniques. Further, our results show

that GAMMA can be trained efficiently and performs well across

bottleneck types, unlike existing techniques. Finally, GAMMA’s

model lends itself to explainability, making it practical for perfor-

mance diagnosis.

We believe that GAMMA’s graph-based model is inherently scal-

able due to the efficient handling of complex and large-scale inter-

connections between nodes (microservices) by GNNs. The modular

design also enables independent scaling of resources. However, a

thorough experimental evaluation is necessary to determine if any

design changes are required, and we plan to pursue this in the

future. Additionally, future work will involve experimental evalua-

tions to assess how well GAMMA adapts to changing operational

conditions in production environments.

ACKNOWLEDGMENT

This work was supported by NSF CNS grants 2106434 and 1750109.

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications WWW ’24, May 13ś17, 2024, Singapore, Singapore

REFERENCES
[1] [n. d.]. Building Microservices Driven by PerformanceśRoblox.

https://medium.com/@acovarrubias_7488/building-microservices-driven-
by-performance-b347ed1c48e3.

[2] [n. d.]. CPU Load Generator. https://github.com/molguin92/CPULoadGenerator.
[3] [n. d.]. Google-DeathStarBench. https://cloud.google.com/blog/products/

management-tools/in-tests-cloud-profiler-adds-negligible-overhead.
[4] [n. d.]. Jaeger. https://www.jaegertracing.io/.
[5] [n. d.]. Microsoft-DeathStarBench. https://microsoft.github.io/VirtualClient/

docs/workloads/deathstarbench/.
[6] [n. d.]. Uber’s production Jaeger data. https://github.com/jaegertracing/jaeger-

ui/issues/680.
[7] [n. d.]. wrk2 Workload Generator. https://github.com/giltene/wrk2.
[8] Randy Abernethy. 2018. The Programmer’s Guide to Apache Thrift.
[9] Harold Aragon, Samuel Braganza, Edwin Boza, Jonathan Parrales, and Cristina

Abad. 2019. Workload Characterization of a Software-as-a-Service Web Ap-
plication Implemented with a Microservices Architecture. In Companion Pro-
ceedings of The 2019 World Wide Web Conference (San Francisco, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 746ś750.
https://doi.org/10.1145/3308560.3316466

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

[11] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. 2018. Graph-to-Sequence
Learning using Gated Graph Neural Networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Melbourne, Australia, 273ś283. https:
//doi.org/10.18653/v1/P18-1026

[12] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks? arXiv:2105.14491 [cs.LG]

[13] Jian Chen, Fagui Liu, Jun Jiang, Guoxiang Zhong, Dishi Xu, Zhuanglun Tan, and
Shangsong Shi. 2023. TraceGra: A trace-based anomaly detection for microservice
using graph deep learning. Computer Communications 204 (2023), 109ś117.
https://doi.org/10.1016/j.comcom.2023.03.028

[14] Koby Crammer and Yoram Singer. 2002. On the Algorithmic Implementation
of Multiclass Kernel-Based Vector Machines. J. Mach. Learn. Res. 2 (mar 2002),
265ś292.

[15] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2016. Language
Modeling with Gated Convolutional Networks. CoRR abs/1612.08083 (2016).
arXiv:1612.08083 http://arxiv.org/abs/1612.08083

[16] Sinan Eski and Feza Buzluca. 2018. AnAutomatic ExtractionApproach: Transition
to Microservices Architecture from Monolithic Application. In Proceedings of the
19th International Conference on Agile Software Development: Companion (Porto,
Portugal) (XP ’18). Association for Computing Machinery, New York, NY, USA,
Article 25, 6 pages. https://doi.org/10.1145/3234152.3234195

[17] Huan Fu, Mingming Gong, ChaohuiWang, and Dacheng Tao. 2018. MoE-SPNet: A
mixture-of-experts scene parsing network. Pattern Recognition 84 (2018), 226ś236.
https://doi.org/10.1016/j.patcog.2018.07.020

[18] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021.
Sage: Practical and Scalable ML-Driven Performance Debugging in Microser-
vices (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA,
135ś151. https://doi.org/10.1145/3445814.3446700

[19] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge Sys-
tems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 3ś18.
https://doi.org/10.1145/3297858.3304013

[20] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi,
and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the
Complexity of Performance Debugging in Cloud Microservices. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 19ś33.
https://doi.org/10.1145/3297858.3304004

[21] Jean-Philippe Gouigoux and Dalila Tamzalit. 2017. From Monolith to Microser-
vices: Lessons Learned on an Industrial Migration to aWeb Oriented Architecture.
In 2017 IEEE International Conference on Software Architecture Workshops (ICSAW).
62ś65. https://doi.org/10.1109/ICSAW.2017.35

[22] Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore, Brighten
Godfrey, and Sujata Banerjee. 2023. Murphy: Performance Diagnosis of Dis-
tributed Cloud Applications. In Proceedings of the ACM SIGCOMM 2023 Conference
(New York, NY, USA) (ACM SIGCOMM ’23). Association for Computing Machin-
ery, New York, NY, USA, 438ś451. https://doi.org/10.1145/3603269.3604877

[23] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman
Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
2022. Metastable Failures in the Wild. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA,
73ś90. https://www.usenix.org/conference/osdi22/presentation/huang-lexiang

[24] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. 2023. Lifting the veil onMeta’s
microservice architecture: Analyses of topology and request workflows. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 419ś432. https://www.usenix.org/conference/atc23/presentation/
huye

[25] Xinrui Jiang, Yicheng Pan, Meng Ma, and Ping Wang. 2023. Look Deep into
the Microservice System Anomaly through Very Sparse Logs. In Proceedings of
the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for
Computing Machinery, New York, NY, USA, 2970ś2978. https://doi.org/10.1145/
3543507.3583338

[26] Hamid Reza Vaezi Joze, Amirreza Shaban, Michael L. Iuzzolino, and Kazuhito
Koishida. 2020. MMTM: Multimodal Transfer Module for CNN Fusion.
arXiv:1911.08670 [cs.CV]

[27] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-Scale Video Classification with Convolutional
Neural Networks. In 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition. 1725ś1732. https://doi.org/10.1109/CVPR.2014.223

[28] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R. Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
Source Data. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1750ś1762.
https://doi.org/10.1109/ICSE48619.2023.00150

[29] Xinjie Li and Huijuan Xu. 2023. MEID: mixture-of-experts with internal distilla-
tion for long-tailed video recognition. In Proceedings of the Thirty-Seventh AAAI
Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth Symposium on Educational
Advances in Artificial Intelligence (AAAI’23/IAAI’23/EAAI’23). AAAI Press, Article
161, 9 pages. https://doi.org/10.1609/aaai.v37i2.25230

[30] Bo Liu, Jingliu Xiong, Qiurong Ren, Shmuel Tyszberowicz, and Zheng Yang. 2022.
Log2MS: a framework for automated refactoring monolith into microservices
using execution logs. In 2022 IEEE International Conference onWeb Services (ICWS).
391ś396. https://doi.org/10.1109/ICWS55610.2022.00065

[31] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,
Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020. Unsupervised
Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian
Networks. In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). 48ś58. https://doi.org/10.1109/ISSRE5003.2020.00014

[32] W. Liu, Wei-Long Zheng, and Bao-Liang Lu. 2016. Emotion Recognition Using
Multimodal Deep Learning. In International Conference on Neural Information
Processing. https://api.semanticscholar.org/CorpusID:7767769

[33] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice De-
pendency and Performance: Alibaba Trace Analysis. In Proceedings of the ACM
Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association for
Computing Machinery, New York, NY, USA, 412ś426. https://doi.org/10.1145/
3472883.3487003

[34] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping
Wang. 2020. AutoMAP: Diagnose Your Microservice-Based Web Applications
Automatically. In Proceedings of TheWeb Conference 2020 (Taipei, Taiwan) (WWW
’20). Association for Computing Machinery, New York, NY, USA, 246ś258. https:
//doi.org/10.1145/3366423.3380111

[35] Jonathan Mace. 2017. End-to-End Tracing: Adoption and Use Cases. Survey. Brown
University.

[36] Genc Mazlami, Jürgen Cito, and Philipp Leitner. 2017. Extraction of Microservices
from Monolithic Software Architectures. In 2017 IEEE International Conference
on Web Services (ICWS). 524ś531. https://doi.org/10.1109/ICWS.2017.61

[37] Franck Michel, Catherine Faron-Zucker, Olivier Corby, and Fabien Gandon. 2019.
Enabling Automatic Discovery and Querying of Web APIs at Web Scale Using
Linked Data Standards. In Companion Proceedings of The 2019 World Wide Web
Conference (San Francisco, USA) (WWW ’19). Association for Computing Ma-
chinery, New York, NY, USA, 883ś892. https://doi.org/10.1145/3308560.3317073

[38] Micah M. Murray, Antonia Thelen, Silvio Ionta, and Mark T. Wallace. 2019.
Contributions of Intraindividual and Interindividual Differences to Multisensory
Processes. J. Cognitive Neuroscience 31, 3 (mar 2019), 360ś376. https://doi.org/
10.1162/jocn_a_01246

[39] Hoa Xuan Nguyen, Shaoshu Zhu, and Mingming Liu. 2022. A Survey on Graph
Neural Networks for Microservice-Based Cloud Applications. Sensors 22, 23
(2022). https://doi.org/10.3390/s22239492

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

WWW ’24, May 13ś17, 2024, Singapore, Singapore Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran, and Anshul Gandhi

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024ś8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825ś2830.

[42] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar Iyer. 2020. Pre-processed Tracing Data for Popular Microservice Bench-
marks. https://databank.illinois.edu/datasets/IDB-6738796. Online.

[43] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management
Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20). USENIX Association, 805ś825.
https://www.usenix.org/conference/osdi20/presentation/qiu

[44] Bjorn Rabenstein and Julius Volz. 2015. Prometheus: A Next-Generation Moni-
toring System (Talk). USENIX Association, Dublin.

[45] Elahe Rahimian, Golara Javadi, Frederick Tung, and Gabriel Oliveira. 2023. Dy-
naShare: Task and Instance Conditioned Parameter Sharing for Multi-Task Learn-
ing. In 2023 IEEE/CVF Conference on Computer Vision and Pattern RecognitionWork-
shops (CVPRW). 4535ś4543. https://doi.org/10.1109/CVPRW59228.2023.00477

[46] Carlos Ramos-Carreño and José L. Torrecilla. 2023. dcor: Distance correlation
and energy statistics in Python. SoftwareX 22 (2 2023). https://doi.org/10.1016/j.
softx.2023.101326

[47] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng
He, Min Li, and Wei Ding. 2019. 𝜖-Diagnosis: Unsupervised and Real-Time
Diagnosis of Small- Window Long-Tail Latency in Large-Scale Microservice
Platforms. In The World Wide Web Conference (San Francisco, CA, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 3215ś3222.
https://doi.org/10.1145/3308558.3313653

[48] Jacopo Soldani and Antonio Brogi. 2022. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey. ACM
Comput. Surv. 55, 3, Article 59 (feb 2022), 39 pages. https://doi.org/10.1145/
3501297

[49] Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran, and Anshul
Gandhi. 2024. Microservices Bottleneck Detection Dataset. https://doi.org/10.
34740/KAGGLE/DSV/7638732

[50] Gagan Somashekar, Anurag Dutt, Rohith Vaddavalli, Sai Bhargav Varanasi, and
Anshul Gandhi. 2022. B-MEG: Bottlenecked-Microservices Extraction Using
Graph Neural Networks. In Companion of the 2022 ACM/SPEC International
Conference on Performance Engineering (Bejing, China) (ICPE ’22). Association
for Computing Machinery, New York, NY, USA, 7ś11. https://doi.org/10.1145/
3491204.3527494

[51] G. Somashekar, A. Suresh, S. Tyagi, V. Dhyani, K. Donkada, A. Pradhan, and A.
Gandhi. 2022. Reducing the Tail Latency of Microservices Applications via Opti-
mal Configuration Tuning. In 2022 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS). IEEE Computer Society, Los
Alamitos, CA, USA, 111ś120. https://doi.org/10.1109/ACSOS55765.2022.00029

[52] Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. 2020. Adashare:
Learning what to share for efficient deep multi-task learning. Advances in Neural
Information Processing Systems 33 (2020).

[53] Gábor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. 2007. Measuring and testing
dependence by correlation of distances. The Annals of Statistics 35, 6 (2007), 2769
ś 2794. https://doi.org/10.1214/009053607000000505

[54] Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu, and Jason
Nieh. 2015. Synapse: A Microservices Architecture for Heterogeneous-Database
Web Applications. In Proceedings of the Tenth European Conference on Computer
Systems (Bordeaux, France) (EuroSys ’15). Association for Computing Machinery,
NewYork, NY, USA, Article 21, 16 pages. https://doi.org/10.1145/2741948.2741975

[55] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. 2022. Groot: An Event-Graph-Based Approach for Root Cause
Analysis in Industrial Settings. In Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering (Melbourne, Australia) (ASE ’21).
IEEE Press, 419ś429. https://doi.org/10.1109/ASE51524.2021.9678708

[56] Yingying Wen, Guanjie Cheng, Shuiguang Deng, and Jianwei Yin.
2022. Characterizing and synthesizing the workflow structure of
microservices in ByteDance Cloud. Journal of Software: Evolution
and Process 34, 8 (2022), e2467. https://doi.org/10.1002/smr.2467
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2467

[57] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4ś24. https:
//doi.org/10.1109/TNNLS.2020.2978386

[58] Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei Su,
Hanzhang Wang, and Dan Pei. 2023. Unsupervised Anomaly Detection on
Microservice Traces through Graph VAE. In Proceedings of the ACM Web Confer-
ence 2023 (Austin, TX, USA) (WWW ’23). Association for Computing Machinery,

New York, NY, USA, 2874ś2884. https://doi.org/10.1145/3543507.3583215
[59] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu,

Qingwei Lin, and Dongmei Zhang. 2022. DeepTraLog: Trace-Log Combined
Microservice Anomaly Detection through Graph-based Deep Learning. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 623ś634.
https://doi.org/10.1145/3510003.3510180

[60] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal,
Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Critical Path Analysis
of Large-Scale Microservice Architectures. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 655ś672. https:
//www.usenix.org/conference/atc22/presentation/zhang-zhizhou

A BENCHMARKING APPLICATION

The social networking application and its three request types are

representative of microservices applications as they capture the

intricacies of microservices architecture. The social networking

application is widely used by prior works as a representative mi-

croservices application workload, including those on bottleneck lo-

calization [20, 43] and in characterization studies by cloud providers

such as Microsoft [5] and Google [3]. The application services both

read (home and user) and write requests (compose). The application

has Nginx, MongoDB, Memcached, Redis, RabbitMQ, synchronous

and asynchronous calls, and logic servers implemented using the

industry-standard Thrift framework [8]. The call graphs of these

three requests are different. The call graph of compose, home, and

user requests consists of 28, 7, and 9 nodes, respectively. The nodes

and the edges of these graphs vary significantly, too. There is also

variance in system characteristics. For example, the compose re-

quest call graph has queueing and asynchronous requests, whereas

the user request has multiple levels of caching.

B GAMMA IMPLEMENTATION DETAILS

The anomaly detector is a binary classifier consisting of a 2-layer

feed-forward and a softmax. The 2-layer feed-forward network

processes and refines the input representations. The refined rep-

resentations are passed to the softmax layer, which provides the

likelihood of traces being anomalous. The motivation for choosing

this design for the anomaly detector is recently published works

for multi-task learning, such as AdaShare [52] and DynaShare [45],

which use a hard share framework for multi-task learning. The bot-

tleneck localizer is a mixture of expert (MoE) binary classifiers with

one binary classifier for each microservice. The binary classifier

consists of a 2-layer feed-forward network and a softmax layer. The

input to each classifier is the same intermediate representations,

but each expert is trained to capture the unique characteristics of

the assigned microservice. The choice of a mixture of experts for

this stage is motivated/influenced by recent works on MoE, such

as SPNet [17] and MEID [29], which use an MoE setup for a multi-

label classification task. The dimensions of the networks in both

the anomaly detector and the bottleneck localizer depend on the

number of nodes (microservices) in the call graph.

C GAMMA HYPERPARAMETERS

𝛼 is the hyperparameter that decides the contribution of the losses of

anomaly detection and bottleneck localizer in the joint loss function.

A higher value of 𝛼 would imply the model focuses onmaking fewer

errors during anomaly detection as the penalty for such errors is

high. On the other hand, a lower value of 𝛼 would mean the model

focuses on making fewer errors during the bottleneck localization.

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications WWW ’24, May 13ś17, 2024, Singapore, Singapore

For all three call graphs (compose, user, home), we start with 𝛼 =0.5,

providing equal weights for both tasks. We change 𝛼 in steps of

0.05 and observe the training and validation loss. We observe that

values 0.2, 0.25, and 0.35 provide the best results for compose, user,

and home requests. This shows that penalizing errors for the harder

task of localizing bottlenecks provides the best overall result.

The parameter 𝜏 represents the window size the input vector

is split into. Ideally, an optimal window size would be one that is

(a) large enough to have enough data points in them to capture

temporal patterns since this allows us to see relative changes in

latency and resource usage in the window, and (b) small enough that

the data points in the window are not too noisy and are relatively

cohesive. Hence, there is scope for tuning the window size. We

looked at the validation loss for separate models trained for window

sizes starting from 0.5 seconds to 5 seconds, at 0.5 seconds intervals.

We found that a window size of 1 second gave the lowest validation

loss.

D DATASET

The train, validation, and test split was 70%, 10%, and 20%, respec-

tively, for all the graphs (compose, home, and user). So, overall,

around 28M, 4M, and 8M traces were used for training, validation,

and testing, respectively.

The proportion of normal and anomalous traces in the dataset

is 63% and 37% (the proportion of normal traces in prior works

ranges from 2% to 50%). The percentage distribution of the number

of bottlenecks (N) among all the windows is given in Table 4.

N Proportion (%)

0 63

1 5

2 3

3 5

4 4

5 13

6 3

10 1

12 3

Table 4: Distribution of bottlenecks in the dataset.

E GAMMA DESIGN

In this section, we describe some of the components of GAMMA.

E.1 Dilated Causal Convolution

The dilated causal convolution for a feature vectorM𝜂𝑥𝜏 is

O(𝜂, 𝑘, 𝑞) =
∑︁

𝜂

∑︁

𝜏+𝛿 ·𝑠=𝑞
M(𝜂, 𝜏) ×𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑠), (2)

whereM(𝜂, 𝜏) is the input tensor, O(𝜂, 𝑘, 𝑞) are the multi-channel

output embeddings, 𝑘 × 𝑞 represent the Convolution filters, 𝛿 is

the expansion factor, and𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑠) is the filter size for 𝜂 output

channels. Self-attention is then applied on the input embedding
tensorM𝜂𝑥𝜏 , as:

𝐴𝑡𝑡𝑛(M) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(

𝑊𝑞M · (𝑊𝑘O)𝑇√
𝑑

𝑊𝑣M

)

, (3)

where𝑊𝑞 ,𝑊𝑘 and,𝑊𝑣 are trainable hyperparameters and 𝑑 is an

empirical scaling factor. This phase outputs multi-channel embed-

dings with latent representation O𝜂×𝑘×𝑞 .

E.2 Graph Attention

Dynamic edge weights, integral to the attention mechanism, are

formulated as per Equation (4), ensuring an understanding of mi-

croservice interactions.

𝜔𝑎,𝑏 =

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝜈𝑇 [𝑊O𝜖𝑎 | |𝑊O𝜖𝑏]))
∑

𝑘∈N𝑎 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝜈𝑇 [𝑊O𝜖𝑎 | |𝑊O𝜖𝑘]))
, (4)

where 𝜔𝑎,𝑏 is the computed weight of edge ®𝑒𝑎,𝑏 , N𝑎 is the set of

neighbor nodes for node 𝑎; O𝜖𝑎 is the intermediate node representa-

tion of node 𝑎;𝑊 ∈ R𝐸𝐺×𝐸 and 𝜈 ∈ R𝐸𝐺 are trainable parameters.

𝐸𝐺 is the shape of the output representation. The impact of all the

neighboring nodes 𝑏 on node 𝑎 is calculated as follows:

𝑂̂𝜖
𝑎 = 𝑅𝑒𝐿𝑈 (

∑︁

𝑏∈N𝑎
𝜔𝑎,𝑏𝑊O

𝜖
𝑏
) (5)

Global Attention Pooling [11] is then performed on the node repre-

sentations to generate dependency-aware embeddings O𝜁 .

	Abstract
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection
	2.2 Bottleneck Localization

	3 Design of GAMMA
	3.1 Multi-Source Temporal Embeddings Learning
	3.2 Graph Representation Learning
	3.3 Detection and Localization

	4 Evaluation
	4.1 Experimental Setup
	4.2 Dataset Creation
	4.3 Metrics and Baselines
	4.4 Results

	5 Conclusion
	References
	A Benchmarking Application
	B GAMMA Implementation Details
	C GAMMA Hyperparameters
	D Dataset
	E GAMMA DESIGN
	E.1 Dilated Causal Convolution
	E.2 Graph Attention

