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ABSTRACT

We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of
state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We
show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics
on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further
from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show
that large-scale baryon spread is very sensitive to model implementation details, with the fiducial SIMBA model spreading
~40 per cent of baryons >1 Mpc away compared to ~10 per cent for the IllustrisTNG and ASTRID models. Increasing the
efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can
decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between
hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global
impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and
(to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of
power by feedback as a function of wave number (k) and baryonic spread up to k ~ 102 Mpc~! in SIMBA while highlighting
the challenge of developing models robust to variations in galaxy formation physics implementation.

Key words: galaxies: evolution — galaxies: formation — cosmology: large-scale structure of Universe.

et al. 2005; Eisenstein et al. 2005), and weak lensing surveys

1 INTRODUCTION (Hadzhiyska et al. 2021; Huang et al. 2021). In this new age of

Investigating the distribution of matter in the Universe reveals many
clues about its origin, content, and fate. Cosmological parameters
such as the density of matter (£2,,) and the present-day linear am-
plitude of matter fluctuations (og) can be constrained by comparing
theoretical predictions to observations from the cosmic microwave
background (Planck Collaboration 2020), galaxy clustering (Cole

* E-mail: matthew.gebhardt@uconn.edu

precision cosmology, simulations have become extremely valuable
in the pursuit of tighter constraints on cosmological parameters by
comparing their outputs to these surveys. As the next generation
of surveys [e.g. CMB-S4! (Abazajian et al. 2016), DESI?> (DESI

Thttps://cmb-s4.org
Zhttps://www.desi.Ibl.gov
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Collaboration 2016), eROSITA® (Merloni et al. 2012), Euclid*
(Buclid Collaboration 2022), and Rubin Observatory’ (Ivezi¢ et al.
2019)] provide greater statistical power via larger volumes and
greater sensitivity, cosmological simulations must follow suit. As
their resolution increases, however, simulations must model smaller
scales at which matter clustering can no longer be explained purely
by gravitational dynamics. At such scales, processes such as radiative
cooling, galactic winds driven by supernovae (SNe), and active galac-
tic nuclei (AGN) feedback play an important role in the evolution
of galaxies and directly redistribute baryonic matter over a range
of scales (Anglés-Alcézar et al. 2017b; Borrow, Anglés-Alcdzar &
Davé 2020), which can provide an important source of contamination
when extracting information from cosmological surveys (van Daalen
et al. 2011; Chisari et al. 2019; Schaye et al. 2023). Unfortunately,
many key physical mechanisms in galaxy formation are still not
well understood, and so it is a challenge to decouple astrophysical
processes from the intrinsic effects of fundamental cosmological
parameters on the matter distribution. The uncertainties and computa-
tional costs of these baryonic processes relegate their implementation
in large-volume hydrodynamic simulations to extensively tuned free
parameters in subgrid models (Somerville & Davé 2015). To extract
the maximum amount of cosmological information from future
surveys, the effects and uncertainties of these processes must be
well accounted for.

Dark matter only (‘N-body’) simulations have seen great successes
in reproducing the over-arching large scale structure of the Universe
and achieving the large volumes (at sufficient resolution) required
for comparisons to cosmological surveys (Springel et al. 2005;
Klypin, Trujillo-Gomez & Primack 2011; Angulo et al. 2012).
However, while the dark matter component is responsible for the
majority of the gravitational potential to form large structures,
baryonic matter is subject to various astrophysical processes and,
as a result, does not simply follow the dark matter (Naab &
Ostriker 2017; Vogelsberger et al. 2020). There have been a wide
range of efforts to create models that approximate the effects of
baryons in such simulations. Empirical models (e.g. Berlind &
Weinberg 2002; van den Bosch et al. 2007; Behroozi, Conroy &
Wechsler 2010) are computationally efficient and map observable
properties of baryons to dark matter haloes without any explicit
modeling of baryonic processes. Semi-analytical models (SAMs) are
amore physically motivated approximation method (e.g. Kauffmann,
White & Guiderdoni 1993; Somerville & Primack 1999; Croton et al.
2006; Guo etal. 2011) that predicts galaxy properties given simulated
dark matter halo merger trees by solving bulk equations to track
quantities such as gas accretion onto haloes, star formation rates, or
gas ejected from galaxies (Baugh 2006; Somerville & Davé 2015),
but still do not predict the total matter distribution in and around
galaxies. Cosmological hydrodynamic simulations (e.g. Hirschmann
et al. 2014; Schaye et al. 2015; Davé, Thompson & Hopkins 2016;
Weinberger et al. 2017; Davé et al. 2019) are the most direct way
of modeling the impact of baryonic physics on galaxy evolution and
the total matter distribution, but suffer from uncertainties in baryonic
physics models.

The predicted abundance, clustering, and concentration of dark
matter haloes differs between N-body and hydrodynamic simulations
(Cui, Borgani & Murante 2014; Cui et al. 2016; Beltz-Mohrmann &
Berlind 2021; Lu & Haiman 2021; Sorini et al. 2022), and connecting

3https://www.mpe.mpg.de/eROSITA
“https://www.euclid-ec.org
Shttps://www.Isst.org
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these can approximate the predictive power of hydrodynamic simu-
lations. Two methods for such an approximation are ‘halo models’,
which alter the radial density profiles of haloes in N-body simulations
when calculating the total matter power spectrum to match that of
hydrodynamic simulations (e.g. Seljak 2000; Semboloni, Hoekstra &
Schaye 2013; Mead et al. 2015) and ‘baryonification’ methods, which
go a step further to actually alter the 3D distribution particles to
match the halo density profiles found in hydrodynamic simulations
(e.g. Schneider & Teyssier 2015; Schneider et al. 2019; Weiss et al.
2019). Halo models are also used in modeling (e.g. Shaw et al.
2010; Osato & Nagai 2023) and interpreting Sunyaev-Zeldovich
(S8Z) surveys (e.g. Reichardt et al. 2012; Osato et al. 2018, 2020).
However, additional cluster astrophysics, such as the feedback and
baryonic effects, must be understood better to realize the statistical
power of upcoming SZ surveys (Chisari et al. 2019).

In practice, to compare theory to observations, one typically
computes a ‘summary statistic’, such as the matter power spectrum
(e.g. Hildebrandt et al. 2017; Hikage et al. 2019), which describes
how matter is clustering at different spatial scales. Relative to N-body
simulations, matter power in hydrodynamic simulations is increased
at smaller scales by radiative cooling and star formation, but is also
broadly decreased by feedback processes inhibiting the clustering of
matter (Chisari et al. 2018, 2019; van Daalen, McCarthy & Schaye
2020; Delgado et al. 2023). At larger scales in particular, feedback
appears to play an important role in decreasing power, which has been
supported by observations showing that stellar (Lynds & Sandage
1963; Madau et al. 1996; Martin 1998; Pettini et al. 2001) and
AGN (Feruglio et al. 2010; Sturm et al. 2011; Fabian 2012; Greene,
Zakamska & Smith 2012; Cicone et al. 2014) feedback-driven
outflows are capable of ejecting gas significant distances away from
dark matter haloes. Though not an exhaustive list, the above effects
alone can significantly alter the distribution of matter as compared to
an N-body simulation, which further complicates efforts to account
for the effects of baryons in such simulations.

One strategy to illuminate these complex feedback processes and
to perhaps bypass the need to tightly constrain them is being carried
out by the Cosmology and Astrophysics with MachinE Learning
Simulations (CAMELS) project® (Villaescusa-Navarro et al. 2021c¢).
CAMELS contains thousands of hydrodynamic and N-body simula-
tions with wide ranging variations of cosmological and subgrid feed-
back parameters. Using the large library of simulations, CAMELS
data have been used to account for these uncertain feedback processes
in a variety of ways. Promising results have arisen from attempts
to predict cosmological parameters while marginalizing over astro-
physical effects (Villaescusa-Navarro et al. 2020, 2021a, b; Perez
et al. 2022; Shao et al. 2022; Villanueva-Domingo & Villaescusa-
Navarro 2022; de Santi et al. 2023), estimate the mass of dark matter
haloes from baryonic properties (Villanueva-Domingo et al. 2021d,
2022b) constrain subgrid feedback parameters, (Moser et al. 2022;
Thiele et al. 2022; Pandey et al. 2023; Tillman et al. 2023), search
for other summary statistics that may contain valuable cosmological
information (Nicola et al. 2022; Villaescusa-Navarro et al. 2022a),
reduce the scatter of scaling relations (Wadekar et al. 2023a, b), and
more.

The hydrodynamic simulations in CAMELS include three differ-
ent galaxy formation models: IllustrisTNG (Weinberger et al. 2017;
Pillepich et al. 2018), SIMBA (Davé et al. 2019), and ASTRID (Bird
et al. 2022; Ni et al. 2022). In CAMELS, the strengths of SNe and
AGN feedback parameters as prescribed by the respective models

Ohttps://www.camel-simulations.org/
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are varied, which allows for systematic analysis of the effects that
these processes have on, for example, the cosmic star formation
rate history, the galaxy stellar mass function, and the large-scale
distribution of matter as a whole.

In this work, we take advantage of the systematic model variations
in CAMELS to quantify how far both dark and baryonic matter
spread apart as a function of cosmological and feedback parameters
by means of the Lagrangian matter spread metric. The spread metric
was introduced in Borrow et al. (2020) and was used to quantify the
redistribution of matter in the SIMBA cosmological simulation. It
was shown that 40 per cent of the baryonic content of the simulated
volume can spread more than 1 Mpc 4! away from the initial neigh-
bouring dark matter distribution owing to the impact of large-scale
AGN jets in SIMBA (see also Davé et al. 2019; Christiansen et al.
2020). Here, we present a detailed analysis of cosmological baryon
spread including thousands of galaxy formation model variations
in CAMELS, including the SIMBA, IllustrisTNG, and ASTRID
implementations. Additionally, because feedback suppresses the
matter power spectrum on large scales, we extend this analysis to
investigate how the spreading of baryons correlates with the impact
of feedback on the power spectrum.

This paper is organized as follows: In Section 2, we describe the
CAMELS project, the data sets used, the spread metric, and other
analysis techniques. In Section 3, we describe the results of analyzing
the spread of dark matter and baryons in the SIMBA suite, as well as
the correlation between cosmological baryonic spread and the total
matter power spectrum. We also extend this analysis to simulations
from the IllustrisTNG and ASTRID suites. In Section 4, we discuss
the significance of these results in the context of the current state of
the field. Finally, in Section 5, we summarize the conclusions of this
work.

2 METHODOLOGY

For this work, we focus first on presenting a detailed study of
cosmological matter spread using the SIMBA simulation suite in
CAMELS, which we will then compare to the IlustrisTNG and
ASTRID simulation suites. Our simulations and relevant analysis
techniques are described below.

2.1 CAMELS Simulations

CAMELS (Villaescusa-Navarro et al. 2021c) is a collection of
5516 (magneto)hydrodynamic cosmological simulations with sub-
grid physics from the IllustrisTNG, SIMBA, and ASTRID galaxy
formation models, and 5164 N-body simulations with matching
initial conditions, each with a comoving volume of (25Mpc /')
containing 256 dark matter particles evolving from z = 127 to
present day. Dark matter particles have a mass of 6.49 x 107(Q,, —
p)/0.251h~ M. Hydrodynamic simulations contain an additional
256> gas particles (which may form stars and black holes) with an
initial mass of 1.27 x 107€2;,/0.0494~'Mg. The (sub)halo catalogs
used in this work are generated with SUBFIND (Springel et al. 2001).

The SIMBA galaxy formation model builds on the MUFASA
model (Davé et al. 2016), and uses the ‘Meshless Finite Mass’ mode
of the N-body and hydrodynamics code GIzMO (Hopkins 2015). The
gravitational dynamics is solved with a Tree-PM method adapted
from the GADGET-III code (Springel 2005). Radiative cooling and
photoionization are implemented using Grackle-3.1 (Smith et al.
2016). Stellar feedback is modeled similar to that of MUFASA: two-
phase galactic winds with 30 per cent of wind particles being ejected
with a temperature set by the difference in SNe energy and wind

MNRAS 529, 4896-4913 (2024)

kinetic energy. As an update from MUFASA, the mass loading factor
and velocity of galactic winds scale with stellar mass following the
relations found from FIRE zoom-in simulations (Muratov et al. 2015;
Anglés-Alcédzar et al. 2017b). Supermassive black hole (SMBH)
growth is implemented in two phases, where the gravitational torque
accretion model (Hopkins & Quataert 2011; Anglés-Alcézar, Ozel &
Davé 2013; Anglés-Alcazar et al. 2015, 2017a) is used for cold gas
and the Bondi accretion model (Bondi 1952) is used for hot gas.
Feedback from AGN is comprised of mechanical quasar-mode winds
and high-speed collimated jets at fixed momentum flux following
Anglés-Alcédzar et al. (2017a) and X-ray feedback following Choi
et al. (2012). For a more thorough description of SIMBA, see Davé
et al. (2019).

The IustrisTNG galaxy formation model builds on the Illustris
model (Genel et al. 2014; Vogelsberger et al. 2014a), and uses the
Arepo code (Springel 2010) with the Tree-PM method to solve
the equations of gravity and a Voronoi moving-mesh method to
solve for magnetohydrodynamics. Radiative cooling follows Katz,
Weinberg & Hernquist (1996), Wiersma et al. (2009), and Rahmati
et al. (2013). Stellar feedback galactic winds follow a kinetic
scheme based on Springel & Hernquist (2003) in which particles
are stochastically and isotropically ejected from star-forming gas.
The SMBH model builds upon Springel (2005), Sijacki et al. (2007),
and Vogelsberger et al. (2013), with SMBH mergers occurring when
SMBH particles enter each other’s ‘feedback spheres’, and with gas
accretion following the Eddington rate-limited Bondi parameteriza-
tion (Bondi 1952). AGN feedback is implemented in three modes:
thermal, kinetic, and radiative. The high accretion (thermal) mode
injects thermal energy at a rate proportional to the mass accretion rate
into a ‘feedback sphere’ around the SMBH, while the low accretion
(kinetic) mode accumulates energy over time and injects kinetic
energy in a random direction into the feedback sphere when a total
amount of energy since last injection is accumulated. The radiative
component is always active, and adds the SMBH’s radiation flux to
the cosmic ionizing background. IllustrisTNG is fully described in
Weinberger et al. (2017) and Pillepich et al. (2018).

The ASTRID galaxy formation model is implemented in the MP-
Gadget simulation code (expanded from GADGET-III), using the
Tree-PM method to solve for gravity and the smoothed particle
hydrodynamics (SPH) method. Radiative cooling and heating are
modeled from Katz et al. (1996), Vogelsberger et al. (2013), Faucher-
Giguere (2020), and Rahmati et al. (2013). Stellar feedback is
implemented kinetically, with wind particles sourced from newly
formed star particles. The CAMELS version of ASTRID (Ni et al.
2023) uses the SMBH model adapted from the ASTRID production
run Bird et al. (2022) and Ni et al. (2022), without explicit modelling
of the BH dynamical friction, and is extended to include a two-mode
SMBH feedback implementation using thermal or kinetic energy
injection depending on the Eddington ratio of the SMBH accretion
rate. The low accretion rate (kinetic) model follows Weinberger et al.
(2017) but with different parameter values. The high accretion rate
(thermal) model injects 5 per cent of the SMBH’s radiation energy
into the surrounding gas within a spherical region with radius twice
that of the SPH kernel. ASTRID is fully described in Bird et al.
(2022) and Ni et al. (2022).

Throughout the CAMELS suites, cosmological and feedback pa-
rameters are varied in different ways across four sets of simulations.
We first focus on variations of two cosmological parameters (£2,, and
og with fixed 2, = 0.049), two parameters governing SNe feedback
(Asny and Agnp), and two parameters governing AGN feedback
(Aacnt and Aagnz). We explore the implications of varying these
parameters in the SIMBA model and how they affect the spreading of
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matter. In SIMBA, the feedback parameters represent the following
quantities:

(i) Asn1 — Mass loading factor of galactic winds.

(i1) Asno — Speed of galactic winds.

(iii) Aagn1 — Momentum flux of quasar and jet-mode feedback.
(iv) Aagn2 — Speed of jet-mode feedback.

Feedback parameters are simply normalizations of feedback
strength relative to the original feedback models (e.g. a SIMBA
simulation with Agny = 2 will have twice the galactic wind speed
as the original SIMBA subgrid model). Fiducial values of these six
parameters are taken to be Q,, = 0.3, 0g = 0.8, and Asn; = Asne
= AacN1 = Aagnz = 1. Each parameter variation range is as follows:
01<Q,<0506<05=<1.0;025< (ASNI, AAGN]) < 4.00; and
0.5 < (Asn2s Aagnz) < 2.0. After a focused analysis of the effects
variations on these six parameters have on the spreading of dark
matter and gas in SIMBA, we will explore a broader range of up
to 28 parameter variations (see Ni et al. 2023 for descriptions of
all varied parameters) comparing the baryon spreading in SIMBA,
IllustrisTNG, and ASTRID.

For each simulation, the total matter power spectrum P(k) is
calculated following Villaescusa-Navarro et al. (2021c). The masses
for every particle type (dark matter, gas, stars, and black holes)
are placed in a 5123 voxel grid, which is Fourier transformed by
averaging over k bins. The bin width is the fundamental frequency,
kr = 2m/L, where L is the length of the simulated box, 25 Mpch~'.

2.2 Data sets

This analysis uses several different data sets within CAMELS.
Sections 3.1-3.3 all use the six parameter 1P set, CV set, and LH
set from the SIMBA suite presented in Villaescusa-Navarro et al.
(2021c¢), while Section 3.4 uses the full 28 parameter 1P set from the
SIMBA suite, the 1P and LH sets from the ASTRID suite, and the 28
parameter 1P and SB28 sets from the [llustrisTNG suite presented in
Ni et al. (2023). A short description for each simulation set is given
below:

(i) The 1P (‘one parameter’) set contains simulations with the
same initial conditions (random seed) but varying one parameter
at a time. One simulation uses all fiducial parameter values while
the remaining simulations correspond to variations of up to 28
parameters above and below their fiducial value while all others
are held constant. The six parameters described above each have 10
variations (hereafter referred to as the six parameter 1P set), while
the remaining 22 parameters each have 4 variations. The full list and
descriptions of all 28 parameters can be found in Ni et al. (2023). The
parameter variation spacing is linear for cosmological parameters and
logarithmic for feedback parameters. The corresponding N-body 1P
set contains 21 simulations varying only 2, and og. The 1P set is
designed for determining the effects of specific parameters on various
quantities such as the matter spread.

(ii) The CV (‘cosmic variance’) set contains 27 simulations with
the same fiducial parameters, but different initial conditions. The CV
set is used to quantify the effects of cosmic variance on observables,
which is important given that the simulated volumes in CAMELS
are small and not representative of the Universe as a whole.

(iii) The LH (‘Latin Hypercube’) set contains 1000 simulations
each with different initial conditions, and with near-random param-
eters selected from a Latin hypercube. The main goal of the LH set
is to train machine learning algorithms to make predictions given

Cosmological baryon spread in CAMELS 4899

cosmological and astrophysical inputs, account for cosmic variance,
and marginalize over baryonic effects.

(iv) The SB28 (‘Sobol Sequence’) set is unique to IllustrisTNG
and contains 1024 simulations with 28 parameters quasi-randomly
selected from a Sobol sequence designed for machine learning
applications in an expanded parameter space (Ni et al. 2023).

2.3 The spread metric

One way to quantify the decoupling of the baryonic and dark matter
components is with the cosmological spread metric (Borrow et al.
2020). The spread metric for a particle (either gas or dark matter) is
defined as the final distance at z = O between that particle and the
dark matter particle it was nearest to in the initial conditions. For
the spread of gas in IllustrisTNG, we use tracer particles that are
designed to accurately follow the flow of gas (see Genel et al. 2013
for a full description) rather than tracking gas cells. For SIMBA and
ASTRID, gas particles that turn into stars are not included in this
analysis. The method for calculating the spread of a particle (which
is the same for both gas and dark matter) is as follows:

(i) In the initial conditions, find the particle’s nearest dark matter
neighbour by computing the distance to all dark matter particles.

(i1) Store the IDs of these two neighbouring particles.

(iii) By ID matching, find these particles in the z = 0 snapshot
and compute the distance between them.

Only the initial conditions and final state of the simulation are
required; here we focus on the spread of matter from z = 127 down
to z = 0. The distributions of dark matter and gas particles are
identical at z = 127 except for the systematic displacement of the
staggered grids that define the initial conditions. The neighbouring
dark matter particle is used as a reference point in this metric due
to the ambiguity involved in measuring absolute distances in an
evolving universe, where the gas and dark matter components in large
structures can drift owing to peculiar motions. The spread metric is
thus a measure of displacement relative to the initial surrounding
dark matter distribution normalizing out peculiar motions. In this
work, we calculate the ‘spread’ value for every gas and dark matter
particle in all CAMELS simulations. The spread metric can also be
computed for star particles, but here we focus on the spread of gas
and refer to it as baryon spread interchangeably. With the spread
output, particles may be selected and analyzed in various ways, such
as investigating the spread of particles inside or outside of haloes,
particles within a specified halo mass range, or particles within a
specified spread percentile range. The median spread of particles for
a given simulation can be computed to characterize with a single
statistic the overall impact of baryonic effects on the distribution of
matter.

2.4 Symbolic regression

Symbolic regression is a machine learning technique capable of
finding an analytic mathematical formula to relate an input and an
output. A distinct advantage of symbolic regression over a more
standard ‘least squares’ regression is that the functional form does not
need to be known ahead of time, and instead is constructed from a set
of allowed operators. We use symbolic regression to find a function
that can predict the impact of baryonic feedback on the matter power
spectrum as a function of baryon spread and wave number k. We use
the PySR package (Cranmer 2020) to train on SIMBA six parameter
1P set simulations that vary the four feedback parameters where
the input is a 2D array with one axis consisting of median gas

MNRAS 529, 4896-4913 (2024)
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spread values for each simulation and the other consisting of 40
k values between 0.5 and 104 Mpc~!. The output is the (negative)
change in total matter power spectrum between the hydrodynamic
and N-body simulations, —AP/P = —(Pyydro — PnNbody)/PNbody- The
allowed operators are addition, multiplication, subtraction, division,
exponential, inverse, absolute value, and square root. We use the loss
function default to PySR, mean squared error:

N
1 .
floss — N } :(AP/Pilme _ AP/Pipredu:ted)z7 (])
i

where N is the total number of data points. We use the measure of
complexity default to PySR, which treats each operator with equal
complexity. Finally, we use 100 iterations in each search.

3 RESULTS

In this section, we use the spread metric to analyze the redistribution
of dark matter in N-body simulations and gas in SIMBA hydro-
dynamic simulations to evaluate how these change with varying
cosmological parameters and (in the case of gas) feedback strength.
We then investigate the correlation between the spread of gas and the
impact of baryons on the total matter power spectrum. We conclude
this section with comparisons between the baryon spread and impact
on the matter power spectrum in SIMBA, IllustrisTNG, and ASTRID.

3.1 Dynamical spread in N-body simulations

All particles are subject to the force of gravity and may spread
owing to chaotic gravitational dynamics. We begin by analyzing the
spreading of dark matter in N-body simulations, which will serve as
control for our subsequent analysis of baryonic spread to understand
the relative roles of gravity and baryonic physics on the redistribution
of matter.

Using the N-body 1P set, we can investigate how the spreading
of dark matter depends on cosmological parameters. Fig. 1 shows
the distribution of the spread of all dark matter particles in each
simulation as the cosmological parameters 2, and og are varied.
Each line corresponds to a different simulation and the colour denotes
the parameter value. We see here that higher parameter values for 2,
and og correspond to greater spread of dark matter (more particles
are spreading farther from their initial neighbours). At the greatest
values of Q,, some particles are spreading more than 7 Mpc h~!,
whereas the farthest spread particles in the lowest 2;,, run spread less
than 3 Mpc #~!. Variations in o'y show a slightly tighter distribution,
with the farthest spread particles in the highest o' g run spreading just
over 6 Mpc A~!, and around 3 Mpc 4~! in the lowest o' run.

Dark matter halos represent gravitational potential wells where
chaotic orbits can make the trajectories of dark matter particle
neighbours diverge over time. The dark matter particles that spread
the most are then likely to reside around the most massive structures
in the simulation. It is thus informative to explore the relationship
between spread, parameter value, and halo size. Fig. 2 shows the
median spread of dark matter particles from the 10 most massive
haloes (but excluding the most massive as it is often significantly
larger than the others) as a function of their average virial radius
for simulations varying €2,,, with the shaded region representing the
25th-75th percentile of spread. This depicts a clear positive (sub-
linear) correlation between €2, and the average virial radius, which
increases from 150 kpc A~ to 395 kpc ™! with @, = 0.1 — 0.5
and also correlates with an overall increase in the spread of particles.
This suggests that increasing 2, and oy yield wider spreading of
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Figure 1. Distribution of spread distances for all dark matter particles in the
1P set N-body simulations at z = 0. The top panel shows the spread distribution
in simulations varying Qp, (with all other parameters held constant) and the
bottom panel shows the impact of varying o alone. Colour bars indicate the
parameter value for each simulation. Dark matter spreads further from the
initial neighbouring distribution with increasing 2, and og.

matter by increasing the mass and abundance of massive halos (see
Villaescusa-Navarro et al. 2021c).

To investigate further, Fig. 3 shows the median spread of particles
residing within haloes of specified mass ranges as a function of
parameter value. Regardless of cosmological parameter variation,
particles in larger haloes spread farther. When looking at haloes of
the same mass, the values of 2, and og have little impact on the
median spread of dark matter. Dark matter spread does, however,
slightly decrease at fixed halo mass with increasing €2, which may
be explained by an increase in halo concentration (see Section 4).
The clear relationship between halo mass and dark matter spread
provides support for the increased dark matter spread at higher 2,
and og simply reflecting the formation of more massive haloes. This
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Q. The colour bar indicates the value of 2, for each simulation. As @,
increases, haloes get larger and spreading increases.

relationship is further supported by the full spread distribution of
particles in these haloes, which shows a clear dependence on halo
mass at fixed cosmology (see Appendix A).

3.2 Baryonic spread in cosmological hydrodynamic simulations

The spreading of gas becomes more complicated with the addition
of radiative cooling, hydrodynamic forces, and galaxy formation
feedback in cosmological hydrodynamic simulations. Fig. 4 shows
the distribution of spread distances for all gas particles in each
hydrodynamic simulation in the six parameter SIMBA 1P set, which
now includes more simulations varying feedback parameters. As
expected, the distance to which baryons spread relative to the initial
neighbouring dark matter distribution increases with higher values
of Q, and o g, reflecting the formation of more massive halos and the
spread of matter owing to chaotic gravitational dynamics as seen for
N-body simulations (Fig. 1). Indeed, when investigating the median
spread of gas particles in haloes as a function of €2, and halo radius,
the trend is similar to that of dark matter, and this trend largely
disappears when normalizing to the spread of each gas particle’s
initial dark matter neighbour (see Appendix B). There is a notable
difference in the spread of baryons compared to dark matter, with gas
particles spreading up to ~11 Mpc h~! (compared to ~4.5 Mpc h~!
for dark matter) in the fiducial simulation.

Increasing the strength of AGN feedback systematically increases
the spread of gas, with the maximum distance reached varying
from ~10-14 Mpc h~! when increasing either Axgny or Aagne from
their minimum to maximum parameter values explored here. In
contrast, increasing the strength of SNe feedback shows complex
results. Greater mass loading of SNe-driven winds (Agn;) yields
an unclear, but perhaps minor positive correlation with spread,
while greater speed of SNe-driven winds (Asn2) shows a strong
negative correlation. This indicates that in SIMBA, overly efficient
SNe feedback reduces the spreading of gas to large scales, which
can be explained by driving a net reduction of energy injection by
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simulations at z = 0. Colour represents the halo mass range as described
by the legend in the top panel. Binning by halo mass removes most of the
dependence of spread on cosmological parameters and shows a clear positive
correlation between halo mass and median spread.

AGN feedback due to the evacuation of gas from central areas (see
Section 4). We note here that while these distances are comparable to
the size of the simulated box in CAMELS, Borrow et al. (2020) found
that the maximum gas spread distance in the fiducial 100 Mpc /™!
SIMBA simulation was within half the CAMELS boxsize and thus
should not affect results.

Fig. 5 compares the spread of dark matter and gas in different
simulations in the form of cumulative distributions which more
clearly show the amount of mass spreading up to a given distance. We
compare the fiducial 1P simulation to the highest and lowest AGN
jet speed models as well as the full spread distribution of the CV
set. As expected, gas spreads significantly farther than dark matter
(20 percent of gas spreads farther than 1.8 Mpc h~! compared to
0.26 Mpc h~! for dark matter), and the spreading of gas increases
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with faster jet speeds (20 percent of gas spreads farther than 1.23
Mpc h~! with the lowest jet speed as compared to 2.5 Mpc h~! with
the highest jet speed). The CV set shows the extent to which varying
initial conditions can affect the large-scale spreading of material,
which can be attributed to differences in the halo mass function
and, in particular, the abundance of the most massive halos hosting
SMBHs with powerful AGN jet feedback. In the CV set simulation
with the least amount of gas spread, 20 per cent of gas spreads farther
than 1.7 Mpc h~", while in the simulation with the highest gas spread,
20 per cent of gas spreads farther than 2.1 Mpch™.
For gas, we expect the majority of spreading to occur around
haloes, where galaxies act as sources of stellar and AGN feedback
powering the ejection of gas to large distances. However, the
spreading of gas in haloes becomes complex due to competing
effects: feedback pushing gas outward and the ability for gas to
radiate away energy (radiative cooling) and fall to lower radii in the
gravitational potential well of dark matter haloes. Fig. 6 depicts this
dichotomy by quantifying the spread of gas initially located inside
of the Lagrangian regions of z = 0 halos at the initial conditions. For
each halo at z = 0, we define its Lagrangian region by tracking the
corresponding dark matter particles back to their location at the initial
conditions. Gas particles are then defined to be in a Lagrangian region
at the initial conditions if their nearest dark matter particle neighbour
ends up in a halo at z = 0 (Borrow et al. 2020). All of the selected gas
particles shown in Fig. 6 were initially located inside of a Lagrangian
region, meaning that their nearest dark matter neighbour particle is
inside of a halo at z = 0. We compute separately the median spread
distance for Lagrangian region gas that ends up inside of halos (red
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Figure 6. Cosmological spread of gas selected from halo Lagrangian regions at the initial conditions (i.e. gas particles whose nearest initial dark matter particle
neighbour ends up inside of a halo at z = 0) as a function of cosmological and feedback parameters in SIMBA. Median spreads are shown separately for gas
that ends up inside of the corresponding halo (squares, red shading) or outside of any halo (triangles, blue shading) at the end of the simulation (z = 0). Each
panel corresponds to one individual parameter variation, as indicated. Shaded regions denote the 25th (lower) and 75th (upper) percentile of spread. The median
spread of gas ejected from haloes is significantly larger with a stronger dependence on feedback parameters than for gas that remains inside of haloes.

squares) or outside of halos (blue triangles) at z = 0, and we indicate
the 25th to 75th percentile range as shaded regions. Gas particles from
Lagrangian regions that end up outside of halos spread much farther
than the gas particles that remain in a halo regardless of parameter
variations, as expected. Additionally, the spread of gas outside of
haloes has a stronger dependence on parameter variations than gas
that remains inside of halos. The dichotomy of baryonic spread seen
here shows that Lagrangian regions contain baryons that will spread
very little (dense gas converting into stars in the cores of dark matter
halos) and very far (gas ejected in high-speed AGN jets).

Fig. 7 illustrates the spatial distribution of gas at z = 0 that
has spread by different amounts within a given simulated volume,
comparing simulations with different AGN jet speed in SIMBA.
Each panel represents a 2D mass projection of 20 percent of the
gas particles in the simulation, and thus each panel contains the
same amount of mass. Each row corresponds to one simulation, and
each column denotes the percentile of spread of the particles being
plotted. The Aagn2 parameter (jet speed) is increased from top to
bottom with values Axgne ~ [0.5, 0.66, 1.0, 1.52, 2.0]. In the low-
spread panels (first column), gas particles trace both the densest
regions at the centres of haloes as well as a diffuse component far
from the feedback generated by the most massive halos. As the
spread increases, gas particles trace regions around massive haloes
and filaments at increasingly large distances from halo centres. The

contrast in the relative distributions of gas for different percentile
ranges of spread is enhanced when increasing the AGN jet speed.

3.3 Impact of baryon spread on the matter power spectrum

Using the hydrodynamic and N-body simulation pairs in CAMELS,
we can investigate the impact of baryonic effects on the total matter
power spectrum as a function of feedback strength, cosmic variance,
and cosmology. Fig. 8 shows the ratio of hydrodynamic and N-body
power spectra for the six parameter SIMBA 1P set simulations that
vary feedback parameters. If the distribution of matter was exactly
the same in both simulations, the ratio of these power spectra would
be Phydaro/Pnbody = 1 at all values of k. Therefore, deviance from a
ratio equaling 1.0 indicates baryonic impact on the matter power
spectrum. At the smallest spatial scales, the ratio increases far above
1.0 due to radiative cooling of baryons and the formation of stars. On
larger spatial scales, the ratio decreases below 1.0 due to feedback
processes redistributing baryons and (to a much lesser extent) dark
matter owing to back-reaction (Daalen et al. 2011; Chisari et al.
2019). To investigate the origin of these effects, we colour-code the
Phydro/PNbody lines based on a normalized measure of the amount
of baryonic spread for each hydrodynamic simulation. Motivated by
results from van Daalen et al. (2020) showing that haloes with masses
My, > 10% Mg dominate the power on scales k > 11 Mpc™!, we
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in SIMBA. Each panel in a given row is a 2D gas mass projection at z = 0 containing 20 per cent of the baryonic content of the simulation, ranked by amount
of spread from left (lowest spread percentile range) to right (highest spread percentile range). From top to bottom, simulations with progressively higher Aagn2
parameter values are shown. Colour scale represents the mass density in the 2D projection and is logarithmic and identical in all panels. Particles of low spread
percentile tend to be inside halos and filaments, while greatly spread particles appear to reside in bubbles around halos and filaments.

choose only gas particles that are in one of the five most massive
Lagrangian regions in each simulation (due to the small box sizes
in CAMELS, these ‘most massive’ regions correspond to haloes
with masses between 103 My and 10" Mg, and our results are
insensitive to the exact number of regions considered). Additionally,
we normalize the spread of each gas particle by dividing by the
spread of its dark matter neighbour, partially mitigating the effect of
varying cosmological parameters on the halo mass function and thus
the (gravitational) dynamic spreading of matter. Lastly, we compute
the median of this normalized baryonic spread for all selected gas

MNRAS 529, 4896-4913 (2024)

particles to compare CAMELS simulations with different model
parameters. For the six parameter SIMBA 1P set simulations varying
feedback parameters (Fig. 8), we see a clear relationship between the
impact of feedback on the clustering of matter and the spreading of
gas particles across a range of scales, with greater spread correlating
with greater reduction of power. This relationship continues to hold
even at small scales (k ~ 30 2 Mpc™).

‘We next explore this relationship as a function of cosmic variance.
Fig. 9 is similar to Fig. 8 but now showing Ppygro/PNbody as a
function of k for the SIMBA CV set. Given the small (25 Mpc 2~')?
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Figure 10. Same as Fig. 8 but for the 1000 simulation pairs in the SIMBA
LH set, implementing different cosmological and feedback parameters along
with varying initial conditions. Despite the large scatter, gas spread is a good
predictor of the suppression of matter clustering due to baryonic physics.

simulated volumes in CAMELS, cosmic variance alone represents
a significant amount of scatter in the amount of power suppression
even for fiducial feedback parameters (Villaescusa-Navarro et al.
2021c; Delgado et al. 2023; Ni et al. 2023). Interestingly, the median
gas spread remains a good predictor of the impact of feedback on
the total matter power spectrum, capturing most of the variation
of Phydro/PNbody due to cosmic variance on scales k <2h Mpcfl.
Notably, this result holds even without normalizing the spread. As ex-
pected, the correlation between median gas spread and Phydro/ PNbody
worsens on smaller scales as the inherent stochasticity of galaxy
formation becomes a more dominant effect (Genel et al. 2019; Keller
et al. 2019; Borrow et al. 2023). Fig. 10 repeats this exercise for the
full SIMBA LH set, where each of the 1000 simulations has different
cosmological and astrophysical parameters in addition to different
initial conditions. In this case, there is significantly more scatter, but
the relationship between total matter power spectrum suppression
and the amount of baryon spreading continues to hold over a range
of scales.

To examine this trend in further depth, we plot in Fig. 11 the
fractional difference in the power spectra against the normalized
spread for different values of k, where we show AP/P = (Ppyqro
— Pxbody)/Pnbody for both the six parameter SIMBA 1P set (only
feedback variations, squares) and CV set (circles) at four different
values of k. The relationship between AP/P and baryonic spread is
nearly linear at low values of k, while at higher k values it takes
on a more complicated form. Additionally, the data points from
the CV set tend to have larger scatter, which increases with k as
expected from Fig. 9. We use PySR symbolic regression (Cranmer
2020) with the six parameter SIMBA 1P set simulations that vary
feedback parameters and find the following functional form to model
the fractional difference in the total matter power spectrum due to
baryonic effects as a function of both k and the amount of spread,

—AP/P =a; x (k x (ay x S —a3))"/* — ay, )
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Figure 11. Fractional difference in power spectrum at z = 0 as a function
of the normalized spread (as described in Fig. 8) at different values of k for
both the six parameter 1P set (only feedback variations, squares) and CV set
(circles) in SIMBA (top panel). The simulation with fiducial parameters from
the 1P set is plotted with a larger, outlined square for each k value. Best-
fitting lines found via symbolic regression for the 1P simulations are plotted
at each of these k values. While only trained on the six parameter SIMBA 1P
set simulations that varied feedback parameters, symbolic regression roughly
captures the trends seen in the CV set as well. Errors for CV set predictions
are shown in the bottom panel.

where S is the median normalized gas spread metric and a; = 0.25,
a, = 0.35, a3 = 1.09, and a4 = 0.14 are the best-fitting coefficients
for the preferred functional form found by PySR. The errors from
CV set predictions are shown in the bottom panel. Encouragingly,
this simple expression roughly captures the dependence of AP/P on
baryonic spread as a function of k despite cosmic variance effects.

3.4 Comparison to other CAMELS suites

Here, we compare gas spreading between SIMBA, IllustrisTNG,
and ASTRID. Fig. 12 shows the cumulative mass distribution of
gas as a function of spread distance for each fiducial model (solid
lines) and for the full range of parameter variations as given by
either the LH set (for SIMBA and ASTRID) or the SB28 set (for
lustrisTNG). Clearly, the fiducial SIMBA simulation spreads gas
the furthest (~40 percent of gas in the simulated volume spreads
further than 1 MpcA~! from its neighbouring dark matter), and the
variations in the LH set predict a wide range of gas spread (anywhere
from 1-75 percent of gas spreading further than 1 Mpch~"). The
fiducial ASTRID simulation appears to generally spread gas the least
(~7 percent spreading further than 1 Mpc /"), but also predicts
a wide variation in the LH set (0.2-63 percent for >1 Mpch™!).
The gas spread in the fiducial IllustrisSTNG simulation is on a
similar level to ASTRID (~11 percent spreading further than 1
Mpc/h~!). The range given by the SB28 set shows the smallest
minimum and maximum spread (0.01-57 per cent), but spans the
largest logarithmic range. The increased gas spread seen in SIMBA
relative to IllustrisTNG is in qualitative agreement with results
found in Ayromlou, Nelson & Pillepich (2022), where the ‘closure
radius’ (defined as the characteristic radius from a halo within which
the enclosed baryon fraction equals the cosmic baryon fraction) is
significantly larger in SIMBA relative to IllustrisTNG and EAGLE,
indicating a greater redistribution of baryons.

We extend our investigation of the relationship between baryon
spread and large-scale suppression of the matter power spectrum now
as a function of galaxy formation model. Fig. 13 is an extension of
Fig. 8 that now includes simulations from the ASTRID 1P set and the
full 28 parameter 1P sets for [llustrisTNG and SIMBA that do no vary
cosmological parameters (180 simulations in total). Remarkably, we
find a very clear correlation between the suppression of power on
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Figure 12. Cumulative mass distribution as a function of spread distance at z = 0 for gas particles in the fiducial 1P simulation (solid lines) and the full LH set
(SB28 for IllustrisTNG; shaded region) for SIMBA (grey; all panels), ASTRID (blue; middle panel), and IllustrisTNG (green; right panel). The fiducial SIMBA
model spreads gas significantly further than ASTRID and IllustrisTNG, although the full range of gas spreading is comparable in the LH sets of SIMBA and

ASTRID.
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Figure 14. Same as Fig. 11, but now including simulations from the ASTRID
1P set, and 28 parameter 1P sets for IllustrisTNG and SIMBA that do not
vary cosmological parameters. The same analytic function from symbolic
regression is plotted (trained on six parameter SIMBA 1P simulations), which
appears to be successful in reproducing the full SIMBA 1P results but does not
capture the trends seen for IllustrisTNG and ASTRID at low spread values.

scales k < 10 h Mpc~! and the gas spread metric regardless of galaxy
formation model and variations of up to 23 astrophysical parameters.
Once again, we investigate this trend quantitatively in Fig. 14, where
we show AP/P as a function of gas spread for different values of
k, as in Fig. 11 but now including also the ASTRID 1P set and

Cosmological baryon spread in CAMELS 4907
the full 28 parameter 1P sets for IllustrisTNG and SIMBA. Here
we reproduce the analytic function found with symbolic regression
using only the six parameter SIMBA 1P simulations, which also
seems to succeed in fitting the broader parameter variations in the
full SIMBA 1P set. However, it is clear that this function does not
quite match the ASTRID and IllustrisTNG simulations at all &, nor
at small spreads. At small £, ASTRID suppresses power notably less
than SIMBA simulations with comparable gas spread, and at large
k, both ASTRID and IllustrisTNG show far more suppression than
SIMBA when gas is not spreading far. Many ASTRID simulations
spread gas by small amounts and in fact show an increase in power
relative to N-body as the gas spread declines. There indeed appears
to be a relationship between baryonic impact on the matter power
spectrum and the spreading of baryons, but this trend can significantly
depend on the galaxy formation model.

4 DISCUSSION

The decoupling of baryons from dark matter on cosmological scales
represents a key signature of astrophysical feedback processes. As
gas does not simply follow the gravitational pull of dark matter,
N-body simulations do not tell the whole story. Systematic compar-
isons between N-body and hydrodynamic simulations allow for a
controlled analysis of the role that feedback plays in the distribution
of matter. It was shown in Borrow et al. (2020) that baryonic matter
can spread great distances away from the initial neighbouring dark
matter distribution in the SIMBA simulation. Here, we have used
CAMELS to extend this analysis to a wide range of variations in
cosmological and subgrid parameters in different plausible galaxy
formation models, with the goal of encompassing the actual baryonic
spread in the real Universe. Our results highlight the extent to which
baryonic matter can cycle in and out of galaxies, be ejected from
the circumgalactic medium, or even transferred to other halos (Davé,
Finlator & Oppenheimer 2012; Christensen et al. 2016; Anglés-
Alcézar et al. 2017b; Hafen et al. 2019, 2020; Mitchell, Schaye &
Bower 2020; Wright et al. 2020; Ayromlou et al. 2022).

In the fiducial SIMBA model, 40 per cent of the gas mass in the
entire simulated cosmological volume spreads further than 1 Mpc,
which is beyond the virial radius of all haloes in the simulation.
Increasing AGN jet speed (the Aagne parameter in CAMELS) from
lowest to highest increases this percentage from 25 percent up
to 55 percent. This large-scale spreading of baryons represents
an important consideration for halo models and baryonification
methods (e.g. Seljak 2000; Semboloni et al. 2013; Mead et al. 2015;
Schneider & Teyssier 2015; Schneider et al. 2019; Weiss et al. 2019).
Models that consider only a redistribution of matter relative to N-body
simulations within the scale of individual halos can easily miss the
large-scale effects of baryons. Even with the weakest AGN feedback
in SIMBA, more than 25 per cent of gas from halo Lagrangian regions
(which should otherwise accrete onto haloes) end up spreading far
out of haloes. While some models do take this ejection of gas into
account (e.g. Schneider & Teyssier 2015; Mead et al. 2020), we have
shown here that different subgrid parameters and models can spread
varying amounts of gas to a wide range of distances, highlighting
the challenge of modeling the ejected component. Additionally, we
explore the spreading of gas outside of Lagrangian regions (which
never belonged to any haloes) in Appendix B. Fig. B2 shows the
cumulative mass distribution of this gas as a function of spread
distance for varied AGN jet speeds in SIMBA (similar to Fig. 5), with
transparent lines showing the spread of all gas in each simulation.
Gas outside of Lagrangian regions (which accounts for ~70 per cent
of the total gas mass in the fiducial SIMBA simulation) spreads
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significantly (~40 percent of gas outside of Lagrangian regions
spreads farther than 1 Mpc) but is not accounted for in halo-based
models.

We have shown that dark matter itself spreads (relative to its
initial neighbouring dark matter distribution) by the largest amount
within and around massive haloes, as they are the largest sources of
gravitational potential. Dark matter spreading increases when haloes
get larger, as chaotic dynamics can make initial particle neighbour
trajectories diverge on scales comparable to the splashback radius
(Adhikari, Dalal & Chamberlain 2014; Diemer & Kravtsov 2014,
More, Diemer & Kravtsov 2015; Mansfield, Kravtsov & Diemer
2017). We see larger haloes forming when increasing the values of
Qn and oy (as expected, see Press & Schechter 1974; Villaescusa-
Navarro et al. 2021c¢), but otherwise large-scale dark matter spreading
seems to be roughly independent of these cosmological parameter
variations. One exception is the slight decrease in dark matter
spread in haloes of equal mass as 2, (and og for lower-mass
haloes) increases (Fig. 3), which may be explained by variations
in halo concentration. Higher values of €2, and og increase halo
concentration at fixed virial mass (Dooley et al. 2014), which would
result in haloes with more mass concentrated in the central region
and thus reduced amount of dark matter spreading within them. Gas
largely follows the same trend as 2, and o3 increase but experience
additional interactions. Generally, larger haloes may increase spread
by generating stronger feedback (due to the presence of more massive
central black holes) and having chaotic particle trajectories over
larger scales, but also host baryons that collapse to higher densities
in the central galaxy and end up spreading very little.

The dependence of gas spread on feedback parameters shows
complex non-linear effects. A clear result in Fig. 4 is that increasing
the strength of AGN feedback in SIMBA (momentum flux and jet
speed) significantly increases gas spread, while increasing the stellar
feedback efficiency either yields mixed results (mass loading factor)
or a significant decrease in gas spread (wind speed). One possible
explanation for this non-intuitive result is that there is significant
non-linear interaction between stellar and AGN feedback, as seen
in previous works (Booth & Schaye 2013; van Daalen et al. 2020;
Nicola et al. 2022; Delgado et al. 2023). Analyses of high resolution
FIRE zoom-in simulations show that strong stellar feedback can limit
early black hole growth by continually ejecting material away from
the nuclear region (Anglés-Alcédzar et al. 2017¢; Catmabacak et al.
2022; Byrne et al. 2023; see also Dubois et al. 2015; Bower et al.
2017; Habouzit, Volonteri & Dubois 2017; Lapiner, Dekel & Dubois
2021), which can therefore reduce the impact of AGN feedback.
Indeed, Ni et al. (2023) showed that increasing the SNe wind speed
parameter (Asnz) in SIMBA greatly decreased the quantity of massive
black holes. Borrow et al. (2020) found that gas particles tagged as
having directly interacted with AGN jets in SIMBA were spread
significantly further than particles that only directly interacted with
stellar feedback. Furthermore, by contrasting with a ‘No-Jet” SIMBA
simulation, it was shown that gas does not spread to large distances
without AGN jets and instead spreads on the same level as dark
matter. Given these effects, our results suggest that increasing the
speed of galactic winds suppresses the overall output of AGN jets
and therefore their ability to redistribute gas over large scales.

Massive dark matter haloes are responsible for both very small and
extremely large baryonic spreads owing to the competing effects of
radiative cooling (allowing gas to collapse down to halo centres) and
strong AGN feedback (ejecting gas to large scales). This dichotomy
in the fate of gas can be clearly seen for gas particles that belong to
halo Lagrangian regions at the initial conditions (Fig. 6). Gas particles
that remain inside of their parent halos at z = 0 spread very little,
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with minimal dependence on feedback parameters, while Lagrangian
region gas outside of parent halos at z = 0 show significantly larger
and feedback-dependent spreads. Investigating the large-scale spatial
distribution of gas as a function of the amount of spread provides
further support for this picture (Fig. 7), where the least spread gas
is constrained to halo centres while the most spread gas is spread
out around large haloes and filaments (in agreement with Borrow
et al. 2020). As the jet speed increases, the least spread gas is even
more tightly constrained to halo centres, and the most spread gas is
even more diffusely spread out over a large fraction of the simulated
volume in CAMELS. This depiction is in agreement with our finding
in Fig. 6 that the in-halo gas spread variation (25th—75th percentile
shaded region) decreases while the out-of-halo gas spread increases
with higher AGN jet speed.

We have shown that the amount of baryonic spread in simulations
is closely related to the overall impact of feedback on the total matter
power spectrum. Previous authors have investigated the impact of
baryons on the matter power spectrum and found that it can be
significantly ‘contaminated’ by non-linear baryonic effects relative to
dark matter-only simulations (Daalen et al. 2011; Chisari et al. 2019;
van Daalen et al. 2020; Delgado et al. 2023; Pandey et al. 2023). This
contamination typically results in a reduction of power on large scales
in hydrodynamic simulations as stellar feedback and, in particular,
AGN feedback redistribute gas far from haloes they would otherwise
reside in or around. With a large extended set of ~200 simulations
with identical initial conditions and varying up to 23 astrophysical
parameters in the SIMBA, IllustrisTNG, and ASTRID models (Ni
et al. 2023), we have shown that there is a tight correlation between
the suppression of power on scales k < 102 Mpc™! and the large-
scale baryon spread (Fig. 13). Generally, simulations that spread
baryons further relative to their initial neighbouring dark matter
distribution show a greater suppression of power on large scales,
regardless of the specific galaxy formation model and feedback
parameter variations.

Due to the small simulated volumes in CAMELS, cosmic variance
can have significant effects on many measured quantities. While all
of the SIMBA CV set simulations implement identical feedback
parameters, different initial conditions may result in a different
population of haloes for which the same feedback model can have
widely different effects. In particular, our results highlight the extent
to which cosmic variance in a (25 Mpch~')? volume can play a
role in the large-scale spreading of baryons, with some SIMBA
CV simulations showing a median gas spread twice that of other
simulations with identical parameters. Previous works in CAMELS
have partially mitigated the limitation of small simulated volumes
by finding good predictors of cosmic variance. Nicola et al. (2022)
reduced the effect of cosmic variance on neural networks trained to
constrain cosmological and astrophysical parameters from electron
density power spectra by incorporating a parameter encoding the
distribution of halo masses for each input simulation. Thiele et al.
(2022) quantified the constraining power of spectral distortion
measurements for baryonic feedback models and reduced sample
variance in CAMELS by deriving a correction factor based on scaling
the measured halo mass functions in CAMELS to that of reference
large volume simulations. Delgado et al. (2023) trained a random
forest regressor to predict the impact of baryonic effects on the
matter power spectrum given halo baryon fractions and increased
its predictive power significantly by including a form of the halo
mass function as input feature, partially mitigating cosmic variance
effects. Interestingly, the normalized gas spread metric is an excellent
predictor of the effects of cosmic variance on the inferred impact of
feedback on the matter power spectrum, where the amount of power
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suppression in SIMBA CV simulations with identical feedback
parameters is tightly correlated with baryon spreading up to scales
k < 2hMpc™! (Fig. 9).

The way feedback processes are implemented, and thus the impact
they have on the distribution of matter, can vary greatly between
hydrodynamic simulation models. Chisari et al. (2019) compared
the impact of baryons on the matter power spectrum at z = 0 in the
fiducial models of a handful of cosmological hydrodynamic simula-
tions, including Horizon-AGN (Dubois et al. 2014), MassiveBlack-II
(Khandai et al. 2015), OWLS (Schaye et al. 2010), cosmo-OWLS
(Le Brun et al. 2014), EAGLE (Schaye et al. 2015), BAHAMAS
(McCarthy et al. 2017, 2018), Illustris (Genel et al. 2014; Vogels-
berger et al. 2014a,b), and IllustrisTNG (Springel et al. 2018). They
found that the suppression of power relative to N-body simulations
can range from 10-30 percent in the different models at wave
numbers from a few up to 20 s Mpc™'. More recently, van Daalen
et al. (2020) found similar results when quantifying the impact of
baryonic physics on matter clustering for nearly 100 simulations
from the OWLS, cosmo-OWLS, and BAHAMAS models that varied
cosmological and feedback parameters. Our results further empha-
size that the distribution of matter in cosmological hydrodynamic
simulations strongly depends on both the simulation model and the
strength of feedback. Fig. 12 highlights this fact, with the spreading
of baryons varying widely throughout thousands of CAMELS
simulations with different parameters, initial conditions, and galaxy
formation models. This large library of simulations enables the
development of machine learning algorithms that can quantify
baryonic uncertainties and marginalize over them for cosmological
parameter inference (Villaescusa-Navarro et al. 2021c; Perez et al.
2022; Ni et al. 2023), as well as devise observational probes that can
help constrain baryonic physics. For example, Nicola et al. (2022)
used CAMELS to investigate the electron density power spectrum
(measurable through kinematic Sunyaev-Zel’dovich observations or
Fast Radio Burst dispersion measures) as a means to break the
baryon-cosmology degeneracy (see also Jo et al. 2023) and improve
theoretical models of the impact of baryonic feedback on the matter
power spectrum, and Pandey et al. (2023) used Dark Energy Survey
weak lensing and Atacama Cosmology Telescope thermal Sunyaez—
Zel’dovich effect measurements together with models trained on
CAMELS to constrain the impact of feedback on matter clustering.
Constraints such as these will be extremely valuable for extracting
the maximum information out of upcoming cosmological surveys to
further constrain the fundamental parameters of the Universe.

Previous authors have also noted a connection between lower halo
baryon fraction f, and increased baryonic impact on the matter power
spectrum (van Daalen et al. 2020; Nicola et al. 2022; Delgado et al.
2023; Pandey et al. 2023). Our results connecting baryonic spread
and suppression of power across a large library of models are in
agreement with these findings. Simulations forming halo populations
with lower f;, require more baryons to be ejected out of haloes, which
results in greater baryonic spread. The baryon fraction of massive
haloes (Myyo ~ 10 Mg) is particularly well correlated with the
suppression of the matter power spectrum, and van Daalen et al.
(2020) formulated an empirical model to predict power suppression
as a function of f;, which is accurate up to k < 14 Mpc~! across a
number of galaxy formation models. However, Delgado et al. (2023)
showed that this model cannot capture the fi,—power suppression
relation in SIMBA, expanding this work to thousands of CAMELS
simulations across the full halo mass range (10'° Mg < Mpgo <
10" M) to train a random forest regressor capable of predicting
the baryonic impact on the matter power spectrum well into the
non-linear regime. We have shown that a simple analytic function
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found by symbolic regression can roughly capture the suppression
of the matter power spectrum as a function of baryon spread
also into the non-linear regime for SIMBA simulations varying 23
astrophysical parameters despite training on simulations varying only
four feedback parameters (Fig. 11). However, the same model cannot
accurately capture this relationship for IllustrisTNG and ASTRID,
particularly in simulations with lower baryon spread compared to
that represented in the SIMBA simulations (Fig. 14). Furthermore,
ASTRID simulations with comparable baryon spread to those in
SIMBA show less suppression at larger scales (k > 1hMpc™!),
while at smaller scales (k ~ 10/ Mpc™') small deviations in the
normalized spread show large variations in power suppression.
Such discrepancies indicate that while in general simulations that
spread baryons further show a greater suppression of power, the
exact relationship between baryon spread and power suppression
does indeed depend on the galaxy formation model. These results
highlight that differences in the predicted cosmic baryon cycle in
simulations provide unique discriminating power between galaxy
formation models (Oppenheimer et al. 2021; Crain & van de Voort
2023; Wright et al. 2024).

This also emphasizes the need to construct robust models relative
to changes in the galaxy formation implementation, which is a
common difficulty of many current models (for further discussion
and examples of robust models, see Villaescusa-Navarro et al. 2021a,
b, 2022a; de Santi et al. 2023; Echeverri et al. 2023; Shao et al. 2023a,
b).

5 CONCLUSIONS

We have explored in detail the use of a recently proposed cosmologi-
cal spread metric to describe the redistribution of dark and baryonic
matter on large scales owing to gravitational dynamics and feedback
from astrophysical sources, providing a framework to quantify and
interpret the impact of baryonic effects on the total matter power
spectrum with a single summary statistic. Our main results can be
summarized as follows:

(i) Dark matter in N-body simulations spreads relative to the
initial neighbouring matter distribution owing to chaotic gravitational
dynamics, with the largest spread distances occurring in and around
massive halos. As expected, dark matter spreading increases with 2,
and o following the formation of higher mass haloes in simulations.

(i1) On average, gas spreads much further than dark matter due to
astrophysical feedback effects. Radiative cooling can allow gas to
lose energy and fall to lower bound orbits at the centres of haloes,
but gas impacted by feedback can be ejected to large distances. This
dichotomy of gas cooling and feedback yields a large variation in
spread distances for gas inside of halo Lagrangian regions at the
initial conditions.

(iii) Increasing the efficiency of AGN feedback increases the
spread of gas, but increasing the stellar feedback efficiency can
decrease the spread of gas. This supports the notion that AGN
feedback is the dominant component spreading baryons to large
distances while stronger stellar feedback may inhibit black hole
growth and therefore reduce the impact of AGN feedback.

(iv) The baryonic spread metric is a good predictor of the global
impact of feedback on the large scale distribution of matter as
described by the ratio of the matter power spectrum in hydrodynamic
and N-body simulations, with larger baryonic spread driving stronger
suppression of power on large scales.

(v) Using symbolic regression, we have found a simple analytic
function that captures the matter power suppression as a function
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of wave number and baryonic spread in simulations varying >20
astrophysical parameters in the SIMBA model, while extrapolating
to IlustrisTNG and ASTRID remains a challenge.

The extent to which matter is redistributed by feedback processes
is significant and can contribute to uncertainties in approximation
methods that do not model baryonic physics explicitly, while
predictions from cosmological hydrodynamic simulations can vary
widely depending on the choice of feedback parameters and model
implementation. Besides providing a clear physical interpretation for
the impact of baryonic physics on the matter power spectrum, the
simplicity of the spread metric makes it a useful summary statistic
to characterize the global efficiency of feedback in galaxy formation
simulations.
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APPENDIX A: DARK MATTER SPREAD IN
SELECTED HALO MASS RANGES

The spreading of dark matter particles within haloes shows a strong
dependence on halo mass, but seemingly little direct dependence
on cosmological parameters (Fig. 3). In Fig. A1, we show the full
spread distributions of dark matter particles in haloes of the same
mass ranges used in Fig. 3 for the fiducial N-body 1P simulation. As
expected, dark matter particles in more massive haloes spread farther
from their initial neighbours. The most extreme cases of spread can
occur in any mass range, corresponding to particles whose initial
neighbour ended up very far from the halo.
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Figure Al. Distribution of spread distances for dark matter particles in
haloes of selected mass ranges in the fiducial N-body simulation at z = 0.
Larger haloes generally spread dark matter farther, but cases of extremely
large spreads appear to be independent of halo mass.

APPENDIX B: GAS SPREAD IN AND OUT OF
HALOES

We show in Fig. B1 the spreading of gas particles in haloes as a
comparison to Fig. 2. We similarly select gas particles in the ten
most massive haloes (while again excluding the most massive halo
due to its outlying mass) and in the upper panel we plot the median
spread of these particles against the average radius of the selected
haloes. Gas that remains in haloes shows a very similar trend to dark
matter, but spreads roughly twice the distance. In the bottom panel,
we divide the spread of each gas particle by the spread of their initial
dark matter neighbour to normalize out the gravitational spreading
effect and see that the correlation with halo radius largely disappears.

We next show the spreading of matter outside of haloes in SIMBA.
Baryonic approximation methods generally alter the distribution of
matter on the scales of haloes, but some do account for matter ejected
outside of haloes. However, halo-based models cannot account for
the spreading of material that never accreted onto haloes. Fig. B2
shows the spreading of particles outside of Lagrangian regions (i.e.
gas whose dark matter neighbour remained outside of a halo at z =
0). We show here that the spreading of gas outside of Lagrangian
regions (solid lines) remains significant, and is only slightly smaller
than all gas in the box (dotted lines). Thus, the effects of feedback on
baryons outside of haloes represent a significant source of uncertainty
for models that ignore this component.
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Figure B1. Median spread of gas particles in the 10 most massive haloes
(excluding the most massive halo, top panel) and the median of the spread
of these particles divided by the spread of their initial dark matter neighbour
(bottom panel) as a function of the average virial radius among these haloes
at z = 0 in each of the SIMBA 1P set simulations varying . The colour bar
indicates the value of Q, for each simulation. As Qy, increases, haloes get
larger and spreading increases. However, normalizing to the spread of dark
matter neighbours largely suppresses the trend.
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Figure B2. Cumulative mass distribution as a function of spread distance
at z = 0 for dark matter (dashed) and gas (green) particles outside of any
Lagrangian region in the fiducial SIMBA 1P simulation, the highest (brown)
and lowest (black) Aagn2 (jet speed) simulations, and the full SIMBA CV
set (the grey shaded area spans the full CV set distribution). For comparison,
the dotted lines represent all particles in the box (the same lines as in Fig.
5). In all cases, particles outside of Lagrangian regions spread comparable
to the particles in the box, which represents a significant effect that baryonic
approximation methods do not account for.
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