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ABSTRACT

Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys
requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact
of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with
MachinE Learning Simulations project, containing thousands of (257! Mpc)® volume realizations with varying cosmology,
initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods.
We show that baryonic physics affects matter clustering on scales k > 0.4 2 Mpc ™! and the magnitude of this effect is dependent
on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing
AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations,
while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN
feedback. We find a broad correlation between mean baryon fraction of massive haloes (Mago. > 10'3> M) and suppression of
matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and
cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across
the full mass range 10" < Mj,0/Mg<10'3 can predict the effect of galaxy formation on the matter power spectrum on scales
k= 1.0-20.0h Mpc~".

Key words: methods: numerical — galaxies: haloes —large-scale structure of Universe —cosmology: theory.

upcoming surveys is to model the matter power spectrum and

1 INTRODUCTION o - .
other summary statistics to ~1 percent precision down to scales

The field of cosmology has many exciting endeavors to look forward
to within the next decade. With the arrival of enormous photometric
and spectroscopic galaxy redshift survey missions such as DESI
(DESI Collaboration 2016), the Nancy Roman Space Telescope
(Spergel et al. 2015), Euclid (Laureijs et al. 2011) and the Vera Rubin
Observatory (LSST Science Collaboration 2009), the community
will have the opportunity to tackle many ambitious goals, such
as mapping the distribution of matter and the large-scale structure
of the Universe, measuring cosmological parameters to per cent-
level precision, and constraining the sum of neutrino masses. An
important step in fully realizing the statistical power of these

* E-mail: ana_maria.delgado @cfa.harvard.edu

as small as k = 102 Mpc~' (Huterer & Takada 2005; Laureijs
2009; Hearin, Zentner & Ma 2012). However, previous studies
have shown that complex galaxy formation processes involving
feedback from massive stars and active galactic nuclei (AGNs)
can suppress power relative to dark matter-only simulations out
to large scales (van Daalen et al. 2011; Chisari et al. 2018; van
Daalen, McCarthy & Schaye 2020; Gebhardt et al. 2023). Galactic
winds driven by supernovae and AGN-driven outflows can eject
a large amount of material from the centre of galaxies out to
large distances (Anglés-Alcazar et al. 2017b; Borrow, Anglés-
Alcazar & Davé 2020; Hafen et al. 2020; Wright et al. 2020;
Mitchell & Schaye 2022; Sorini et al. 2022; Ayromlou, Nelson &
Pillepich 2023) and the resulting suppression of power by feedback
creates significant biases when attempting to constrain cosmological
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parameters (Semboloni et al. 2011; Zentner et al. 2013; Chisari et al.
2019).

Several approaches to addressing the suppression of matter clus-
tering caused by baryonic physics have been devised. Cosmolog-
ical hydrodynamic simulations provide the most direct method to
understand the impact of baryonic effects on the distribution and
clustering of matter (Vogelsberger et al. 2014b; Tenneti et al. 2015;
Hellwing et al. 2016; Springel et al. 2018; Chisari et al. 2019).
Modern cosmological large-volume simulations such as Horizon-
AGN (Dubois et al. 2014), Eagle (Schaye et al. 2015), IllustrisTNG
(Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018;
Springel et al. 2018; Pillepich et al. 2018b), and SIMBA (Davé
et al. 2019) produce galaxies that broadly match observations in
properties such as the stellar mass function and the bimodality in
galaxy colours. Comparing the power spectrum of hydrodynamic
simulations with those of their phase-matched, collisonless N-body,
dark matter-only simulations allows us to measure how baryonic
feedback suppresses the clustering of matter. However, many key
feedback processes remain poorly understood and most current mod-
els require extensive tuning of free parameters to match observations,
limiting their predictive power (Somerville & Davé 2015). Higher
resolution cosmological ‘zoom-in’ simulations can reduce subgrid
model uncertainties (e.g. Agertz & Kravtsov 2016; Hopkins et al.
2018; Anglés-Alcazar et al. 2021), but at the expense of modelling
volumes that are too small for many cosmological applications.

More flexible approaches to address the impact of baryonic physics
using analytic models include modifying the ‘halo model” (Seljak
2000; Semboloni, Hoekstra & Schaye 2013; Fedeli 2014; Mead
et al. 2015) using observational constraints and simulation results
as the basis for parameterizing the transfer of power produced by
the presence of baryons (Mohammed & Seljak 2014; Schneider &
Teyssier 2015), and mitigating the presence of baryons altogether by
marginalizing over the parameters of effective models (Semboloni
et al. 2011) or over the principle components in linear combinations
of observables that are most strongly affected by baryonic effects
(Eifler et al. 2015; Kitching et al. 2016). However, the success
of these techniques relies heavily on the flexibility of the models
to capture the true underlying distribution of matter (McCarthy
et al. 2017) and they are limited by assumptions about halo bias
relative to the linear density field, smooth halo profiles neglecting
substructure, and uncertainties in the spatial and redshift dependence
of baryonic effects (Chisari et al. 2019). Alternatively, power spectra
produced by a large number of cosmological simulations with
varying cosmologies and feedback parameters can be used to inform
semi-analytic models attempting to mitigate the effects of baryons,
characterize the theoretical uncertainties in galaxy formation, and
marginalize over feedback effects.

van Daalen et al. (2011) employed a suite of 50 cosmological
hydrodynamic simulations from the OWLS project (Schaye et al.
2010) to study the effects of different baryonic processes on the
matter power spectrum over a range of scales. More recently, van
Daalen et al. (2020, henceforth vDMS) included additional simula-
tions from the cosmo-OWLS (Le Brun et al. 2014) and BAHAMAS
(McCarthy et al. 2017) projects to produce a library of 92 matter
power spectra from simulations with varying subgrid models and
feedback strengths. Relating the effects of galaxy formation physics
to the suppression of power, vVDMS proposed that it is possible to
predict the fractional impact of baryons on the clustering of matter,
Phyaro/Ppm, given only the mean baryon fraction of massive haloes
(Mpaio ~ 10" My,), where Phyaro and Ppy are the matter power spectra
from hydrodynamic simulations and their corresponding N-body
simulations, respectively. Importantly, the empirical vDMS relation
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between baryon fraction and power suppression is satisfied by a vari-
ety of simulations with different galaxy formation implementations,
including the Horizon-AGN, EAGLE, and IllustrisTNG simulations,
which opens the possibility to accurately correct dark matter only
power spectra based on observational constraints on gas fractions in
massive haloes. However, this relation is valid only on large scales,
k<1h Mpc_l, and the still limited number of different feedback
implementations and cosmologies represented in the vDMS library
of matter power spectra may not be representative of a broader range
of plausible galaxy formation models.

In this work, we use 2000 + cosmological hydrodynamic simu-
lations and their corresponding collisionless (N-body) simulations
from the Cosmology and Astrophysics with MachinE Learning
Simulations (CAMELS") project (Villaescusa-Navarro et al. 2021c)
to examine the impact of baryonic physics on matter clustering using
the largest library of power spectra available including variations of
cosmological and feedback parameters. In recent related work using
CAMELS, Nicola et al. (2022) trained a neural network on thousands
of electron density autopower spectra from large scales down to
k = 10h Mpc™!, breaking the baryon—cosmology degeneracy and
providing tight constraints on the total matter density 2, and the
mean baryon fraction in intermediate-mass haloes while marginaliz-
ing over uncertainties in galaxy formation physics implementations.
Here, we significantly expand upon the work of vDMS and inves-
tigate how supernova and AGN feedback affect the mean baryon
fraction across a range of halo masses (10'° < Mp,0/Mo<10'%) and
the resulting impact on the matter power spectrum. Furthermore, we
take advantage of the design of CAMELS for machine learning
and train a random forest (RF) regressor to predict the relative
difference between the matter clustering in hydrodynamical and N-
body simulations on scales k = 1.0-20 A Mpc~! given the mean
baryon fraction of haloes across a broad range of halo masses. We
thus demonstrate that we are able to extract valuable information
from lower mass haloes and predict the suppression of power all
the way to the highly non-linear regime. The work presented here is
complementary to Pandey et al. (2023), which show that information
about the impact of baryonic effects on the matter power spectrum
can be extracted using the tSZ signals from low-mass haloes, and
include related results utilizing the suite of CAMELS produced with
the Astrid simulation.

The layout of this paper is as follows: In Section 2, we describe
the simulations and halo selection, define our variables, and describe
our machine-learning methods. In Sections 3 and 4, we present our
results. Finally, in Section 5, we provide a summary and discussion
of our work.

2 METHODS

2.1 Simulations: CAMELS

The CAMELS project (Villaescusa-Navarro et al. 2021c) contains
thousands of state-of-the-art (magneto-)hydrodynamic simulations
and their corresponding N-body simulations. In this work, we
focus on the simulation suites produced with the IllustrisTNG
(Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018;
Springel et al. 2018; Pillepich et al. 2018b) and SIMBA (Davé
et al. 2019) galaxy formation models that are part of the CAMELS
public data release’ (Villaescusa-Navarro et al. 2023a), providing

Uhttps://www.camel-simulations.org
Zhttps://camels.readthedocs.io
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a total of >4000 realizations with parameter variations, with
>1000 hydrodynamical and >1000 N-body simulations for each
of the two independent feedback model implementations. Each
simulation is a periodic box of length Ly, =25k 'Mpc con-
taining 256> resolution elements with mass resolution of 6.49 x
107 (Qn — 20)/0.251 h~'M, for dark matter and 1.27 x 107 h~'Mg
for baryons. This is the same resolution as the original SIMBA
simulation and similar to that of the original TNG300-1 simulation of
[ustrisTNG.

The initial conditions of CAMELS simulations were generated at
z =127 using second-order Lagrangian perturbation theory assuming
that the initial power spectra of dark matter and gas are the same
and equal to that of total matter. Each of the CAMELS simulations
contains 34 snapshots from redshifts z = 6 down to z = 0; in this
work, we focus on z = (. In addition to the initial random phases,
each simulation is specified by two cosmological parameters and
four astrophysical (feedback) parameters which are varied across the
individual realizations. In the case of cosmological parameters, we
vary:

(1) Qu: the fraction of the universe made up of ordinary and dark
matter varies in the range 2, € [0.1, 0.5] while keeping €2, = 0.049
constant.

(ii) og : the variance of the spatial fluctuations of total matter on
8 Mpc h~! scales is varied in the range o5 € [0.6, 1.0].

In the case of astrophysical parameters, the fiducial values are
defined by the stellar and AGN feedback models of the corresponding
original IllustrisTNG and SIMBA simulations. The fiducial astro-
physical parameters are assigned a value A = 1.0 and then varied
across realizations by multiplying by an amplitude factor A in order
to increase/decrease the amount of feedback. However, we emphasize
that the stellar and AGN feedback prescriptions differ substantially
between IllustrisTNG and SIMBA and the corresponding parameter
variations in CAMELS have a different definition in each model,
which we briefly describe below.

2.1.1 IllustrisTNG

The IustrisTNG model (also referred to as “TNG’; Marinacci et al.
2018; Naiman et al. 2018; Nelson et al. 2018; Springel et al. 2018;
Pillepich et al. 2018b) is implemented in the AREPO hydrodynamics
code (Springel 2010; Weinberger, Springel & Pakmor 2020), which
utilizes a hybrid tree/particle-mesh scheme to solve for gravitational
interactions and an unstructured, moving mesh to solve the equa-
tions of hydrodynamics. Compared to the galaxy formation model
of its predecessor [llustris (Genel et al. 2014; Vogelsberger et al.
2014a, b), the galaxy formation model in IlustrisTNG has updated
implementations of AGN feedback (Weinberger et al. 2017) and
galactic winds (Pillepich et al. 2018a), and incorporates magnetic
fields (Pakmor, Marinacci & Springel 2014).

The stellar feedback parameter variations in the CAMELS-TNG
simulations introduce Agn; to control the total energy injection
rate in galactic winds per unit star formation (Asn; € [0.25, 4.0])
and Agnp to vary the galactic wind speed (Asn2 € [0.5, 2.0]). The
AGN feedback parameter variations pertain to the low-accretion,
kinetic-mode black hole feedback, where Asgni varies the feed-
back energy per unit black hole accretion rate (Aagni € [0.25,
4.0]) and Aagnz varies the burstiness and effective ejection speed
(AAGNZ € [05, 20])
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2.1.2 SIMBA

The SIMBA galaxy formation model (Davé et al. 2019) is im-
plemented in the GIZMO meshless finite mass hydrodynamics
code (Hopkins 2015, 2017). Relative to its predecessor MUFASA
(Davé, Thompson & Hopkins 2016), SIMBA includes a black
hole model based on gravitational torque accretion and two-mode
kinetic feedback (Anglés-Alcazar et al. 2017a), galactic winds with
mass-loading and velocity scalings derived from the FIRE zoom-in
simulations (Muratov et al. 2015; Anglés-Alcédzar et al. 2017b), and
a model for the creation and destruction of dust (Li, Narayanan &
Davé 2019).

The stellar feedback parameter variations in the CAMELS-
SIMBA simulations introduce Agy; to control the mass-loading factor
of galactic winds and Agny to control the wind speed. The AGN
feedback parameter variations introduce Aagn; to change the total
momentum flux of either quasar-mode winds or radio-mode jets,
while Aagnz controls the maximum velocity of gas ejected by jets.
These parameters are varied over the same range as in IllustrisTNG,
WithASNl :ASNZ :AAGNI :AAGN2 =1 COI’I‘GSPOl'ldiIlg to the fiducial
model. As described in Villaescusa-Navarro et al. (2021c¢), the range
of feedback parameters explored in CAMELS was chosen to roughly
produce factor-of-two variations of injected feedback energy relative
to the fiducial models, as a compromise between investigating a
wide range of feedback effects while still considering physically
plausible models. We also stress that despite using the same range
of parameter variations in IllustrisTNG and SIMBA, the resulting
effects are model dependent (as shown below and previous works)
and reflect their specific implementation.

2.1.3 Simulation sets in CAMELS

We take advantage of the following simulation sets for each of the
[ustrisTNG and SIMBA suites in CAMELS:

(1) Latin hypercube (‘LH’) set: 1000 realizations, each containing
different initial conditions and different values of the six afore-
mentioned parameters. The LH set is the main training set in this
work.

(ii) 1 parameter (‘1P’) set: 66 realizations using the same initial
conditions and further divided into six subsets of 11 realizations
where only the value of one parameter is varied while the other five
parameters are held constant. In this work, we make use of the 1P
sets to study how a single cosmological or feedback parameter can
affect halo baryon fractions and the suppression of the matter power
spectrum.

(iii) Cosmic variance (‘CV’) set: 27 realizations with different
initial conditions while the fiducial values of all six parameters are
held constant. The CV set is used to evaluate the impact of CV on
any of the quantities that we measure from the simulations.

We refer the reader to Villaescusa-Navarro et al. (202 1c¢) for further
details about CAMELS, the parameter variations, and the simulation
sets available.

2.2 Halo selection

We identify haloes in CAMELS using the AMIGA Halo Finder
(AHF; Knollmann & Knebe 2011). AHF uses an adaptive mesh to
locate halo centres, calculate the gravitational potential of the halo
and iteratively remove unbound particles (particles whose velocities
are greater than the escape velocity at a given radius) from within
the boundary of the halo. We refer the reader to Knollmann & Knebe
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(2011) for a full description and implementation of AHF. We select
haloes with masses My, > 10'° Mg, using a virial radius definition
of 200c (i.e. 200 times the critical density of the Universe).

2.3 Matter power spectra and halo baryon fractions

We use a library of >4000 total matter power spectra from CAMELS
(Villaescusa-Navarro et al. 2023b). For each simulation, the matter
power spectrum is computed by assigning particle masses (dark
matter, gas, stars, and black holes) to a regular grid with 5123
voxels using a cloud-in-cell (CIC) assignment scheme. The grid
is then Fourier transformed and the power spectrum is computed
by averaging over k-bins with an equal width to the fundamental
frequency, kg = 27/L, where L = 25h~'Mpc. We then compute
the relative difference between the total matter power spectrum
of hydrodynamical and phase-matched N-body simulations, which
we refer to as the ‘suppression of matter power spectrum’ and
define as

AP Puyao — Pom

Ppm Ppym

; 1

where Ppy is the matter power spectrum of the N-body simulation
and Phyqro is that of its corresponding hydrodynamical simulation.
We compute the baryon fraction of a given halo as

Mo + M gas

f bar —
M, halo

; 2
where M, and Mg, are the total stellar mass and gas mass of the
halo and My, is the virial mass of the halo corresponding to Rapoc-
We further calculate the mean baryon fraction within a given halo
mass range in each simulation as

_ 1 < Q
== E ) — 3
fbar n - fb‘ I/an ( )

where fi,, is defined in equation (2), subscript i is the ith halo and
n the total number of haloes in a given mass range, and following
vDMS we normalize by 2,/2,,, in order to account for the differences
in cosmology for different simulations.

2.4 Machine learning

A supervised machine-learning algorithm trains a model by pro-
viding a subset of data, referred to as the training set, including
input variables (henceforth called ‘features’) and output variables
(henceforth called ‘target’). The goal is for the algorithm to
use the training set to learn the relation between the features
and the target. The trained model is then used to predict the
target for a different subset of features referred to as the test
set.

In this work, we use the RF regressor algorithm from the publicly
available package Scikit-Learn (Pedregosa et al. 2011). An RF
is an ensemble ML method that can be used for both classification and
regression problems. The algorithm works by constructing a ‘forest’
from a user specified number of decision trees and using the mean
of the predictions from those trees as output. This method has three
key advantages: (1) little hyperparameter tuning is required, (2) it is
computationally efficient, and (3) its ensemble characteristic lessens
over fitting. Furthermore, the RF algorithm provides us with some
interpretability by way of the ‘feature importance’ attribute, with
a ranking of features based on their frequency used as a predictor
variable by each tree.
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We use the following metrics for scoring the predictive perfor-
mance of the RF:

np 52

R =1 - SR @
i=1\J1

RMSE(y, §) = 21:1(’): - yi)’ )

where y; are the given target values, ¥; are the RF predicted target
values, and y is the mean of y;. The R? score provides the proportion
of the target variable that is predictable by the given features.
Because the R? outputs a score between 0.0 and 1.0, it provides
comparable information about performance when comparing various
experiments. The RMSE scores, on the other hand, are based on the
target value range. Therefore, in order to account for the range in
target values across multiple experiments, we normalize our RMSE
scores by the interquartile range (IQR):

IQR = 03 — 04, (6)

where Q3 is the third quartile (75th percentile) of a given set and
Q; is the first quartile (25th percentile) of the set. In other words,
we normalize the RMSE by the middle 50 per cent dispersion of the
target values as RMSE/IQR.

2.4.1 Features and targets

Using the thousands of realizations in the CAMELS LH simulation
sets, we train an RF regressor to predict the suppression of the matter
power spectrum AP/Ppy as a function of the mean baryon fraction
at a range of scales. We construct the following features for each
realization:

(i) fiar(Mnao > 13.5): the mean baryon fraction of high-mass
haloes, those with masses >10'>> My, in each simulation.

(i) fpu(Mi,,): an array containing mean baryon fraction in 10
bins of halo masses within the range [10'°-10'%) M.

(ii1) Nhalo : the number of haloes within a halo mass range.

(iv) N, : an array with the same shape as fy,,(Mi,,,) containing
the number of haloes per mass bin.

Our target is the AP/Ppy values for each realization at four
different k-values: k = [1, 5, 10, 20] & Mpc_l.

2.4.2 Robustness of RF predictions

One inherent benefit of CAMELS is that we are able to test the effects
of feedback model implementation by way of its TNG and SIMBA
simulations sets. We create an 80/20 per cent train/test split of the
LH simulations and perform the following experiments using either
TNG or SIMBA:

(i) Train on fy,(Mpie > 13.5)to predict AP/Ppyat k =
[1,5,10,20]h Mpcfl. We perform this experiment as an extension
of vDMS, where in this work we explore a larger halo mass range
and probe the non-linear regime.

(i) Train on fp,(Mj,,)atk = [1,5, 10,2012 Mpc~".

(iii) Repeat the above two experiments with additional features
related to CV: Npgo 0F N, -

We are further able to test the robustness of our algorithm
and determine how well our the RF can marginalize over subgrid
physics model by performing ‘two-model’ experiments. In these
experiments, we train on the entire LH set of one of the feedback
implementation and test on the entire LH set of the other, i.e. training

MNRAS 526, 5306-5325 (2023)
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on SIMBA and testing on TNG and vice versa. In these experiments,
we use the same hyperparameters that produced the best results from
the previous ‘single-model” experiments.

3 IMPACT OF COSMOLOGICAL AND
FEEDBACK PARAMETER VARIATIONS

In this section, we examine the impact of cosmological and baryonic
feedback parameter variations on the matter power spectrum and
the baryon fraction of haloes of different masses, exploring also
the connection between the suppression of the total matter power
spectrum and the mean baryon fraction of massive haloes. We
perform this analysis for both the TNG and SIMBA galaxy formation
models.

3.1 Matter power spectra

We use the total matter power spectra from the 1P simulations
to examine how cosmological and feedback parameters affect the
clustering of matter at various scales. For each run in the 1P set,
described in Section 2.1, we measure the fractional impact of baryons
on the total matter power spectrum, Ppyaro/Ppy . If baryonic physics
has no effect on matter clustering, Phydro/Ppm should be of order
unity. However, if baryonic physics suppresses the clustering of
matter compared to dark matter only simulations, usually by way
of feedback ejecting gas out to large distances, Phyaro/Ppym should
fall below unity on a range of scales.

Fig. 1 shows Phyaro(k)/Ppm(k) as a function of wavenumber
k for the 1P simulations, where each spectrum is colour coded
by the value of each parameter variation. We notice two overall
trends that are roughly independent of cosmological or feedback
parameters. The first is the general ‘scoop’ shape of Phyaro/Ppm,
which is consistent with previous works (van Daalen et al. 2011;
Hellwing et al. 2016; Chisari et al. 2018; Peters et al. 2018; Springel
et al. 2018; vDMS). This shape conveys agreement between matter
clustering in hydrodynamical and dark matter-only simulations on
large scales (k < 0.1 Mpc~') while at intermediate scales there is
suppression of power by baryonic feedback (Ppygo/Ppm < 1) and
at small scales (k > 40 h Mpc™!) there is enhanced, as opposed to
suppressed, clustering relative to dark matter owing to gas dissipative
processes (Phydaro/Ppm > 1). The second overall trend is that the
SIMBA galaxy formation model (solid lines) tends to suppress power
on intermediate scales more strongly compared to the TNG galaxy
formation model (dashed lines) while driving a steeper increase in
small-scale clustering (k < 30 h Mpc™!).

We now analyse in more detail how each parameter affects
matter clustering by comparing Pyyqr, (K)/Ppm(k) between the fiducial
models of TNG and SIMBA (shown in red) and that of the individual
parameter variations:

(1) Cosmological parameters: The top two panels in Fig. 1 show
the sensitivity of the total matter power spectrum to 2, and og
for a fixed galaxy formation model. We see a strong dependence
of Phyaro/Ppm on the value of Q, both in TNG and SIMBA. As
Qp, decreases (at fixed €2y), there is a greater suppression of power
on intermediate scales. This can be understood as a consequence
of baryons contributing a higher fraction of the total matter content
making feedback more efficient at pushing gas out of haloes and
distributing matter on larger scales, in agreement with the analysis
of large-scale baryon spread in Gebhardt et al. (2023). In contrast,
we identify weaker trends for og, with significant scatter.

MNRAS 526, 5306-5325 (2023)

(ii) Supernova feedback parameters: The middle two panels in
Fig. 1 show the impact of changing the stellar feedback parameters
Agsni and Agnp, respectively, which control the mass loading and
velocity of galactic winds, on matter clustering. Both panels show
somewhat counterintuitive effects of stellar feedback. Increasing
Agny in SIMBA reduces (rather than enhances) the suppression
of power on small scales (k > 104 Mpc~') and increasing Agnz
further increases Phyao/Ppm Over the full range of scales. This
can be understood as a consequence of the non-linear interplay
between stellar and AGN feedback, where stronger stellar feedback
suppresses black hole growth and results in weaker effective impact
of AGN feedback on matter clustering (van Daalen et al. 2011;
Pandey et al. 2023). The TNG model shows rather different trends,
with reduced suppression of power on scales k < 10-20 2 Mpc~! but
enhanced suppression of power on smaller scales when increasing
Agny and Agnp. These results are consistent with the analysis of
electron power spectra in CAMELS by Nicola et al. (2022), which
highlights the sensitivity of predicted baryonic effects on galaxy
formation implementation.

(iii) AGN feedback parameters: The bottom two panels of Fig. 1
show the impact of varying AGN feedback efficiency on matter
clustering. In this case, there are clear systematic trends for stronger
suppression of power when increasing both Axgny and Aagne for
both galaxy formation models (TNG and SIMBA). The sensitivity
of Ppydaro/Ppm t0 Aagni is weaker given its range of variation, with
no more than 10 per cent difference relative to the fiducial model.
In contrast, the matter power spectrum in SIMBA displays a strong
sensitivity to the AGN jet speed, Aagnz, With strong suppression of
power across scales, reaching Ppyaro/Ppm ~ 0.6 at k ~ 10 h Mpc™!
with jets twice as fast relative to the fiducial model. This results
are also consistent with previous findings for electron power spectra
Nicola et al. (2022) and the impact of large-scale jets on cosmological
baryon spread (Gebhardt et al. 2023).

3.2 Halo baryon fraction

In Fig. 2, we use again the specialized CAMELS 1P simulation
sets to analyse the impact of individual cosmological and feedback
parameter variations on the average halo baryon fraction as a function
of halo mass, 7bar (Mhalo), Wwhere we consider logarithmically spaced
halo mass bins in the range 10'°~10'3 M. We notice two main trends
roughly independent of cosmological or feedback parameters when
comparing the fiducial realizations (indicated in red) for the TNG
(dashed lines) and SIMBA (solid lines) models. The first being that
peak of the halo baryon fraction occurs at ~10'> M. We notice a
drop in mean baryon fraction as haloes exceed this mass range, when
powerful feedback process can expel material out of the halo. We
note, however, that at very high-mass haloes, we expect feedback
to be less efficient at expelling material and for there to be another
rise in mean baryon fraction. The second main trend is that SIMBA
has overall lower f,, (Mpa,) compared to TNG, with the fiducial
models reaching their peak at f,. ~0.5 for SIMBA and f,. ~0.7 for
TNG.

We now analyse in more detail how each CAMELS parameter
variation affects halo baryon fractions, keeping in mind that the
definitions of feedback parameters are not the same for TNG and
SIMBA:

(1) Cosmological parameters: The top two panels of Fig. 2 show
the sensitivity of ?bar (Mha10) to our cosmological parameters 2, and
o's. Halo baryon fractions appear to be more sensitive to cosmology in
SIMBA compared to TNG. However, both galaxy formation models
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Figure 1. The effect of baryonic physics on matter clustering for different cosmological and feedback parameter variations. Each panel shows the ratio of total
matter power spectrum in hydrodynamic simulations to that of the corresponding dark matter-only simulations (Phydro/Ppm) as a function of wave number k
when varying a single parameter in the CAMELS 1P sets. Lines of different colours indicate the value of each parameter variation, and red lines indicate the
fiducial model for TNG (dashed lines) and SIMBA (solid lines). Variations in feedback model, as well as in feedback amplitude, result in variation in total

matter clustering.

predict qualitatively similar trends, with lower f, (Myu,) When
increasing 2, and og across a range of halo masses. This trend
may seem trivial for €2, since we hold the value of €2}, constant in
all CAMELS simulations, implying that the average cosmic baryon

fraction decreases with higher 2, and so should the corresponding
halo baryon fractions. However, fy,. (Mpa1o) is normalized by y/Q,
for each simulation (equation 3), removing the trivial effect of varying
Qn at fixed . The impact of increasing 2, on fy,, (M) is thus a
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Figure 2. The effect of each parameter variation on the mean halo baryon fraction as a function of halo mass, fy,; (Mhalo). As in Fig. 1, the colour bar for each
panel indicates the value of the corresponding parameter variation while all other parameters are held constant. The red lines indicate the fiducial parameters for
TNG (dashed lines) and SIMBA (solid lines), with their peak baryon fraction occurring at S 10'?> Mg in both fiducial models. The fy,, values and their halo
mass dependence differ substantially between galaxy formation implementations and model parameter variations.

reflection of the effective efficiency of feedback when changing the
amount of baryons relative to the dark matter gravitational potential,
and this effect seems more prominent in lower mass haloes for
both TNG and SIMBA. Interestingly, the baryon fraction decreases
systematically at all halo masses when increasing og, while the

MNRAS 526, 5306-5325 (2023)

suppression of power does not seem to follow a clear trend with
og.

(i1) Supernova feedback parameters: The middle two panels in
Fig. 2 show the impact of changing Agn; and Agn, on halo baryon
fractions. As for the power spectra, varying the mass loading of
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galactic winds (Agn;) has a different effect in each galaxy formation
model. We might intuitively expect that as Agn; increases, more
gas would be ejected out of galaxies resulting in lower f,,, (Mhao).
However, we only see this behavior in TNG for haloes with mass
Myao S 10'2 Mg, while the baryon fraction of higher mass haloes
increases with Agn; owing to the suppression of AGN feedback.
This reversed trend with Agn; can explain its impact on Pygro/Ppm
for TNG, with an enhancement of power on intermediate scales coin-
ciding with the highest gas fraction in high-mass haloes with Agn; =
4. Meanwhile, SIMBA shows systematically higher baryon fractions
when increasing Agn; across the full halo mass range, indicating a
different non-linear coupling of stellar and AGN feedback compared
to TNG, which can explain the suppression of power seen in Fig. 1.
On the other hand, increasing the speed of galactic winds (Agnz)
results in systematically lower ?bar (Mya10) values for both SIMBA
and TNG, but in this case lower baryon fractions correlate with less
suppression of matter clustering in SIMBA on all scales.

(iii) AGN feedback parameters: The bottom two panels of Fig. 2
show the sensitivity of ?ba, (Mha1o) to changes in AGN feedback
efficiency. Halo baryon fractions are significantly reduced by in-
creasing the kinetic mode black hole feedback efficiency Aagn; in
TNG in the intermediate halo mass range My, = 10''-10'° Mg,
while the burstiness parameter Agn, has a stronger effect reducing
?bar (Mhalo) in higher mass haloes. In both cases, the decrease in halo
baryon fraction with higher AGN feedback efficiency correlates with
stronger suppression of matter clustering. Similarly, increasing the
AGN jet speed in SIMBA (A acn2) drives an overall reduction of halo
baryon fractions and increased suppression of matter clustering on
all scales shown in Fig. 1, corresponding to more efficient spread
of baryons on large scales relative to the TNG model (Gebhardt
et al. 2023; Tillman et al. 2023). However, the effect of increasing
the momentum flux Aagni in SIMBA seems more complex, driving
an increase in baryon fraction in high-mass haloes (possibly due
to black hole self-regulation) but stronger suppression in the matter
power spectrum, particularly at low k-values.

3.3 Suppression of matter power spectrum as a function of
baryon fraction

Using a suite of matter power spectra from hydrodynamical and
dark matter only simulations, vDMS found a tight relation between
the suppression of the matter power spectrum (AP/Ppy; ; defined in
Section 2.3) in the linear regime and the average baryon fraction
(foa) of high-mass haloes (~10'* Mg). In this study, a direct
comparison to vDMS is not possible due to the small size of the
individual CAMELS realizations and relatively small number of
high-mass haloes. We therefore extend what was done in vDMS and
use the LH simulation sets of CAMELS, described in Section 2.1, to
investigate how AP/Ppy is affected by cosmological and baryonic
feedback parameters over a broader range of model variations.

Figs 3 and 4 show AP/Ppy = (Phyaro — Pom)/Ppm evaluated at
k = 1.0 Mpc~! as a function of f,,, for the TNG and SIMBA 1P
and LH sets, respectively. We note that due to the small simulated
volumes in CAMELS there are not enough haloes of mass ~10'*
Mg to replicate the results in vDMS and we therefore evaluate
far for haloes with mass >10'** M. Each panel reproduces the
same data points depicting the LH sets (small dots), overlaid by
the 1P set (large circles) corresponding to the labelled parameter in
that panel. The data are colour coded by the parameter value. We
remind the reader that each of the six parameters are simultaneously
varied in the LH sets, while only one parameter is varied in the 1P
sets. We thus examine how individual cosmological and feedback
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parameters affect the relation between AP/Ppy; and 713;,1-, which we
compare to the fitting function derived by vDMS (their equation 5)
for baryon fractions calculated using the 200c virial definition, which
we henceforth refer to as the ‘vDMS model’” and indicate by the blue
solid line and grey-shaded region. Lastly, we overlay the results for
the CV sets of TNG and SIMBA (described in Section 2.1) as the
red squares in the top centre panel of each figure in order to examine
the effect of CV on this relation. We emphasize that this represents
a lower limit of CV as the 27 CV realizations probe only a small
volume. We have indicated where the fiducial realization (cyan star)
lies within the spread. It is interesting to note that there is significant
spread due to CV in both AP/Ppy and f,, in SIMBA compared to
the fiducial run.

Our CAMELS results in Figs 3 and 4 reveal a good qualitative
agreement with the general trend found in vDMS: the suppression of
the matter power spectrum increases as the average baryon fraction
in massive haloes decreases. We note that we have kept the y-axis
limits the same in both figures for a more clear comparison of TNG
and SIMBA, however, there are several SIMBA data points in Fig. 3
that fall below the visible y-axis. While the SIMBA LH set probes a
range of AP/Ppy and f,,, values significantly larger than the TNG
LH set, as expected from Figs 1 and 2, both models roughly follow
the vDMS trend, suggesting that f,. in massive haloes can be used
to infer the redistribution of baryons over large scales regardless of
galaxy formation model implementation. The location of the TNG
fiducial run is in strong agreement with the vDMS model. The fiducial
run for SIMBA, however, appears to fall outside of the vDMS fit line,
and is further discussed in Section 5 of this paper. However, we find
considerable spread in AP/Ppyat fixed f,, compared to vDMS,
which can be attributed to the broader range of parameter variations
explored in CAMELS:

(i) Cosmological parameters: The left two panels in Figs 3 and 4

explore the dependence of the AP/Ppy —f,, relation on Q,, and 0.
We remind the reader that f,,, is normalized by Q/ Q. For both
TNG and SIMBA, the LH sets show a trend of higher AP/Ppy (i.e.
less suppression of power) at fixed f,, for higher values of Q in
high-mass haloes. This implies that the same impact on the total
matter power spectrum (at k = 1.02Mpc™") can be predicted by
simulations that yield different halo baryon fractions, in this case as
a consequence of the different response of feedback to changes in
Qp, at fixed €2;,. We further note that the LH data points which stray
furthest from the vDMS model correspond to the lower end values
of the ©,, variation. The SIMBA 1P set more clearly shows the trend
of decreased suppression of the matter power spectrum as a function
of mean baryon fraction with increased value of 2, in high-mass
haloes.
There is also a visible, albeit less pronounced, trend for og, where
AP/Ppy becomes more negative (i.e. stronger suppression of power)
at fixed fy,, for higher values of . Overall, the non-linear response
of the fiducial galaxy formation model to variations in cosmology
appears to explain a significant fraction of the scatter in the vDMS
relation seen for SIMBA and TNG.

(ii) Supernova feedback parameters: The middle panels of Figs 3
and 4 explore the dependence of the vDMS relation on systematic
variations of the mass loading factor and speed of galactic winds
driven by stellar feedback (parameters Agn; and Agnp, respectively).
In TNG, there is indication for simulations clustering around
AP/Ppy ~ 0 and 7bar~1 for higher values of Agn; and Agnp,
corresponding to weaker overall impact of feedback owing to the
suppression of black hole growth and therefore AGN feedback. We
find qualitatively similar trends in SIMBA for variations in Agng,
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Figure 3. Suppression of the matter power spectrum, AP/Ppy, as a function of mean baryon fraction of high-mass haloes, fp,.(Mhalo > 13.5) . The blue line
is the fitting function of vDMS for a halo definition of 200c (200 times the critical density of the Universe), with the grey-shaded region indicating 1 per cent
variation in AP/Ppy . Each panel shows the 1P set overlaid on the LH set, colour coded by the value of each of the six parameters. We remind the reader that
all six parameters are varied simultaneously in the LH set, while only one parameter is varied in the 1P set. The middle top panel shows additional results from
the CV simulation set, where all six parameters are constant and only the initial conditions are varied. The fiducial realization is indicated by the cyan star. We
find that AP/Ppy; increases for higher values of f,,,, meaning that there is less suppression of the matter power spectrum in simulations where feedback is less
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with a clear trend in the 1P set showing weaker suppression of
the power spectrum and higher f,, with the increase of galactic
wind speed due to stellar feedback. Decreasing the strength of stellar
feedback parameters (indicated by dark purple points) tends to yield
more negative AP/Ppy values and correspondingly lower f,,, (i.e.
stronger impact). This displaces realizations roughly along the vDMS
relation but with increasing scatter.

(iii) AGN feedback parameters: The right two panels of Figs 3
and 4 show the impact of AGN feedback parameter variations in the
vDMS relation. In this case, the large range of both AP/Ppy and
foar values in SIMBA allows for a clear depiction of the stronger
dependence in AGN parameters along the vDMS relation. The
SIMBA 1P set, in particular, shows that stronger AGN feedback
leads to both lower values of AP/Ppy and lower f,,., indicating more
efficient evacuation of gas from haloes and stronger suppression of
total matter clustering. The trend is also present in TNG, more so in
Aacne than in Aagng (as expected from Figs 1 and 2), albeit less clear
due to the tight assembling of the TNG data points along a smaller
range of the vDMS model.

(iv) Cosmic variance: In order to examine how CV affects the
predicted variation of AP/Ppy as a function of f,,,, the top middle
panel of Figs 3 and 4 overlay the results from the CAMELS
CV sets corresponding to 27 realizations of the fiducial TNG and
SIMBA models using different initial conditions (red triangles). For
TNG, the CV set yields roughly similar range in average baryon
fraction of massive haloes as the entire LH set, indicating that
stochastic variations owing to the small CAMELS volumes and
correspondingly low number of massive haloes play an important
role. None the less, the TNG CV simulations roughly follow the
vDMS relation. The SIMBA CV set also yields a wide range of
AP/Ppyand fy,, values, but in this case suggesting a systematic
offset relative to the vDMS model.

We can quantify the impact of CV on the predicted suppres-
sion of matter clustering as the root mean square variation in
AP/Ppy relative to the mean:

Boy = -2, )
[Pevl
with p., = AP/Ppy for the CV set and
2 BN i —\2
Oy = H Z (pcv - pCV) ’ (8)

i=1

where n = 27 realizations and p., represents the average of p., over
the CV set. Evaluating equation (7) fork = 1.0 A Mpc‘1 gives oy =
0.192 for SIMBA, and 4., = 0.357 for TNG, indicating that there is
considerable variation due to CV alone.

The considerable spread of CAMELS predictions relative to the
vDMS model shown in this section provides motivation for the
machine-learning experiments described in Section 2.4. Given the
larger data set in CAMELS with broader variations in feedback and
cosmology compared to previous libraries of power spectra, it is
possible that the vDMS model relating halo baryon fraction and
suppression of matter clustering is not general enough to include
every plausible feedback model. For example, we later examine the
original SIMBA model against the vDMS relation and find that
SIMBA does not fall within 1 percent of the vDMS fit, as shown
in Fig. 12. However, it is also possible that having smaller volumes
which are significantly affected by CV as compared to the data set in
vDMS, along with the lack of haloes of mass ~10'* M, may explain
the disagreement between our results and the vDMS model. These
results motivate us to explore the relation between AP/Ppy and halo
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baryon fraction with a machine-learning approach, where we can
extract information from a broader halo mass range to improve the
accuracy of predictions for the impact of baryonic physics on the
total matter power spectrum.

4 ESTIMATING THE IMPACT OF FEEDBACK
ON MATTER CLUSTERING WITH MACHINE
LEARNING

A major goal of this work is to show that machine learning can be
used to extract information from the full range of halo masses in order
to estimate the suppression of the matter power spectrum by baryonic
processes all the way to the non-linear regime. In this section, we
discuss the results of training an RF regressor to estimate the impact
of feedback on the clustering of matter using the LH simulation sets
in CAMELS, which vary simultaneously cosmological and feedback
parameters (Section 2.1). The general setup of our experiments is
described in Section 2.4.

4.1 Extracting information across the halo mass range with RF
regression

Fig. 5 shows the results from training an RF regressor on different
input features to estimate the suppression of power AP/Ppy at k =
1.0 h Mpc~!. We begin by training an RF with f,,(Mpa > 13.5) as
the only training feature, in analogy with the information used by
the vDMS fitting function. Haloes of mass ~10'33 Mg are only
available for ~700 out of 1000 LH realizations for each of TNG and
SIMBA, limiting the size of the training set. In this first experiment,
the RF is only able to predict ~60 and ~50 per cent of the variation of
AP/Ppy in TNG and SIMBA, respectively, with the predicted versus
true values of AP/Ppy shown by the green data points in the left
panels of Fig. 5. Next, we add the number of high-mass haloes Ny,
corresponding to the measured ?bar(Mhalo > 13.5) as an additional
input feature, with results indicated by the orange data points. In
this case, the RF predictions improved by ~5 per cent in TNG and
~20percent for SIMBA. We then incorporate information from
haloes across the full mass range by introducing the baryon fraction
Four(Mi,1,) and the corresponding number of haloes Ny, within each
halo mass bin (see Section 2.4), with results shown by the blue data
points. In this case, we can use the full LH sets of CAMELS for
training and testing since we are not limited by the availability of
high-mass haloes. With these additional features using information
from a range of halo masses, the RF predicted ~ 75 per cent of the
variation in AP/Ppyatk = 1.0 A Mpc™" in TNG and ~ 82 per cent
SIMBA, significantly improving upon the original results.

As stated in Section 2.4, one advantage of the RF is that it provides
some level of interpretability by means of the ‘feature importance’
attribute. The right panels of Fig. 5 display the relative importance
assigned to each feature by the trained RF on the test set for TNG
(top panel) and SIMBA (bottom panel). We stress that this ranking is
based on the frequency with which the features are used by each tree
in order to predict the target variable, and it is possible for more than
one feature to hold similar, correlated information but be ranked
differently by the RF. Interestingly, the RF ranked f,, in haloes
with mass My, = 10'9°-10'10 Mg, as the most important feature
to predict the suppression of power AP/Ppyat k = 1.0 Mpc™! in
TNG. Furthermore, we see that the RF ranked several features across
the mass ranges as important predictors of AP/Ppy in SIMBA. These
feature importance results reveal that the RF was able to extract
valuable information across a range of halo masses.
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Figure 5. Results from different RF experiments. We create an 80/20 train/test split of the LH data sets to predict AP/Ppy at k = 1.0 for TNG (top panel) and
SIMBA (bottom panel). The left panels show the predicted target values compared to the true target values as given by the test sets in CAMELS, where the red
line indicates a perfect one-to-one relation. The green data points correspond to predictions by an RF trained only on the baryon fraction of massive haloes,
Tbar(Mh'le > 13.5), the orange data points show results for an RF trained on 7bar(Mhalo > 13.5) as well as the number Ny, of massive haloes, while results

from training an RF on ?bar(Mljwlo) and Npglo for halo mass bins j spanning the full mass range are shown in blue. The right panels show the feature importances

corresponding to the blue data points in the left panel (training on 7,3‘,“(Mf1

alo

) and Nhalo), indicating the relative rank ordering of importance (from 0.0 to 1.0)

given to each training feature by the RF. Predictions improve by providing training data across the full range of halo masses.

4.2 RF predictions in the highly non-linear regime

In the previous subsection, we have established that training the RF
on features from a range of halo masses improves the predictions
for AP/Ppyin the linear regime compared to using £, (Mpao >
13.5) as a training feature alone. We now exploit the same method-
ology to extend our predictions into the highly non-linear regime
by repeating our experiments at a range of scales, predicting
AP/Ppyatk =[1,5,10,20]h Mpcfl. Fig. 6 provides a summary of
performance scores for these experiments using the LH simulation
sets for TNG (squares) and SIMBA (circles). We also performed
additional experiments using the two LH data sets combined, which
we refer to as ‘TNG + SIMBA’ (diamonds). Descriptions of the
scoring metrics can be found in Section 2.4. The top panels in Fig. 6
show the R? scores and the bottom two panels show the RMSE
scores normalized by the IQR. We normalize the RMSE by the IQR
in order to account for the variation in the range of AP/Ppy, which
depends on the k value; the range of AP/Ppy increases as we move
to non-linear regimes. In addition to presenting results at a range of
scales for each training set, Fig. 6 compares the predictions based on
Foar(Myato > 13.5) alone (right panels) versus providing the baryon
fraction f, bar(Mhalo) in different halo mass bins (left panels). Results
based on baryon fractions alone are shown in orange while results
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that also incorporate the corresponding number of haloes N, are
shown in blue. _ )

Training on f, (M, )and N, improved the prediction of
AP/Ppy; for both TNG and SIMBA on all scales k = 1.0-20 2 Mpc ™!
as measured by the R?> and RMSE/IQR scores (Fig. 6). For TNG, we
achieved the highest R? score of all experiments at k = 5/ Mpc™',
with R? = 0.923 (consistent with the lowest RMSE/IQR score).
In other words, the RF was able to account for approximately
92 per cent of the variation in the suppression of the matter power
spectrum due to feedback using f..(Miy,,)and Nhalo as training
features. This represents ~40 per cent improvement over training on
7bar(Mhalo > 13.5)at k = 1.0.hMpc*1 and 220 per cent improve-
ment over training on f,.(Mi,.)and N, atk = 1.0 A Mpc~'. The
trained RF also shows very good performance down to smaller
scales, with R? = 0.85-0.9 at k = 10-20/2Mpc~' when training
simultaneously on the baryon fraction and number of haloes in
different mass bins. Similar results are obtained for SIMBA, also
performing better at k = 5-20 hMpc~' compared to larger scales,
with R? scores slightly lower than TNG: R> ~ 0.8 — 0.85 at k =
5-20 h Mpc~!. Remarkably, while the vVDMS model can only predict
AP/Ppy for a given average baryon fraction of massive haloes on
large scales k < 12 Mpc™', our RF regressor performs better on
scales where the impact of feedback on the matter power spectrum
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Figure 6. Performance scores for all RF experiments predicting AP/Ppy at four different scales, k = [1, 5, 10, 20] 2 Mpc_] . The orange dashed lines connect
data points showing scores for an RF trained on average baryon fractions f\,,, while the blue solid lines connect those where both f .. and the number of haloes
Nhalo are used as training features. We show results for three different data sets: the TNG LH set (squares), the SIMBA LH set (circles), and the two LH sets
combined, labelled ‘TNG + SIMBA’ (diamonds). Left panels correspond to training on features from a range of halo masses, 7bar(MlJmlo)’ while the right panels
correspond to training on high-mass haloes only, M1 > 10'3 Mg, as described in Section 2.4. We report R? scores (top panel) and RMSE scores normalized
by the IQR of the respective data set (bottom panel); higher R? scores and lower RMSE/IQR scores convey an improved performance. We obtain higher scores
when training on 7bﬂr(Mi]1alo
the highly non-linear regime at k ~ 5-10 2 Mpc

) and Npglo for a range of halo masses at all scales compared to training on high-mass haloes only, and the highest scores occur in
~!, meaning that important information can be extracted from a range of halo masses in the non-linear regime.

becomes the highest. The strongest suppression of power occurs at
roughly k = 10AMpc~! in SIMBA and k =20 /hMpc~! in TNG
for their fiducial models, and the RF is able to account for ~80-
85 per cent of the AP/Ppy, variation on these scales.

Fig. 7 illustrates in more detail the predicted results versus true
values of AP/Ppy when training an RF regressor on different input
features at k = 5hMpc™' for the TNG (top panel) and SIMBA
(bottom panel) LH sets. The highest R? score was obtained at k =
5hMpc~! for TNG using fy,(M;,,) and N, as training features,
which corresponds to the tighter distribution of blue data points along
the one-to-one line of perfect prediction in the top left panel, with
reduced scatter compared to the prediction based on high-mass haloes

alone (orange data points). We find similar trends for SIMBA, with
an apparent increase in scatter relative to TNG as expected from the
lower R? scores. Interestingly, the feature importance analysis (right
panels) indicates that the number of haloes in the low-mass range
Mo = 10'%9-10" M, is contributing significantly to improve the
AP/Ppy predictions.

4.3 Interpretation of feature importances

Comparing the feature importances shown in Figs 5 and 7 fork = 1.0
and 5hMpc~!, respectively, it appears that the most informative
input features vary with scale. We further investigate the physical
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Figure 7. Similar to Fig. 5 but for results at k =5.0h Mpc»’1 The left panels show the predicted versus true AP/Ppy values for RF regressors trained on

7bar(Mhalo > 13.5) and Npglo (Orange) and trained on ?bar(Mh

alo

)and thlo (blue), both at k = 5 h Mpc™ ! For comparison, we also show the results using only

Foar(Mhalo > 13.5)at k = 0.5h Mpc~! as in Fig. 5 (green). The right panels show the feature importances when training on 7 bar(Mh a10) and Nha]0 Gomg to

non-linear regimes the range of the target value AP/Ppy increases, enabling more accurate predictions. The highest ranked feature at k = 5.0 h Mpc™

1
is Nhalo at

Mhato = 10105-10'! M, meaning that the number of low-mass haloes is highly informative for estimating the power at 1-Mpc length scales.

properties that inform the prediction of AP/Ppyby the RF in
Fig. 8, where we provide a summary of the relative importance
of the fy,(Mj,,) features (diamonds) and N, features (squares)
corresponding to different halo mass bins when predicting A P/Ppy at
a given scale k. The ranking of features for each k-value is indicated
by the colour scale, which shows the log of the fractional importance
assigned by the RF. The most important ranked feature at each k-
value is further outlined in red. While the RF appears to be learning
from the baryon fractions and abundances of haloes across the halo
mass range, there are some interesting trends that are worth noting.
The least informative features for both TNG and SIMBA correspond
to the most massive haloes (Myy, ~ 10'* M), which is in contrast
to earlier work identifying the baryon fraction in groups and clusters
as a primary predictor of AP/Ppy on scales k < 12 Mpc~' (vDMS).
Unsurprisingly, the small simulated volumes in CAMELS contain
a small number of massive haloes, which are thus not optimal
as predictors of AP/Ppy. In contrast, the RF assigns significant
importance to fbar(Mljmlo) and Nhalo in low- to intermediate-mass
haloes in the range My, ~ 10'95-10'% M, for all k-values analysed.

Interestingly, the number of haloes N, in the mass range My,
~ 10'%5-10""' M, is among the top features identified by the RF
across different scales (see also Fig. 7). We explore further the
significance of this feature in Fig. 9, where we show AP/Ppy at
k=5hMpc! as a function of N, in this halo mass range for
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the LH sets of TNG (left panel) and SIMBA (right panel). We find
that there is a clear correlation between AP/Ppy and the number
of low-mass haloes for both galaxy formation models, as expected
given that N/, is identified by the RF as one of the most predictive
features. Physically, a plausible explanation for this correlation is
that N}, for low-mass haloes is a strong tracer of €, as indicated
by the colour scale, and €2,, itself is one of the main parameters
driving large variations in AP/Ppy at all k-values in CAMELS (see
Figs 1, 4, and 3). This is consistent with Pandey et al. (2023),
which find a simple model is also able to capture information about
AP/Ppy given fy,. in low-mass haloes and Q. While increasing
the value of €2, increases systematically the number of haloes at
all masses (e.g. Villaescusa-Navarro et al. 2021c), we note that the
correlation between AP/Ppy and Nj,,, worsens for higher halo mass
bins, which are thus often assigned lower feature importance by the
RF. This can be explained by the number of haloes in higher mass
bins being more sensitive to CV and therefore not as good predictors
of cosmology for small simulated volumes. On the other hand, the
lowest halo mass bin considered here, My, < 10'%° My, becomes
unresolved in terms of the minimum number of dark matter particles
per halo for the higher €2, values in CAMELS, as depicted in fig. 8 of
Villaescusa-Navarro et al. (2021c¢). The haloes in the lowest mass bin
in this study have less than 200 dark matter particles. We therefore
conclude that N, in the halo mass bin My, ~ 101%°-10'"' M
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Figure 8. Feature importance summary for RF models trained on
Foar(Miy,) and N to predict AP/Ppyat k = [0.5, 1, 5, 10, 201 A Mpc ™!
for the TNG (top panel) and SIMBA (bottom panel) models. For each
halo mass bin and k-value, the relative importance of the corresponding
ﬂm(Mﬂ,alo) (diamonds) and Npgo (squares) features is indicated by the colour
scale. The highest ranked feature for each k-value is outlined in red. There
is no clear trend of importance in features across scales, suggesting feature
importance results are specific to each scale.

the least sensitive to CV and it is a strong predictor of AP/Ppy in
part because N, informs the RF about the variation of Q, in a large
number of well-resolved haloes.

In order to further examine the significance of tracers of Qp,in
low-mass haloes as predictors of AP/Ppy we look specifically at the
dependance of the AP/Ppy —?bar relation on 2, 1in the halo mass
range M, = 10'"°-10""M,. Results are shown in Fig. 10. Again,
the small dots represent the LH sets while the large circles are 1P
sets. We see an inverted trend compared to the vDMS relation which
holds for high-mass haloes and there is still a clear dependence on
Qu. These behaviours (increased suppression with higher f,,, and
lower 2,,,) are consistent with results in the €2, panels of both Fig. 1,
where we see stronger suppression of the matter power spectrum with
higher values of €2,,, and of Fig. 2, where we see that 7bar increases
as 2y, decreases in low-mass haloes. We again remind the reader that
our computed f,,. are normalized by Qu/ Q. Therefore, lowering
the values of Q,, at a fixed 2, results in a non-trivial effect on the
suppression of power.
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4.4 Marginalizing over galaxy formation physics

A key advantage of CAMELS over more standard cosmological
simulations performed with a single fiducial galaxy formation model
is the ability to train machine-learning algorithms to learn funda-
mental properties of galaxies and the Universe while marginalizing
over uncertainties in subgrid physics (e.g. Villaescusa-Navarro et al.
2021a, b; Nicola et al. 2022; Villanueva-Domingo et al. 2022; Shao
et al. 2022a, b; Perez et al. 2023). When training an RF on the LH
simulation set of either TNG or SIMBA to predict AP/Ppy given
halo baryon fractions as input features, we are at the same time
marginalizing over uncertainties in physical processes represented
by the parameter variations introduced in a given galaxy formation
model.

However, evaluating the robustness of the ML model to uncer-
tainties in galaxy formation physics should also consider different
implementations and not just variations of parameters within a given
subgrid physics implementation. We thus perform a more stringent
test of robustness by training the RF on the full LH set of one galaxy
formation model (either SIMBA or TNG) and then testing on the
full LH set of the other model. Fig. 11 shows the predicted versus
true values of AP/Ppy at k = 5h Mpc™! when training an RF using
Foar(Mi, o) and Niayo from SIMBA and testing on TNG (top panel)
and when training on TNG and testing on SIMBA (bottom panel).
The top panel of Fig. 11 shows that the RF trained on SIMBA can
explain ~80 per cent of the variation of AP/Ppyat k = 5hMpc™!
when tested on TNG, suggesting that the RF has found a relation
between halo baryon fractions and suppression of matter clustering
which is relatively robust to galaxy formation model implementation.
On the other hand, the bottom panel of Fig. 11 shows that the RF
trained on TNG is less robust when tested on SIMBA, and can only
explain ~70percent of the variation in AP/Ppy predicted by the
SIMBA model. In this case, we can see that the predicted AP/Ppy; is
clearly biased high (i.e. less negative) when training on TNG and
predicting on SIMBA, implying that the inferred suppression of
matter clustering is underpredicted given the halo baryon fractions
in SIMBA and the connection to AP/Ppy learned from TNG. As
expected, we see a bias in the opposite direction when training
on SIMBA and predicting on TNG (top panel), overpredicting the
suppression of power at k = 5 h Mpc™'.

As seen in Figs 3 and 4, the overall range of variation in AP/Ppy is
significantly larger in the SIMBA LH set compared to the TNG
LH set. Given that the RF cannot predict values outside of the
range of the training data, this can explain why the RF trained on
TNG is less robust relative to galaxy formation implementation and
shows a stronger bias when tested on SIMBA. The biased estimation
of AP/Ppy can thus be partially attributed to the RF learning the
limits of the range of variation in the training data. None the less,
our results suggest that the TNG and SIMBA models may predict
different AP/Ppy even when implementing parameters that yield
similar fy,.(M},.), implying a non-unique relation between halo
baryon fractions and impact on matter clustering.

4.5 Supplementary studies

In order to further investigate the performance of training the RF
on halo abundances, we performed several supplementary stud-
ies comparing our fiducial models to new models which include
cosmological parameters as training features. The results of these
experiments are presented in Appendix A, where we conclude that
our fiducial model, utilizing fy,.(Mi,,) and N, across the full
range of halo masses, extracts important cosmological information
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10!, Again, the small dots represent the LH sets while the large circles are 1P sets. We see an inverted trend compared to the vDMS relation which holds for

high-mass haloes, but there is still a strong dependence on Q2 .

as it is in close agreement (within 1 per cent) with a model trained on
Fou(Mi) and Q.. However, in the case of high-mass haloes, halo
abundance is not a sufficient proxy for cosmological information.
We also found that limiting the study to intermediate mass haloes
resulted in comparable results to our fiducial model when the RF
was also directly provided 2, as a training feature in addition to the
fpar of intermediate mass haloes.

Based on a suite of simulations of substantially larger volumes,
vDMS identified a tight relationship between mean baryon fraction
in massive haloes and baryonic power spectrum suppression at
k < 1hMpc~!. While some degree of correlation between these
quantities is expected, as we find here, the extremely small scatter in
the observed relationship was remarkable given the variety of galaxy
formation models compared by vDMS. Since we observed some hints
at a deviation from the vDMS relationship in CAMELS, particularly
for the parameter variations based on the SIMBA model, we perform
a direct comparison of the original 100 4~'Mpc SIMBA volume
to the vDMS relation in Fig. 12. Here, we show the new SIMBA
data points as circles, while the measurements considered in vDMS
are shown as triangles. We have verified our pipeline by running it
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on [ustrisTNG-300, achieving excellent agreement with the vDMS
measurements. As can be seen, SIMBA constitutes a considerable
outlier and does not fall within the 1 percent interval around the
vDMS fit. The only other simulation scattering that far is Illustris
which, however, does not reproduce the observed baryon fraction. It
is known that the feedback prescription in SIMBA is unique in its
ability to re-distribute baryons across large scales (Borrow et al. 2020;
Gebhardt et al. 2023), which could explain the observed deviation
from the vDMS relation. However, SIMBA generally does not do
worse in reproducing observational relationships than the other major
hydrodynamic simulations. Thus, these results suggest the possibility
that the vDMS relation only holds in a subspace of simulations while
there exists at least one dimension along which deviations occur.

5 SUMMARY AND DISCUSSION

In this paper, we have investigated how baryonic physics affects the
clustering of matter relative to N-body simulations and its relation
to the baryonic content of haloes using thousands of cosmological
hydrodynamic simulations from the CAMELS project (Villaescusa-
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Figure 11. Similar to Fig. 7 but training an RF on the entire LH set of one
galaxy formation model and testing on the entire LH set of the other for both
TNG and SIMBA. We note higher prediction score when training on SIMBA
and testing on TNG (R? = 0.814) compared to training on TNG and predicting
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of AP/Ppw values. The RF tends to underpredict AP/Ppy when trained on
SIMBA and overpredict AP/Ppy when trained on TNG due to variations
in feedback models which suggests that care must be made if applying this
model to data where feedback is not precisely known.

Navarro et al. 2021c¢). In the first part of the paper, we examined
how variations of individual cosmological parameters (2, and o)
and feedback parameters (controlling the efficiency of large-scale
outflows driven by SNe and AGN) impact the total matter power
spectrum, the mean halo baryon fraction as a function of halo mass,
and, motivated by vDMS, the connection between the suppression of
clustering, A P/Ppy, and the mean baryon fraction of massive haloes.
The small simulated volumes in CAMELS complicate a direct
comparison between our results and vDMS, where in addition to CV
affecting A P/Ppy we also lack haloes massive enough to evaluate the
mean baryon fraction under the same conditions. Therefore, in the
second part of the paper, we have presented a set of machine-learning
experiments as an extension to what was done in vDMS, training an
RF regressor on features including the mean baryon fraction and
introducing the abundance of haloes across the mass range 1010 <
Mia0/Mo h™! < 10" to predict AP/Ppy from linear to highly non-
linear scales (k = 1.0-20.0 » Mpc™'). By utilizing halo abundance
as a training feature, the RF learns about the CV present in the
simulations without explicitly knowing the underlying cosmology.
Throughout the paper, we have made use of the CAMELS
simulation suites performed with the TNG (Marinacci et al. 2018;
Naiman et al. 2018; Nelson et al. 2018; Springel et al. 2018; Pillepich
et al. 2018b) and SIMBA (Davé et al. 2019) models to understand
the dependence of results and the robustness of the trained machine-
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learning models to changes in the specific galaxy formation physics
implementation.

Our main findings can be summarized as follows:

(i) In agreement with previous work (e.g. van Daalen et al. 2011;
Chisari et al. 2018, 2019; Villaescusa-Navarro et al. 2021c¢), we find
that baryonic physics can profoundly affect the total matter power
spectrum all the way to scales k < 0.5 4 Mpc ™!, and the magnitude of
this effect is highly dependent on the details of the galaxy formation
implementation and variations of cosmological and astrophysical
parameters.

(ii) The suppression of power,| AP/Ppy; |, increases systematically
with decreasing €2, at fixed €2, with baryons contributing a higher
fraction of the total matter content and feedback more efficiently
spreading matter over larger scales relative to N-body simulations.
Varying og at fixed galaxy formation physics does not drive system-
atic variations in AP/Ppy when measured on the small (25 h*‘Mpc)3
volumes simulated in CAMELS.

(iii) Increasing AGN feedback efficiency generally drives higher
suppression of matter clustering, in agreement with previous work
(e.g. vDMS; Nicola et al. 2022), with the strongest effect seen for
high-speed jets in SIMBA which are able to spread a substantial
amount of baryons over scales of several Mpc (Borrow et al. 2020;
Gebhardt et al. 2023). The qualitative effect of stellar feedback on
matter clustering is more dependent on galaxy formation model,
which can either suppress or enhance power on different scales
depending on the interplay between stellar and AGN feedback.
Stronger stellar feedback often results in weaker overall suppression
of matter clustering by suppressing black hole growth and therefore
the effective efficiency of AGN feedback (van Daalen et al. 2011;
Nicola et al. 2022; Gebhardt et al. 2023).

(iv) Halo baryon fractions fy,, are very sensitive to galaxy forma-
tion model, with TNG producing systematically more baryon-rich
haloes compared to SIMBA for a broad range of parameter variations.
Higher AGN feedback efficiency generally decreases halo baryon
fractions, but the extent of the effect and the affected halo mass range
depend on model details. Increasing the strength of stellar feedback
can either decrease or increase the baryon fraction depending on the
non-linear coupling of stellar feedback and black hole growth. Halo
baryon fractions are also very sensitive to changes in cosmology.
Increasing $2,, (at fixed €2,) or o'g systematically decreases the baryon
fraction of haloes (normalized by 2,/2,), indicating a non-trivial
response of feedback to changes in the amount of baryons relative to
dark matter and the growth history of haloes.

(v) We find a broad correlation between the amount of suppression
of the matter power spectrum AP/Ppy and the baryon fraction
of massive haloes fy,., indicating that the feedback mechanisms
responsible for evacuating gas from massive haloes also dominate
the impact of baryonic effects on matter clustering. These results are
in broad agreement with vDMS, but the thousands of simulations
in CAMELS produce significantly larger scatter in the AP/Ppy—
fou relation. CV alone can significantly affect the matter power
spectrum on our (25 2~ 'Mpc)? simulated volumes, but the complex
trends seen for the impact of individual cosmological and feedback
parameter variations on AP/Ppyand f,, suggest that the vDMS
model predicting AP/Ppy given only fy,, for massive haloes is not
general enough to include every plausible feedback model.

(vi) Predicting the impact on matter clustering based only on the
mean baryon fraction of massive haloes using the VDMS AP/Ppy —
fvar relation is not possible given the broad range of galaxy formation
models and the impact of CV in CAMELS. However, we have
demonstrated that an RF regressor trained on CAMELS is able to
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Figure 12. Comparison of the power spectrum suppression in the original SIMBA simulation with the results from vDMS. The SIMBA data points are circles,
while the measurements from vDMS are reproduced as triangles. We also show the fitting functions from vDMS as dashed lines as well as 1 per cent range
of variations. 200c and 500c mass definitions are shown in different colours. The vertical error bars have been estimated by splitting the 1002~ Mpc SIMBA
simulation into eight subvolumes. Statistical error bars on the horizontal axis are small (~10~3 as estimated using jack-knife), but there are somewhat larger
systematic errors from the halo finding (~1072, as estimated by running the analysis with FOF and Rockstar). SIMBA appears to deviate from the best-fitting

relation of vDMS.

extract information from haloes across the full mass range 10" <
Mya0/Mg < 10" to estimate the suppression of the matter power
spectrum on scales k = 1.0-20/2 Mpc™'. We are thus not only
extracting information from low-mass haloes but also predicting
AP/Ppyin the highly non-linear regime, significantly extending
the range of scales k < 11 Mpc~' where the vDMS model can be
applied.

(vii) Using the mean halo baryon fraction and abundance in
different halo mass bins as input features, the RF regressor was able
to account for ~80-85 per cent of the AP/Ppy variation occurring
on scales k = 10-20 h Mpc~! where the impact of feedback on the
matter power spectrum becomes the highest. At k = 5.0 hMpc~!,
our best model was able to explain ~92 per cent of the variance in
the suppression of power due to feedback when training on the TNG
model. However, the same model can only explain ~70 per cent of
the variation in AP/Ppy; and tends to underpredict the suppression of
matter clustering when tested on the SIMBA simulations, indicating

MNRAS 526, 5306-5325 (2023)

that the RF is only moderately robust relative to changes in the
underlying galaxy formation implementation. Training on SIMBA
increases the robustness of the model owing to its larger range of
variation in AP/Ppy compared to TNG, but in this case the RF tends
to overpredict| AP/Ppy; | when tested on TNG. These results suggest
that the lack of a universal relation between halo baryon fractions
and impact on matter clustering and emphasize the need to construct
models that are robust against assumptions in baryonic physics (e.g.
Villaescusa-Navarro et al. 2021b; Nicola et al. 2022; Shao et al.
2022a).

(viii) The original SIMBA volume constitutes a considerable
outlier to the vDMS relation and does not fall within the 1 per cent
interval around the vDMS fit. ) _

(ix) Our fiducial model, utilizing £y, (Mj,,,) and N, across the
full range of halo masses, extracts important cosmological infor-
mation as it is in close agreement (within 1 per cent) with a model
trained on f,. (M) and Q,, (Appendix A).
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A unique advantage of CAMELS relative to previous work is that
it performs simulations for different baryonic physics implementa-
tions and a broad range of cosmological and feedback parameter
variations, providing a data set sufficiently large to train machine-
learning algorithms for a variety of applications (Villaescusa-Navarro
et al. 2021c). However, an important limitation of CAMELS is the
small volume of each simulation realization, Lo, = 25k 'Mpc,
with important implications for this work. Given the small box sizes,
the matter power spectrum is sensitive to the specific initial conditions
in each realization, and the impact of baryonic effects further depends
on stochastic processes related to feedback operating on a limited
number of massive haloes. As a result, CV represents a challenge
to infer the suppression of matter clustering AP/Ppy given only the
baryon fraction of massive haloes. Previous works in CAMELS have
devised strategies to correct for the noise introduced by CV. When
training a neural network on electron density autopower spectra to
predict 2, Nicola et al. (2022) constructed a CV parameter based
on the distribution of halo masses in each realization, improving the
predictions significantly when introduced as an additional training
feature. Thiele et al. (2022) used spectral distortion measurements
to constrain baryonic feedback and applied a correction factor to the
Compton-y distortion by comparing expected values from a simple
halo model evaluated for the halo mass function in each CAMELS
simulation compared to that of a standard halo mass function. In our
RF experiments, introducing the number of haloes in each mass bin,
Nhato OF N1, as input features (i.e. basically the halo mass function)
improves the accuracy of the predictions significantly. The number
of low-mass haloes was one of the most predictive features identified
by the RF, which can be understood as a strong tracer of Q,, (Fig. 9).
Halo abundance further serves as a feature which provides the RF
algorithm information about CV, in agreement to previous works.
Furthermore, CV in CAMELS is lower in low-mass haloes than
high-mass haloes, which may account for the predictive power of
Ny in low-mass haloes.

One final result that we found puzzling, was the inversion of the
AP/Ppy — f i, Telation and its dependence on €2, in low-mass haloes.
It is unclear why a lower value in Q, at a fixed €2, would result in
higher f,,, and increased suppression in the total matter spectrum in
low-mass haloes. The dependence on AP/Ppy on baryonic feedback
in low-mass haloes will need to be further investigated in order to
thoroughly explain these results. It will also be interesting to perform
the RF training on a fixed, or more narrow range of 2, to study how
well the RF can really learn the different effects of baryonic feedback,
but we leave this to a future study.
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APPENDIX A: RESULTS FROM
SUPPLEMENTARY STUDIES

In order to further investigate the performance of training the RF
on halo abundances, we performed several supplementary studies
comparing our fiducial models to new models which include cosmo-
logical parameters as training features. The results for these can be
seen in Fig. A1. We continue to show the main results from this work
in orange and blue, as done in Fig. 6, in order to provide a more clear
comparison to the supplementary studies. We find the following:

(i) We introduced the training feature 2, as a substitute to halo
abundance (N, Or N}{alo). Scores for these results are shown in pur-
)and
Qu (purple) and those for our fiducial model (£, (Mj,,) and N}{alo,
blue) are within & 1 per cent difference. This indicates that the RF
was able to extract important cosmological information given the
full range of halo masses and halo abundances. However, in the right
panel, we see that in the RF model trained on ?bar(Mhal0 > 13.5)and
Qpresulted in &~ 20 per cent on average improvement in scores
compared to that trained on fy,(Mpo > 13.5) and Npo. This

plein Fig. Al. In the left panels, scores for training on ﬁm(Mfml0
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indicates that in the case of high-mass haloes in CAMELS, halo
abundance is not a sufficient proxy for cosmological information.

(i) We introduced o g as a third training feature (i.e. models trained
on mean baryon content, 2,, and og). There were no improvements
to the results from using og as an additional training feature and
results are not shown in Fig. A1 in order to maintain visual clarity.

(iii) We trained the RF on mean baryon content and og. The
performance was poor compared to the models trained on mean
baryon content and €2, and results are not shown in order to maintain
visual clarity.

We further explored the relation between AP/Ppyand mean
baryon content in a regime of more intermediate mass haloes.
Because we are limited in the number of realizations with haloes
of mass My, > 10'3‘5M@, we repeated the additional RF studies
described above, this time with £, of My, € [10'2—1014)M® as a
training feature. We also created eight bins of M{,,, € [1012-10'%).
The results from training the RF on baryon content from intermediate
mass haloes can be compared to those using the full range of halo
masses. The scores from these results are shown in Fig. Al.

(1) We found that training the RF on the mean baryon content of
intermediate mass haloes alone (red) resulted in significantly poorer
scores than training on either 7bar(Mhalo > 13.5) (right panels shown
in orange) or on the fy,.(M},,.) of the full range of halo masses (left
panels shown in orange).

(ii) The fy, of intermediate mass haloes and 2, model (right
panels shown in green) resulted in significantly improved per-
formance of the RF ability to predict AP/Ppy compared to the
FrarMhato > 13.5)and Npyo model (right panels shown in blue).
Improved scores average = 33 per cent difference. The results for
this improved model are comparable to those shown in green in
the left panels, which are for a model using Q, and fy,.(Mj,,) for
the range of intermediate masses. This suggests that there is no
meaningful information to be extracted by binning intermediate halo
masses to obtain the mean baryon content per mass bin versus the
foar averaged over all intermediate mass haloes. Furthermore, our
fiducial model (RF trained on fy,(Mj,,)and Ny, from the full
range of halo masses, shown in blue in the left panels) is only, on
average, 6 per cent better than that trained on f,, of intermediate
mass haloes and €2, suggesting the latter is promising and worth
further investigation as it is a simpler model.

(iii) We further limited the halo mass range of intermediate mass
haloes to My, € [10'-10"*)My and repeated our experiments.
Scores were on average &~ 10 per cent worse than those discussed
in this section and results are not shown in order to maintain visual
clarity. However, this further demonstrates that there is important
information to be extracted from the baryon content of more massive
haloes.
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Figure Al. Performance scores for additional RF experiments. Results from the main studies in this paper are still shown in blue and orange as in Fig. 6. Models
are trained on mean baryon fraction with some models having additional training features of halo abundance or 2, as indicated in the legend. Left panel: Results
shown in orange, blue and purple are for models trained on 7|m(Mfl ) of the full range of halo masses, while those shown in red and green are for Tbar(Mfmlo) of

intermediate mass haloes, Mffalo S [1012—1014).Bight panel: Results shown in orange, blue and purple are for models trained on 7bar(Mh310 > 13.5). Results
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