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A B S T R A C T 

Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surv e ys 
requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact 
of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with 

MachinE Learning Simulations project, containing thousands of (25 h 
−1 Mpc ) 3 volume realizations with varying cosmology, 

initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. 
We show that baryonic physics affects matter clustering on scales k � 0 . 4 h Mpc −1 and the magnitude of this effect is dependent 
on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing 

AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N -body simulations, 
while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN 

feedback. We find a broad correlation between mean baryon fraction of massive haloes ( M 200c > 10 
13.5 M �) and suppression of 

matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and 

cosmic v ariance ef fects. We sho w that a random forest regressor trained on the baryon content and abundance of haloes across 
the full mass range 10 

10 ≤ M halo /M �< 10 
15 can predict the effect of galaxy formation on the matter power spectrum on scales 

k = 1.0–20.0 h Mpc −1 . 

Key words: methods: numerical – galaxies: haloes – large-scale structure of Universe – cosmology: theory. 
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 INTRODUCTION  

he field of cosmology has man y e xciting endea v ors to look forward
o within the next decade. With the arri v al of enormous photometric
nd spectroscopic galaxy redshift surv e y missions such as DESI
DESI Collaboration 2016 ), the Nancy Roman Space Telescope
Spergel et al. 2015 ), Euclid (Laureijs et al. 2011 ) and the Vera Rubin
bservatory (LSST Science Collaboration 2009 ), the community
ill have the opportunity to tackle many ambitious goals, such

s mapping the distribution of matter and the large-scale structure
f the Universe, measuring cosmological parameters to per cent-
evel precision, and constraining the sum of neutrino masses. An
mportant step in fully realizing the statistical power of these
 E-mail: ana maria.delgado@cfa.harvard.edu 
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pcoming surv e ys is to model the matter power spectrum and
ther summary statistics to ∼1 per cent precision down to scales
s small as k = 10 h Mpc −1 (Huterer & Takada 2005 ; Laureijs
009 ; Hearin, Zentner & Ma 2012 ). Ho we ver, pre vious studies
ave shown that complex galaxy formation processes involving
eedback from massive stars and active galactic nuclei (AGNs)
an suppress power relative to dark matter-only simulations out
o large scales (van Daalen et al. 2011 ; Chisari et al. 2018 ; van
aalen, McCarthy & Schaye 2020 ; Gebhardt et al. 2023 ). Galactic
inds driven by supernovae and AGN-driven outflows can eject
 large amount of material from the centre of galaxies out to
arge distances (Angl ́es-Alc ́azar et al. 2017b ; Borrow, Angl ́es-
lc ́azar & Dav ́e 2020 ; Hafen et al. 2020 ; Wright et al. 2020 ;
itchell & Schaye 2022 ; Sorini et al. 2022 ; Ayromlou, Nelson &

illepich 2023 ) and the resulting suppression of power by feedback
reates significant biases when attempting to constrain cosmological
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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arameters (Semboloni et al. 2011 ; Zentner et al. 2013 ; Chisari et al.
019 ). 
Several approaches to addressing the suppression of matter clus- 

ering caused by baryonic physics have been devised. Cosmolog- 
cal hydrodynamic simulations provide the most direct method to 
nderstand the impact of baryonic effects on the distribution and 
lustering of matter (Vogelsberger et al. 2014b ; Tenneti et al. 2015 ;
ellwing et al. 2016 ; Springel et al. 2018 ; Chisari et al. 2019 ).
odern cosmological large-volume simulations such as Horizon- 
GN (Dubois et al. 2014 ), Eagle (Schaye et al. 2015 ), IllustrisTNG

Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson et al. 2018 ;
pringel et al. 2018 ; Pillepich et al. 2018b ), and SIMBA (Dav ́e
t al. 2019 ) produce galaxies that broadly match observations in 
roperties such as the stellar mass function and the bimodality in 
alaxy colours. Comparing the power spectrum of hydrodynamic 
imulations with those of their phase-matched, collisonless N -body, 
ark matter-only simulations allows us to measure how baryonic 
eedback suppresses the clustering of matter. Ho we v er, man y ke y
eedback processes remain poorly understood and most current mod- 
ls require e xtensiv e tuning of free parameters to match observations,
imiting their predictive power (Somerville & Dav ́e 2015 ). Higher 
esolution cosmological ‘zoom-in’ simulations can reduce subgrid 
odel uncertainties (e.g. Agertz & Kravtsov 2016 ; Hopkins et al. 

018 ; Angl ́es-Alc ́azar et al. 2021 ), but at the expense of modelling
olumes that are too small for many cosmological applications. 

More flexible approaches to address the impact of baryonic physics 
sing analytic models include modifying the ‘halo model’ (Seljak 
000 ; Semboloni, Hoekstra & Schaye 2013 ; Fedeli 2014 ; Mead
t al. 2015 ) using observational constraints and simulation results 
s the basis for parameterizing the transfer of power produced by 
he presence of baryons (Mohammed & Seljak 2014 ; Schneider & 

eyssier 2015 ), and mitigating the presence of baryons altogether by 
arginalizing o v er the parameters of ef fecti ve models (Semboloni

t al. 2011 ) or o v er the principle components in linear combinations
f observables that are most strongly affected by baryonic effects 
Eifler et al. 2015 ; Kitching et al. 2016 ). Ho we ver, the success
f these techniques relies heavily on the flexibility of the models 
o capture the true underlying distribution of matter (McCarthy 
t al. 2017 ) and they are limited by assumptions about halo bias
elative to the linear density field, smooth halo profiles neglecting 
ubstructure, and uncertainties in the spatial and redshift dependence 
f baryonic effects (Chisari et al. 2019 ). Alternatively, power spectra 
roduced by a large number of cosmological simulations with 
arying cosmologies and feedback parameters can be used to inform 

emi-analytic models attempting to mitigate the effects of baryons, 
haracterize the theoretical uncertainties in galaxy formation, and 
arginalize o v er feedback effects. 
van Daalen et al. ( 2011 ) employed a suite of 50 cosmological

ydrodynamic simulations from the OWLS project (Schaye et al. 
010 ) to study the effects of different baryonic processes on the
atter power spectrum o v er a range of scales. More recently, van
aalen et al. ( 2020 , henceforth vDMS) included additional simula-

ions from the cosmo-OWLS (Le Brun et al. 2014 ) and BAHAMAS
McCarthy et al. 2017 ) projects to produce a library of 92 matter
ower spectra from simulations with varying subgrid models and 
eedback strengths. Relating the effects of galaxy formation physics 
o the suppression of power, vDMS proposed that it is possible to
redict the fractional impact of baryons on the clustering of matter, 
 hydro / P DM , given only the mean baryon fraction of massive haloes
 M halo ∼ 10 14 M �), where P hydro and P DM are the matter power spectra
rom hydrodynamic simulations and their corresponding N -body 
imulations, respectively . Importantly , the empirical vDMS relation 
etween baryon fraction and power suppression is satisfied by a vari-
ty of simulations with different galaxy formation implementations, 
ncluding the Horizon-AGN, EAGLE, and IllustrisTNG simulations, 
hich opens the possibility to accurately correct dark matter only 
ower spectra based on observational constraints on gas fractions in 
assi ve haloes. Ho we ver, this relation is valid only on large scales,
 ≤ 1 h Mpc −1 , and the still limited number of different feedback
mplementations and cosmologies represented in the vDMS library 
f matter power spectra may not be representative of a broader range
f plausible galaxy formation models. 
In this work, we use 2000 + cosmological hydrodynamic simu- 

ations and their corresponding collisionless ( N -body) simulations 
rom the Cosmology and Astrophysics with MachinE Learning 
imulations (CAMELS 

1 ) project (Villaescusa-Navarro et al. 2021c ) 
o examine the impact of baryonic physics on matter clustering using
he largest library of power spectra available including variations of 
osmological and feedback parameters. In recent related work using 
AMELS, Nicola et al. ( 2022 ) trained a neural network on thousands
f electron density autopower spectra from large scales down to 
 = 10 h Mpc −1 , breaking the baryon–cosmology de generac y and
roviding tight constraints on the total matter density �m and the 
ean baryon fraction in intermediate-mass haloes while marginaliz- 

ng o v er uncertainties in galaxy formation physics implementations. 
ere, we significantly expand upon the work of vDMS and inves-

igate how supernova and AGN feedback affect the mean baryon 
raction across a range of halo masses (10 10 ≤ M halo /M �< 10 15 ) and
he resulting impact on the matter power spectrum. Furthermore, we 
ake advantage of the design of CAMELS for machine learning 
nd train a random forest (RF) regressor to predict the relative
ifference between the matter clustering in hydrodynamical and N - 
ody simulations on scales k = 1.0–20 h Mpc −1 given the mean
aryon fraction of haloes across a broad range of halo masses. We
hus demonstrate that we are able to extract valuable information 
rom lower mass haloes and predict the suppression of power all
he way to the highly non-linear regime. The work presented here is
omplementary to P ande y et al. ( 2023 ), which show that information
bout the impact of baryonic effects on the matter power spectrum
an be extracted using the tSZ signals from low-mass haloes, and
nclude related results utilizing the suite of CAMELS produced with 
he Astrid simulation. 

The layout of this paper is as follows: In Section 2, we describe
he simulations and halo selection, define our variables, and describe 
ur machine-learning methods. In Sections 3 and 4 , we present our
esults. Finally, in Section 5, we provide a summary and discussion
f our work. 

 METHODS  

.1 Simulations: CAMELS 

he CAMELS project (Villaescusa-Navarro et al. 2021c ) contains 
housands of state-of-the-art (magneto-)hydrodynamic simulations 
nd their corresponding N-body simulations. In this work, we 
ocus on the simulation suites produced with the IllustrisTNG 

Marinacci et al. 2018 ; Naiman et al. 2018 ; Nelson et al. 2018 ;
pringel et al. 2018 ; Pillepich et al. 2018b ) and SIMBA (Dav ́e
t al. 2019 ) galaxy formation models that are part of the CAMELS
ublic data release 2 (Villaescusa-Navarro et al. 2023a ), providing 
MNRAS 526, 5306–5325 (2023) 
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 total of > 4000 realizations with parameter variations, with
 1000 hydrodynamical and > 1000 N -body simulations for each

f the two independent feedback model implementations. Each
imulation is a periodic box of length L box = 25 h 

−1 Mpc con-
aining 256 3 resolution elements with mass resolution of 6 . 49 ×
0 7 ( �m − �b ) / 0 . 251 h 

−1 M � for dark matter and 1 . 27 × 10 7 h 
−1 M �

or baryons. This is the same resolution as the original SIMBA
imulation and similar to that of the original TNG300-1 simulation of
llustrisTNG. 

The initial conditions of CAMELS simulations were generated at
 = 127 using second-order Lagrangian perturbation theory assuming
hat the initial power spectra of dark matter and gas are the same
nd equal to that of total matter. Each of the CAMELS simulations
ontains 34 snapshots from redshifts z = 6 down to z = 0; in this
ork, we focus on z = 0. In addition to the initial random phases,

ach simulation is specified by two cosmological parameters and
our astrophysical (feedback) parameters which are varied across the
ndividual realizations. In the case of cosmological parameters, we
ary: 

(i) �m : the fraction of the universe made up of ordinary and dark
atter varies in the range �m ∈ [0.1, 0.5] while keeping �b = 0.049

onstant. 
(ii) σ 8 : the variance of the spatial fluctuations of total matter on

 Mpc h −1 scales is varied in the range σ 8 ∈ [0.6, 1.0]. 

In the case of astrophysical parameters, the fiducial values are
efined by the stellar and AGN feedback models of the corresponding
riginal IllustrisTNG and SIMBA simulations. The fiducial astro-
hysical parameters are assigned a value A = 1.0 and then varied
cross realizations by multiplying by an amplitude factor A in order
o increase/decrease the amount of feedback. Ho we ver, we emphasize
hat the stellar and AGN feedback prescriptions differ substantially
etween IllustrisTNG and SIMBA and the corresponding parameter
ariations in CAMELS have a different definition in each model,
hich we briefly describe below. 

.1.1 IllustrisTNG 

he IllustrisTNG model (also referred to as ‘TNG’; Marinacci et al.
018 ; Naiman et al. 2018 ; Nelson et al. 2018 ; Springel et al. 2018 ;
illepich et al. 2018b ) is implemented in the AREPO hydrodynamics
ode (Springel 2010 ; Weinberger, Springel & Pakmor 2020 ), which
tilizes a hybrid tree/particle-mesh scheme to solve for gravitational
nteractions and an unstructured, moving mesh to solve the equa-
ions of hydrodynamics. Compared to the galaxy formation model
f its predecessor Illustris (Genel et al. 2014 ; Vogelsberger et al.
014a , b ), the galaxy formation model in IllustrisTNG has updated
mplementations of AGN feedback (Weinberger et al. 2017 ) and
alactic winds (Pillepich et al. 2018a ), and incorporates magnetic
elds (Pakmor, Marinacci & Springel 2014 ). 
The stellar feedback parameter variations in the CAMELS–TNG

imulations introduce A SN1 to control the total energy injection
ate in galactic winds per unit star formation ( A SN1 ∈ [0.25, 4.0])
nd A SN2 to vary the galactic wind speed ( A SN2 ∈ [0.5, 2.0]). The
GN feedback parameter variations pertain to the low-accretion,
inetic-mode black hole feedback, where A AGN1 varies the feed-
ack energy per unit black hole accretion rate ( A AGN1 ∈ [0.25,
.0]) and A AGN2 varies the burstiness and effective ejection speed
 A AGN2 ∈ [0.5, 2.0]). 
NRAS 526, 5306–5325 (2023) 
.1.2 SIMBA 

he SIMBA galaxy formation model (Dav ́e et al. 2019 ) is im-
lemented in the GIZMO meshless finite mass hydrodynamics
ode (Hopkins 2015 , 2017 ). Relative to its predecessor MUFASA
Dav ́e, Thompson & Hopkins 2016 ), SIMBA includes a black
ole model based on gravitational torque accretion and two-mode
inetic feedback (Angl ́es-Alc ́azar et al. 2017a ), galactic winds with
ass-loading and velocity scalings derived from the FIRE zoom-in

imulations (Muratov et al. 2015 ; Angl ́es-Alc ́azar et al. 2017b ), and
 model for the creation and destruction of dust (Li, Narayanan &
av ́e 2019 ). 
The stellar feedback parameter variations in the CAMELS–

IMBA simulations introduce A SN1 to control the mass-loading factor
f galactic winds and A SN2 to control the wind speed. The AGN
eedback parameter variations introduce A AGN1 to change the total
omentum flux of either quasar-mode winds or radio-mode jets,
hile A AGN2 controls the maximum velocity of gas ejected by jets.
hese parameters are varied o v er the same range as in IllustrisTNG,
ith A SN1 = A SN2 = A AGN1 = A AGN2 = 1 corresponding to the fiducial
odel. As described in Villaescusa-Navarro et al. ( 2021c ), the range

f feedback parameters explored in CAMELS was chosen to roughly
roduce f actor-of-tw o variations of injected feedback energy relative
o the fiducial models, as a compromise between investigating a
ide range of feedback effects while still considering physically
lausible models. We also stress that despite using the same range
f parameter variations in IllustrisTNG and SIMBA, the resulting
ffects are model dependent (as shown below and previous works)
nd reflect their specific implementation. 

.1.3 Simulation sets in CAMELS 

e take advantage of the following simulation sets for each of the
llustrisTNG and SIMBA suites in CAMELS: 

(i) Latin hypercube (‘LH’) set: 1000 realizations, each containing
ifferent initial conditions and different values of the six afore-
entioned parameters. The LH set is the main training set in this
ork. 
(ii) 1 parameter (‘1P’) set: 66 realizations using the same initial

onditions and further divided into six subsets of 11 realizations
here only the value of one parameter is varied while the other five
arameters are held constant. In this work, we make use of the 1P
ets to study how a single cosmological or feedback parameter can
ffect halo baryon fractions and the suppression of the matter power
pectrum. 

(iii) Cosmic variance (‘CV’) set: 27 realizations with different
nitial conditions while the fiducial values of all six parameters are
eld constant. The CV set is used to e v aluate the impact of CV on
ny of the quantities that we measure from the simulations. 

We refer the reader to Villaescusa-Navarro et al. ( 2021c ) for further
etails about CAMELS, the parameter variations, and the simulation
ets available. 

.2 Halo selection 

e identify haloes in CAMELS using the AMIGA Halo Finder
AHF; Knollmann & Knebe 2011 ). AHF uses an adaptive mesh to
ocate halo centres, calculate the gravitational potential of the halo
nd iterativ ely remo v e unbound particles (particles whose velocities
re greater than the escape velocity at a given radius) from within
he boundary of the halo. We refer the reader to Knollmann & Knebe
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 2011 ) for a full description and implementation of AHF. We select
aloes with masses M halo ≥ 10 10 M � using a virial radius definition 
f 200c (i.e. 200 times the critical density of the Universe). 

.3 Matter power spectra and halo baryon fractions 

e use a library of > 4000 total matter power spectra from CAMELS
Villaescusa-Navarro et al. 2023b ). For each simulation, the matter 
ower spectrum is computed by assigning particle masses (dark 
atter, gas, stars, and black holes) to a regular grid with 512 3 

oxels using a cloud-in-cell (CIC) assignment scheme. The grid 
s then Fourier transformed and the power spectrum is computed 
y averaging over k -bins with an equal width to the fundamental
requency, k F = 2 π/ L , where L = 25 h −1 Mpc. We then compute
he relati ve dif ference between the total matter power spectrum 

f hydrodynamical and phase-matched N -body simulations, which 
e refer to as the ‘suppression of matter power spectrum’ and 
efine as 

�P 

P DM 

= 

P hydro − P DM 

P DM 

, (1) 

here P DM is the matter power spectrum of the N -body simulation
nd P hydro is that of its corresponding hydrodynamical simulation. 

We compute the baryon fraction of a given halo as 

 bar = 

M star + M gas 

M halo 
, (2) 

here M star and M gas are the total stellar mass and gas mass of the
alo and M halo is the virial mass of the halo corresponding to R 200c .
e further calculate the mean baryon fraction within a given halo 
ass range in each simulation as 

 bar = 

1 

n 

n ∑ 

i= 1 

f bar i / 
�b 

�m 

, (3) 

here f bar is defined in equation ( 2 ), subscript i is the i th halo and
 the total number of haloes in a given mass range, and following
DMS we normalize by �b / �m in order to account for the differences
n cosmology for different simulations. 

.4 Machine learning 

 supervised machine-learning algorithm trains a model by pro- 
iding a subset of data, referred to as the training set, including
nput variables (henceforth called ‘features’) and output variables 
henceforth called ‘target’). The goal is for the algorithm to 
se the training set to learn the relation between the features 
nd the target. The trained model is then used to predict the
arget for a different subset of features referred to as the test
et. 

In this work, we use the RF regressor algorithm from the publicly
vailable package Scikit-Learn (Pedregosa et al. 2011 ). An RF 

s an ensemble ML method that can be used for both classification and
egression problems. The algorithm works by constructing a ‘forest’ 
rom a user specified number of decision trees and using the mean
f the predictions from those trees as output. This method has three
ey advantages: (1) little hyperparameter tuning is required, (2) it is
omputationally efficient, and (3) its ensemble characteristic lessens 
 v er fitting. Furthermore, the RF algorithm provides us with some
nterpretability by way of the ‘feature importance’ attribute, with 
 ranking of features based on their frequency used as a predictor
ariable by each tree. 
We use the following metrics for scoring the predictive perfor- 
ance of the RF: 

 
2 ( y, ˆ y ) = 1 −

∑ n 

i= 1 ( y i − ˆ y i ) 2 ∑ n 

i= 1 ( y i − y ) 2 
, (4) 

MSE ( y, ˆ y ) = 

√ ∑ n 

i = 1 ( y i − ˆ y i ) 

n 
, (5) 

here y i are the given target values, ˆ y i are the RF predicted target
alues, and y is the mean of y i . The R 

2 score provides the proportion
f the target variable that is predictable by the given features.
ecause the R 

2 outputs a score between 0.0 and 1.0, it provides
omparable information about performance when comparing various 
xperiments. The RMSE scores, on the other hand, are based on the
arget value range. Therefore, in order to account for the range in
arget values across multiple experiments, we normalize our RMSE 

cores by the interquartile range (IQR): 

QR = Q 3 − Q 1 , (6) 

here Q 3 is the third quartile (75th percentile) of a given set and
 1 is the first quartile (25th percentile) of the set. In other words,
e normalize the RMSE by the middle 50 per cent dispersion of the

arget values as RMSE/IQR. 

.4.1 Features and targets 

sing the thousands of realizations in the CAMELS LH simulation 
ets, we train an RF regressor to predict the suppression of the matter
ower spectrum � P / P DM as a function of the mean baryon fraction
t a range of scales. We construct the following features for each
ealization: 

(i) f bar ( M halo > 13 . 5) : the mean baryon fraction of high-mass
aloes, those with masses > 10 13.5 M � in each simulation. 
(ii) f bar ( M 

j 
halo ) : an array containing mean baryon fraction in 10

ins of halo masses within the range [10 10 –10 15 ) M �. 
(iii) N halo : the number of haloes within a halo mass range. 
(iv) N 

j 

halo : an array with the same shape as f bar ( M 

j 
halo ) containing

he number of haloes per mass bin. 

Our target is the � P / P DM values for each realization at four
if ferent k -v alues: k = [1 , 5 , 10 , 20] h Mpc −1 . 

.4.2 Robustness of RF predictions 

ne inherent benefit of CAMELS is that we are able to test the effects
f feedback model implementation by way of its TNG and SIMBA
imulations sets. We create an 80 / 20 per cent train/test split of the
H simulations and perform the following experiments using either 
NG or SIMBA: 

(i) Train on f bar ( M halo > 13 . 5) to predict � P / P DM at k =
1 , 5 , 10 , 20] h Mpc −1 . We perform this experiment as an extension
f vDMS, where in this work we explore a larger halo mass range
nd probe the non-linear regime. 

(ii) Train on f bar ( M 

j 
halo ) at k = [1 , 5 , 10 , 20] h Mpc −1 . 

(iii) Repeat the abo v e two e xperiments with additional features
elated to CV: N halo or N 

j 

halo . 

We are further able to test the robustness of our algorithm
nd determine how well our the RF can marginalize o v er subgrid
hysics model by performing ‘two-model’ experiments. In these 
xperiments, we train on the entire LH set of one of the feedback
mplementation and test on the entire LH set of the other, i.e. training
MNRAS 526, 5306–5325 (2023) 
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n SIMBA and testing on TNG and vice versa. In these experiments,
e use the same hyperparameters that produced the best results from

he previous ‘single-model’ experiments. 

 IMPACT  OF  COSMOLOGICAL  AND  

EEDBACK  PARAMETER  VARIATIONS  

n this section, we examine the impact of cosmological and baryonic
eedback parameter variations on the matter power spectrum and
he baryon fraction of haloes of different masses, exploring also
he connection between the suppression of the total matter power
pectrum and the mean baryon fraction of massive haloes. We
erform this analysis for both the TNG and SIMBA galaxy formation
odels. 

.1 Matter power spectra 

e use the total matter power spectra from the 1P simulations
o examine how cosmological and feedback parameters affect the
lustering of matter at various scales. For each run in the 1P set,
escribed in Section 2.1 , we measure the fractional impact of baryons
n the total matter power spectrum, P hydro / P DM . If baryonic physics
as no effect on matter clustering, P hydro / P DM should be of order
nity. Ho we ver, if baryonic physics suppresses the clustering of
atter compared to dark matter only simulations, usually by way

f feedback ejecting gas out to large distances, P hydro / P DM should
all below unity on a range of scales. 

Fig. 1 shows P hydro ( k )/ P DM ( k ) as a function of wavenumber
 for the 1P simulations, where each spectrum is colour coded
y the value of each parameter variation. We notice two o v erall
rends that are roughly independent of cosmological or feedback
arameters. The first is the general ‘scoop’ shape of P hydro / P DM ,
hich is consistent with previous works (van Daalen et al. 2011 ;
ellwing et al. 2016 ; Chisari et al. 2018 ; Peters et al. 2018 ; Springel

t al. 2018 ; vDMS). This shape conv e ys agreement between matter
lustering in hydrodynamical and dark matter-only simulations on
arge scales ( k � 0 . 1 h Mpc −1 ) while at intermediate scales there is
uppression of power by baryonic feedback ( P hydro / P DM < 1) and
t small scales ( k � 40 h Mpc −1 ) there is enhanced, as opposed to
uppressed, clustering relative to dark matter owing to gas dissipative
rocesses ( P hydro / P DM > 1). The second o v erall trend is that the
IMBA galaxy formation model (solid lines) tends to suppress power
n intermediate scales more strongly compared to the TNG galaxy
ormation model (dashed lines) while driving a steeper increase in
mall-scale clustering ( k � 30 h Mpc −1 ). 

We now analyse in more detail how each parameter affects
atter clustering by comparing P hydro ( k )/ P DM ( k ) between the fiducial
odels of TNG and SIMBA (shown in red) and that of the individual

arameter variations: 

(i) Cosmolo gical parameter s : The top tw o panels in Fig. 1 show
he sensitivity of the total matter power spectrum to �m and σ 8 

or a fixed galaxy formation model. We see a strong dependence
f P hydro / P DM on the value of �m both in TNG and SIMBA. As
m decreases (at fixed �b ), there is a greater suppression of power

n intermediate scales. This can be understood as a consequence
f baryons contributing a higher fraction of the total matter content
aking feedback more efficient at pushing gas out of haloes and

istributing matter on larger scales, in agreement with the analysis
f large-scale baryon spread in Gebhardt et al. ( 2023 ). In contrast,
e identify weaker trends for σ 8 , with significant scatter. 
NRAS 526, 5306–5325 (2023) 
(ii) Supernova feedback parameters : The middle two panels in
ig. 1 show the impact of changing the stellar feedback parameters
 SN1 and A SN2 , respectively, which control the mass loading and
elocity of galactic winds, on matter clustering. Both panels show
ome what counterintuiti ve ef fects of stellar feedback. Increasing
 SN1 in SIMBA reduces (rather than enhances) the suppression
f power on small scales ( k � 10 h Mpc −1 ) and increasing A SN2 

urther increases P hydro / P DM o v er the full range of scales. This
an be understood as a consequence of the non-linear interplay
etween stellar and AGN feedback, where stronger stellar feedback
uppresses black hole growth and results in weaker ef fecti ve impact
f AGN feedback on matter clustering (van Daalen et al. 2011 ;
 ande y et al. 2023 ). The TNG model shows rather different trends,
ith reduced suppression of power on scales k � 10–20 h Mpc −1 but

nhanced suppression of power on smaller scales when increasing
 SN1 and A SN2 . These results are consistent with the analysis of
lectron power spectra in CAMELS by Nicola et al. ( 2022 ), which
ighlights the sensitivity of predicted baryonic effects on galaxy
ormation implementation. 

(iii) AGN feedback parameters : The bottom two panels of Fig. 1
how the impact of varying AGN feedback efficiency on matter
lustering. In this case, there are clear systematic trends for stronger
uppression of power when increasing both A AGN1 and A AGN2 for
oth galaxy formation models (TNG and SIMBA). The sensitivity
f P hydro / P DM to A AGN1 is weaker given its range of variation, with
o more than 10 per cent dif ference relati ve to the fiducial model.
n contrast, the matter power spectrum in SIMBA displays a strong
ensitivity to the AGN jet speed, A AGN2 , with strong suppression of
ower across scales, reaching P hydro / P DM ∼ 0.6 at k ∼ 10 h Mpc −1 

ith jets twice as fast relative to the fiducial model. This results
re also consistent with previous findings for electron power spectra
icola et al. ( 2022 ) and the impact of large-scale jets on cosmological
aryon spread (Gebhardt et al. 2023 ). 

.2 Halo baryon fraction 

n Fig. 2 , we use again the specialized CAMELS 1P simulation
ets to analyse the impact of individual cosmological and feedback
arameter variations on the average halo baryon fraction as a function
f halo mass, f bar ( M halo ), where we consider logarithmically spaced
alo mass bins in the range 10 10 –10 13 M �. We notice two main trends
oughly independent of cosmological or feedback parameters when
omparing the fiducial realizations (indicated in red) for the TNG
dashed lines) and SIMBA (solid lines) models. The first being that
eak of the halo baryon fraction occurs at ∼10 12 M �. We notice a
rop in mean baryon fraction as haloes exceed this mass range, when
owerful feedback process can expel material out of the halo. We
ote, ho we ver, that at very high-mass haloes, we expect feedback
o be less efficient at expelling material and for there to be another
ise in mean baryon fraction. The second main trend is that SIMBA
as o v erall lower f bar ( M halo ) compared to TNG, with the fiducial
odels reaching their peak at f bar ∼0.5 for SIMBA and f bar ∼0.7 for
NG. 
We now analyse in more detail how each CAMELS parameter

 ariation af fects halo baryon fractions, keeping in mind that the
efinitions of feedback parameters are not the same for TNG and
IMBA: 

(i) Cosmolo gical parameter s : The top tw o panels of Fig. 2 show
he sensitivity of f bar ( M halo ) to our cosmological parameters �m and

8 . Halo baryon fractions appear to be more sensitive to cosmology in
IMBA compared to TNG. Ho we ver, both galaxy formation models
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Figure 1. The effect of baryonic physics on matter clustering for different cosmological and feedback parameter variations. Each panel shows the ratio of total 
matter power spectrum in hydrodynamic simulations to that of the corresponding dark matter-only simulations ( P hydro / P DM ) as a function of wave number k 
when varying a single parameter in the CAMELS 1P sets. Lines of different colours indicate the value of each parameter variation, and red lines indicate the 
fiducial model for TNG (dashed lines) and SIMBA (solid lines). Variations in feedback model, as well as in feedback amplitude, result in variation in total 
matter clustering. 
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redict qualitatively similar trends, with lower f bar ( M halo ) when 
ncreasing �m and σ 8 across a range of halo masses. This trend 
ay seem trivial for �m since we hold the value of �b constant in

ll CAMELS simulations, implying that the average cosmic baryon 
raction decreases with higher �m and so should the corresponding 
alo baryon fractions. Ho we ver, f bar ( M halo ) is normalized by �b / �m 

or each simulation (equation 3 ), removing the trivial effect of varying
m at fixed �b . The impact of increasing �m on f bar ( M halo ) is thus a
MNRAS 526, 5306–5325 (2023) 
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M

Figure 2. The effect of each parameter variation on the mean halo baryon fraction as a function of halo mass, f bar (M halo ). As in Fig. 1 , the colour bar for each 
panel indicates the value of the corresponding parameter variation while all other parameters are held constant. The red lines indicate the fiducial parameters for 
TNG (dashed lines) and SIMBA (solid lines), with their peak baryon fraction occurring at � 10 12 M � in both fiducial models. The f bar values and their halo 
mass dependence differ substantially between galaxy formation implementations and model parameter variations. 
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eflection of the ef fecti ve ef ficiency of feedback when changing the
mount of baryons relative to the dark matter gravitational potential,
nd this effect seems more prominent in lower mass haloes for
oth TNG and SIMBA. Interestingly, the baryon fraction decreases
ystematically at all halo masses when increasing σ 8 , while the
NRAS 526, 5306–5325 (2023) 
uppression of power does not seem to follow a clear trend with
8 . 
(ii) Supernova feedback parameters : The middle two panels in

ig. 2 show the impact of changing A SN1 and A SN2 on halo baryon
ractions. As for the power spectra, varying the mass loading of
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alactic winds ( A SN1 ) has a dif ferent ef fect in each galaxy formation
odel. We might intuitively expect that as A SN1 increases, more 

as would be ejected out of galaxies resulting in lower f bar ( M halo ).
o we ver, we only see this behavior in TNG for haloes with mass
 halo � 10 12 M �, while the baryon fraction of higher mass haloes

ncreases with A SN1 owing to the suppression of AGN feedback. 
his reversed trend with A SN1 can explain its impact on P hydro / P DM 

or TNG, with an enhancement of power on intermediate scales coin- 
iding with the highest gas fraction in high-mass haloes with A SN1 =
. Meanwhile, SIMBA shows systematically higher baryon fractions 
hen increasing A SN1 across the full halo mass range, indicating a 
ifferent non-linear coupling of stellar and AGN feedback compared 
o TNG, which can explain the suppression of power seen in Fig. 1 .
n the other hand, increasing the speed of galactic winds ( A SN2 )

esults in systematically lower f bar ( M halo ) values for both SIMBA
nd TNG, but in this case lower baryon fractions correlate with less
uppression of matter clustering in SIMBA on all scales. 

(iii) AGN feedback parameters : The bottom two panels of Fig. 2 
ho w the sensiti vity of f bar ( M halo ) to changes in AGN feedback
fficiency. Halo baryon fractions are significantly reduced by in- 
reasing the kinetic mode black hole feedback efficiency A AGN1 in 
NG in the intermediate halo mass range M halo = 10 11 –10 12.5 M �,
hile the burstiness parameter A AGN2 has a stronger effect reducing 
 bar ( M halo ) in higher mass haloes. In both cases, the decrease in halo
aryon fraction with higher AGN feedback efficiency correlates with 
tronger suppression of matter clustering. Similarly, increasing the 
GN jet speed in SIMBA ( A AGN2 ) drives an o v erall reduction of halo
aryon fractions and increased suppression of matter clustering on 
ll scales shown in Fig. 1 , corresponding to more efficient spread
f baryons on large scales relative to the TNG model (Gebhardt 
t al. 2023 ; Tillman et al. 2023 ). Ho we ver, the ef fect of increasing
he momentum flux A AGN1 in SIMBA seems more complex, driving 
n increase in baryon fraction in high-mass haloes (possibly due 
o black hole self-regulation) but stronger suppression in the matter 
ower spectrum, particularly at low k-values. 

.3 Suppression of matter power spectrum as a function of 
aryon fraction 

sing a suite of matter power spectra from hydrodynamical and 
ark matter only simulations, vDMS found a tight relation between 
he suppression of the matter power spectrum ( � P / P DM ; defined in
ection 2.3 ) in the linear regime and the average baryon fraction
 f bar ) of high-mass haloes ( ∼10 14 M �). In this study, a direct
omparison to vDMS is not possible due to the small size of the
ndividual CAMELS realizations and relatively small number of 
igh-mass haloes. We therefore extend what was done in vDMS and 
se the LH simulation sets of CAMELS, described in Section 2.1 , to
nvestigate how � P / P DM is affected by cosmological and baryonic
eedback parameters o v er a broader range of model variations. 

Figs 3 and 4 show � P / P DM ≡ ( P hydro − P DM )/ P DM e v aluated at
 = 1 . 0 h Mpc −1 as a function of f bar for the TNG and SIMBA 1P
nd LH sets, respectively. We note that due to the small simulated
olumes in CAMELS there are not enough haloes of mass ∼10 14 

 � to replicate the results in vDMS and we therefore e v aluate
 bar for haloes with mass > 10 13.5 M �. Each panel reproduces the
ame data points depicting the LH sets (small dots), o v erlaid by
he 1P set (large circles) corresponding to the labelled parameter in 
hat panel. The data are colour coded by the parameter value. We
emind the reader that each of the six parameters are simultaneously 
aried in the LH sets, while only one parameter is varied in the 1P
ets. We thus examine ho w indi vidual cosmological and feedback 
arameters affect the relation between � P / P DM and f bar , which we
ompare to the fitting function derived by vDMS (their equation 5)
or baryon fractions calculated using the 200c virial definition, which 
e henceforth refer to as the ‘vDMS model’ and indicate by the blue

olid line and grey-shaded region. Lastly, we overlay the results for
he CV sets of TNG and SIMBA (described in Section 2.1 ) as the
ed squares in the top centre panel of each figure in order to examine
he effect of CV on this relation. We emphasize that this represents
 lower limit of CV as the 27 CV realizations probe only a small
 olume. We ha v e indicated where the fiducial realization (c yan star)
ies within the spread. It is interesting to note that there is significant
pread due to CV in both � P / P DM and f bar in SIMBA compared to
he fiducial run. 

Our CAMELS results in Figs 3 and 4 reveal a good qualitative
greement with the general trend found in vDMS: the suppression of
he matter power spectrum increases as the average baryon fraction 
n massive haloes decreases. We note that we have kept the y -axis
imits the same in both figures for a more clear comparison of TNG
nd SIMBA, ho we ver, there are several SIMBA data points in Fig. 3
hat fall below the visible y -axis. While the SIMBA LH set probes a
ange of � P / P DM and f bar values significantly larger than the TNG
H set, as expected from Figs 1 and 2 , both models roughly follow

he vDMS trend, suggesting that f bar in massive haloes can be used
o infer the redistribution of baryons o v er large scales regardless of
alaxy formation model implementation. The location of the TNG 

ducial run is in strong agreement with the vDMS model. The fiducial
un for SIMBA, ho we ver, appears to fall outside of the vDMS fit line,
nd is further discussed in Section 5 of this paper. Ho we ver, we find
onsiderable spread in � P / P DM at fixed f bar compared to vDMS,
hich can be attributed to the broader range of parameter variations

xplored in CAMELS: 

(i) Cosmolo gical parameter s : The left tw o panels in Figs 3 and 4
xplore the dependence of the � P / P DM –f bar relation on �m and σ 8 .
e remind the reader that f bar is normalized by �b / �m . For both

NG and SIMBA, the LH sets show a trend of higher � P / P DM (i.e.
ess suppression of power) at fixed f bar for higher values of �m in
igh-mass haloes. This implies that the same impact on the total
atter power spectrum (at k = 1 . 0 h Mpc −1 ) can be predicted by

imulations that yield different halo baryon fractions, in this case as
 consequence of the different response of feedback to changes in
m at fixed �b . We further note that the LH data points which stray

urthest from the vDMS model correspond to the lower end values
f the �m variation. The SIMBA 1P set more clearly shows the trend
f decreased suppression of the matter power spectrum as a function
f mean baryon fraction with increased value of �m in high-mass 
aloes. 
here is also a visible, albeit less pronounced, trend for σ 8 , where
 P / P DM becomes more ne gativ e (i.e. stronger suppression of power)

t fixed f bar for higher values of σ 8 . Overall, the non-linear response
f the fiducial galaxy formation model to variations in cosmology 
ppears to explain a significant fraction of the scatter in the vDMS
elation seen for SIMBA and TNG. 

(ii) Supernova feedback parameters : The middle panels of Figs 3 
nd 4 explore the dependence of the vDMS relation on systematic
ariations of the mass loading factor and speed of galactic winds
riven by stellar feedback (parameters A SN1 and A SN2 , respectively). 
n TNG, there is indication for simulations clustering around 
 P / P DM ∼ 0 and f bar ∼1 for higher values of A SN1 and A SN2 ,

orresponding to weaker o v erall impact of feedback owing to the
uppression of black hole growth and therefore AGN feedback. We 
nd qualitatively similar trends in SIMBA for variations in A SN2 ,
MNRAS 526, 5306–5325 (2023) 
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Figure 3. Suppression of the matter power spectrum, � P / P DM , as a function of mean baryon fraction of high-mass haloes, f bar ( M halo > 13 . 5) . The blue line 
is the fitting function of vDMS for a halo definition of 200c (200 times the critical density of the Universe), with the grey-shaded region indicating 1 per cent 
variation in � P / P DM . Each panel shows the 1P set o v erlaid on the LH set, colour coded by the value of each of the six parameters. We remind the reader that 
all six parameters are varied simultaneously in the LH set, while only one parameter is varied in the 1P set. The middle top panel shows additional results from 

the CV simulation set, where all six parameters are constant and only the initial conditions are varied. The fiducial realization is indicated by the cyan star. We 
find that � P / P DM increases for higher values of f bar , meaning that there is less suppression of the matter power spectrum in simulations where feedback is less 
ef fecti ve at removing gas from haloes. Data points fall generally along the vDMS model, with large scatter owing to broad parameter variations and CV. 

Figure 4. Same as Fig. 3 but for the TNG LH and 1P simulation sets. The TNG sets produce a smaller range of variation in � P / P DM and f bar compared to the 
SIMBA sets and are in closer agreement with the vDMS model than SIMBA. The location of our TNG fiducial realization (cyan star) along the vDMS model is 
consistent with the location of the original IllustrisTNG simulations in the vDMS study. 
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ith a clear trend in the 1P set showing weaker suppression of
he power spectrum and higher f bar with the increase of galactic 
ind speed due to stellar feedback. Decreasing the strength of stellar

eedback parameters (indicated by dark purple points) tends to yield 
ore ne gativ e � P / P DM v alues and correspondingly lo wer f bar (i.e.

tronger impact). This displaces realizations roughly along the vDMS 

elation but with increasing scatter. 
(iii) AGN feedback parameters : The right two panels of Figs 3 

nd 4 show the impact of AGN feedback parameter variations in the
DMS relation. In this case, the large range of both � P / P DM and
 bar v alues in SIMBA allo ws for a clear depiction of the stronger
ependence in AGN parameters along the vDMS relation. The 
IMBA 1P set, in particular, shows that stronger AGN feedback 

eads to both lo wer v alues of � P / P DM and lower f bar , indicating more
f ficient e v acuation of gas from haloes and stronger suppression of
otal matter clustering. The trend is also present in TNG, more so in
 AGN2 than in A AGN1 (as expected from Figs 1 and 2 ), albeit less clear
ue to the tight assembling of the TNG data points along a smaller
ange of the vDMS model. 

(iv) Cosmic variance : In order to examine how CV affects the 
redicted variation of � P / P DM as a function of f bar , the top middle
anel of Figs 3 and 4 o v erlay the results from the CAMELS
V sets corresponding to 27 realizations of the fiducial TNG and 
IMBA models using different initial conditions (red triangles). For 
NG, the CV set yields roughly similar range in average baryon 

raction of massive haloes as the entire LH set, indicating that 
tochastic v ariations o wing to the small CAMELS volumes and 
orrespondingly low number of massive haloes play an important 
ole. None the less, the TNG CV simulations roughly follow the 
DMS relation. The SIMBA CV set also yields a wide range of
 P / P DM and f bar values, but in this case suggesting a systematic

f fset relati ve to the vDMS model. 

We can quantify the impact of CV on the predicted suppres-
ion of matter clustering as the root mean square variation in 
 P / P DM relative to the mean: 

cv ≡ σcv 

| p cv | , (7) 

ith p cv ≡ � P / P DM for the CV set and 

2 
cv = 

1 

n 

n ∑ 

i = 1 

(
p i cv − p cv 

)2 
, (8) 

here n = 27 realizations and p cv represents the average of p cv over
he CV set. Evaluating equation ( 7 ) for k = 1 . 0 h Mpc −1 gives δcv =
.192 for SIMBA, and δcv = 0.357 for TNG, indicating that there is
onsiderable variation due to CV alone. 

The considerable spread of CAMELS predictions relative to the 
DMS model shown in this section provides motivation for the 
achine-learning experiments described in Section 2.4 . Given the 

arger data set in CAMELS with broader variations in feedback and 
osmology compared to previous libraries of power spectra, it is 
ossible that the vDMS model relating halo baryon fraction and 
uppression of matter clustering is not general enough to include 
very plausible feedback model. For example, we later examine the 
riginal SIMBA model against the vDMS relation and find that 
IMBA does not fall within 1 per cent of the vDMS fit, as shown

n Fig. 12 . Ho we ver, it is also possible that having smaller volumes
hich are significantly affected by CV as compared to the data set in
DMS, along with the lack of haloes of mass ∼10 14 M �, may explain
he disagreement between our results and the vDMS model. These 
esults moti v ate us to explore the relation between � P / P DM and halo
aryon fraction with a machine-learning approach, where we can 
xtract information from a broader halo mass range to impro v e the
ccuracy of predictions for the impact of baryonic physics on the
otal matter power spectrum. 

 ESTIMATING  THE  IMPACT  OF  FEEDBACK  

N  MATTER  CLUSTERING  WITH  MACHINE  

EARNING  

 major goal of this work is to show that machine learning can be
sed to extract information from the full range of halo masses in order
o estimate the suppression of the matter power spectrum by baryonic
rocesses all the way to the non-linear regime. In this section, we
iscuss the results of training an RF regressor to estimate the impact
f feedback on the clustering of matter using the LH simulation sets
n CAMELS, which vary simultaneously cosmological and feedback 
arameters (Section 2.1 ). The general setup of our experiments is
escribed in Section 2.4 . 

.1 Extracting information across the halo mass range with RF 

 egr ession 

ig. 5 shows the results from training an RF regressor on different
nput features to estimate the suppression of power � P / P DM at k =
 . 0 h Mpc −1 . We begin by training an RF with f bar ( M halo > 13 . 5) as
he only training feature, in analogy with the information used by
he vDMS fitting function. Haloes of mass ∼10 13.5 M � are only
vailable for ∼700 out of 1000 LH realizations for each of TNG and
IMBA, limiting the size of the training set. In this first experiment,

he RF is only able to predict ∼60 and ∼50 per cent of the variation of
 P / P DM in TNG and SIMBA, respectively, with the predicted versus

rue values of � P / P DM shown by the green data points in the left
anels of Fig. 5 . Next, we add the number of high-mass haloes N halo 

orresponding to the measured f bar ( M halo > 13 . 5) as an additional
nput feature, with results indicated by the orange data points. In
his case, the RF predictions impro v ed by ∼5 per cent in TNG and

20 per cent for SIMBA. We then incorporate information from 

aloes across the full mass range by introducing the baryon fraction
 bar ( M 

j 
halo ) and the corresponding number of haloes N halo within each

alo mass bin (see Section 2.4 ), with results shown by the blue data
oints. In this case, we can use the full LH sets of CAMELS for
raining and testing since we are not limited by the availability of
igh-mass haloes. With these additional features using information 
rom a range of halo masses, the RF predicted ∼ 75 per cent of the
ariation in � P / P DM at k = 1 . 0 h Mpc −1 in TNG and ∼ 82 per cent
IMBA, significantly improving upon the original results. 
As stated in Section 2.4 , one advantage of the RF is that it provides

ome level of interpretability by means of the ‘feature importance’ 
ttribute. The right panels of Fig. 5 display the relative importance
ssigned to each feature by the trained RF on the test set for TNG
top panel) and SIMBA (bottom panel). We stress that this ranking is
ased on the frequency with which the features are used by each tree
n order to predict the target variable, and it is possible for more than
ne feature to hold similar, correlated information but be ranked 
ifferently by the RF. Interestingly, the RF ranked f bar in haloes 
ith mass M halo = 10 10.5 –10 11.0 M � as the most important feature

o predict the suppression of power � P / P DM at k = 1 . 0 h Mpc −1 in
NG. Furthermore, we see that the RF ranked several features across

he mass ranges as important predictors of � P / P DM in SIMBA. These
eature importance results reveal that the RF was able to extract
aluable information across a range of halo masses. 
MNRAS 526, 5306–5325 (2023) 
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Figure 5. Results from different RF experiments. We create an 80/20 train/test split of the LH data sets to predict � P / P DM at k = 1.0 for TNG (top panel) and 
SIMBA (bottom panel). The left panels show the predicted target values compared to the true target values as given by the test sets in CAMELS, where the red 
line indicates a perfect one-to-one relation. The green data points correspond to predictions by an RF trained only on the baryon fraction of massive haloes, 
f bar ( M halo > 13 . 5), the orange data points show results for an RF trained on f bar ( M halo > 13 . 5) as well as the number N halo of massive haloes, while results 

from training an RF on f bar ( M 

j 
halo ) and N halo for halo mass bins j spanning the full mass range are shown in blue. The right panels show the feature importances 

corresponding to the blue data points in the left panel (training on f bar ( M 

j 
halo ) and N halo ), indicating the relative rank ordering of importance (from 0.0 to 1.0) 

given to each training feature by the RF. Predictions improve by providing training data across the full range of halo masses. 
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.2 RF predictions in the highly non-linear regime 

n the previous subsection, we have established that training the RF
n features from a range of halo masses impro v es the predictions
or � P / P DM in the linear regime compared to using f bar ( M halo >

3 . 5) as a training feature alone. We now exploit the same method-
logy to extend our predictions into the highly non-linear regime
y repeating our experiments at a range of scales, predicting
 P / P DM at k = [1 , 5 , 10 , 20] h Mpc −1 . Fig. 6 provides a summary of

erformance scores for these experiments using the LH simulation
ets for TNG (squares) and SIMBA (circles). We also performed
dditional experiments using the two LH data sets combined, which
e refer to as ‘TNG + SIMBA’ (diamonds). Descriptions of the

coring metrics can be found in Section 2.4 . The top panels in Fig. 6
how the R 

2 scores and the bottom two panels show the RMSE
cores normalized by the IQR. We normalize the RMSE by the IQR
n order to account for the variation in the range of � P / P DM , which
epends on the k value; the range of � P / P DM increases as we mo v e
o non-linear regimes. In addition to presenting results at a range of
cales for each training set, Fig. 6 compares the predictions based on
 bar ( M halo > 13 . 5) alone (right panels) versus providing the baryon
raction f bar ( M 

j 
halo ) in different halo mass bins (left panels). Results

ased on baryon fractions alone are shown in orange while results
NRAS 526, 5306–5325 (2023) 

s  
hat also incorporate the corresponding number of haloes N halo are
hown in blue. 

Training on f bar ( M 

j 
halo ) and N 

j 

halo impro v ed the prediction of
 P / P DM for both TNG and SIMBA on all scales k = 1.0–20 h Mpc −1 

s measured by the R 
2 and RMSE/IQR scores (Fig. 6 ). For TNG, we

chieved the highest R 
2 score of all experiments at k = 5 h Mpc −1 ,

ith R 
2 = 0 . 923 (consistent with the lowest RMSE/IQR score).

n other words, the RF was able to account for approximately
2 per cent of the variation in the suppression of the matter power
pectrum due to feedback using f bar ( M 

j 
halo ) and N 

j 

halo as training
eatures. This represents ∼40 per cent impro v ement o v er training on
 bar ( M halo > 13 . 5) at k = 1 . 0 h Mpc −1 and � 20 per cent impro v e-
ent o v er training on f bar ( M 

j 
halo ) and N 

j 

halo at k = 1 . 0 h Mpc −1 . The
rained RF also shows very good performance down to smaller
cales, with R 

2 = 0 . 85–0.9 at k = 10–20 h Mpc −1 when training
imultaneously on the baryon fraction and number of haloes in
ifferent mass bins. Similar results are obtained for SIMBA, also
erforming better at k = 5–20 h Mpc −1 compared to larger scales,
ith R 

2 scores slightly lower than TNG: R 
2 ≈ 0 . 8 − 0 . 85 at k =

–20 h Mpc −1 . Remarkably, while the vDMS model can only predict
 P / P DM for a given average baryon fraction of massive haloes on

arge scales k < 1 h Mpc −1 , our RF regressor performs better on
cales where the impact of feedback on the matter power spectrum
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Figure 6. Performance scores for all RF experiments predicting � P / P DM at four different scales, k = [1 , 5 , 10 , 20] h Mpc −1 . The orange dashed lines connect 
data points showing scores for an RF trained on average baryon fractions f bar , while the blue solid lines connect those where both f bar and the number of haloes 
N halo are used as training features. We show results for three different data sets: the TNG LH set (squares), the SIMBA LH set (circles), and the two LH sets 
combined, labelled ‘TNG + SIMBA’ (diamonds). Left panels correspond to training on features from a range of halo masses, f bar ( M 

j 
halo ), while the right panels 

correspond to training on high-mass haloes only, M halo > 10 13.5 M �, as described in Section 2.4 . We report R 
2 scores (top panel) and RMSE scores normalized 

by the IQR of the respective data set (bottom panel); higher R 
2 scores and lower RMSE/IQR scores conv e y an impro v ed performance. We obtain higher scores 

when training on f bar ( M 

j 
halo ) and N halo for a range of halo masses at all scales compared to training on high-mass haloes only, and the highest scores occur in 

the highly non-linear regime at k ∼ 5–10 h Mpc −1 , meaning that important information can be extracted from a range of halo masses in the non-linear regime. 
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ecomes the highest. The strongest suppression of power occurs at 
oughly k = 10 h Mpc −1 in SIMBA and k = 20 h Mpc −1 in TNG
or their fiducial models, and the RF is able to account for ∼80–
5 per cent of the � P / P DM variation on these scales. 

Fig. 7 illustrates in more detail the predicted results versus true 
alues of � P / P DM when training an RF regressor on different input
eatures at k = 5 h Mpc −1 for the TNG (top panel) and SIMBA
bottom panel) LH sets. The highest R 

2 score was obtained at k =
 h Mpc −1 for TNG using f bar ( M 

j 
halo ) and N 

j 

halo as training features,
hich corresponds to the tighter distribution of blue data points along 

he one-to-one line of perfect prediction in the top left panel, with
educed scatter compared to the prediction based on high-mass haloes 
lone (orange data points). We find similar trends for SIMBA, with
n apparent increase in scatter relative to TNG as expected from the
ower R 

2 scores. Interestingly, the feature importance analysis (right 
anels) indicates that the number of haloes in the low-mass range
 halo = 10 10.5 –10 11 M � is contributing significantly to impro v e the
 P / P DM predictions. 

.3 Interpretation of feature importances 

omparing the feature importances shown in Figs 5 and 7 for k = 1 . 0
nd 5 h Mpc −1 , respectively, it appears that the most informative
nput features vary with scale. We further investigate the physical 
MNRAS 526, 5306–5325 (2023) 
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Figure 7. Similar to Fig. 5 but for results at k = 5 . 0 h Mpc −1 . The left panels show the predicted versus true � P / P DM values for RF regressors trained on 
f bar ( M halo > 13 . 5) and N halo (orange) and trained on f bar ( M 

j 
halo ) and N 

j 
halo (blue), both at k = 5 h Mpc −1 . For comparison, we also show the results using only 

f bar ( M halo > 13 . 5) at k = 0 . 5 h Mpc −1 as in Fig. 5 (green). The right panels show the feature importances when training on f bar ( M 

j 
halo ) and N 

j 
halo . Going to 

non-linear regimes the range of the target value � P / P DM increases, enabling more accurate predictions. The highest ranked feature at k = 5 . 0 h Mpc −1 is N 

j 
halo at 

M halo = 10 10.5 –10 11 M �, meaning that the number of low-mass haloes is highly informative for estimating the power at 1-Mpc length scales. 
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roperties that inform the prediction of � P / P DM by the RF in
ig. 8 , where we provide a summary of the relative importance
f the f bar ( M 

j 
halo ) features (diamonds) and N 

j 

halo features (squares)
orresponding to different halo mass bins when predicting � P / P DM at
 given scale k . The ranking of features for each k -value is indicated
y the colour scale, which shows the log of the fractional importance
ssigned by the RF. The most important ranked feature at each k -
alue is further outlined in red. While the RF appears to be learning
rom the baryon fractions and abundances of haloes across the halo
ass range, there are some interesting trends that are worth noting.
he least informative features for both TNG and SIMBA correspond

o the most massive haloes ( M halo ∼ 10 14 M �), which is in contrast
o earlier work identifying the baryon fraction in groups and clusters
s a primary predictor of � P / P DM on scales k < 1 h Mpc −1 (vDMS).
nsurprisingly, the small simulated volumes in CAMELS contain
 small number of massive haloes, which are thus not optimal
s predictors of � P / P DM . In contrast, the RF assigns significant
mportance to f bar ( M 

j 
halo ) and N 

j 

halo in low- to intermediate-mass
aloes in the range M halo ∼ 10 10.5 –10 12.5 M � for all k -values analysed.
Interestingly, the number of haloes N 

j 

halo in the mass range M halo 

10 10.5 –10 11 M � is among the top features identified by the RF
cross different scales (see also Fig. 7 ). We explore further the
ignificance of this feature in Fig. 9 , where we show � P / P DM at
 = 5 h Mpc −1 as a function of N 

j in this halo mass range for
NRAS 526, 5306–5325 (2023) 

halo 
he LH sets of TNG (left panel) and SIMBA (right panel). We find
hat there is a clear correlation between � P / P DM and the number
f low-mass haloes for both galaxy formation models, as expected
iven that N 

j 

halo is identified by the RF as one of the most predictive
eatures. Physically, a plausible explanation for this correlation is
hat N 

j 

halo for low-mass haloes is a strong tracer of �m , as indicated
y the colour scale, and �m itself is one of the main parameters
ri ving large v ariations in � P / P DM at all k -v alues in CAMELS (see
igs 1 , 4 , and 3 ). This is consistent with P ande y et al. ( 2023 ),
hich find a simple model is also able to capture information about
 P / P DM gi ven f bar in lo w-mass haloes and �m . While increasing

he value of �m increases systematically the number of haloes at
ll masses (e.g. Villaescusa-Navarro et al. 2021c ), we note that the
orrelation between � P / P DM and N 

j 

halo worsens for higher halo mass
ins, which are thus often assigned lower feature importance by the
F. This can be explained by the number of haloes in higher mass
ins being more sensitive to CV and therefore not as good predictors
f cosmology for small simulated volumes. On the other hand, the
owest halo mass bin considered here, M halo < 10 10.5 M �, becomes
nresolved in terms of the minimum number of dark matter particles
er halo for the higher �m values in CAMELS, as depicted in fig. 8 of
illaescusa-Navarro et al. ( 2021c ). The haloes in the lowest mass bin

n this study have less than 200 dark matter particles. We therefore
onclude that N 

j in the halo mass bin M halo ∼ 10 10.5 –10 11 M � is
halo 
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Figure 8. Feature importance summary for RF models trained on 
f bar ( M 

j 
halo ) and N halo to predict � P / P DM at k = [0 . 5 , 1 , 5 , 10 , 20] h Mpc −1 

for the TNG (top panel) and SIMBA (bottom panel) models. For each 
halo mass bin and k -value, the relative importance of the corresponding 
f bar ( M 

j 
halo ) (diamonds) and N halo (squares) features is indicated by the colour 

scale. The highest ranked feature for each k -value is outlined in red. There 
is no clear trend of importance in features across scales, suggesting feature 
importance results are specific to each scale. 
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he least sensitive to CV and it is a strong predictor of � P / P DM in
art because N 

j 

halo informs the RF about the variation of �m in a large
umber of well-resolved haloes. 
In order to further examine the significance of tracers of �m in 

ow-mass haloes as predictors of � P / P DM we look specifically at the
ependance of the � P / P DM –f bar relation on �m in the halo mass
ange M 

j 
halo = 10 10 . 5 –10 11 M �. Results are shown in Fig. 10 . Again,

he small dots represent the LH sets while the large circles are 1P
ets. We see an inverted trend compared to the vDMS relation which
olds for high-mass haloes and there is still a clear dependence on
m . These behaviours (increased suppression with higher f bar and 

ower �m ) are consistent with results in the �m panels of both Fig. 1 ,
here we see stronger suppression of the matter power spectrum with 
igher values of �m , and of Fig. 2 , where we see that f bar increases
s �m decreases in low-mass haloes. We again remind the reader that 
ur computed f bar are normalized by �b / �m . Therefore, lowering 
he values of �m at a fixed �b results in a non-trivial effect on the
uppression of power. 
.4 Mar ginalizing o v er galaxy formation physics 

 key advantage of CAMELS over more standard cosmological 
imulations performed with a single fiducial galaxy formation model 
s the ability to train machine-learning algorithms to learn funda- 
ental properties of galaxies and the Universe while marginalizing 
 v er uncertainties in subgrid physics (e.g. Villaescusa-Navarro et al.
021a , b ; Nicola et al. 2022 ; Villanue v a-Domingo et al. 2022 ; Shao
t al. 2022a , b ; Perez et al. 2023 ). When training an RF on the LH
imulation set of either TNG or SIMBA to predict � P / P DM given
alo baryon fractions as input features, we are at the same time
arginalizing o v er uncertainties in physical processes represented 

y the parameter variations introduced in a given galaxy formation 
odel. 
Ho we ver, e v aluating the robustness of the ML model to uncer-

ainties in galaxy formation physics should also consider different 
mplementations and not just variations of parameters within a given 
ubgrid physics implementation. We thus perform a more stringent 
est of robustness by training the RF on the full LH set of one galaxy
ormation model (either SIMBA or TNG) and then testing on the
ull LH set of the other model. Fig. 11 shows the predicted versus
rue values of � P / P DM at k = 5 h Mpc −1 when training an RF using
 bar ( M 

j 
halo ) and N halo from SIMBA and testing on TNG (top panel)

nd when training on TNG and testing on SIMBA (bottom panel).
he top panel of Fig. 11 shows that the RF trained on SIMBA can
xplain ∼80 per cent of the variation of � P / P DM at k = 5 h Mpc −1 

hen tested on TNG, suggesting that the RF has found a relation
etween halo baryon fractions and suppression of matter clustering 
hich is relatively robust to galaxy formation model implementation. 
n the other hand, the bottom panel of Fig. 11 shows that the RF

rained on TNG is less robust when tested on SIMBA, and can only
xplain ∼70 per cent of the variation in � P / P DM predicted by the
IMBA model. In this case, we can see that the predicted � P / P DM is
learly biased high (i.e. less ne gativ e) when training on TNG and
redicting on SIMBA, implying that the inferred suppression of 
atter clustering is underpredicted given the halo baryon fractions 

n SIMBA and the connection to � P / P DM learned from TNG. As
xpected, we see a bias in the opposite direction when training
n SIMBA and predicting on TNG (top panel), o v erpredicting the
uppression of power at k = 5 h Mpc −1 . 

As seen in Figs 3 and 4 , the o v erall range of variation in � P / P DM is
ignificantly larger in the SIMBA LH set compared to the TNG
H set. Given that the RF cannot predict values outside of the

ange of the training data, this can explain why the RF trained on
NG is less robust relative to galaxy formation implementation and 
hows a stronger bias when tested on SIMBA. The biased estimation
f � P / P DM can thus be partially attributed to the RF learning the
imits of the range of variation in the training data. None the less,
ur results suggest that the TNG and SIMBA models may predict
if ferent � P / P DM e ven when implementing parameters that yield
imilar f bar ( M 

j 
halo ), implying a non-unique relation between halo 

aryon fractions and impact on matter clustering. 

.5 Supplementary studies 

n order to further investigate the performance of training the RF
n halo abundances, we performed several supplementary stud- 
es comparing our fiducial models to new models which include 
osmological parameters as training features. The results of these 
xperiments are presented in Appendix A , where we conclude that
ur fiducial model, utilizing f bar ( M 

j 
halo ) and N 

j 

halo across the full
ange of halo masses, extracts important cosmological information 
MNRAS 526, 5306–5325 (2023) 
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Figure 9. Correlation between power spectrum suppression � P / P DM and the number N halo of haloes in the mass range M 

j 
halo = 10 10 . 5 –10 11 M � at k = 

5 h Mpc −1 for TNG (left panel) and SIMBA (right panel), colour coded by �m . The number of low-mass haloes N halo (highest ranked feature at k = 5 h Mpc −1 ) 
is a strong tracer of �m in CAMELS and a good predictor of � P / P DM . 

Figure 10. Similar to Figs 3 and 4 but here we look only at the dependence of the � P / P DM –f bar relation on �m for the f bar ( M 

j 
halo ) in the range M 

j 
halo = 10 10 . 5 –

10 11 . Again, the small dots represent the LH sets while the large circles are 1P sets. We see an inverted trend compared to the vDMS relation which holds for 
high-mass haloes, but there is still a strong dependence on �m . 
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s it is in close agreement (within 1 per cent) with a model trained on
 bar ( M 

j 
halo ) and �m . Ho we ver, in the case of high-mass haloes, halo

bundance is not a sufficient proxy for cosmological information.
e also found that limiting the study to intermediate mass haloes

esulted in comparable results to our fiducial model when the RF
as also directly provided �m as a training feature in addition to the
 bar of intermediate mass haloes. 
Based on a suite of simulations of substantially larger volumes,

DMS identified a tight relationship between mean baryon fraction
n massive haloes and baryonic power spectrum suppression at
 < 1 h Mpc −1 . While some degree of correlation between these
uantities is expected, as we find here, the extremely small scatter in
he observed relationship was remarkable given the variety of galaxy
ormation models compared by vDMS. Since we observed some hints
t a deviation from the vDMS relationship in CAMELS, particularly
or the parameter variations based on the SIMBA model, we perform
 direct comparison of the original 100 h 

−1 Mpc SIMBA volume
o the vDMS relation in Fig. 12 . Here, we show the new SIMBA
ata points as circles, while the measurements considered in vDMS
re shown as triangles. We hav e v erified our pipeline by running it
NRAS 526, 5306–5325 (2023) 

h  
n IllustrisTNG-300, achieving excellent agreement with the vDMS
easurements. As can be seen, SIMBA constitutes a considerable

utlier and does not fall within the 1 per cent interval around the
DMS fit. The only other simulation scattering that far is Illustris
hich, ho we ver, does not reproduce the observed baryon fraction. It

s known that the feedback prescription in SIMBA is unique in its
bility to re-distribute baryons across large scales (Borrow et al. 2020 ;
ebhardt et al. 2023 ), which could explain the observed deviation

rom the vDMS relation. Ho we ver, SIMBA generally does not do
orse in reproducing observational relationships than the other major
ydrodynamic simulations. Thus, these results suggest the possibility
hat the vDMS relation only holds in a subspace of simulations while
here exists at least one dimension along which deviations occur. 

 SUMMARY  AND  DISCUSSION  

n this paper, we have investigated how baryonic physics affects the
lustering of matter relative to N -body simulations and its relation
o the baryonic content of haloes using thousands of cosmological
ydrodynamic simulations from the CAMELS project (Villaescusa-
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Figure 11. Similar to Fig. 7 but training an RF on the entire LH set of one 
galaxy formation model and testing on the entire LH set of the other for both 
TNG and SIMBA. We note higher prediction score when training on SIMBA 

and testing on TNG ( R 
2 = 0.814) compared to training on TNG and predicting 

on SIMBA ( R 
2 = 0.698), which can be attributed to SIMBA’s wider range 

of � P / P DM values. The RF tends to underpredict � P / P DM when trained on 
SIMBA and o v erpredict � P / P DM when trained on TNG due to variations 
in feedback models which suggests that care must be made if applying this 
model to data where feedback is not precisely known. 
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avarro et al. 2021c ). In the first part of the paper, we examined
o w v ariations of indi vidual cosmological parameters ( �m and σ 8 )
nd feedback parameters (controlling the efficiency of large-scale 
utflo ws dri ven by SNe and AGN) impact the total matter power
pectrum, the mean halo baryon fraction as a function of halo mass,
nd, moti v ated by vDMS, the connection between the suppression of
lustering, � P / P DM , and the mean baryon fraction of massive haloes.

The small simulated volumes in CAMELS complicate a direct 
omparison between our results and vDMS, where in addition to CV
ffecting � P / P DM we also lack haloes massive enough to evaluate the
ean baryon fraction under the same conditions. Therefore, in the 

econd part of the paper, we have presented a set of machine-learning
xperiments as an extension to what was done in vDMS, training an
F regressor on features including the mean baryon fraction and 

ntroducing the abundance of haloes across the mass range 10 10 ≤
 halo / M � h 

−1 < 10 15 to predict � P / P DM from linear to highly non-
inear scales ( k = 1.0–20.0 h Mpc −1 ). By utilizing halo abundance
s a training feature, the RF learns about the CV present in the
imulations without explicitly knowing the underlying cosmology. 

Throughout the paper, we have made use of the CAMELS 

imulation suites performed with the TNG (Marinacci et al. 2018 ; 
aiman et al. 2018 ; Nelson et al. 2018 ; Springel et al. 2018 ; Pillepich

t al. 2018b ) and SIMBA (Dav ́e et al. 2019 ) models to understand
he dependence of results and the robustness of the trained machine- 
earning models to changes in the specific galaxy formation physics 
mplementation. 

Our main findings can be summarized as follows: 

(i) In agreement with previous work (e.g. van Daalen et al. 2011 ;
hisari et al. 2018 , 2019 ; Villaescusa-Navarro et al. 2021c ), we find

hat baryonic physics can profoundly affect the total matter power 
pectrum all the way to scales k < 0 . 5 h Mpc −1 , and the magnitude of
his effect is highly dependent on the details of the galaxy formation
mplementation and variations of cosmological and astrophysical 
arameters. 
(ii) The suppression of power, | � P / P DM | , increases systematically

ith decreasing �m at fixed �b , with baryons contributing a higher 
raction of the total matter content and feedback more efficiently 
preading matter o v er larger scales relativ e to N -body simulations.
arying σ 8 at fixed galaxy formation physics does not drive system- 
tic variations in � P / P DM when measured on the small (25 h 

−1 Mpc ) 3 

olumes simulated in CAMELS. 
(iii) Increasing AGN feedback efficiency generally drives higher 

uppression of matter clustering, in agreement with previous work 
e.g. vDMS; Nicola et al. 2022 ), with the strongest effect seen for
igh-speed jets in SIMBA which are able to spread a substantial
mount of baryons o v er scales of several Mpc (Borrow et al. 2020 ;
ebhardt et al. 2023 ). The qualitati ve ef fect of stellar feedback on
atter clustering is more dependent on galaxy formation model, 
hich can either suppress or enhance power on different scales 
epending on the interplay between stellar and AGN feedback. 
tronger stellar feedback often results in weaker o v erall suppression
f matter clustering by suppressing black hole growth and therefore 
he ef fecti ve ef ficiency of AGN feedback (v an Daalen et al. 2011 ;
icola et al. 2022 ; Gebhardt et al. 2023 ). 
(iv) Halo baryon fractions f bar are very sensitive to galaxy forma- 

ion model, with TNG producing systematically more baryon-rich 
aloes compared to SIMBA for a broad range of parameter variations. 
igher AGN feedback efficiency generally decreases halo baryon 

ractions, but the extent of the effect and the affected halo mass range
epend on model details. Increasing the strength of stellar feedback 
an either decrease or increase the baryon fraction depending on the
on-linear coupling of stellar feedback and black hole growth. Halo 
aryon fractions are also very sensitive to changes in cosmology. 
ncreasing �m (at fixed �b ) or σ 8 systematically decreases the baryon 
raction of haloes (normalized by �b / �m ), indicating a non-trivial 
esponse of feedback to changes in the amount of baryons relative to
ark matter and the growth history of haloes. 
(v) We find a broad correlation between the amount of suppression 

f the matter power spectrum � P / P DM and the baryon fraction
f massive haloes f bar , indicating that the feedback mechanisms 
esponsible for e v acuating gas from massive haloes also dominate
he impact of baryonic effects on matter clustering. These results are
n broad agreement with vDMS, but the thousands of simulations 
n CAMELS produce significantly larger scatter in the � P / P DM –
 bar relation. CV alone can significantly affect the matter power 
pectrum on our (25 h 

−1 Mpc ) 3 simulated v olumes, b ut the complex
rends seen for the impact of individual cosmological and feedback 
arameter variations on � P / P DM and f bar suggest that the vDMS
odel predicting � P / P DM given only f bar for massive haloes is not

eneral enough to include every plausible feedback model. 
(vi) Predicting the impact on matter clustering based only on the 
ean baryon fraction of massive haloes using the vDMS � P / P DM –
 bar relation is not possible given the broad range of galaxy formation
odels and the impact of CV in CAMELS. Ho we v er, we hav e

emonstrated that an RF regressor trained on CAMELS is able to
MNRAS 526, 5306–5325 (2023) 



5322 A. M. Delgado et al. 

M

Figure 12. Comparison of the power spectrum suppression in the original SIMBA simulation with the results from vDMS. The SIMBA data points are circles, 
while the measurements from vDMS are reproduced as triangles. We also show the fitting functions from vDMS as dashed lines as well as 1 per cent range 
of variations. 200c and 500c mass definitions are shown in different colours. The vertical error bars have been estimated by splitting the 100 h −1 Mpc SIMBA 

simulation into eight subvolumes. Statistical error bars on the horizontal axis are small ( ∼10 −3 as estimated using jack-knife), but there are somewhat larger 
systematic errors from the halo finding ( ∼10 −2 , as estimated by running the analysis with FOF and Rockstar). SIMBA appears to deviate from the best-fitting 
relation of vDMS. 
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xtract information from haloes across the full mass range 10 10 ≤
 halo /M � < 10 15 to estimate the suppression of the matter power

pectrum on scales k = 1.0–20 h Mpc −1 . We are thus not only
xtracting information from low-mass haloes but also predicting
 P / P DM in the highly non-linear regime, significantly extending

he range of scales k < 1 h Mpc −1 where the vDMS model can be
pplied. 

(vii) Using the mean halo baryon fraction and abundance in
ifferent halo mass bins as input features, the RF regressor was able
o account for ∼80–85 per cent of the � P / P DM variation occurring
n scales k = 10–20 h Mpc −1 where the impact of feedback on the
atter power spectrum becomes the highest. At k = 5 . 0 h Mpc −1 ,

ur best model was able to explain ∼92 per cent of the variance in
he suppression of power due to feedback when training on the TNG

odel. Ho we ver, the same model can only explain ∼70 per cent of
he variation in � P / P DM and tends to underpredict the suppression of

atter clustering when tested on the SIMBA simulations, indicating
NRAS 526, 5306–5325 (2023) 
hat the RF is only moderately robust relative to changes in the
nderlying galaxy formation implementation. Training on SIMBA
ncreases the robustness of the model owing to its larger range of
ariation in � P / P DM compared to TNG, but in this case the RF tends
o o v erpredict | � P / P DM | when tested on TNG. These results suggest
hat the lack of a universal relation between halo baryon fractions
nd impact on matter clustering and emphasize the need to construct
odels that are robust against assumptions in baryonic physics (e.g.
illaescusa-Navarro et al. 2021b ; Nicola et al. 2022 ; Shao et al.
022a ). 
(viii) The original SIMBA volume constitutes a considerable

utlier to the vDMS relation and does not fall within the 1 per cent
nterval around the vDMS fit. 

(ix) Our fiducial model, utilizing f bar ( M 

j 
halo ) and N 

j 

halo across the
ull range of halo masses, extracts important cosmological infor-
ation as it is in close agreement (within 1 per cent) with a model

rained on f bar ( M 

j 
halo ) and �m (Appendix A ). 
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A unique advantage of CAMELS relative to previous work is that 
t performs simulations for different baryonic physics implementa- 
ions and a broad range of cosmological and feedback parameter 
ariations, providing a data set sufficiently large to train machine- 
earning algorithms for a variety of applications (Villaescusa-Navarro 
t al. 2021c ). Ho we ver, an important limitation of CAMELS is the
mall volume of each simulation realization, L box = 25 h 

−1 Mpc , 
ith important implications for this work. Given the small box sizes,

he matter power spectrum is sensitive to the specific initial conditions
n each realization, and the impact of baryonic effects further depends 
n stochastic processes related to feedback operating on a limited 
umber of massive haloes. As a result, CV represents a challenge 
o infer the suppression of matter clustering � P / P DM given only the
aryon fraction of massi ve haloes. Pre vious works in CAMELS have
evised strategies to correct for the noise introduced by CV. When 
raining a neural network on electron density autopower spectra to 
redict �m , Nicola et al. ( 2022 ) constructed a CV parameter based
n the distribution of halo masses in each realization, improving the 
redictions significantly when introduced as an additional training 
eature. Thiele et al. ( 2022 ) used spectral distortion measurements 
o constrain baryonic feedback and applied a correction factor to the 
ompton-y distortion by comparing expected values from a simple 
alo model e v aluated for the halo mass function in each CAMELS
imulation compared to that of a standard halo mass function. In our
F experiments, introducing the number of haloes in each mass bin, 
 halo or N 

j 

halo , as input features (i.e. basically the halo mass function)
mpro v es the accurac y of the predictions significantly. The number
f low-mass haloes was one of the most predictive features identified 
y the RF, which can be understood as a strong tracer of �m (Fig. 9 ).
alo abundance further serves as a feature which provides the RF

lgorithm information about CV, in agreement to previous works. 
urthermore, CV in CAMELS is lo wer in lo w-mass haloes than
igh-mass haloes, which may account for the predicti ve po wer of
 

j 

halo in low-mass haloes. 
One final result that we found puzzling, was the inversion of the
 P / P DM –f bar relation and its dependence on �m in low-mass haloes.

t is unclear why a lower value in �m at a fixed �b would result in
igher f bar and increased suppression in the total matter spectrum in 
ow-mass haloes. The dependence on � P / P DM on baryonic feedback
n low-mass haloes will need to be further investigated in order to
horoughly explain these results. It will also be interesting to perform 

he RF training on a fixed, or more narrow range of �m to study how
ell the RF can really learn the dif ferent ef fects of baryonic feedback,
ut we leave this to a future study. 
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PPENDIX  A:  RESULTS  FROM  

UPPLEMENTARY  STUDIES  

n order to further investigate the performance of training the RF
n halo abundances, we performed several supplementary studies
omparing our fiducial models to new models which include cosmo-
ogical parameters as training features. The results for these can be
een in Fig. A1 . We continue to show the main results from this work
n orange and blue, as done in Fig. 6 , in order to provide a more clear
omparison to the supplementary studies. We find the following: 

(i) We introduced the training feature �m as a substitute to halo
bundance ( N halo or N 

j 

halo ). Scores for these results are shown in pur-
le in Fig. A1 . In the left panels, scores for training on f bar ( M 

j 
halo ) and

m (purple) and those for our fiducial model ( f bar ( M 

j 
halo ) and N 

j 

halo ,
lue) are within ≈ 1 per cent difference. This indicates that the RF
as able to extract important cosmological information given the

ull range of halo masses and halo abundances. Ho we ver, in the right
anel, we see that in the RF model trained on f bar ( M halo > 13 . 5) and
m resulted in ≈ 20 per cent on average improvement in scores

ompared to that trained on f bar ( M halo > 13 . 5) and N halo . This
NRAS 526, 5306–5325 (2023) 
ndicates that in the case of high-mass haloes in CAMELS, halo
bundance is not a sufficient proxy for cosmological information. 

(ii) We introduced σ 8 as a third training feature (i.e. models trained
n mean baryon content, �m and σ 8 ). There were no impro v ements
o the results from using σ 8 as an additional training feature and
esults are not shown in Fig. A1 in order to maintain visual clarity. 

(iii) We trained the RF on mean baryon content and σ 8 . The
erformance was poor compared to the models trained on mean
aryon content and �m and results are not shown in order to maintain
isual clarity. 

We further explored the relation between � P / P DM and mean
aryon content in a regime of more intermediate mass haloes.
ecause we are limited in the number of realizations with haloes
f mass M halo ≥ 10 13.5 M �, we repeated the additional RF studies
escribed abo v e, this time with f bar of M halo ∈ [10 12 –10 14 )M � as a
raining feature. We also created eight bins of M 

j 

halo ∈ [10 12 –10 14 ).
he results from training the RF on baryon content from intermediate
ass haloes can be compared to those using the full range of halo
asses. The scores from these results are shown in Fig. A1 . 

(i) We found that training the RF on the mean baryon content of
ntermediate mass haloes alone (red) resulted in significantly poorer
cores than training on either f bar ( M halo > 13 . 5) (right panels shown
n orange) or on the f bar ( M 

j 
halo ) of the full range of halo masses (left

anels shown in orange). 
(ii) The f bar of intermediate mass haloes and �m model (right

anels shown in green) resulted in significantly impro v ed per-
ormance of the RF ability to predict � P / P DM compared to the
 bar ( M halo > 13 . 5) and N halo model (right panels shown in blue).
mpro v ed scores av erage ≈ 33 per cent difference. The results for
his impro v ed model are comparable to those shown in green in
he left panels, which are for a model using �m and f bar ( M 

j 
halo ) for

he range of intermediate masses. This suggests that there is no
eaningful information to be extracted by binning intermediate halo
asses to obtain the mean baryon content per mass bin versus the
 bar av eraged o v er all intermediate mass haloes. Furthermore, our
ducial model (RF trained on f bar ( M 

j 
halo ) and N 

j 

halo from the full
ange of halo masses, shown in blue in the left panels) is only, on
verage, 6 per cent better than that trained on f bar of intermediate
ass haloes and �m , suggesting the latter is promising and worth

urther investigation as it is a simpler model. 
(iii) We further limited the halo mass range of intermediate mass

aloes to M halo ∈ [10 12 –10 13 )M � and repeated our experiments.
cores were on average ≈ 10 per cent worse than those discussed

n this section and results are not shown in order to maintain visual
larity. Ho we ver, this further demonstrates that there is important
nformation to be extracted from the baryon content of more massive
aloes. 
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Figure A1. Performance scores for additional RF experiments. Results from the main studies in this paper are still shown in blue and orange as in Fig. 6 . Models 
are trained on mean baryon fraction with some models having additional training features of halo abundance or �m as indicated in the legend. Left panel: Results 
shown in orange, blue and purple are for models trained on f bar ( M 

j 
halo ) of the full range of halo masses, while those shown in red and green are for f bar ( M 

j 
halo ) of 

intermediate mass haloes, M 

j 
halo ∈ [10 12 –10 14 ). Right panel: Results shown in orange, blue and purple are for models trained on f bar ( M halo > 13 . 5). Results 

shown in red and green are for those trained on f bar of M halo ∈ [10 12 –10 14 ). 
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