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Abstract. In this paper, we propose a conservative low rank tensor method to approximate nonlinear Vlasov solutions. The
low rank approach is based on our earlier work [17]. It takes advantage of the fact that the differential operators in the Vlasov
equation are tensor friendly, based on which we propose to dynamically and adaptively build up low rank solution basis by adding
new basis functions from discretization of the differential equation, and removing basis from a singular value decomposition
(SVD)-type truncation procedure. For the discretization, we adopt a high order finite difference spatial discretization together
with a second order strong stability preserving multi-step time discretization.

While the SVD truncation will remove the redundancy in representing the high dimensional Vlasov solution, it will destroy
the conservation properties of the associated full conservative scheme. In this paper, we develop a conservative truncation
procedure with conservation of mass, momentum and kinetic energy densities. The conservative truncation is achieved by
an orthogonal projection onto a subspace spanned by 1, v and v2 in the velocity space associated with a weighted inner
product. Then the algorithm performs a weighted SVD truncation of the remainder, which involves a scaling, followed by the
standard SVD truncation and rescaling back. The algorithm is further developed in high dimensions with hierarchical Tucker
tensor decomposition of high dimensional Vlasov solutions, mitigating the curse of dimensionality. An extensive set of nonlinear
Vlasov examples are performed to show the effectiveness and conservation property of proposed conservative low rank approach.
Comparison is performed against the non-conservative low rank tensor approach on conservation history of mass, momentum
and energy.

Key words. Low rank; high order SVD; Conservative truncation; Hierarchical Tuck decomposition of tensors; Mass and
momentum conservation; Vlasov Dynamics.

1. Introduction. The Vlasov-Poisson (VP) system is known as a fundamental model in plasma physics
which describes the dynamics of dilute charged particles due to self-induced electrostatic forces from a
statistical viewpoint. The numerical challenges of realistic Vlasov simulations include the high-dimensionality
of the phase space, features with multiple scales in time and in phase space, preservation of physical invariants,
among many others.

The Particle-In-Cell method employs a collection of sampled macro particles to represent the distribution
function and is widely used for the plasma simulations [4, 2]. On the other hand, such a method suffers the
inherent statistical noise, and hence may fail to accurately capture the physics of interest. For example, if
the resolution of the tail of the distribution function is desired, a noise-free grid-based deterministic method
is a better choice. Over the past two decades, the development of deterministic Vlasov solvers has attracted
lots of research interest, see e.g. [12]. Meanwhile, a conventional deterministic Vlasov simulation in a
realistic and high-dimensional setting is prohibitively expensive because of the curse of the dimensionality
and the associated huge computational and storage cost. Several dimension reduction techniques have been
developed in the literature to alleviate the curse of dimensionality for the Vlasov equation and other high-
dimensional partial differential equations (PDEs). One such example is the sparse grid approach [30, 33,
15], which can effectively reduce the computational complexity and is well-suited for the problems with
moderately high dimensions. For the Vlasov simulations, we mention the sparse grid semi-Lagrangian (SL)
method [24] and the sparse grid discontinuous Galerkin method [16, 31]. Recently, the tensor approach
emerges as a promising tool for feasible high-dimensional simulations. Such an approach aims to extract the
underlying low rank structure of the data with advanced tensor decomposition, potentially breaking the curse
of dimensionality. The popular tensor formats include the canonical polyadic (CP) format [21, 3, 20, 22],
Tucker format [32, 5], hierarchical Tucker (HT) format [19, 14], and tensor train (TT) format [28, 26, 27].
There are several pioneering works employing low rank tensor approach for nonlinear simulations, including
the low rank SL method in the TT format [23], a low rank method with the CP format based on the
underlying Hamiltonian formulation [7], a dynamical low rank method proposed in [9, 11] for which the
dynamical low rank approximation of the Vlasov solution is evolved on the low rank manifold using a
tangent space projection, and a dynamical tensor approximations for high dimensional linear and nonlinear
PDEs based on functional tensor decomposition and dynamical tensor approximation [6].

∗Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 70409. E-mail: weimath.guo@ttu.edu.
Research is supported by NSF grant NSF-DMS-1830838 and NSF-DMS-2111383, Air Force Office of Scientific Research FA9550-
18-1-0257.
†Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716. E-mail: jingqiu@udel.edu. Research

supported by NSF grant NSF-DMS-1818924 and 2111253, Air Force Office of Scientific Research FA9550-18-1-0257.

1



With the existing understanding of the low rank solution structure for the Vlasov dynamics, as well as the
observation that the differential operator in the Vlasov equation can be represented in the tensorized form, in
[17], we developed a low rank tensor approach to dynamically and adaptively build up low rank solution basis,
by adding new basis functions from discretization of the PDE and then removing basis from an singular value
decomposition (SVD)-type truncation procedure. In particular, we start from a low rank solution in a tensor
format and add additional basis by applying the well-established high order finite difference upwind method
coupled with the strong-stability-preserving (SSP) multi-step time discretizations [13]; the solutions are being
further updated by an SVD-type truncation to remove redundant bases. We further generalize the algorithm
to high-dimensional cases with the HT decomposition, which attains a storage complexity that is linearly
scaled with the dimension, overcoming the curse of dimensionality. An issue associated with the low rank
algorithm in [17] is the loss of mass conservation in the SVD truncation step. In fact, it is well-known that
the VP system conserves mass, momentum, and energy locally by respecting a set of macroscopic moment
equations. The high order finite difference scheme with an SSP multi-step time integrator can be shown to
locally preserve the macroscopic mass and momentum, i.e. when taking moments of the kinetic scheme, one
will arrive at a consistent and locally conservative discretization of the corresponding macroscopic equations.
Here “locally conservative” means that the scheme can be written in a flux difference form, where the fluxes
represent the amount of macroscopic quantities transported between neighboring computational cells. In
[25], it is pointed out that preserving local conservation laws of mass, momentum and energy is of much
more practical significance than global conservation of these invariants and posing more restrictions on the
numerical solution. However, the SVD truncation in the low rank algorithm would destroy local and global
conservation property of the original numerical scheme.

There exist several techniques developed to correct the conservation errors for low rank methods in
various settings. In [23], the low rank solution is rescaled so that the total mass is conserved, and a similar
mass correction technique is proposed in [29] for a dynamical low rank method. In [1], moment fitting is
applied to the low rank solution so that the corrected moments match those solved from the macroscopic
fluid equations. In [10], a dynamical low rank method with Lagrangian multipliers is developed to improve
conservation properties for the total mass and momentum as well as local projected moment equations. More
recently, along the same line, the truly local conservation of mass, momentum, and energy is attained for
the dynamical low rank method [8]. The idea is to fix certain basis functions in the dynamical low rank
approximation and employ a modified Petrov–Galerkin formulation which is compatible with the remainder
of the approximation.

Inspired by the recent work in [8], in this paper, we develop a novel locally mass, momentum and
energy conservative truncation algorithm under the framework of the low rank tensor approach [17]. In
particular, we apply an orthogonal projection operator to the low rank solution in a weighted inner product
spaces of phase variables, to extract exactly the first few moments (i.e. the mass, momentum and kinetic
energy density functions) of the low rank solution after the “add basis” step; a weighted SVD truncation
is then applied to the remainder of the projection. Such a truncation is called “conservative truncation”
throughout the paper. We further develop the conservative truncation algorithm for the 2D2V VP system
with the HT tensor format using a dimension tree that separates the spatial and phase variables. For high
order HT tensors, an additional projection step is needed, after the high order SVD (HOSVD) truncation
of the remaining term, to ensure conservation of macroscopic variables from the first few moments. The low
rank tensor algorithm with the conservative projection is theoretically proved and numerically verified to be
locally mass and momentum conservative. The proposed methodology can be extended to the full 3D3V VP
model with the HT format, and we leave it for the future investigation.

This paper is organized as follows. In Section 2, we introduce the kinetic Vlasov model and the cor-
responding macroscopic conservation laws. In Section 3, we first review the low rank tensor approach for
the 1D1V Vlasov equation in Section 3.1; then we introduce the orthogonal projection at the continuous
level to extract exactly the first few moments of Vlasov solution in Section 3.2; we further extend such an
orthogonal projection to the discrete level and develop the main conservative truncation algorithm in Section
3.3. In Section 4, we develop the conservative truncation algorithm for the 2D2V Vlasov model, and show
that the low rank algorithm locally conserves the mass and momentum at the macroscopic level. In Section
5, we present an extensive set of 1D1V and 2D2V numerical results to demonstrate the effectiveness and the
conservation properties of the low rank tensor algorithm. We conclude the main contributions of the paper
and comment on future directions in Section 6.
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2. The kinetic Vlasov model and the corresponding macroscopic systems. We consider the
VP system

∂f

∂t
+ v · ∇xf + E(x, t) · ∇vf = 0, (2.1)

E(x, t) = −∇xφ(x, t), −4xφ(x, t) = ρ(x, t)− ρ0, (2.2)

which describes the probability distribution function f(x,v, t) of electrons in collisionless plasma. Here E is
the electric field, and φ is the self-consistent electrostatic potential. f couples to the long range fields via the
charge density, ρ(x, t) =

∫
Ωv
f(x,v, t)dv, where we take the limit of uniformly distributed infinitely massive

ions in the background. The VP system describes the movement of electrons due to self-induced electric
field E determined by the Poisson equation.

The Vlasov dynamics are well-known to conserve several physical invariants. In particular, let

mass density: ρ(x, t) =

∫
Ωv

f(x,v, t)dv, (2.3)

current density: J(x, t) =

∫
Ωv

f(x,v, t)vdv, (2.4)

kinetic energy density: κ(x, t) =
1

2

∫
Ωv

|v|2f(x,v, t)dv, (2.5)

energy density: e(x, t) = κ(x, t) +
1

2
E(x)2. (2.6)

Then, by taking a few first moments of the Vlasov equation, the following conservation laws of mass,
momentum and energy can be derived

∂tρ+∇x · J = 0 (2.7)

∂tJ +∇x · σ = ρE (2.8)

∂te+∇x ·Q = 0, (2.9)

where σ(x, t) =
∫

Ωv
(v⊗v)f(x,v, t)dv and Q(x, t) = 1

2

∫
Ωv

v|v|2f(x,v, t)dv. It is well-known that the local
conservation property of numerical schemes is critical to capture correct entropy solutions of hyperbolic
systems such as macroscopic equations (2.7)-(2.9).

3. A low rank tensor approach for the Vlasov dynamics with local conservation. For simplic-
ity of illustrating the basis idea, we only discuss a 1D1V example in this section. We first introduce the low
rank method [17] together with a set of notations. Then a conservative truncation is developed which is the
key component for the proposed algorithm. We also show that the discretization before truncation is locally
conservative if a summation-by-parts condition is satisfied. Together with the conservative truncation, we
obtain a low rank VP solver with local conservation.

3.1. Review of a low rank tensor approach for Vlasov dynamics [17]. The low rank tensor
approach [17] is designed based on the assumption that our solution at time t has a low-rank representation
in the form of

f(x, v, t) =

r∑
l=1

Ä
Cl(t) U

(1)
l (x, t)U

(2)
l (v, t)

ä
, (3.1)

where
¶
U

(1)
l (x, t)

©r
l=1

and
¶
U

(2)
l (v, t)

©r
l=1

are a set of time-dependent low rank unit length orthogonal

basis in x and v directions, respectively. Cl is the coefficient for the basis U
(1)
l (x, t)U

(2)
l (v, t), and r is the

representation rank. (3.1) can be viewed as a Schmidt decomposition of functions in (x, v) by truncating
small singular values up to rank r.

We assume a finite difference discretization of f on a truncated 1D1V domain of [xmin, xmax]×[−vmax, vmax]
with uniform Nx ×Nv grid points

xgrid : xmin = x1 < · · · < xi < · · · < xNx = xmax, (3.2)
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vgrid : −vmax = v1 < · · · < vj < · · · < vNv = vmax, (3.3)

and denote hx and hv as the mesh sizes in x- and v-directions, respectively.
The numerical solution f ∈ RNx×Nv , as an approximation to point values of the solution on the grids

(3.2)-(3.3), has the corresponding low rank counterpart to (3.1) as

f =
r∑
l=1

Ä
ClU

(1)
l ⊗U

(2)
l

ä
, (or element-wise: fij =

r∑
l=1

Cl U
(1)
l,i U

(2)
l,j ), (3.4)

where U
(1)
l ∈ RNx and U

(2)
l ∈ RNv can be viewed as approximations to corresponding basis functions in

(3.1). (3.4) can also be viewed as an SVD of the matrix f ∈ RNx×Nv . The associated storage cost is O(rN),
where we assume N = Nx = Nv.

Our low rank tensor approach adaptively updates low-rank basis and associated coefficients by two
steps: an adding basis step by conservative hyperbolic solvers and a removing basis step via an SVD-type
truncation. We consider a simple first order forward Euler discretization of 1D1V Vlasov equation (2.1) to
illustrate the main idea. We assume the solution in the form of (3.4) with superscript n for the solution at
tn.

1. Add basis and obtain an intermediate solution fn+1,∗. A forward Euler discretization of (2.1) gives

fn+1,∗ = fn −∆t(v∂x(fn) + En∂v(f
n)). (3.5)

Here the electric field En is solved by a Poisson solver. Thanks to the tensor friendly form of the
Vlasov equation, at the fully discrete level, fn+1,∗ can be represented in the following low-rank
format:

fn+1,∗ =
rn∑
l=1

Cnl
îÄ
U

(1),n
l ⊗U

(2),n
l

ä
−∆t

Ä
DxU

(1),n
l ⊗ v ?U

(2),n
l + En ?U

(1),n
l ⊗DvU

(2),n
l

äó
.

(3.6)
Here, with a slight abuse of notation, v ∈ RNv denotes the coordinates of vgrid (3.3). Dx and Dv

represent high order locally conservative upwind discretization of spatial differentiation terms, and

? denotes an element-wise multiplication operation. For example, the discretization of DxU
(1),n
l ⊗

v ?U
(2),n
l follows

D+
xU

(1),n
l ⊗ v+ ?U

(2),n
l +D−xU

(1),n
l ⊗ v− ?U

(2),n
l , (3.7)

where v+ = max(v, 0) and v− = min(v, 0) and D+
x and D−x are the fifth order finite difference

discretization of positive and negative velocities. In particular, for each basis vector Ul (omitted
superscript for brevity), the numerical flux vectors F̂±l are computed via

F̂−
l,i+ 1

2

= − 1

20
Ul,i−1 +

9

20
Ul,i +

47

60
Ul,i+1 −

13

60
Ul,i+2 +

1

30
Ul,i+3,

F̂+
l,i+ 1

2

=
1

30
Ul,i−2 −

13

60
Ul,i−1 +

47

60
Ul,i +

9

20
Ul,i+1 −

1

20
Ul,i+2

for i = 1, . . . , Nx. Then, D−xUl, D
+
xUl ∈ RNx are defined as

(D−xUl)i =
1

hx
(F̂−
l,i+ 1

2

− F̂−
l,i− 1

2

), (D+
xUl)i =

1

hx
(F̂+
l,i+ 1

2

− F̂+
l,i− 1

2

),

which are in a finite difference form. Similarly, the discretization of En ?U
(1),n
l ⊗DvU

(2),n
l follows

(En,+ ?U
(1),n
j )⊗D+

v U
(2),n
j + (En,− ?U

(1),n
j )⊗D−v U

(2),n
j , (3.8)

where D+
v and D−v are the same fifth order upwind finite difference discretization of positive and

negative velocities as D+
x and D−x , with E+ = max(E, 0) and E− = min(E, 0).
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2. Remove basis of fn+1,∗ to update solution fn+1. Since the number of basis has increased in a single
step update, we perform an SVD-type truncation to remove redundant bases with a prescribed
threshold ε. The truncation step has no guarantee of any mass, momentum or energy conservation
property. The removing basis step costs O(r2N + r3), where r is the SVD rank of the numerical
solution.

In this two-step process, both the basis and coefficients are updated. Extensions to schemes with high order
spatial and temporal discretizations and to high dimensional problems, are developed in [17]. The low rank
approach [17] is built upon the classical high order methods for conservation laws and kinetic equations, yet
it optimizes the computational efficiency by dynamically building low rank global basis and updating the
corresponding coefficients via a SVD truncation procedure. While the SVD truncation significantly reduces
the computational storage and CPU time, it also destroys the conservation property in the truncation step.

3.2. An orthogonal projection with mass, momentum and energy conservation. To preserve
the local mass, momentum and energy in the truncation step, following a similar idea in [8], we define a
weighted inner product space and the associated norm for functions in v as follows,

L2
w(R) = {f : R→ R : ‖f‖w <∞}.

where

〈f, g〉w =

∫
f(v)g(v)w(v)dv, ‖f‖w =

»
〈f, f〉w. (3.9)

The weight function w(v) is chosen to have exponential decay so that N
.
= span(1, v, v2) ⊂ L2

w(R). For
example, we can take w(v) = exp(−v2/2). Now we are ready to define an orthogonal decomposition of f
with respect to the subspace N .

In the context of Vlasov dynamics, we consider f(x, v) with a v-direction projection. We first scale
function

f̃ =
1

w(v)
f. (3.10)

Then we find PN (f̃) ∈ N s.t.∫
PN (f̃(x, v))g(v)w(v)dv =

∫
f̃(x, v)g(v)w(v)dv =

∫
f(x, v)g(v)dv, ∀g ∈ N. (3.11)

By taking g = 1, v, v2, PN (f̃(x, v))w(v) preserves the mass density ρ(x), current density J(x) and kinetic
energy density κ(x) of f defined in (2.3)-(2.5). In fact, we have the conservative decomposition of f as in
the following Proposition.
Proposition 3.1. Let w(v) = exp(−v2/2) and the weighted inner product defined as in (3.9). f ∈ L2

w(R)
can be decomposed as

f = w(v)(PN (f̃) + (I − PN )(f̃))
.
= w(v)(f̃1 + f̃2)

.
= f1 + f2, (3.12)

where f1 admits an explicit representation

f1 = w(v)f̃1 = w(v)(c1 + c2v + c3(v2 − c)), (3.13)

with c = 〈1,v2〉w
〈1,1〉w , c1 = ρ(x)

‖1‖2w
, c2 = J(x)

‖v‖2w
, and c3 = 2κ(x)−ρ(x)c

‖v2−c‖2w
, and ρ(x), J(x) and κ(x) are as defined

in (2.3)-(2.5). f1 preserves the mass, momentum and kinetic energy density of f , while f2 has zero mass,
current and kinetic energy density.

Proof. We first compute c, so that {1, v, v2 − c} is a set of orthogonal basis. By taking g = 1, v, v2 − c
in (3.11), we can determine the constants c1, c2, and c3. By construction of the orthogonal projection, f1

preserves the mass, momentum and kinetic energy density of f , while f2 has zero of them.

5



3.3. Low rank truncation with mass, momentum and energy conservation. Similar to the
weighted inner product (3.9), the projection operator (3.11) and the conservative decomposition of f in
(3.12), we define their corresponding discrete analogue. Consider f ,g ∈ RNv , where f and g can be viewed
as function values of f and g at vgrid (3.3), respectively. We define the standard l2 inner product as

〈f ,g〉 = hv
∑
j

fjgj , (3.14)

where hv serves as the quadrature weights for the uniform vgrid. We also define weighted inner product and
the associated norm as

〈f ,g〉w =
∑
j

fjgjwj , ‖f‖w =
»
〈f , f〉w (3.15)

w ∈ RNv with wj = w(vj)hv is the quadrature weights for v-integration with weight function w(v). Corre-
spondingly, we let

l2w = {f ∈ RNv : ‖f‖w <∞}.

We denote 1v ∈ RNv the vector of all ones. v2 ∈ RNv is the element-wise square of v. Consider the subspace
N .

= span{1v,v,v2} ⊂ l2w, a conservative low rank truncation of numerical solution f ∈ RNx×Nv written in
the low rank form of (3.4) can be obtained from steps below.

1. Compute macroscopic quantities of f . We compute the discrete macroscopic charge, current
and kinetic energy density ρ, J and κ ∈ RNx by quadratureÑ

ρ
J
κ

é
=

r∑
l=1

Cl

∞
U

(2)
l ,

Ñ
1v
v
1
2v

2

é∫
U

(1)
l . (3.16)

They are the discrete analog of (2.3), (2.4) and (2.6), i.e.

ρ(i) = 〈f(i, :),1v〉, J(i) = 〈f(i, :),v〉, κ(i) = 〈f(i, :),
1

2
v2〉, i = 1, · · · , Nx.

2. Scale. Similar to (3.10), we scale f as

f̃ =
1

w
? f =

r∑
l=1

Å
Cl U

(1)
l ⊗

Å
1

w
?U

(2)
l

ãã
. (3.17)

3. Project. We perform an orthogonal projection of f̃ with respect to the inner product (3.15) onto
subspace N , i.e.

〈PN (f̃),g〉w = 〈f̃ ,g〉w, ∀g ∈ N . (3.18)

Similar to Proposition 3.1, w ? PN (f̃) preserves the mass, momentum and kinetic energy densities
in the discrete sense. We show below in Proposition 3.2 a conservative decomposition of f .
Proposition 3.2. f can be decomposed as

f = w ? (PN (f̃) + (I − PN )(f̃))
.
= w ? (f̃1 + f̃2)

.
= f1 + f2 (3.19)

where f1 can be represented as a rank three tensor

f1 = w ? f̃1 =
3∑
k=1

Mk ⊗ (w ?Vk), (3.20)

where V1 = 1v, V2 = v, and V3 = v2 − c1v, and c = 〈1v,v2〉w
‖1v‖2w

,

M1 =
ρ

‖1v‖2w
, M2 =

J

‖v‖2w
, M3 =

2κ− cρ
‖v2 − c1v‖2w

. (3.21)

ρ, J and κ are the discrete mass, momentum and kinetic energy density of f as in (3.16). f1
preserves the discrete mass, momentum and kinetic energy density of f , while f2 has zero of them,
i.e. 〈f2(i, :),1v〉 = 〈f2(i, :),v〉 = 〈f2(i, :),v2〉 = 0, i = 1, · · · , Nx.
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Proof. The proof follows in the same manner as Proposition 3.1, but considering the discrete weighted
inner product and the associated norm (3.15).

4. Truncate in l2w. To ensure the conservation in the truncation process, we propose to perform an
SVD truncation of f̃2 in the decomposition (3.19) with respect to the weighted inner product (3.15).
Because of the weight function, we scale f̃2 by

√
w ? f̃2, where

√
· is in the element-wise sense and

? is for the element-wise multiplication. Then, a standard SVD truncation procedure is applied,
denoted as Tε(

√
w ? f̃2). Here and below, ε is truncation threshold. Lastly, we rescale Tε(

√
w ? f̃2)

back and obtain the truncated f̃2. Such a weighted truncation writes

T w
ε (f̃2) =

1√
w
? Tε(

√
w ? f̃2). (3.22)

In summary, f2 is truncated to

w ? T w
ε (f̃2) =

√
w ? Tε(

√
w ? f̃2) =

√
w ? Tε(

1√
w
? f2).

5. Update. We obtain the low rank truncation of f with local mass, momentum and energy conser-
vation, denoted as

Tc(f) = f1 + w ? T w
ε (f̃2). (3.23)

We call the proposed truncation (3.23) the conservative truncation. The following proposition guar-
antees that the local conservation of mass, momentum, and kinetic energy density of f is preserved
in the proposed truncation procedure of Tc(f).
Proposition 3.3. Tc(f) has the same discrete charge, current and kinetic energy density as f .
Proof. With Proposition 3.2, it is sufficient to show that w ? T w

ε (f̃2) has zero charge, current and
kinetic energy density. Denote by Ṽ ⊂ RNv the subspace spanned by the basis in representing f̃2 in
the v-direction. By construction, Ṽ is orthogonal to N with respect to the weighted inner product
(3.15). With the weighted SVD truncation, f̃2 is projected onto the space spanned by the truncated
singular vectors, which is a subspace of Ṽ . Hence, T w

ε (f̃2) must be orthogonal to N , i.e.

〈T w
ε (f̃2), g〉w = 0, g = 1, v, v2.

Then, w ? T w
ε (f̃2) has zero discrete charge, current and kinetic energy density.

Next we establish the local conservation of mass and momentum in the low rank tensor approach with
the conservative truncation (3.23). Since the full algorithm (without truncation) does not have energy
conservation property, the low rank tensor scheme does not preserve energy conservation. If the associated
full-rank method is able to locally preserve the energy density, so will the corresponding the low rank method
with the proposed conservative truncation.
Proposition 3.4. (Local mass and momentum conservation of the low rank tensor approach with conserva-
tive truncation.) If the discrete differential operators Dx, Dv employed are conservative, i.e., can be written
in a flux difference form, and linear, i.e., can preserve linear relations, then the proposed low rank method
with an SSP multi-step time integrator preserves the mass and momentum locally; that is the schemes for ρn

and Jn, from integrating the scheme on fn, are consistent and conservative discretization of the macroscopic
moment equations (2.7)-(2.8).

Proof. Without loss of generality, we prove the proposition for the low rank method with the forward
Euler time integrator for simplicity. By taking discrete moments of (3.6) and from (3.16), we derive the
discrete evolution equations for the charge density ρ and current density J in RNx ,

ρn+1,∗ = ρn −∆tDx(Jn), (3.24)

Jn+1,∗ = Jn −∆t(Dx(σn)− ρn ?En), (3.25)

where we have used the fact that Dx and Dv are linear, and the summation by parts

〈DvU
(2)
l ,v〉 = −〈U(2)

l ,1v〉 (3.26)
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holds by assuming the basis U
(2)
l , l = 1, . . . , rn, vanishes at the boundary. Combining (3.24)-(3.25) with the

property of the conservative truncation from Proposition 3.3, we have

ρn+1 = ρn+1,∗ = ρn −∆tDx(Jn), (3.27)

Jn+1 = Jn+1,∗ = Jn −∆t(Dx(σn)− ρn ?En), (3.28)

which are consistent and conservative discretization of the macroscopic moment equations (2.7)-(2.8).
Remark 3.5. If a WENO finite difference discretization is employed for Dv, then the local conservation of
momentum cannot be guaranteed. This is because the WENO discretization does not satisfy the summation by
parts property (3.26). A WENO finite difference discretization can be employed for Dx for local conservation.
Remark 3.6. If only the mass conservation is desired, then we can modify the subspace N = span{1v}
for projection; similarly, if only the mass and momentum conservation is desired, we let N = span{1v,v}.
We denote the corresponding projections as P1 and P2, respectively, and denote the projection to N =
span{1v,v,v2} as P3. Numerical performances of different projection operators will be assessed in the Section
5 for numerical experiments.
Remark 3.7. The choice of weight function w(v) can affect the performance. In particular, if the weight
function does not have sufficient decay, then the solution may not be close enough to zero at the boundary of
the velocity domain, and large error could be incurred. On the other hand, when rescaling f2 by dividing w,
small weights at the boundary can introduce numerical instability. We will investigate the issue numerically
in Section 5.

Finally, the proposed conservative truncation algorithm is summarized in the Algorithm 1.

Algorithm 1: The conservative truncation procedure for the 1D1V VP system.

• Input: the pre-compressed low rank solution at time tn+1:

fn+1,∗ =
r∗∑
l=1

C∗l U
(1),∗
l ⊗U

(2),∗
l .

• Output: the compressed low rank solution fn+1 with the same density, current density, and kinetic
energy functions as fn+1,∗.

1. Compute ρn+1, Jn+1, κn+1 of fn+1,∗ from (3.16).
2. Compute Mn+1 by (3.21) from ρn+1, Jn+1, κn+1.
3. Compute f1 from (3.20).
4. Perform the truncation of f2 by (3.22).
5. Update the compressed low rank solution by (3.23).

4. 2D2V Vlasov-Poisson system by the HT format. We extend the proposed conservative algo-
rithm to the 2D2V case by the HT format. Below, we briefly review the fundamentals of the HT format
for efficiently representing tensors in d dimensions, and the low rank tensor method with the HT format for
solving the 2D2V VP system (2.1).

ft + v1fx1
+ v2fx2

+ E1fv1 + E2fv2 = 0, (4.1)

where the electric field (E1, E2) is solved from the coupled Poisson’s equation. The macroscopic equations
can be obtained from taking moments of (4.1) in the form of (2.7)-(2.9). Similar to the 1D1V case, we
introduce a conservative truncation for the solution tensor in the HT format and further show that the
proposed low rank tensor method is locally conservative.

4.1. HT format for high order tensors. We denote the dimension index D = {1, 2, . . . , d} and
define a dimension tree T which is a binary tree containing a subset α ⊂ D at each node. Furthermore, T
has D as the root node and {1}, {2}, . . . , {d} as the leaf nodes. Each non-leaf node α has two children
nodes denoted as αl and αr with α = αl

⋃
αr and αl

⋂
αr = ∅. For example, the dimension tree T given in

Figure 4.1 can be used to approximate f(x1, x2, v1, v2) in (4.1) in the HT format. The efficiency of the HT
format lies in the nestedness property [19]: for a non-leaf node α with two children nodes αl, αr, then

range(M(α)(a)) ⊂ range(M(αl)(a)⊗M(αr)(a)), (4.2)
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{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(a)

B(1,2,3,4)

B(1,2)

U(1) U(2)

B(3,4)

U(3) U(4)

(b)

Fig. 4.1. Dimension tree T to express fourth-order tensors in the HT format.

which implies that there exists a third order tensor B(α) ∈ Rrαl×rαr×rα , known as the transfer tensor, such
that

U
(α)
lα

=

rαl∑
lαl=1

rαl∑
lαr=1

B
(α)
lαl ,lαr ,lα

U
(αl)
lαl
⊗U

(αr)
lαr

, lα = 1, . . . , rα. (4.3)

In other words, the frame vectors at the parent node can be recovered by those at the two children nodes
αl, αr with the transfer tensor. By recursively making use of (4.3), a tensor in the HT format stores a
frame at each leaf node and a third order transfer tensor at each non-leaf node based on a dimension tree.
Denote r = {rα}α∈T as the hierarchical ranks. The storage of the HT format scales as O(dr3 + drN), where
r = max r. If r is reasonably low, then the HT format avoids the curse of dimensionality. In summary, the
HT format is fully characterized by the three key components, including a dimension tree, frames at leaf
nodes and transfer tensors at non-leaf nodes, see Figure 4.1 for the data layout.

4.2. A conservative low rank tensor method in HT for the 2D2V VP system. We follow the
low rank tensor method for updating the 2D2V VP solution in [17], but propose to perform a conservative
hierarchical HOSVD truncation with preservation of charge, current and kinetic energy density. We assume
at each time step, the solution f is expressed as the fourth order tensor in the HT format with dimension tree
T together with frames U(1),U(2),U(3),U(4) at four leaf nodes, corresponding to directions x1, x2, v1, v2,
respectively, and transfer tensors B(1,2,3,4),B(1,2),B(3,4), see Figure 4.1. In particular,

f =

r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12
⊗U

(3,4)
l34

, (4.4)

with

U
(1,2)
l12

=

r1∑
l1=1

r2∑
l2=1

B
(1,2)
l1,l2,l12

U
(1)
l1
⊗U

(2)
l2
, l12 = 1, . . . , r12, (4.5)

and

U
(3,4)
l34

=

r3∑
l3=1

r4∑
l4=1

B
(3,4)
l3,l4,l34

U
(3)
l3
⊗U

(4)
l4
, l34 = 1, . . . , r34. (4.6)

Further, the electric field E1 and E2 are represented in the second order HT format.
Now we are ready to formulate a conservative HT truncation of VP solutions in a low rank tensor format.

We denote pre-compressed solution f in the HT format as in (4.4). The idea of the conservative truncation
is similar to the 1D1V case. We first introduce a weighted inner product space for f ,g ∈ RNv1×Nv2

〈f ,g〉w = hv1hv2

Nv1∑
j1=1

Nv2∑
j2=1

fj1,j2gj1,j2wj1,j2 , (4.7)
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where hv1 and hv2 are the mesh size for the v1 and v2 grids, respectively. Here

w
.
= w(1) ⊗w(2) ∈ RNv1×Nv2 , w(1) ∈ RNv1 ,w(2) ∈ RNv2 , (4.8)

where w(1), w(2) are vectors as point values of the weight function w(v) = exp(− v
2

2 ) at corresponding v1

and v2 grids. Then we seek a decomposition f = f1 + f2, where f1 comes from the rescaling and orthogonal
projection of f with respect to the weighted inner product (4.7) onto the subspace

N .
= span{1v1⊗v2 ,v1 ⊗ 1v2 ,1v1 ⊗ v2,v

2
1 ⊗ 1v2 + 1v1 ⊗ v2

2} (4.9)

for the conservation of mass, momentum and kinetic energy density, see Proposition 4.1 below for details.
For further discussion, we also introduce a standard inner product for f ,g ∈ RNv1×Nv2

〈f ,g〉 = hv1hv2

Nv1∑
j1=1

Nv2∑
j2=1

fj1,j2gj1,j2 . (4.10)

Proposition 4.1. Let f1 come from the scaling and orthogonal projection of rescaled f with respect to the
weighted inner product (4.7) onto the subspace (4.9), in a similar spirit to the 1D1V case (3.19). Assume f
is written in the low rank HT format (4.26). f1 can be represented in low rank HT format (consistently with
the subscript 1 in the notations),

f1 = P̃ (f)
.
=

4∑
l12=1

4∑
l34=1

(B
(1,2,3,4)
1 )l12,l34(U

(1,2)
1 )l12 ⊗ (U

(3,4)
1 )l34 , (4.11)

=

(4.13)
4∑
k=1

(U
(1,2)
1 )k ⊗ (U

(3,4)
1 )k, (4.12)

where we introduce the notation of P̃ as the scaled orthogonal projection. The specifications of the frame
vectors and transfer tensors are outlined below.

• For f1, the hierarchical ranks are r12 = r34 = 4, r3 = r4 = 3. r1 and r2 are the same as those for f .

• The transfer tensor, B
(1,2,3,4)
1 , of size 4× 4, is an identity matrix,

B
(1,2,3,4)
1 = I4×4. (4.13)

(U
(3,4)
1 )k, k = 1, . . . , 4, is constructed from an orthonormal set of basis {V1, · · ·V4} in the v1 − v2

dimensions defined in (4.27). We have r3 = r4 = 3 and

(U
(3,4)
1 )k =

3∑
l3=1

3∑
l4=1

(B
(3,4)
1 )l3,l4,k(w(1) ? (U

(3)
1 )l3)⊗ (w(2) ? (U

(4)
1 )l4) (4.14)

with w(1) and w(2) the same as in (4.8). The frame vectors for node 3 are

(U
(3)
1 )1 =

1

c1
1v1 , (U

(3)
1 )2 =

1

c2
v1, (U

(3)
1 )3 =

1

c3
(v2

1 − c1v1), (4.15)

where c =
〈1v1 ,v

2
1〉w

〈1v1 ,1v1 〉w
is the orthogonalization constant of the basis, and cl, l = 1, 2, 3 are normaliza-

tion constants for the corresponding basis of 1v1 , v1 and v2
1− c1v1 . We have the same frame vectors

for the node 4 but for v2, assuming that the weight function and domain in v2 is the same as v1,

(U
(4)
1 )1 =

1

c1
1v2 , (U

(4)
1 )2 =

1

c2
v2, (U

(4)
1 )3 =

1

c3
(v2

2 − c1v2) (4.16)

The transfer tensor B
(3,4)
1 is a tensor of size 3 × 3 × 4. It has zero elements, except the following

specification for (B
(3,4)
1 )l3,l4,l34

(B
(3,4)
1 )1,1,1 = (B

(3,4)
1 )2,1,2 = (B

(3,4)
1 )1,2,3 = 1, (B

(3,4)
1 )3,1,4 = (B

(3,4)
1 )1,3,4 =

1√
2
. (4.17)

10



• (U
(1,2)
1 )k, k = 1, · · · 4, is in the following form,

(U
(1,2)
1 )k =

r1∑
l1=1

r2∑
l2=1

(B
(1,2)
1 )l1,l2,k(U

(1)
1 )l1 ⊗ (U

(2)
1 )l2 , (4.18)

with the same frame vectors as f on the leaf nodes 1 and 2, meaning that U
(1)
1 and U

(2)
1 are the

same as U(1) and U(2), respectively. B
(1,2)
1 , of size r1 × r2 × 4, has its elements as,

(B
(1,2)
1 )l1,l2,k =

r12∑
l12=1

r34∑
l34=1

B
(1,2)
l1,l2,l12

Sk,l34B
(1,2,3,4)
l12,l34

, k = 1, · · · 4, (4.19)

with r12, r34 and transfer tensors B(1,2) and B(1,2,3,4) from the HT representation of f , and

Sk,l34 = 〈U(3,4)
l34

,Vk〉, k = 1, · · · 4, (4.20)

where U
(3,4)
l34

, l34 = 1, . . . , r34, is the frame tensor for node (3, 4) of f . The inner product in the
sense of (4.10) can be evaluated in a dimension-by-dimension manner.

Finally f1 has the same discrete macroscopic charge, current and kinetic energy density as with f , which are
denoted as ρ, J1, J2, and κ. The discrete macroscopic charge, current and kinetic energy density of f1 are

ρ = (c1)2(U
(1,2)
1 )1 = (c1)2

∑
l1,l2

(B
(1,2)
1 )l1,l2,1U

(1)
l1
⊗U

(2)
l2
, (4.21)

J1 = c1c2(U
(1,2)
1 )2 = c1c2

∑
l1,l2

(B
(1,2)
1 )l1,l2,2U

(1)
l1
⊗U

(2)
l2
, (4.22)

J2 = c1c2(U
(1,2)
1 )3 = c1c2

∑
l1,l2

(B
(1,2)
1 )l1,l2,3U

(1)
l1
⊗U

(2)
l2
, (4.23)

κ =
1√
2
c1c3(U

(1,2)
1 )4 + cρ =

1√
2
c1c3

∑
l1,l2

(B
(1,2)
1 )l1,l2,4U

(1)
l1
⊗U

(2)
l2

+ cρ. (4.24)

They are the same as those of f , which can be obtained by the HT tensor contractionÜ
ρ
J1

J2

κ

ê
=
∑
l12

∑
l34

B
(1,2,3,4)
l12,l34

≤
U

(3,4)
l34

,

Ü
1v1⊗v2
v1 ⊗ 1v2
1v1 ⊗ v2
1
2v

2
1 ⊗ 1v2 + 1

21v1 ⊗ v2
2

êº
U

(1,2)
l12

,

=
∑
l12

∑
l34

B
(1,2,3,4)
l12,l34

Ü
S1,l34(c1)2

S2,l34c1c2
S3,l34c1c2
S4,l34c1c3

1√
2

+ S1,l34(c1)2c

ê
U

(1,2)
l12

. (4.25)

Proof. We first scale f by w in (4.8)

f̃ =

r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12
⊗ 1

w
?U

(3,4)
l34

. (4.26)

Let Ũ
(3,4)
l34

.
= 1

w ?U
(3,4)
l34

, where ? is the element-wise multiplication in the corresponding dimensions. Then

we perform the orthogonal projection of f̃ onto the subspace of (4.9) to obtain f̃1. Finally we rescale back
to f1 = w ? f̃1.
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To perform the orthogonal projection, the orthogonalization of basis in (4.9) gives the frame vectors for

the node 3 and 4 as specified in (4.15) and the transfer tensor B
(3,4)
1 as specified in (4.17). This gives a set

of orthonormal basis of (U
(3,4)
1 )l, l = 1, 2, 3, 4. We denote them as Vl, l = 1, 2, 3, 4,

V1 = (U
(3)
1 )1 ⊗ (U

(4)
1 )1, V2 = (U

(3)
1 )2 ⊗ (U

(4)
1 )1

V3 = (U
(3)
1 )1 ⊗ (U

(4)
1 )2, V4 =

1√
2

(U
(3)
1 )3 ⊗ (U

(4)
1 )1 +

1√
2

(U
(3)
1 )1 ⊗ (U

(4)
1 )3. (4.27)

To perform the orthogonal projection to (4.9), only the bases of node (3, 4) are affected. In particular, let
P(3,4) be the projection operator at the node (3, 4), then

P(3,4)f̃ = P(3,4)
r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12
⊗ 1

w
?U

(3,4)
l34

=

r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12
⊗
Å
P(3,4)(

1

w
?U

(3,4)
l34

)

ã
, (4.28)

where

P(3,4)(
1

w
?U

(3,4)
l34

) = P(3,4)Ũ
(3,4)
l34

=

4∑
k=1

〈Ũ(3,4)
l34

,Vk〉wVk
.
=

4∑
k=1

Sk,l34Vk, (4.29)

with

Sk,l34 = 〈Ũ(3,4)
l34

,Vk〉w = 〈 1

w
?U

(3,4)
l34

,Vk〉w = 〈U(3,4)
l34

,Vk〉. (4.30)

Plug (4.29) into (4.28),

P(3,4)f̃ =

r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12
⊗ (

4∑
k=1

Sk,l34Vk),

=

r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

(
r1∑
l1=1

r2∑
l2=1

(U
(1)
l1
⊗U

(2)
l2

)B
(1,2)
l1,l2,l12

)
⊗ (

4∑
k=1

Sk,l34Vk),

=
4∑
k=1


r1∑
l1=1

r2∑
l2=1

(
r12∑
l12=1

r34∑
l34=1

B
(1,2,3,4)
l12,l34

B
(1,2)
l1,l2,l12

Sk,l34

)
︸ ︷︷ ︸

.
=(B

(1,2)
1 )l1,l2,k

(U
(1)
l1
⊗U

(2)
l2

)

⊗Vk, (4.31)

=
4∑
k=1

(
r1∑
l1=1

r2∑
l2=1

(B
(1,2)
1 )l1,l2,k(U

(1)
l1
⊗U

(2)
l2

)

)
⊗Vk, (4.32)

where we let (B
(1,2)
1 )l1,l2,k as specified in (4.19), and

(U
(1,2)
1 )k

.
=

(
r1∑
l1=1

r2∑
l2=1

(B
(1,2)
1 )l1,l2,k(U

(1)
l1
⊗U

(2)
l2

)

)
(4.33)

as in (4.18).
The macroscopic charge, momentum and energy density of f1, (4.21)-(4.24) can be derived, from the

form of f1 in (4.12), the form of U
(1,2)
1 in (4.33), and

1v1⊗v2 = (c1)2V1, v1 ⊗ 1v2 = c1c2V2, 1v1 ⊗ v2 = c1c2V3,
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B
(1,2,3,4)
1 in (4.13)

B
(1,2)
1 in (4.19)

U(1) U(2)

B
(3,4)
1 in (4.17)

U
(3)
1 in (4.15) U

(4)
1 in (4.16)

Fig. 4.2. The data layout of f1. Here U(1) and U(2) are the same as those vector frames for f .

1

2
v2

1 ⊗ 1v2 +
1

2
1v1 ⊗ v2

2 =
1√
2
c1c3V4 + c(c1)2V1,

which is due to (4.27). The agreement of macroscopic charge, momentum and energy density of f and f1 is
a direct consequence of manipulation of equalities in (4.18), (4.19), (4.25) and orthonormal property of the

basis in U
(3,4)
1 .

Once the orthogonal projection is performed, f1 stays untouched for the truncation. As with the 1D1V
case, we will perform HOSVD to truncate the remainder f2

.
= f−f1, with a cost scales as O(dNr2 +dr4). If a

standard HT truncation is directly applied to f2, unlike the 1D1V case the conservation property cannot be
guaranteed. Below, we elaborate and investigate such an issue, and further develop a conservative projection
procedure after the HT truncation to ensure charge, current and kinetic energy density conservation.

We start with a brief description of a naive weighted hierarchical HOSVD truncation procedure, as a
direct analog of the 1D1V case. First, we scale f2 according to the weights and define f̃2 = 1√

w
? f2. Note

that the rescaling is computed dimension-by-dimension. The standard hierarchical HOSVD root-to-leaf
truncation with threshold ε is applied to f̃2 and Tε(f̃2) is obtained. Finally, f2 is defined as

f2 =
√
w ? Tε(f̃2). (4.34)

The issue with such procedure is the loss of macroscopic conservation in the root-to-leaf truncation. In
particular, the HT truncation Tε(f̃2) can be represented as, see [14],

Tε(f̃2) = (π1 ⊗ π2 ⊗ π3 ⊗ π4)(π12 ⊗ π34) f2, (4.35)

where πα denotes the orthogonal projection on the subspace spanned by r̃α leading left singular vectors

{Ũ(α)
i }

r̃α
i=1 of the matricization M(α)(f2) with respect to node α. However, the bases at node (3, 4) are no

longer orthogonal to {V1, V2, V3, V4} in (4.27) due to the truncation π3 and π4 at leaf nodes. Hence f2 as
in (4.34) may have nonzero charge, current and kinetic energy density, breaking the conservation property.
To fix the issue, we propose to apply the operator (I− P̃ ), to

√
w ? Tε(f̃2) to ensure zero charge, current and

kinetic energy density of truncated f2. Here P̃ is the same as that specified in (4.11) in Proposition 4.1. We
introduce the following notation, ‹Tε(f2)

.
= (I− P̃ )

Ä√
w ? Tε(f̃2)

ä
. (4.36)

Finally, the conservative HT truncation of f is done as follows

Tc(f)
.
= f1 + ‹Tε(f2). (4.37)

The following proposition is a straightforward consequence from the orthogonal projection.
Proposition 4.2. ‹Tε(f2) has zero charge density, zero current density, and zero kinetic energy density.
Hence, Tc(f) preserves the charge, current, and kinetic energy densities (ρ, J1, J2, κ) of the original f .

Proof. The zero charge, current and kinetic energy density is a direct consequence of the I− P̃ projection
operator. From this fact, together with from Proposition 4.1, Tc(f) preserves the charge, current, and kinetic
energy densities (ρ, J1, J2, κ) of the original f .
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Proposition 4.3. (Local mass and momentum conservation for the 2D2V VP system.) If the discrete
differential operators Dx, Dv employed are conservative, i.e., can be written in a flux difference form, and
linear, i.e., can preserve linear relations, then the proposed low rank method with an SSP multi-step time
integrator preserves the mass and momentum locally; that is the schemes for ρ, J1, J2, from integrating the
scheme on fn, are consistent and conservative discretization of the macroscopic moment equations (2.7)-
(2.8).

Proof. The proof is based on a conservative and linear discretization of the discrete differential operators
Dx, Dv employed and from the conservative truncation procedure as proposed above. The details are similar
to that of Proposition 3.4 and hence omitted for brevity.
Remark 4.4. To ensure the local conservation, f1 should not be further compressed. In the numerical
simulation, we still truncate f1 at nodes (1, 2) with threshold 10−15 to remove the redundancy from the add
basis procedure. Thus the local conservation property is preserved on the same scale of machine precision, i.e.
10−15. In Section 5, we present the numerical result for a linear 3D3V Vlasov system with a known electric
field. The solution exhibits a very low rank structure, and our method is effective in capturing this structure
while also conserving the mass and momentum. However, it’s important to note that the proposed method
may be too expensive to apply in the fully nonlinear 3D3V setting, particularly when the solution does not
exhibit a low rank structure, and hence it may be more efficient not to employ the low rank decomposition in
the x direction.

We summarized the conservative truncation procedure as Algorithm 2 below for the 2D2V VP solution.

Algorithm 2: The conservative truncation procedure for the 2D2V VP solution.

• Input: the pre-compressed low rank solution f in the HT format with dimension tree given in
Figure 4.1 (a) and the associated data including the frame tensors U(1), U(2), U(3), and U(4) at
nodes (1), (2), (3), and (4), respectively, and transfer tensors B(1,2), B(3,4), and B(1,2,3,4) at nodes
(1, 2), (3, 4), and (1, 2, 3, 4), respectively.
• Output: the compressed low rank solution Tc(f) in the HT format with the same charge, current,

and kinetic energy density functions as f .
1. Compute the rescaled orthogonal projection to obtain f1 = P̃ (f), in the HT format with data

layout in Figure 4.2. The transfer tensor B
(1,2,3,4)
1 is the identity matrix of size 4 × 4, (B

(1,2)
1 )l12 is

a matrix of size r1 × r2 × 4 from (4.19), and B
(3,4)
1 is a matrix of size 3× 3× 4 from (4.17), with

the frame tensors U
(1)
1 = U(1), U

(2)
1 = U(2), U

(3)
1 and U

(4)
1 from (4.15) and (4.16), respectively. At

the end of this step, we truncate node (1, 2) of f1 with threshold 10−15 to remove redundant basis

in U
(1,2)
1 .

2. Perform the HOSVD truncation, together with an orthogonal projection operator, to f2
.
= f − f1 to

ensure zero charge, current and energy densities:
(a) Compute f2 = f − f1, and scale it to obtain f̃2 = 1√

w
? f2.

(b) Apply the standard HOSVD truncation to f̃2, and apply rescaling to obtain
√
w ? Tε(f̃2).

(c) Apply I− P̃ to
√
w ? Tε(f̃2) to obtain ‹Tε(f2), i.e. (4.36), with the same P̃ operator as in the

previous step.
3. Update the compressed low rank solution Tc(f) = f1 + ‹Tε(f2) from (4.37).

5. Numerical results. In this section we present a collection of numerical examples to demonstrate
the efficacy of the proposed conservative low rank tensor method for simulating the VP system. In the
simulations, fifth order upwind finite difference methods are employed for spatial discretization, together
with a second order SSP multi-step method denoted by SSPML2 for temporal discretization. The numerical
solutions of high dimensions are represented in the HT format [18]. We also compare the proposed conser-
vative low rank methods against the nonconservative version in terms of efficiency and ability to conserve

the physical invariants. Unless otherwise noted, we let the weight function w(v) = exp(− |v|
2

2 ).

5.1. 1D1V Vlasov-Poisson system.
Example 5.1. (Weak Landau damping.) We consider the weak Landau damping test with initial condition

f(x, v, t = 0) =
1√
2π

(1 + α cos (kx)) exp

Å
−v

2

2

ã
, (5.1)
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where α = 0.01 and k = 0.5.
The computational domain is set to be [0, Lx]× [−Lv, Lv] with Lx = 2π/k and Lv = 6. We set ε = 10−5

for truncation. In Figure 5.1, we report the time histories of the electric energy and numerical ranks of the
solutions computed by the conservative and non-conservative methods for comparison. It is observed that
both methods are able to predict the correct damping rate of the electric energy. Meanwhile, the numerical
ranks of the conservative method are bigger than those of the non-conservative counterpart for the same
threshold. It is partially ascribed to the fact that the weighted SVD truncation is applied to f2 only and f1 is
a rank three tensor that remains unchanged for the conservative method, while the standard non-weighted
SVD truncation is applied to the pre-compressed solution for the non-conservative method. Due to the
larger rank, the conservative method will take more CPU time than a non-conservative method. On the
other hand, with a higher representation rank, the conservative method can track the damping phenomenon
more accurately, see Figure 5.4 for the next example. In Figure 5.2, the time histories of the relative deviation
of total mass, momentum and energy are plotted. The conservative method is found to be able to conserve
the total mass and momentum up to machine precision regardless of the mesh size used. As mentioned above,
the proposed conservative method cannot conserve the total energy, as the time integrator employed is not
energy conserving. With the mesh refinement, the conservation error of total energy decreases. Meanwhile,
the non-conservative method can conserve the total mass and energy up to the magnitude of truncation
threshold ε, but the total momentum is conserved to the machine precision, which is attributed to the
symmetry of the solution in the velocity direction. Noteworthy, though both methods cannot conserve the
total energy, the conservative one does a better job in energy conservation compared to the non-conservative
counterpart, and it is because that the kinetic energy is preserved in the truncation. It is also observed that
the numerical ranks of the solution on the coarser mesh are higher than that on the finer mesh. This is
because the numerical errors coming from discretization could contribute to extra rank increase, and hence
the use of finer mesh is beneficial for the proposed low rank method. Furthermore, as mentioned in Remark
3.6, the choice of the weight function w(v) may affect the performance of the conservative low rank method.
In Figure 5.3, we report the numerical results for the conservative method with a different weight function
w(v) = exp(−v2/4). Note that the new weight function has a larger value at the boundary compared to
exp(−v2/2). It is observed that the method with the new weight function enjoys smaller numerical ranks
of the solutions, thereby leading to improved computational efficiency; however, the conservation errors in
mass and momentum become slightly larger.
Example 5.2. (Strong Laudau damping.) We consider the strong Landau damping test with the initial
condition (5.1) and a bigger perturbation parameter α = 0.5.

Two truncation thresholds ε = 10−3, 10−4 are used to compare the performance of the proposed con-
servative method with the non-conservative one. In Figure 5.4, we report the time evolution of the electric
energy together with the ranks of the numerical solutions for ε = 10−3. We observe that the conservative
method is able to capture correctly the nonlinear dynamics of the strong Landau damping as opposed to the
non-conservative method. This is because the truncation error due to the large threshold used greatly pollutes
the accuracy for the non-conservative method, leading to severe rank increase. By design the conservative
method exactly conserves the mass and momentum densities in the low rank setting. Such conservation
helps resolve the nonlinear Vlasov dynamics with a relatively large truncation threshold. As observed in
Figure 5.5, the conservative method can conserve the total mass and momentum up to the machine precision
regardless of the mesh size used. Again, the energy conservation is not observed, but the conservation error
decreases with mesh refinement, which is not the case for the non-conservative method. Then we consider
a smaller truncation threshold ε = 10−4, and the truncation error is reduced accordingly. Both methods
generate consistent results as plotted in Figure 5.6. As with the weak case, the conservative method has
slightly larger ranks than the non-conservative method. We have a similar observation of the methods in
conserving the invariants in Figure 5.7, as that in Figure 5.5.
Example 5.3. (Bump on tail.) In this example, we simulate the bump-on-tail test with the initial condition

f(x, v, t = 0) = (1 + α cos (kx))

Å
np exp

Å
−v

2

2

ã
+ nb exp

Å
− (v − u)2

2vt

ãã
, (5.2)

where α = 0.04, k = 0.3, np = 9
10
√

2π
, nb = 2

10
√

2π
, u = 4.5, vt = 0.5.

In the simulation, we set ε = 10−4 for truncation. The weight function w(v) = exp(− v
2

3 ) is chosen for
the conservative method. Note that unlike the previous Landau damping examples, the solution of bump

15



0 5 10 15 20 25 30 35 40

time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

e
le

c
tr

ic
 e

n
e
rg

y

16 32

32 64

64 128

(a)

0 5 10 15 20 25 30 35 40

time

0

2

4

6

8

10

12

14

16

18

20

22

ra
n
k

16 32

32 64

64 128

(b)

0 5 10 15 20 25 30 35 40

time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

e
le

c
tr

ic
 e

n
e
rg

y

16 32

32 64

64 128

(c)

0 5 10 15 20 25 30 35 40

time

0

1

2

3

4

5

6

7

ra
n
k

16 32

32 64

64 128

(d)

Fig. 5.1. Example 5.1. The time evolution of the electric energy (a, c) and the rank of the numerical solutions (b, d).
Conservative method (a, b) and non-conservative method (c, d). ε = 10−5.

on tail does not have the symmetry. In Figure 5.8, we report the time evolution of the electric energy as
well as the ranks of the solutions. Consistent numerical results are observed. In Figure 5.9, we plot the
time evolution of the relative deviation of the total mass, momentum and energy for both methods. The
non-conservative method is able to conserve the invariants on the scale of the truncation threshold. Note
that the exact momentum conservation is not observed as expected. Meanwhile, the conservative method is
able to conserve the total mass and momentum up to the machine precision and has smaller conservation
errors of total energy compared to the non-conservative method. Note that the conservation error of the
total momentum increases after t = 15 for the conservative method with the coarse mesh size 32 × 64
which is ascribed to the boundary error. In Figure 5.10, we report the contour plots of the solutions by
the two methods. The numerical solutions are observed to qualitatively match each other. Last, we test
the performance of projector PN with different subspaces N as discussed in Remark 3.6. In particular, we
denote by P1, P2 and P3 the orthogonal projectors with the weighted inner product (3.15) onto the subspaces
span{1v}, span{1v,v}, span{1v,v,v2}, respectively. In Figure 5.11, we plot the time evolution of the electric
energy, ranks, total mass, total momentum, and total energy of the solutions from the conservative method
with P1, P2 and P3. The three methods generate consistent results for the time evolution of the electric
energy, and the ranks are comparable. By construction all three methods can conserve the total mass, and
the methods with P2 and P3 can conserve the total momentum. Further, the method with P3 does the best
job in conserving the total energy as P3 preserves the kinetic energy for truncation.

5.2. 2D2V Vlasov-Poisson system.
Example 5.4. (Weak Landau damping.) We consider the 2D2V weak Landau damping, the dynamics of
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Fig. 5.2. Example 5.1. The time evolution of relative deviation of total mass (a, d), absolute total momentum (b, d), and
relative deviation of total energy (c, f). Conservative method (a, b, c) and non-conservative method (d, e, f). ε = 10−5.
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Fig. 5.3. Example 5.1. Weight function w(v) = exp(−v2/4). The time evolution of the electric energy (a), the rank of
the numerical solutions (b), relative deviation of total mass (c), absolute total momentum (d), and relative deviation of total
energy (f). ε = 10−5.
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Fig. 5.4. Example 5.2. The time evolution of the electric energy (a, c) and the rank of the numerical solutions (b, d).
Conservative method (a, b) and non-conservative method (c, d). ε = 10−3.

which is similar to the 1D1V case. The initial condition is

f(x,v, t = 0) =
1

(2π)d/2

(
1 + α

d∑
m=1

cos (kxm)

)
exp

Å
−|v|

2

2

ã
, (5.3)

where d = 2, α = 0.01, and k = 0.5.
We set the computation domain as [0, Lx]2× [−Lv, Lv]2, where Lx = 2π

k and Lv = 6, and the truncation
threshold ε = 10−5. We simulate the problem with both conservative and non-conservative methods, and the
solutions are represented in the fourth order HT format. In Figures 5.12-5.13, we report the time evolution
of the electric energy, hierarchical ranks of the numerical solution, relative deviation of total mass and energy
together with absolute total momentum J1 and J2. It is observed that both methods are able to predict the
damping rate of the electric energy. Furthermore, the conservative method is able to conserve the total mass
and momentum J1 and J2 up to the machine precision and enjoys better total energy conservation compared
to the non-conservative counterpart. On the other hand, the hierarchical ranks of the solution from the
conservative method, especially r1 and r2, are larger than that from the non-conservative method. This is
because f1 is constructed without compression to guarantee the local conservation (in fact f1 is truncated
with threshold 10−15 in the simulation), and then the solution tensor is not compressed in the x direction.
Example 5.5. We consider the 2D2V two-stream instability with initial condition

f(x,v, t = 0) =
1

2d(2π)d/2

(
1 + α

d∑
m=1

cos (kxm)

)
d∏

m=1

Å
exp

Å
− (vm − v0)2

2

ã
+ exp

Å
− (vm + v0)2

2

ãã
,

(5.4)
where d = 2, α = 0.001, v0 = 2.4, and k = 0.2.
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Fig. 5.5. Example 5.2. The time evolution of relative deviation of total mass (a, d), absolute total momentum (b, e), and
relative deviation of total energy (c, f). Conservative method (a, b, c) and non-conservative method (d, e, f). ε = 10−3.

The computation domain is set as [0, Lx]2 × [−Lv, Lv]2, where Lx = 2π
k and Lv = 8, and the truncation

threshold is set as ε = 10−5. In Figures 5.14-5.15, respectively for conservative and non-conservative methods,
we report the time evolution of the electric energy, hierarchical ranks of the numerical solution, relative
deviation of total mass and energy together with absolute total momentum J1 and J2. The observation is
similar to the previous example that the proposed conservative method is able to conserve the total mass
and momentum, and meanwhile, the hierarchical ranks of the solution tensor from the conservative method
are larger than that from the non-conservative counterpart.

5.3. 3D3V Linear Vlasov system.
Example 5.6. In this example, we simulate a 3D3V forced linear Vlasov system

∂f

∂t
+ v · ∇xf + E(x, t) · ∇vf = ψ(x,v, t),

where the external electric field is E = (E1, E2, E3):
E1 = sin(2x1 − 2πt),

E2 = sin(2x2 − 2πt),

E3 = sin(2x3 − 2πt).

ψ is chosen such that the Vlasov equation has the exact solution

f(x,v, t) =

(
3∏
i=1

cos(2xi − 2πt)

)
exp

Å
−1

4
|v − 1|2

ã
.

Note that the solution remains a rank one tensor over time and the system conserves the mass and momen-
tum.

The computational domain is set as [−π, π]3× [−4, 4]3, and we let ε = 10−4 for truncation. Additionally,
we employ the dimension tree given in Figure 5.3 to represent the 3D3V Vlasov solution tensor in the HT
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Fig. 5.6. Example 5.2. The time evolution of the electric energy (a, c) and the ranks of the numerical solutions (b, d).
Conservative method (a, b) and non-conservative method (c, d). ε = 10−4.

format. We apply the conservative and nonconservative low rank methods to simulate the problems up to
t = 0.5 and summarize the convergence study in Table 5.1. Second order accuracy is observed for that both
methods due to the use of SSPML2 for time discretization. In Figure 5.17, we plot the time evolution of
hierarchical ranks of the numerical solution with mesh size 5123 × 5123, together with the time evolution
of the absolute total mass and absolute total momentum J1, J2 and J3 computed by the conservative low
rank method. As with the previous 2D2V case, the proposed method can effectively capture the underlying
low rank structure, observing that the hierarchical ranks of the solution remain low over the time evolution.
Further, the method is able to conserve the mass and momentum up to 10−10.

Table 5.1
Example 5.6. t = 0.5. Accuracy test.

Conservative method Nonconservative method
N3
x ×N3

v L2-error order L2-error order
643 × 643 2.93E-03 2.89E-03

1283 × 1283 1.14E-03 1.37 1.36E-03 1.08
2563 × 2563 2.74E-04 2.05 3.27E-04 2.06
5123 × 5123 3.91E-05 2.81 4.53E-05 2.85

6. Conclusion. In this paper, we proposed a conservative truncation procedure for a low-rank tensor
approach for performing a grid-based Vlasov simulations. The basic idea is initialized in the 1D1V setting,
and is further developed to the 2D2V setting with the HT tensor decompositions. The newly developed
conservative low rank tensor algorithm is theoretically proved to be a locally conservative scheme to the
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Fig. 5.7. Example 5.2. The time evolution of relative deviation of total mass (a, d), absolute total momentum (b, e), and
relative deviation of total energy (c, f). Conservative method (a, b, c) and non-conservative method (d, e, f). ε = 10−4.

macroscopic equations for charge and current densities, and is numerically verified to globally conserve the
total charge and current. We plan to extend our algorithm in two future directions. Firstly, we aim to develop
a low rank tensor algorithm that conserves local energy in addition to local charge and current conservation.
Secondly, we plan to extend our approach to the fully nonlinear 3D3V setting. Due to the preservation
of local conservation laws in physical spaces, the computational complexity is still high, especially in 3D
physical spaces. To enable realistic 3D3V simulations, we will explore high-performance computing aspects
of implementation and develop algorithms that further reduce computational complexity.
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Fig. 5.9. Example 5.3. The time evolution of relative deviation of total mass (a, d), relative deviation of total momentum
(b, e), and relative deviation of total energy (c, f). Conservative method (a, b, c) and non-conservative method (d, e, f).
ε = 10−4.
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(a) (b)

(c) (d)

Fig. 5.10. Example 5.3. Contour plots of the solutions at t = 30. Conservative method with mesh Nx × Nv = 64 × 128
(a). Non-conservative method with mesh Nx ×Nv = 64× 128 (b). Conservative method with mesh Nx ×Nv = 128× 256 (c).
Non-conservative method with mesh Nx ×Nv = 128× 256 (d). ε = 10−4.
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Fig. 5.11. Example 5.3. Comparison of projections P1, P2, P3 of the proposed conservative low rank method. The time
evolution of electric energy (a), ranks of the numerical solutions (b), relative deviation of total mass (c), relative deviation of
total momentum (e), and relative deviation of total energy (f). Nx ×Nv = 64× 128. ε = 10−4.
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Fig. 5.12. Example 5.4. Conservative low rank method. The time evolution of electric energy (a), hierarchical ranks of
the xnumerical solution of mesh size Nx × Nv = 64 × 128 (b), relative deviation of total mass (c), absolute total momentum
J1 (d), absolute total momentum J2 (e), and relative deviation of total energy (f). ε = 10−5. In (b), r12 and r34 are close, r1
and r2 are close, and r3 and r4 are close.

25



0 5 10 15 20 25 30 35 40

time

10-10

10-8

10-6

10-4

10-2
e
le

c
tr

ic
 e

n
e
rg

y

16 32

32 64

64 128

(a)

0 5 10 15 20 25 30 35 40

time

0

1

2

3

4

5

6

7

8

9

10

h
ie

ra
rc

h
ic

a
l 
ra

n
k
s

r
12

r
34

r
1

r
2

r
3

r
4

(b)

0 5 10 15 20 25 30 35 40

time

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

re
la

ti
v
e
 d

e
v
ia

ti
o
n
 o

f 
to

ta
l 
m

a
s
s

16 32

32 64

64 128

(c)

0 5 10 15 20 25 30 35 40

time

10
-7

10
-6

10
-5

a
b
s
o
lu

te
 t
o
ta

l 
m

o
m

e
n
tu

m
 o

f 
J

1

16 32

32 64

64 128

(d)

0 5 10 15 20 25 30 35 40

time

10
-7

10
-6

10
-5

a
b
s
o
lu

te
 t
o
ta

l 
m

o
m

e
n
tu

m
 o

f 
J

2

16 32

32 64

64 128

(e)

0 5 10 15 20 25 30 35 40

time

10-10

10-9

10-8

10-7

10-6

re
la

ti
v
e
 d

e
v
ia

ti
o
n
 o

f 
to

ta
l 
e
n
e
rg

y

16 32

32 64

64 128

(f)

Fig. 5.13. Example 5.4. Non-conservative low rank method. The time evolution of electric energy (a), hierarchical ranks
of the numerical solution of mesh size Nx ×Nv = 64× 128 (b), relative deviation of total mass (c), absolute total momentum
J1 (d), absolute total momentum J2 (e), and relative deviation of total energy (f). ε = 10−5. In (b), r12 and r34 are close.
r1, r2, r3, and r4 are close.
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Fig. 5.14. Example 5.5. Conservative low rank method. The time evolution of the electric energy (a), hierarchical ranks
of the numerical solutions (b), relative deviation of total mass (c), absolute total momentum J1 (d), absolute total momentum
J2 (e), and relative deviation of total energy (f). ε = 10−5.
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Fig. 5.15. Example 5.5. Non-conservative low rank method. The time evolution of electric energy (a), hierarchical ranks
of the numerical solutions (b), relative deviation of total mass (c), absolute total momentum J1 (d), absolute total momentum
J2 (e), and relative deviation of total energy (f). ε = 10−5.
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Fig. 5.16. Dimension tree T to express 3D3V Vlasov solution tensors in the HT format.
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Fig. 5.17. Example 5.6. Conservative low rank method. The time evolution of the hierarchical ranks of the numerical
solution with mesh size 5123×5123 (a), absolute total mass (b), absolute total momentum J1 (c), J2 (d) and J3 (e). ε = 10−4.
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