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Abstract—The JHU-ISI Gesture and Skill Assessment Working
Set (JIGSAWS) dataset has proven to be a foundational compo-
nent of modern work on the skill analysis of robotic surgeons. In
particular, methods using either the system’s kinematics or video
data have shown to be able to classify operators into distinct
experience levels, and recent approaches have even ventured to
recover numeric skill ratings assigned to assessment sessions.
Although prior works have achieved positive results in these
directions, challenges still remain with classification across all
three levels of operator training amounts and objective skill
rating regressions. To this end, we perform the first statistical
analysis of the dataset itself and compile the results here. We find
limited relationships between the amount of experience or train-
ing of an operator and their performance in JIGSAWS. Moreover,
as operator-side kinematics have well-known relationships with
their skill, previous works have used both robot and operator-
side kinematics to classify operator skill; we find the first explicit
relationships between pure robot-side kinematics and surgical
performance. Finally, we analyze the robotic kinematic trends
associated with high performance in JIGSAWS tasks and present
how they may be used as indicators in human and automated
surgeon training.

Index Terms—Surgical Robotics: Laparoscopy; Data Sets for
Robot Learning; Performance Evaluation and Benchmarking;
Computer Vision for Medical Robotics; Deep Learning Methods

I. INTRODUCTION

ROBOT- Assisted Minimally Invasive Surgery (RAMIS)
is a rapidly growing approach in healthcare, with over

640,000 such surgeries performed in the US alone, some
procedures seeing a nearly 45× increase in the use of such
robotic systems [1]. These approaches are well posed for
even broader adoption due to their minimally invasive nature,
greatly improved patient outcomes, and lighter burden on
surgeons [2]–[4]. However, robotic surgery greatly differs from
traditional surgical approaches in several ways, one of which
is the absence of haptic and inertial feedback that a robotic
surgeon operator experiences while performing their duties [5].
As a result, surgeons must undergo retraining, which, although
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costly and inefficient [6], is essential for maintaining high
standards of quality care. Current methods for determining
proficiency in RAMIS are either highly subjective (e.g., human
ratings) or based on poor indicators (e.g., number of hours
logged) [7]–[9]. As the robotics and medical communities
come together, the RAMIS approach will evolve with ever-
better patient outcomes, learning and utility curves, and new
surgical techniques and insights [10].

Several solutions have been proposed and evaluated on the
JHU-ISI Gesture and Skill Assessment Working Set (JIG-
SAWS) dataset, which analyzes direct kinematics [11]–[13]
or visual data [14]–[16] to identify the skill level of RAMIS
system operators. Solutions using kinematics tend to rely
heavily on readings from the operator side rather than solely
robot-side, limiting their extension into rating the performance
of autonomous robotic surgeons. While there are known to be
strong correlations between operator hand-steadiness [17] and
surgical experience, these metrics may not be well suited to
adaption into robotics due to electro-mechanical dampening
control filters. Additionally, while these previous works con-
firm that high-order derivatives of patient-side kinematics are
indicative of skill, they do not examine the overall movement
paths that we use in this study. While there have been a
few attempts at extracting kinematics from RAMIS operations
using image data, these seem to be limited to recovering
the position of tools in an image (i.e., 2D position) rather
than in the real world (i.e., 3D position) [18], or they rely
heavily on foreknowledge of the specific tools being used
[19]. Vision-based techniques [14], [20] have demonstrated
the ability to match or exceed the performance of kinematics-
based approaches.

Most works evaluated on the JIGSAWS dataset focus on
classifying the approximate skill of surgeons into 3 classes:
Novice, Intermediate, and Expert (NIE) [12], [14], [21], where
these class distinctions denote experience in hours, with a
RAMIS system, not a ranking based on imperially quantifiable
skill level [22]. The Objective Structured Assessment of Tech-
nical Skills (OSATS) sought to provide a better assessment
method than task-specific checklists and assumptions based
on seniority [23], [24]. There has been difficulty developing a
state-of-the-art system that targets JIGSAWS’ Global Rating
Scale (GRS) [25] to recover more specific skill ratings, with
the highest performing method achieving only a 72% Spear-
man’s rank correlation without reports of subcategory score
recovery accuracy [20].

The results of the methods evaluated on this dataset may
be easily misinterpreted due to the limitations of the cho-
sen metrics and the dataset itself. This warrants a closer
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Fig. 1: Mann-Whitney p-values between various cross-task kinematic profiles and performance ratings, the likelihood that two
samples were selected from different populations. Darker colors indicate lower p-values or more significant differences1.

examination of the JIGSAWS dataset, prior works using the
dataset, its overall usefulness, and potentially current surgical
robotics training procedures. For example, studies that do not
recover OSATS, only report Spearman’s correlation metrics,
rely solely on MTM data, or use PSM data without correlating
it with operator experience or skill are all types of potential
studies that may require further scrutiny.

To address these questions, we present a detailed analysis of
the JIGSAWS dataset. We find a minimal correlation between
the hours logged and GRS scores, and correlations that are
present do not remain consistent across tasks. However, there
are relationships between certain robot-side kinematic behav-
iors and GRS scores, as shown in Figure 1, that carry over
between tasks. Simply stated, the contributions of this work
are as follows:

• We perform, to our knowledge, the first in-depth analysis
of the JIGSAWS dataset itself.

• We find that RAMIS surgeon performance in JIGSAWS
is unrelated to the number of hours of operator training
with a high statistical significance (p < 0.005).

• We are the first to analyze the relationship between
(exclusive) patient-side kinematic paths and surgical task
ratings in JIGSAWS.

• We analyze and compare current methods of evaluation
of robotic surgeon performance to novel metrics.

This paper continues as follows: Section II provides relevant
background on the composition of the JIGSAWS dataset and
a meta-analysis of prior work using it. Section III covers
our analytic methods and rationale. We then discuss findings,
potential implications and explanations, and new metrics and
methods to extend JIGSAWS in Section IV before concluding
our work in Section V.

II. THE JIGSAWS DATASET

A. RAMIS

With an array of deployable sensors, machine learning soft-
ware packages, and algorithms, RAMIS systems can analyze
surgical data to identify patterns and make predictions that
may help guide the surgeon’s actions during the procedure.
Common forms of intelligent sensing include tissue elasticity,
blood flow, and the precise location of surgical instruments.
Robot-assisted surgery is a necessary step toward the end
goal of fully autonomous robotic surgery. Until then, RAMIS
systems continue to rely on human operators interacting with
master tool manipulators within an operator-side console,
remotely controlling the electro-mechanical robotic surgical

1JIGSAWS explicitly aligns only the coordinate system, not the operational
area per task per trial. Thus, X , Y , and Z may not reflect movement directions
accurately, so cross-direction analysis is used.
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Approach Method ST NIE NP NIE KT NIE ST OSATS NP OSATS KT OSATS Notes
[15] Visual †100% †96.4% †95.8% N/A N/A N/A 3D CNN
[21] Visual †79.29% †87.01% †72.57% N/A N/A N/A STIP
[21] Visual †76.69% †83.81% †82.82% N/A N/A N/A iDT
[26] Visual †80.72% †79.66% †80.41% N/A N/A N/A CNN
[26] Visual †81.58% †83.19% †82.82% N/A N/A N/A CNN + LSTM
[26] Visual †81.89% †84.23% †83.54% N/A N/A N/A ResNet
[27] Visual *97.27% *97.27% *97.27% N/A N/A N/A CNN
[11] Kinematic 100% 100% 100% 0.60σ 0.57σ 0.65σ FCN
[12] Kinematic 100% 100% 99.9% 0.31σ 0.16σ 0.26σ ApEn
[12] Kinematic N/A N/A N/A 0.59σ 0.37σ 0.57σ DCT + DFT + ApEn
[20] Visual 100% 97.2% 100% 0.68σ 0.62σ 0.74σ MT-TSN
[20] Visual 100% 97.2% 100% 0.72σ 0.68σ 0.75σ MT-TSN + Attention
[28] Both N/A N/A N/A ⋄ 0.45σ ⋄ 0.62σ ⋄ 0.58σ VTP
[29] Both N/A N/A N/A ⋄ 0.45σ ⋄ 0.34σ ⋄ 0.61σ AIM

TABLE I: Comparison of NIE classification and OSATS regression results taken from cited methods evaluated on the JIGSAW
dataset. σ denotes Spearman’s correlation, ST denotes Suturing, NP denotes Needle Passing, and KT denotes Knot Tying. *
The per-task performance was not released for this binary (IE) classification method. †The method evaluates NI Classes instead
of NIE. ⋄ The work evaluates their method using LOUO folds instead of LOSO.

instruments (robotic arms, endoscopes, and end-effectors) at
the patient’s bedside.

B. JIGSAWS
We evaluated the JHU-ISI Gesture and Skill Assessment

Working Set (JIGSAWS) dataset [22], one of the largest and
most widely used surgical skill assessment datasets in the
world [30]. The dataset contains synchronous stereo-video
and kinematic recordings of three standard surgical training
tasks (Knot-Tying, Needle-Passing, and Suturing) conducted
by human operators of varying skill levels using a robotic da
Vinci Surgical System. The dataset compiles annotated assess-
ments for each of the trials completed by the operators in the
dataset. Annotations include surgical gesture labels, operator
Novice, Intermediate, and Expert (NIE) ordinal classification
labels, and efficacy scores using a modified OSATS approach
that excludes any evaluation categories not applicable to the
training sessions in the dataset (e.g. use of assistants). The
Global Rating Score (GRS) represents a measure of technical
skill over the entire trial in the categories of “Respect for
tissue”, “Suture/needle handling”, “Time and motion”, “Flow
of operation”, “Overall performance”, and “Quality of final
product”; each is rated on an interval scale of 1 to 5, then
given a final cumulative score with a possible range of 6 to
30 points.

1) Tasks: Knot-Tying, Needle-Passing, and Suturing are
essential skills for all practicing RAMIS operators. JIGSAWS
uses these three most basic tasks to benchmark the skills of
the participating operators, as is typical in most surgical skills
training curricula. The Knot-Tying task consists of two sutures
(needle and thread) to be separately tied around a flexible
tube attached to the workbench at both ends. Knots should be
fully taut and secure around the elastic conduit. The Needle-
Passing task requires the subjects to pick up a threaded needle
(which may not be recorded in the video or kinematic data)
and pass it through a small maze of small metal hoops that
are fixed to rubber mounts at a small variable height above the
surface of the bench-top model. While suturing, the surgeon
must pick up a suture and pass the needle through the “tissue”,

entering at the dot marked on one side of the incision (marked
by a line on the fabric) and exiting at the corresponding dot
marked on the other side of the incision. After the first needle
pass, the subject extracts the needle out of the tissue, passes
it to the right hand and repeats the needle pass three more
times [22]. These tasks demonstrate the surgeon’s ability to
handle needles and suturing equipment and operate smoothly,
efficiently, and carefully, with quality in the final product of
the operation. The elastic material represents the malleable soft
internal tissue encountered during surgery. As a limitation,
the operators were not allowed to move the camera (even
by activating the clutch) to adjust the alignment for better
vantage and cardinal manipulator control. Each operator made
five attempts at each task, trials. We denote a particular trial
for a particular operator as a session.

2) Components: The JIGSAWS dataset comprises three
components: synchronized kinematic and video data, manual
annotations of associated gestures, and GRS scores and NIE
classification. The kinematics of both patient-side (i.e. robot-
side) and operator-side manipulators were sampled with a
shared coordinate system by the da Vinci Surgical System API
at a rate of 30 Hz, along with both left and right laparoscopic
camera views of the surgical trial at the same frame rate. Video
of each assessment trial was recorded at a resolution of 640
x 480. Calibration parameters for the two endoscopic cameras
were not provided in the dataset. For this work, we did not
statistically evaluate JIGSAWS regarding gesture recognition
or operator-side kinematics and GRS for NIE classification as
GRS scores are provided based exclusively on the recorded
patient-side video.

3) Analysis Methods: JIGSAWS provides two different for-
mats for analyzing performance: Leave One User Out (LOUO)
and Leave One Super-trial Out (LOSO). In LOUO, a fold is
created per task per operator, while in LOSO, a fold is created
for each super-trial (e.g. all the 4th trials across all users).
Cross-fold validation can then be used to analyze performance,
training on all non-fold data, and testing on all folds pairwise.
For example, in LOSO, all operators’ n-th attempt at a task
will be withheld from machine learning training and may be
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used for validation or testing instead.

C. Skill Estimation

There are a few common methods for rating robotic surgeon
proficiency. JIGSAW (and thus many prior works) uses two
of them. Firstly, a simple controller classification based on
the number of hours of experience into one of three ratings:
Novice, Intermediate, and Expert (NIE). Secondly, a multi-
axis rating (OSATS and GRS [25]) was manually given
by a rating surgeon who viewed video recordings of the
surgeon controlling the robot. A brief overview of proposed
autonomous RAMIS skill assessment methods and their results
using LOSO can be found in Table I.

Kinematics Based Skill Estimation Several methods
have been explored using extracted kinematics to directly
predict an operating surgeon’s skill. Nagy et al. proposed using
jerk (3rd order derivative of movement) of operator side end-
effectors as a metric for motor skill and found that it is a
significantly poorer indicator than the jerk of other professions
[17], [31]. In [13], Fard et al. use machine learning kinematics
analysis to classify operators in JIGSAW into either Novice or
Expert with ∼80% accuracy. Deep Learning approaches have
seen 100% success in classification. Zia et al. [12] and Ismail
et al. [11] also used machine learning kinematics analysis to
recover OSATS values and obtained 60% success.

Vision Based Skill Estimation has been the championed
evaluation medium for many presented works. Funke et al.
achieved high binary classification accuracy of 95.1% to 100%
on each of JIGSAWS 3 tasks by serving stack video snippets
through an inflated 3D ConvNet and Temporal Segment Net-
work during training [15]. Jian et al. presented a method for
simultaneous skill level classification and OSATS score regres-
sion [20] by processing video snippets through an Attention-
enhanced Two-Stream Inflated 3D CNN (I3D) shared for all
tasks. Ming et al. approached binary skill classification by
modeling motion dynamics fed through a non-linear support
vector machine (SVM) and histogram test, achieving 72.6%
to 83.8% accuracy depending on the modeled dynamics and
training task [21]. A series of works have also explored the
utility of segmentation for classification from generated sparse
optical flow data on various other RNN and DNN learning
methods [14], [26]. Soleymani et al. continued work with
sparse optical flow data and deployed 10 × 10 cross-fold
validation to improve accuracy on binary classification [27].

A few recent works have combined these approaches, [28],
[29]. Many works have similarly identified the challenge of
recovering NIE based on kinematics and vision, and have
started evaluating methods for recovering GRS [32], [33]. In
this work, we support that the challenge of recovering NIE
on JIGSAWS is not due to the inherent complexity of the
challenge requiring more advanced analysis techniques, but
that the underlying data does not have meaningful statistical
differences between these categories.

III. ANALYSIS METHODOLOGY

While the JIGSAWS dataset is commonly used and consists
of a large amount of data, of types useful to machine learning

approaches, no statistical evaluation of meaningful trends in
this data has ever been completed to our knowledge. We
thus statistically analyze the relationship between three key
components: the forward kinematics as continuous trajectories,
the Novice, Intermediate, and Expert (NIE) rating, and the
Global Rating Scale (GRS) scores for each session. These
were chosen for a variety of reasons. Firstly, the system’s
kinematics, particularly the patient-side kinematics, convey in-
formation about the continuous paths taken by the robotic ma-
nipulators through physical space over time. This effectively
distills pertinent information in the captured videos into a more
compressed, temporally coherent format, while GRS reflects
the true skill level of the operator. Finally, the NIE rating is
a popular target for classification and should be related to the
GRS score, as NIE tracks hours of training and the GRS tracks
performance directly. As the NIE classifications are definitive
classifications with rank order, we perform statistical tests
valid for ordinal data. As a last note, we only present methods
and findings in this section, saving discussion of those findings
for Section IV.

Fig. 2: The approximately Gaussian distributions of the raw
NIE data across the three tasks and combined.

A. Novice, Intermediate, and Expert vs GRS

We begin by analyzing any relationships between GRS and
NIE. Firstly, we confirm that the total GRS score and NIE
rating follow a roughly Gaussian distribution as shown in
Figure 2. As they do, we continue calculating the mean GRS
across each task and the whole dataset, which is recorded in
Table II.

Task Mean N Score Mean I Score Mean E Score
Knot Tying 10.68750 17.10000 17.70000

Needle Passing 16.0000 14.00000 12.44445
Suturing 17.47368 25.10000 16.30000

Combined 14.76087 19.07143 15.58621

TABLE II: Mean GRS scores for Novice, Intermediate, and
Expert operators. The score for the highest-performing class
in each task is bolded.
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From there, we performed a Mann-Whitney U-test, also
known as the Wilcoxon rank-sum test, to test against the null
hypothesis that the distributions of any two ordinal populations
are identical [34]. We do this for the total summed GRS
score and each equally spaced rank order category in GRS.
These tests are also done across all tasks and on the combined
dataset. These results can be seen in Table III, which records
the p-value for each test.

Task GRS Element N to I I to E N to E
Knot Tying Total 0.00389 1.00000 0.00070
Knot Tying Respect 0.00103 0.31268 0.00403
Knot Tying Handling 0.03999 0.73895 0.02095
Knot Tying Time 0.00888 0.76120 0.00081
Knot Tying Flow 0.00450 0.16725 0.00092
Knot Tying Performance 0.02311 0.59344 0.00126
Knot Tying Quality 0.00068 0.69338 0.00104

Needle Passing Total 0.48141 1.00000 0.08607
Needle Passing Respect 0.15732 0.31735 0.40179
Needle Passing Handling 0.83127 0.71358 0.17122
Needle Passing Time 0.40900 0.33857 0.00687
Needle Passing Flow 0.68554 0.18696 0.09041
Needle Passing Performance 0.57599 0.95492 0.18646
Needle Passing Quality 0.28216 0.80070 0.07405

Suturing Total 0.00047 0.00095 0.72915
Suturing Respect 0.03534 0.00279 0.04770
Suturing Handling 0.00125 0.00043 0.09894
Suturing Time 0.00131 0.00573 0.33899
Suturing Flow 0.00103 0.00282 0.920885
Suturing Performance 0.00105 0.00059 0.42741
Suturing Quality 0.00009 0.00053 0.80005

Combined Total 0.00625 0.02462 0.42247
Combined Respect 0.04214 0.03751 0.91382
Combined Handling 0.00973 0.00932 0.95828
Combined Time 0.00753 0.05510 0.29860
Combined Flow 0.01053 0.13588 0.19690
Combined Performance 0.01298 0.04388 0.41763
Combined Quality 0.00319 0.01253 0.55831

TABLE III: Wilcoxon–Mann–Whitney U-Test metrics of GRS
scores between Intermediate, Novice, and Expert users in JIG-
SAWS. Statistically significant (p-value < 0.05) differences
are bolded. Values showing highly significant differences (p-
value < 0.005) are also highlighted in purple.

B. Kinematic Analysis

We repeat this process for the kinematic analysis by cal-
culating the time-dependent derivatives of PSM trajectories
(position, velocity, acceleration, then jerk, and jounce) for each
robotic manipulator’s translational and rotational movement,
rather than treating individual 3D/6D positions as independent
data points. Data is trimmed to exclude periods before task
commencement or after completion using Algorithm 1; total
PSM traversal distance is also continuously calculated at each
point in time.

While prior works have found meaning in the translation
jerk of operator controls [17], this may not carry over as
strongly to the patient-side manipulators due to movement
dampening [4], [5]. Moreover, as GRS scores are determined
by watching the robot-side and not the operator-side per-
formance, it should be possible to similarly replicate these
findings based solely on robot-side kinematics. However, we

acknowledge that in uncontrolled scenarios with varying en-
vironmental interactions, the interpretation of kinematic data
might require additional nuance. Nonetheless, the JIGSAWS
tasks are highly standardized, presenting minimal variation
in environment or interactions. This consistency allows a
direct comparison of kinematic profiles across different GRS
ratings. As these kinematic values (e.g. translational posi-
tion, rotational velocity, etc.) do not follow largely Gaussian
distributions, we use the Mann-Whitney non-parametric test
[34], [35] to check against the null hypothesis that kinematic
profiles across different GRS ratings are from the same distri-
bution. These results are generally less indicative than those
mentioned in Section III-A. As there are 3 × 2 × 6 = 36
comparisons for each task, with each having between 3 and
16 unique GRS ratings to compare between, we instead focus
on a few examples in which actual trends can be seen to show
in Figures 1 and 4. In these figures, brighter colors indicate
more similarity and darker colors indicate more dissimilarity.

Algorithm 1: Identify Frames of Interest
Parameter: m is the number of kinematic metrics
Parameter: B, a scalar, buffer size
Parameter: T, a scalar, minimum ∆ threshold
Input : Ki, a ni ×m matrix
Output : Ko, a no ×m matrix
s1 ← 1;
s2, s0 ← Ki.dim[0]; /* Get length of
dimension 0 */

for s1 in range(s0) do
diffs ← Ki[0, :] - Ki[s1, :];
diffs ← abs(diffs);
if any(diffs ≥ T) then

break;
end

end
s1 ← s1 −B;
if s1 < 0 then

s1 = 0
end
for s2 in range(s0) do

s2 ← s0 − s2;
diffs ← Ki[s2, :] - Ki[s0 − 1, :];
diffs ← abs(diffs);
if any(diffs ≥ T) then

s2 ← s2 +B;
break;

end
end
if s2 > s0 then

s2 = s0
end
Ko = Ki[s1 : s2, :]; /* Remove the still
frames, keeping the middle */

return Ko
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IV. DISCUSSION

A. NIE and GRS

1) Analysis: As many prior works were able to recover
at least a subset of Novice, Intermediate, and Expert (NIE)
ratings but not OSATS/GRS scores as seen in the meta-
analysis of Table I, we decided to examine possible reasoning
for this gap in performance in more detail. Surprisingly we
found very little statistical significance between the NIE labels,
which are based on time trained on the machine, and the GRS
score given by experienced surgeons. As shown in Table II,
each NIE class scored better on average than the others in at
least one task. This is counter-intuitive to expectations, where
Experts should consistently outperform Intermediates, who in
turn should outperform Novices. As the NIE classes do not
strongly correlate with actual performance, this in turn raises
potential concerns about the ability of prior work to truly
interpret the skill of a robotic surgeon rather than recover other
patterns in operator movement.

This discrepancy in the data can be seen through a series
of statistical tests, the results of which can be found in Table
III. Here, performance along every axis of GRS rating exhibits
very little relationship with the amount of robotic training an
operator has, indicating that hours of training are a very poor
metric of proficiency in JIGSAWS. The Needle Passing task
shows no statistical significance between operators based on
hours trained, while the other two seem to prove opposite
conclusions. In Knot Tying, statistical differences exist be-
tween Novice and Expert users, as well as between Novice
and Intermediate, but not between Experts and Intermediates.
Conversely, the Suturing Task finds no difference between
Novices and Experts, with Intermediate operators greatly out-
performing the two. As each task has a different distribution
between GRS and NIE rating, this indicates that even the sta-
tistically significant difference in each task is not maintained in
general skill rating. This similarity among classes is evident in
Figure 3, where we’ve applied Kernel Density Estimation [35]
to estimate the probability distributions mapped on a normal
Gaussian scale with minimal smoothing.

2) Explanations: There are several potential explanations
for these findings. Firstly, the JIGSAWS dataset may have
either a random flaw due to operators behaving outside their
typical performance or the experimental setup was not well
representative of actual surgical tasks. Support for the for-
mer can be found in the limitation on camera movement,
which experienced operators may be more accustomed to
[36] while concerning the latter; there is always the potential
that the simulated tasks and materials within them differ
greatly from the true surgical experience. However, in this
case, we would still expect higher ratings for Experts in
GRS elements such as “Suture/Needle Handling,” “Flow of
Operation,” and “Time and Motion” which were not present.
In many domains, including robotic surgery, it is generally
believed that as individuals gain more experience, they acquire
a deeper understanding of the task, develop refined techniques,
and become more efficient and effective in their execution.
Expertise comes with extensive experience and practice, which

Fig. 3: Estimated Probability Density Functions showing the
high but varying overlaps between different NIE classes.

should translate into superior performance compared to less
experienced individuals.

An alternative explanation might be that the manual GRS
scoring process is prone to significant variations, since the
sole rating surgeon, being human, may not be accustomed to
assessing performance in these simulated tasks. Additionally,
as the GRS ratings were stated to be done blind, this re-
moves doubt that data presents bias towards certain operators,
influencing the rating outcomes. We can confirm this by
finding meaningful relationships between the kinematics of
the dataset, as presented in Section IV-B.

Further work is necessary to investigate the implications of
these findings. One final possible explanation is that existing
operator training methods may not translate well to teleoper-
ation in practice, as suggested by the kinematic analysis. If
further substantiated, this would indicate that the training and
experience operators received did not substantially improve
their performance in this dataset and, in some cases, impeded
their results. This highlights the need for ongoing evaluation
and potential revision of robotic surgery training programs,
emphasizing the importance of continuous training.

B. GRS and Kinematics

From Figure 1, it should be apparent that some robot-
side kinematics have relationships with performance across
all three tasks. It should be noted that as the operational
area and direction do not seem to remain constant between
tasks, the X , Y , and Z directions may not be particularly
indicative of movement within the task’s operational area, and
as such we allow for cross-direction analysis. In particular,
acceleration along both the Patient Side Manipulators, as well
as the rotational jerk (3rd order derivative of movement) of the
second manipulator seems to be closely tied to scores given
for handling, motion and quality in all three tasks2. This is

2Revelations exclusive to a single PSM may simply indicated operator
handedness, as all 8 JIGSAWS participants were reportedly right-handed.
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especially interesting as it indicates that the final outcome has
direct ties to movement paths during the session, which while
intuitive, is good to confirm. This also potentially contradicts
the above explanation of poor labeling by the human grader,
as actual kinematic trends are present. Others have found
kinematic differences and skill levels to correlate in radical
prostatectomy [37]. As the experience levels in JIGSAWS
(the most common evaluation metric) do not align with the
evaluated skill level; this does support the hypothesis that there
are potential issues with the simpleness of the phantom tasks
in JIGSAWS. To use this information, we propose Confidence
Through Acceleration in Section IV-C2 when training human
surgeons and evaluating both human and automated robotic
surgeon performance.

There are also some interesting per-task relationships, most
notably in the Suturing Task. In Figure 4, we present kinematic
profiles that exhibit high correlations with skill rating variabil-
ity in Suturing that are not found as prominently in the other
tasks. This suggests that certain strong movement patterns
are task-specific, which aligns with expectations. Notably, the
deep purple (low correlation) regions follow a pattern that sug-
gests a greater change in performance as GRS scores decrease;
high-performing operators become gradually less dissimilar
in certain motion-based profiles in certain tasks. JIGSAWS
provides segmented gesture classification annotations for each
trial, which may be analyzed to provide additional evidence
and insights.

Fig. 4: Heat maps of Kinematic Profiles in Suturing for a few
motion metrics across both arms.

C. Learning Folds and Metrics

1) Leave One Task Out: JIGSAWS provides two suggested
types of folds for cross-fold validation and ensuring gener-
alization of results: Leave One Super-trial Out (LOSO) and
Leave One User Out (LOUO). These breaks ensure intra-
task generalization but do not effectively scale for cross-
task analysis due to limitations in the dataset’s representation
of experts and intermediates. For instance, when applying
LOUO, the training data often lacks the necessary intra-class
variability, as demonstrated in [15]. To this end, we propose
an additional fold type, Leave One Task Out (LOTO) in which
deep/machine learning solutions are trained on two tasks and
evaluated on a third. For example, a solution may be trained
on Suturing and Knot-Tying, but then evaluated on Needle-
Passing. In this way, the performance of the models is ensured
to generalize to surgical performance as a whole rather than
being limited to a single task.

2) Metrics: We propose two new metrics for JIGSAWS or
JIGSAWS-like datasets: Correlation Weighted Mean Square
Error (CWMSE) to evaluate the performance of skill rating

systems; and Confidence Through Acceleration (CTA) to
evaluate surgeon general performance across tasks using only
robot-side kinematics.

CTA: There seems to be a clear relationship between
the absolute value of an operator’s mean acceleration and the
range of accelerations they work at with the overall score.
While not directly linear, this relationship persists across tasks
in JIGSAWS and may have a reasonable intuitive explanation.
Namely, operators who are confident of their next move switch
into it more quickly than others while also operating at a wider
range of accelerations as they adjust manipulators to ideal
positions. This relationship between acceleration variance and
higher constant speed denoting higher scores holds for both
PSMs across all three tasks, as shown in Table IV.

Motion Task Score Mean Std CTA
PSM1 Accel KT 1 -1.8376e-05 0.1351 2.4820e-6
PSM1 Accel KT 2 7.1750e-05 0.2076 1.4897e-5
PSM1 Accel KT 3 8.2151e-05 0.2495 2.0495e-5
PSM1 Accel NP 1 -4.7709e-05 0.1750 8.3502e-6
PSM1 Accel NP 2 6.1302e-05 0.1436 8.80031e-6
PSM1 Accel NP 3 4.2674e-05 0.1392 5.93931e-6
PSM1 Accel NP 4 0.00014 0.1809 2.5366e-5
PSM1 Accel SU 1 3.1511e-05 0.1724 5.4328e-6
PSM1 Accel SU 2 0.00010 0.1731 1.7712e-5
PSM1 Accel SU 3 0.00015 0.1568 2.3691e-5
PSM1 Accel SU 4 0.00012 0.2467 3.1633e-5
PSM1 Accel SU 5 0.00015 0.2969 4.5736e-5

TABLE IV: Alignment of the proposed Confidence Through
Acceleration metric with the scores in JIGSAWS. Note that
CTA fails to follow GRS Score for one trial in NP.

To use this relationship, we propose Equation 1 as a metric.
In Equation 1, X is the set of all accelerations throughout a
session, X̄ is the mean of X , n is the number of elements
in X , and xi denotes the i-th element of X . To be clear,
we are not proposing optimization based on this, as greedy
maximization will likely result in poor outcomes, but rather
as an insight into surgeon performance.

CTA(X) = |X̄|
√∑n

i=1 (xi − X̄)2

n
(1)

CWMSE: It should be noted that the correlation in Table
I is Spearman’s correlation rather than Pearson’s. Spearman’s
correlation conveys the similarity in the ranked order of two
sets rather than their similarity in a linear space. In Table V,
we demonstrate how this may lead to confusion about the
similarity of two sets with a simple example. Two sets, X and
Y, consisting of 5 elements, are compared to their Spearman’s
and Pearson’s correlations, along with the mean square error
(MSE). This means that despite a high Spearman correlation,
the two sets are quite distant in space which may not be ideal
for GRS as it is interval data.

Set Elem 1 Elem 2 Elem 3 Elem 4 Elem 5
X 1 2 3 2 1
Y -300 1 1.00001 0.9999 -20

Spearman’s 0.94 Pearson’s 0.58 MSE 18209

TABLE V: Difference between similarity measures.
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CWMSE(X,Y ) =

∑n
i=0 (yi − xi)

2

n
×

(1 +

∑n
i=0 (X̄ − xi)(Ȳ − yi)√∑n
i=0 (X̄ − xi)2(Ȳ − yi)2

) (2)

For this reason, we propose Equation 2 be used instead,
where xi and yi are the i-th element of X and Y , X̄ and Ȳ
are the means, and n denotes the number of elements in each
set. This way, the distance in space between the estimated
and true values of the sets is reflected while also rewarding
alignment between the particular categories of GRS.

V. CONCLUSION

In this work, we identify several potential issues in the JIG-
SAWS dataset, most notably a lack of relationship between the
commonly used NIE classes with actual operator performance,
which indicates that results using it may have different impacts
than previously understood. This gap may imply an issue
with current training procedures for Robot-Assisted Minimally
Invasive Surgery to be further investigated. Regardless of the
true cause of this difference, we find strong support for the
need for a new, robust dataset. Finally, we identify kinematic
behaviors associated with strong performance using robot-side
kinematics and present a non-task-specific metric to evaluate
human and robot surgeon performance going forward.
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