
31

Cryptographic Engineering a Fast and Efficient SIKE in

FPGA

RAMI ELKHATIB, BRIAN KOZIEL, and REZA AZARDERAKHSH, Florida Atlantic University,

USA

MEHRAN MOZAFFARI KERMANI, University of South Florida, USA

Recent attacks have shown that SIKE is not secure and should not be used in its current state. However, this

workwas completed before these attackswere discovered andmight be beneficial to other cryptosystems such

as SQISign. The primary downside of SIKE is its performance. However, this work achieves new SIKE speed

records even using less resources than the state-of-the-art. Our approach entails designing and optimizing a

new field multiplier, SIKE-optimized Keccak unit, and high-level controller. On a Xilinx Virtex-7 FPGA, this

architecture performs the NIST Level 1 SIKE scheme key encapsulation and key decapsulation functions in

2.23 and 2.39 ms, respectively. The combined key encapsulation and decapsulation time is 4.62 ms, which out-

performs the next best Virtex-7 implementation by nearly 2 ms. Our implementation achieves speed records

for the NIST Level 1, 2, and 3 parameter sets. Only our NIST Level 5 parameter set was beat by an all-out per-

formance implementation. Our implementations also efficiently utilize the FPGA resources, achieving new

records in area-time product metrics for all parameter sets. Overall, this work continues to push the bar for

accelerating SIKE computations to make a stronger case for SIKE standardization.

CCS Concepts: • Security and privacy → Hardware security implementation; Embedded systems

security;

Additional Key Words and Phrases: Isogeny-based cryptography, Montgomery multiplication, post-quantum

cryptography, RISC-V, SIKE

ACM Reference format:

Rami Elkhatib, Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2024. Cryptographic Engi-

neering a Fast and Efficient SIKE in FPGA. ACM Trans. Embedd. Comput. Syst. 23, 2, Article 31 (March 2024),

25 pages.

https://doi.org/10.1145/3584919

1 INTRODUCTION

In 2016, the United States National Institute of Standards and Technology (NIST) initiated
a multiple year process to standardize post-quantum cryptography (PQC) for use by the US
government [61]. The fear is that a large-scale quantum computer will soon be available that will
completely dismantle our deployed classical cryptography. Post-quantum cryptography includes

This work is supported in part by NSF grant 2101085.

Authors’ addresses: R. Elkhatib, B. Koziel, and R. Azarderakhsh, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL,

33431; emails: {relkhatib2015, bkoziel2017, razarderakhsh}@fau.edu; M. M. Kermani, University of South Florida, 4202 E

Fowler Ave, Tampa, FL, 33620; email: mehran2@usf.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2024/03-ART31 $15.00

https://doi.org/10.1145/3584919

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0003-4513-3109
https://doi.org/10.1145/3584919
mailto:permissions@acm.org
https://doi.org/10.1145/3584919
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584919&domain=pdf&date_stamp=2024-03-27

31:2 R. Elkhatib et al.

cryptosystems that are secure against attacks by both classical and quantum computers. Unfor-
tunately, today’s commonly deployed public-key cryptosystems such as RSA or elliptic curve

cryptography (ECC) are vulnerable to a large-scale quantum computer invoking Shor’s algo-
rithm [59]. Shor’s algorithm completely breaks the underlying discrete logarithm or factorization
problems that support ECC or RSA, respectively. Private-key cryptosystems such as AES or SHA
will be weakened by a large-scale quantum computer utilizing Grover’s algorithm [32], but their
higher security parameter sets may still be used. It is unknown when such a large-scale quantum
computer will be available, with estimates ranging from a few years to several decades. However,
there must be sufficient time to evaluate, implement, and deploy PQC algorithms. Historically, it
has taken several years if not decades to completely transition our infrastructure. Thus, at the con-
clusion of the NIST PQC standardization process, we will begin a huge transition to quantum-safe
algorithms over the coming decade.
The NIST PQC standardization process is currently at the conclusion of its third round of

evaluation. This standardization process allows public submission of algorithms that are then
evaluated and scrutinized by various experts across the globe. Starting at 69 full and complete
submissions, the third round has been cut down to 15 submissions, of which 7 candidates are
Round 3 Finalists and the other 8 candidates are Round 3 Alternatives. The finalists are slated to be
standardized or discarded at the conclusion of the third round while some alternative candidates
may continue to a fourth round of evaluation for eventual standardization. These candidates
are further divided into the public-key encryption and key-establishment group as well as the
digital signature group to specify their function in public-key infrastructure. Another separation
among these candidates is its hard foundational problem. There are several families of hard
problems that are considered to be resistant to quantum computers, such as lattices, isogenies,
or hashes. For instance, the learning with errors problem is a lattice hard problem that secures
several of the NIST lattice submissions. Among the NIST PQC submissions, there are many
tradeoffs between foundational problem, performance, bandwidth, implementation profile, and
so on. There is no clear winner for each evaluation aspect, but some cryptosystems feature great
advantages.
This article focuses on the supersingular isogeny key encapsulation (SIKE) [4] candidate,

which enables key establishment between two parties while also featuring the smallest public
key sizes. Small public key sizes mean less bandwidth when sending the public key as well
as less space to store a party’s public key. SIKE is the only isogeny-based candidate in the
NIST PQC process. Protected by the difficulty to compute isogenies between two supersingular
elliptic curves, SIKE also features no possibility for decryption errors, no complicated error
distributions, and a simple, conservative security analysis when assuming only generic attacks.
In its report on Round 2 PQC candidates, NIST praised SIKE for its small key and ciphertext
sizes that could enable some applications [2]. However, NIST placed SIKE as a Round 3 Al-
ternative candidate because of its slow performance and because further investigation of its
basic security problem was needed. This article serves as another nice improvement in SIKE’s
performance. In terms of the basic security problem, recent attacks [11, 46, 53] have shown that
the private key can be recovered from the public key. Therefore, SIKE is not secure in its current
state.
Among the PQC candidates, SIKE can heavily benefit from an optimized hardware implementa-

tion. For instance, consider a small embedded ARM Cortex-M4 implementation of SIKE that can
perform key encapsulation and decapsulation (combined for SIKEp434) in 140 million cycles [3].
When running at a low frequency, this latency may be unacceptable. However, if this intense com-
putation was instead offloaded to a SIKE hardware accelerator, this computation could be com-
pleted in only a few million cycles. Our FPGA results, for instance, feature a key encapsulation

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:3

and decapsulation time of 1.264 million cycles for SIKEp434, over 100 times improvement. Since
many currently deployed chips include hardware co-processors for ECC or RSA, it is not out of
the question to consider a hardware accelerator for SIKE. SIKE offers a unique perspective where
the computational overhead can be reduced by a hardware co-processor, and the communication
overhead is smaller as a result of its public key sizes.
Related Work. Over the past several years, SIKE and its predecessor SIDH have enjoyed a

myriad of hardware implementation works and improvements that continue to push its perfor-
mance envelope. Starting in 2016, Koziel et al. [41] published the first hardware implementation of
SIDH (SIKE’s predecessor), achieving a full key exchange in about 33 ms for a 503-bit prime. With
improvements to isogeny algorithms, isogeny-optimized multiplication, and high-level control,
this current article achieves a similar set of computations (SIKE key encapsulation and key decap-
sulation over SIKEp503) in just 5.8 ms. Over the following years, Koziel et al. continued to improve
their design, integrating techniques for high parallelization during the isogeny computation [40],
implementing a scalable architecture with new isogeny formulas [39], and upgrading the architec-
ture from an SIDH implementation to a SIKE implementation [36]. Concurrently, several different
authors have proposed their own optimizations to the field multiplication unit for SIDH/SIKE,
including Barrett reduction [35], Montgomery multiplication [20, 22, 43–45, 63], and even redun-

dant number system (RNS)multiplication [56]. These multiplication algorithms take advantage
of special number representations by which multiplication can take advantage of the shape of
isogeny-friendly primes. In terms of full implementations, the implementations have primarily
focused on high performance by using a mix of replicated multipliers with efficient schedulers
including References [23, 25, 26, 36, 51, 64]. Based on the number of field multiplication and addi-
tions required for these isogenies on elliptic curves, multiple addition and multiplication units are
required, which must be efficiently scheduled to achieve good performance. Otherwise, software-
hardware co-design implementations of SIKE feature both the flexibility of software with the
optimization of complex computations in hardware including References [9, 21, 24, 47, 55]. These
implementations have generally featured a smaller profile and the flexibility to support multiple
parameter sets.
This work presents a new high-performance implementation of SIKE that is also area-efficient.

Our contributions can be summarized as follows:

Our Contributions:

• We propose and implement a new SIKE-optimized multiplier that efficiently utilizes DSPs
and resources for Xilinx 7th generation FPGAs.
• We propose and implement a small hardware Keccak accelerator that is specially finetuned
for SIKE’s performance profile. This Keccak requires approximately 300 slices and runs at
1,500 cycles per permutation.
• We propose and implement an isogeny accelerator controller that utilizes a tiny RISC-V
processor.
• We achieve the best area-time products for all SIKE parameter sets.
• We achieve new FPGA speed records for SIKEp434, SIKEp503, and SIKEp610.

The organization of the article is as follows: In Section 2, we review the fundamentals of SIKE.
In Section 3, we propose our finite field accelerator that contains our new field multiplier. In
Section 4, we propose our SIKE-optimized Keccak unit. In Section 5, we propose our new SIKE
control architecture using a RISC-V processor. In Section 6, we present and discuss our FPGA
design’s results and compare to the state-of-the-art. In Section 7, we close and discuss more
directions for future work.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:4 R. Elkhatib et al.

2 PRELIMINARIES

In this section, we review the necessary background of fundamentals of isogeny-based cryptog-
raphy needed for SIKE [4]. The reader can refer to Reference [28] for further background on the
mathematics of isogenies.

2.1 Isogeny Fundamentals

Isogeny-based cryptography primarily focuses on isogenies, or mappings, between elliptic curves
and their use in creating secure cryptosystems. An elliptic curve over a finite field Fq is the col-
lection of all points (x ,y) as well as the point at infinity that satisfy the short Weierstrass form of
elliptic curve E/Fq : y2 = x3 +ax +b, where a,b,x ,y ∈ Fq . This set creates an abelian group over
addition. In standard elliptic curve cryptography, we pick a point P = (x ,y) and perform consecu-
tive point additions and point doublings to execute an elliptic curve point multiplication, Q = kP
where k ∈ Z and P ,Q ∈ E. Given P andQ , the elliptic curve discrete logarithm problem states that
it is computationally infeasible to find the scalar k . However, a large-scale quantum computer can
use Shor’s algorithm [59] to compute k .
Isogeny-based cryptography uses isogenies between elliptic curves for which there are cases

where it is difficult for a quantum computer to compute the isogenies. An elliptic curve isogeny
over Fq , ϕ : E → E ′, is a non-constant rational map from E (Fq) to E ′(Fq) that is a group ho-
momorphism, or preserves the point at infinity. An elliptic curve’s j-invariant serves as a unique
identifier for the elliptic curve’s isomorphism class. An isogeny moves from one elliptic curve to
another elliptic curve, changing j-invariants. In SIDH and SIKE, we efficiently compute isogenies
by using Vélu’s formulas [65] over a kernel point: ϕ : E → E/〈ker 〉. The degree of an isogeny is
its degree as a rational map. For efficiency, we compute a large-degree isogeny of the form �e as a
chain of e isogenies of degree �.

2.2 Isogeny-based Cryptosystems

History. Isogeny-based cryptography has evolved over the past few decades of research. The use
of isogenies in cryptography was first proposed in independent works by Couveignes [17] and
Rostovtsev and Stolbunov [54] that were first published in 2006. These works proposed utilizing
the hardness of computing isogenies between ordinary elliptic curves as a basis for a key exchange.
These papers initially claimed to have quantum resistance, until Childs, Jao, and Soukharev [13]
proposed a quantum subexponential algorithm that computes isogenies between ordinary elliptic
curves. Concurrently, Charles, Lauter, and Goren [12] also proposed a new isogeny-based hash
function, this time based on the hardness to compute isogenies between supersingular elliptic
curves in 2009. A few years later, in 2011, Jao andDe Feo [33] proposed the supersingular isogeny
Diffie-Hellman (SIDH) key exchange protocol that was now also protected by the hardness to
compute isogenies between supersingular elliptic curves. Interestingly, the non-commutative na-
ture of the endomorphism ring of supersingular elliptic curves renders the Childs, Jao, and De
Feo [13] isogeny attack unusable. In 2017, the supersingular isogeny key encapsulation (SIKE)

mechanismwas submitted as an IND-CCA2 upgrade of SIDH to the NIST PQC standardization pro-
cess [5]. In 2022, Castryck and Decru [11] showed that the private key can be recovered from the
public key as long as the endomorphism ring of the starting curve is known. Furthermore, Maino
and Martindale [46] and Robert [53] extended the attack to include any random starting curve.
Throughout the history of SIKE, we have seenmany upgrades to the use of isogenies for cryptog-

raphy. For instance, we have various investigations of foundational isogeny security [1, 16, 29, 34],
public key compression [6, 14, 50, 52], digital signatures [30, 66], hybrid key exchange [8, 15],
and password-authenticated key exchange [7, 60]. Aside from the hardware implementations

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:5

Fig. 1. SIKE key establishment operations.

we have previously described, there are also a plethora of software implementations target-
ing microarchitectures, including x86-64 [15, 18, 27], ARM A-processors [42, 58], and ARM M-
processors [3, 57]. Last, there have also been works on implementation security, including side-
channel attacks [37, 38] and fault attacks [31, 62]. Overall, these works have greatly strengthened
our knowledge of SIKE implementations through faster performance, better implementation pro-
tection, and even more applications.

2.3 SIKE

The supersingular isogeny key encapsulation (SIKE) [4] mechanism is a key encapsulation

mechanism (KEM) based on the hardness of computing isogenies between supersingular elliptic
curves. SIKE is the only isogeny-based candidate in the NIST PQC standardization process, coming
with submitters from industry and academia. As a KEM, SIKE allows two parties, Alice and Bob, to
securely establish a shared secret. As is shown in Figure 1, there are three phases. In this scenario,
Bob is initiating a secure session with Alice. Bob performs key generation, by which he generates
a secret key and a public key. The public key is then broadcast over a public channel to Alice. Note
that key generation only needs to be performed once by a party. Alice retrieves Bob’s public key
and proceeds by performing key encapsulation, where she generates a ciphertext and a locally
stored shared secret. Alice responds to Bob by sending her ciphertext over a public channel. Bob
completes the key establishment by performing key decapsulation, where Bob uses his secret key
and Alice’s ciphertext to generate a shared secret. Assuming nothing went wrong, both parties
have now separately generated the same shared secret that can be used to generate a symmetric
key for encrypted communications.
In the SIKE submission, there are eight parameter sets targeting various NIST security levels

from 1 to 5. NIST security level 1 is considered as hard to break as a brute force attack on AES128,
NIST security level 2 is considered as hard to break as finding a hash collision on SHA2-256, and
so on. There are SIKE parameter sets at NIST security levels 1, 2, 3, and 5. Within each security
level there are uncompressed and compressed variants of SIKE. Compressed variants reduce the
total communication overhead by slightly less than half, but at the cost of many more complex
computations. This work primarily focuses on accelerating the uncompressed SIKE parameter sets.
We summarize the uncompressed parameter sets of SIKE in Table 1. Each SIKE parameter set’s

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:6 R. Elkhatib et al.

Table 1. Summary of Uncompressed SIKE Parameter Sets from [4]

Security SIKE
Prime Form

As Strong Secret Key Public Key Ciphertext Shared Secret
Level Parameters As Size [B] Size [B] Size [B] Size [B]
NIST level 1 SIKEp434 p434 = 22163137 − 1 AES128 374 330 346 16
NIST level 2 SIKEp503 p503 = 22503159 − 1 SHA256 434 378 402 24
NIST level 3 SIKEp610 p610 = 23053192 − 1 AES192 524 462 486 24
NIST level 5 SIKEp751 p751 = 23723239 − 1 AES256 644 564 596 32

Table 2. Summary of Fp Field Addition and

Multiplication Latencies

SIKE Addition/ Multiplication

Parameters Subtraction Interleave Total

SIKEp434

2

10 26
SIKEp503 11 28
SIKEp610 13 32
SIKEp751 16 38

name is based on the bitlength of its underlying prime, such as SIKEp434 for the 434-bit prime
p434 = 22163137 − 1. SIKE primes are of the special form p = 2eA3eB − 1 for efficiency.

The two primary computations in the uncompressed version of SIKE include the large-degree
isogeny aswell as the SHAKE256 hash function. The large-degree isogeny,ϕ : E → E/〈R〉 involves
first computing a secret kernel point by using the party’s secret key, R = P +nQ , and then perform-
ing a large-degree isogeny over that kernel by chaining together many small-degree isogenies. At
the lowest level, kernel point computation and large-degree isogeny computation can be broken
down into arithmetic over a finite field, Fp2 , which can then be further broken down into prime field
arithmetic Fp . Thus, in Section 3, we discuss our hardware-specialized method to accelerate these
low-level computations. Next, in Section 4, we present our approach for optimizing the SHAKE256
hash function for use in SIKE. Finally, we present our whole architecture in Section 5, whereby
we efficiently control our finite field accelerator and SHAKE256 unit to carry out the whole of
SIKE.

3 PROPOSED FIELD ARITHMETIC UNIT

In this section, we discuss our low-level field arithmetic unit for the SIKE accelerator. At the lowest
level, the large-degree isogeny computation can be broken down to modular addition and modu-
lar multiplication over a Fp prime finite field. Thus, we present our modular addition and modular
multiplication units. Since these functions are used thousands of times within SIKE, we have care-
fully optimized them for the Xilinx 7th Generation FPGAs. Table 2 summarizes the total latency
for field addition and field multiplication over the SIKE parameter sets.

3.1 Field Addition Unit

Our field addition unit performs prime field addition or subtraction and is specially optimized for
the SIKE primes. Given field elements a,b, c ∈ Fp , finite field addition performs a + b = c , where
all values are reduced modulo p. In a simple addition scenario, if c > p, then a correction must take
place to bring c back in the range [0,p − 1]. Since a and b are already in this range, the reduction
c = c − p can be performed. Likewise, for subtraction, a − b = c . In a simple subtraction scenario,
if c < 0, then a reduction must take place by adding p, c = c + p. Thus, finite field addition or
subtraction both require at most an addition and subtraction.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:7

Our finite field addition unit closely follows that of Reference [24] to perform a large precision
addition/subtraction in a single cycle with a high frequency. This methodology specifically tar-
gets the Manchester carry chain architectures used in the Xilinx 7th Generation FPGAs. These
carry chains are designed for fast addition. As is described in Reference [24], there are three SIKE-
specific optimizations in this adder/subtractor design, including parallel prefix carry-look ahead
simplification, final propagated carry simplification, and simultaneous addition/subtraction. With
two pipeline stages, we can achieve a high frequency of around 300 MHz on the Xilinx Virtex-7
FPGA while performing a field addition or subtraction in only two cycles.

3.2 Proposed Field Multiplication Unit

The finite field multiplication unit architecture has most likely the largest impact on the resulting
SIKE performance. Our multiplier design was specifically optimized for Xilinx 7th Generation
FPGAs with the field adder, Keccak, and top-level designs in mind to achieve high throughput,
high performance, and high frequency, all while using FPGA resources efficiently.
Given field elements a,b, c ∈ Fp , finite field multiplication performs a × b = c , where all values

are reduced modulo p. If using standard multiplication, then the resulting value for c may be twice
the bitlength of the modulus p, requiring an expensive reduction operation to complete the field
multiplication. This article focuses on a new architecture using Montgomery multiplication [48]
that includes the multiplication and reduction steps. Montgomery reduction is very efficient in
hardware, as it converts expensive division operations to shift operations, which are essentially
free in hardware. Similar to existing multipliers, our proposed multiplier can support two simulta-
neous multiplications in its pipelines.

3.2.1 Low-level Multiplication Components. Similar to existing Montgomery multiplication ap-
proaches, we use a systolic architecture. The high-level algorithm to explain our Montgomery
multiplication operation is shown in Algorithm 1. We will use a number of the variables listed
in this algorithm in our description. For clarity, we provide a brief description of our variables in
Table 3. Most importantly, w is the digit size of the processing element, s is the number of digits
in the systolic architecture, k is the total length of the systolic architecture, andm is the modulus.
In describing our Montgomery multiplication architecture, we will use a bottom-up approach.

At the lowest level, we have a multiplier lane unit as depicted in Figure 2(a) that acts as the
processing element within our systolic array. Each multiplier lane performs multiplication of x
(w bits) with a large integer y (m ×w bits). This is similar to the systolic multiplication lanes used
in References [21, 24].
At the next level up, we have an accumulator unit that is shown in Figure 2(b). Each cell of

the accumulator receives the results of one to four multiplication results (each of size 2w bits) and
accumulates the results in two registers: sum S (w bits) and carryC (w tow+2 bits). The accumula-
tor is also a systolic architecture. The majority of cells will take four multiplications, but the more
significant cells in the array can take 3, 2, or 1 multipliers, where the carry registerC isw+2,w+1,
or w bits, respectively. This is again similar to the accumulators used in References [21, 24], but
we can point out some key differences. First, the accumulator supports up to four multiplications
instead of two multiplications as the prior art does. Second, the carry C is propagated in place as
opposed to forward propagation. Third, the result (w bits) is retrieved from the first sum S instead
of retrieving from a different sum S . Last, we include a star (*) on the registers in Figure 2(b) to
indicate that they can send the register’s value or a 0. This simply means that there is an additional
multiplexer on the output to select between these values.

3.2.2 Core Systolic Multiplication Architecture. Next, we describe the core functionality of our
systolic multiplication architecture, which is shown in Figure 3. As is shown in this figure, there

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:8 R. Elkhatib et al.

ALGORITHM 1: Simple Explanation of the Montgomery Multiplication Hardware through an Algo-

rithm.

function systolic_Montgomery_multiplication

Parameters:w : digit, s : # of digits, k = w × s ,m = 2eA3eB − 1 < 2k−2, n =m + 1, sA = �eA/w�,
sB = s − sA, kA = w × sA, kB = w × sB

Input: a < 2m, b < 2m
Output: res = MulMont(a,b)

Temporary: q < 2kB ,S,C, acc,Mult0,Mult1,Red0,Red1

Note: All out of bound registers are 0

Note: All registers arew bits except C which can bew tow + 2 bits
Note: Cycle indicates current cycle and i indicates current block

1 for cycle← 0 to 2s do
2 # Multiplication lanes

3 for i← 0 to
s/2� do
4 Mult0[cycle][i] = a[cycle − i]b[2i]
5 Mult1[cycle][i] = a[cycle − i − 1]b[2i + 1]
6 # Reduction lanes

7 for i← 0 to
sB/2� do
8 Red0[cycle][i] = q[cycle − i − sA]n[2i + sA]
9 Red1[cycle][i] = q[cycle − i − sA − 1]n[2i + sA + 1]

10 S[cycle + 1] = 0

11 C[cycle] = 0

12 for i← 0 to s/2 do
13 acc[i] = Mult0[cycle][i] +Mult1[cycle][i] + Red0[cycle][i] + Red1[cycle][i] + S[i + 1] +C[i]

14 S[i] = acc[i] % 2w

15 C[i] = �acc[i] / 2w �
16 q[cycle] = S[0]

17 res[cycle − s] = S[0]

18 return res

are four lanes Mult0, Mult1, Red0, and Red1 along with two accumulators Acc0 and Acc1. In the
SIKE scenario, we are performing Montgomery multiplication on inputs a,b < 2m.
First, we explain the purpose of each of the four lanes. As a systolic architecture, each processing

element performs multiplications or reductions over the inputs. For the ith cycle in a Montgomery
multiplication, the Mult0 lane receives xin = a[i] sequentially and y = b[0],b[2],b[4], . . . in par-
allel. Similarly, the Mult1 lane receives xin = a[i − 1] sequentially and y = b[1],b[3],b[5], . . . in
parallel. There are ceil(s/2) processing elements in Mult0 lane and floor(s/2) processing elements
in Mult1 lane. Note that Mult1 lane receives a given a input one cycle delayed from Mult0. Each
cell in these two lanes operates for s cycles with each cycle processing one digit of array a. Once
the cells have processed all digits of a, the set of operands for the next Fp multiplication can be
pushed to achieve a multiplication interleaving of s cycles.
On the reduction side, Red0 receives xin = q sequentially and y = n[sA],n[sA + 2],n[sA + 4],...

in parallel. Similarly Red1 receives xin = q sequentially (but delayed 1 cycle from Red0) and y =
n[sA + 1],n[sA + 3],n[sA + 5], . . . in parallel. The size of Red0 lane is ceil(sB/2), while the size of
Red1 lane is floor(sB/2).
Next, we have the two accumulators Acc0 and Acc1. Both accumulators perform the same func-

tionality, but slightly offset to achieve themultiplication interleaving. Each accumulator is ceil(s/2),

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:9

Table 3. Summary of Multiplication-related Variables

Variable Value Description
eA Number of 2-isogenies Alice performs (SIKE parameter)
eB Number of 3-isogenies Bob performs (SIKE parameter)
m 2eA3eB − 1 Modulus which is the SIKE prime
w Digit size in the systolic architecture
s
len(m) + 2/w� Number of digits in the systolic architecture
k w × s Total number of bits in the multiplication part
R 2k Radix for Montgomery multiplication
sA �eA/w� Number of digits that have all 1’s for modulus
sB s − sA Number of digits that do not have all 1’s for modulus
kA w × sA The number of bits eliminated from the reduction part
kB w × sB The number of bits used in the reduction part
a Array of operand a extended to k bits
b Array of operand b extended to k bits
q Array storing the quotient values for Montgomery multiplication
n m + 1 Adjusted Montgomery modulus to save an adder
S Array stores the loww bits of the sum in the accumulator
C Array stores remaining bits of the sum in the accumulator

Mult0 Array stores Mult0’s lane results
Mult1 Array stores Mult1’s lane results
Red0 Array stores Red0’s lane results
Red1 Array stores Red1’s lane results

Fig. 2. Base cells used in proposed systolic architecture.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:10 R. Elkhatib et al.

Fig. 3. Proposed multiplication architecture.

or the same size as the largest lane Mult0. Each processing element of the accumulator receives
one multiplication result from each processing element of the four lanes Mult0, Mult1, Red0, and
Red1. Specifically, cell 0 (the least significant processing element) of each accumulator receives
the products from cell 0 of the lanes (Mult0, Mult1, Red0, Red1). Likewise, cell 1 of each accumula-
tor takes from cells 1 of the lanes. This tiling continues until the end, where we will have special
cases for the final cell. For instance, if sB is odd, then cell floor(sB/2), where Red1 ends will take
3 multiplier results from 3 lanes (Mult0, Mult1, Red0) and cell ceil(sB/2), where Red0 ends will
take 2 multiplier results from (Mult0, Mult1). If sB is even, then cell sB/2 where Red0 and Red1 end
will take 2 multiplier results from (Mult0, Mult1). These 2 multiplier result cells will continue until
the very end. If s is odd, then cell floor(s/2) will only have one multiplier result from lane Mult0,
whereas if s is even, then there will be no cells with only one multiplier result cell. Last, the last
accumulator cell ceil(s/2) − 1 does not have a next cell, so it does not have an S as input.
The accumulators can also be controlled. In each Montgomery multiplication, the first time the

accumulator uses S andC , 0 is pushed instead of the value of the register. On cycle 0, inputs S and
C of cell 0 are both 0. On the following cycle, inputs S andC of cell 1 are both 0. This is effectively a
resetting mechanism for the accumulator. The values of operand a are pushed from cycles 0 to s−1
while the values of the quotient q are pushed from cycles sA to sA + s − 1. The accumulator takes

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:11

Fig. 4. Multiplication timing waveform for sA = 3.

2s cycles. Whenever the product of an a × b cell or q × n cell of the Montgomery multiplication
algorithm is 0, a 0 is pushed for that respective lane in the accumulator.
The use of two accumulators also enables multiplication interleaving, whereby we can begin

a multiplication before the current multiplication has finished. Since each cell of the lanes are
only used for s cycles while each cell of the accumulator is used for 2s cycles (the total latency of
theMontgomerymultiplication), an additional accumulator is utilized to interleavemultiplications.
Each cell of the lanes uses s cycles for the first accumulator and s cycles for the second accumulator
to achieve an s cycle interleave with 2s cycles of multiplication. The result of the accumulator is
the quotient q of the Montgomery multiplication. The quotient q is pushed in the reduction lanes
with a delay such that q[0] (the first quotient) aligns with a[sA] in the first cells of Red0 and Mul0,
respectively. In the second s cycles of the accumulator, the accumulator’s result is the output of the
Montgomery multiplication. Coming back to the Montgomery multiplication, if we accumulate in
2s digits the following: a[s − 1 : 0] × b[s − 1 : 0] + n[s − 1 : 0] × q[s − 1 : 0], then we will get q in
the first s digits and the Montgomery multiplication result in the second s digits.
To further illustrate the functionality of this multiplication, we have included the waveform

shown in Figure 4 to show the order of operations in our lanes. This figure shows the first 4 digits
of operand a and quotient q for the first 3 cells in each lane assuming sA = 3 as a function of cycles.
The subscript indicates the cell number. As is shown, in cycle 0, we compute a0b0 in Mult0 cell 0
and in cycle 1, we compute a1b0 in Mult0 cell 1. Also in cycle 1, we compute a0b1 in Mult 1 cell
0. After sA = 3 cycles are passed, Red0 cell 0 performs q0n3, which aligns with a3b0 performed by
Mult0 cell 0.
To summarize the functionality of the multiplier as is shown in Figure 4, we note that the ar-

rows show the sum S path inside the accumulator. This indicates that all values along the arrow
are added together in the accumulator. Cells with the same number are added together. Going hor-
izontally along the same cell shows the carryC path in the accumulator. For example, the carry of
a0b0 is added to a1b0 in cell 0.

3.2.3 MultiplicationWrapper. cThis multiplier can perform two interleaved multiplications. As
a result, we have implemented a higher-level wrapper to handle the inputs and outputs. Notably,
we have two sets of k-bit registers to handle two sets of input operands a and b. This wrapper
pushes operand a into the multiplier w bits at a time using a shift register, while operand b is
pushed in parallel as soon as it is used to achieve the s-cycle interleaving. The results of our mul-
tiplications are retrievedw bits at a time using a separate k-bit shift register from the result of the
accumulator.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:12 R. Elkhatib et al.

Fig. 5. DSP tiling to achieve 48 × 48 multiplications.

Table 4. Area and Timing Results for the Proposed Standalone Multiplier on Virtex-7 FPGA

SIKE Area
Freq (MHz)

Mult Latency
Parameters #FFs #LUTs #DSPs #Slices Interleave Total

SIKEp434 5,929 6,098 84 2,257 282.5 10 26
SIKEp503 6,570 6,585 98 2,478 290.7 11 28
SIKEp610 7,964 7,915 120 2,881 299.4 13 32
SIKEp751 9,758 9,711 146 3,559 301.2 16 38

For the Xilinx 7 series FPGAs, we chose a digit sizew = 48. Thus, a 48 × 48 unsigned multiplica-
tion is performed among multiple DSPs. The DSP48E on these FPGA boards can perform up to a
24 × 16 unsigned multiplication. Therefore, to perform a 48 × 48 unsigned multiplication, we tiled
6 DSP48E units in the orientation shown in Figure 5. One operand’s digit is split into 2 chunks
of 24 bits while the other operand is split into 3 chunks of 16 bits. Every combination of these
partial products are then pushed to one DSP to give a total of 6 partial results. The partial results
are added together and correctly aligned to complete the 48 × 48 unsigned multiplication.
To achieve a high operating frequency, we have introduced six pipelines into our 48 × 48 un-

signed multiplication: There is one pipeline for loading the operands into the DSP multiplier; one
pipeline for the DSP multiplication; one pipeline for the 6 partial product addition; two pipelines
for the accumulator; finally, one last pipeline to compute the result. These six pipelines increase
the total multiplication cost to 2s + 6 cycles while keeping the interleave cost at s cycles.

3.2.4 Multiplication Area and Timing Results. We summarize the synthesized area and timing
results of these multipliers on a Xilinx Virtex-7 FPGA in Table 4. These results are post-place and
result in a similar fashion as described in Section 6. As we can see, the total area ranges from
2,257 slices and 84 DSPs for a 434-bit SIKE prime up to 3,559 slices and 146 slices for a 751-bit
prime. Interestingly, the frequency appears to improve as the prime gets larger. This is attributed
to the q delay, which ranges from 0 delay cycles for SIKEp434, up to 6 delay cycles for SIKEp751,
which is shown in Figure 3. In terms of latency, we reiterate that this multiplier can accept new
multiplication operations based on the interleave latency and themultiplication result will be ready
after the total latency. For instance, SIKEp434 will be able to perform new multiplications every
10 cycles, and the result will be ready after 26 cycles.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:13

4 SIKE-OPTIMIZED KECCAK

SIKE utilizes the SHAKE256 hash function that is built on top of the Keccak sponge function [10], as
defined for SHA3. Unlike lattice candidates in the NIST PQC standardization process, hashing with
SHAKE256 only requires a small proportion of SIKE’s total execution time. For instance, SIKE’s
total execution time for high-performance hardware is a few million cycles, for which SHAKE256
may require only a few thousand cycles. However, past works in the literature have targeted
SHAKE256 performance/area tradeoffs that are not properly aligned. This article seeks a better
tradeoff between Keccak performance and area for SIKE.
For high-performance implementations, most implementations have typically opted to use the

Keccak’s team high-performance Keccak implementation. This implementation performs a Keccak
round function in 1 cycle and a Keccak permutation function in 24 cycles. As is reported in Refer-
ence [36], the total size of the Keccak block was found to be 3,747 LUTs and 2,703 flip-flops on a
Xilinx Virtex-7 FPGA. For around 1,000 total cycles of SHAKE256 in SIKE, a few thousand LUTs
and flip-flops are required.
However, some implementations have opted for a minimal profile Keccak, such as Refer-

ences [21, 24]. In these cases, a tiny 32-bit RISC-V processor performs the Keccak operations. This
RISC-V processor was the primary controller, so almost no additional area was required to sup-
port Keccak. However, these implementations require a significant number of cycles, as high as
60,000 cycles per permutation, to operate. Even at a million cycles, the Keccak hashing is adding
noticeable latency overhead.

4.1 Keccak Description

Keccak is a family of hash functions that utilize a sponge construction. Notably, there is a large
internal state where data is absorbed into and then the result is eventually squeezed out. All vari-
ants of SHA3 have an internal state of size 1,600 bits. SHAKE256 has a rate of 1,088 bits, which
means that data is absorbed or squeezed out in chunks of 1,088 bits. 1,088 bits of the hash input
are absorbed by XORing with the 1,088 least significant bits of the internal state. A squeeze oper-
ation simply retrieves the requested number of output bits (up to the rate) from least significance
first. After each absorb-and-squeeze operation, a Keccak permutation function is performed on
the entire state.
In SHA3-based hash functions, a Keccak permutation function consists of 24 rounds of the Kec-

cak round function. Each Keccak round function consists of the Theta, Rho, Pi, Chi, and Iota func-
tions. In general, these are based on simple bit manipulation operations, which are simple to im-
plement in hardware. The Theta function computes the parity of various columns in the Keccak
state. The Rho function computes a bitwise rotate of the Keccak state. The Pi function performs a
state permutation. The Chi function performs a bitwise combination along the state. Last, the Iota
function XORs a Keccak round constant into a word of the Keccak state.

4.2 Proposed Keccak Architecture

In this work, we have designed our own Keccak accelerator to achieve a balance between perfor-
mance and area in a high-performance SIKE implementation. As is described above, the majority
of operations in Keccak are basic logical operations. A round function is complete when the Theta,
Rho, Pi, Chi, and Iota permutations are applied on the state to obtain a new state. One caveat
to implementing the round function is that the Theta function requires some computations on a
different Keccak plane from the other operations. As is specified by the Keccak team [10], this
operation is known as Pretheta and is typically performed separately.
Our Keccak accelerator architecture is presented in Figure 6. The state size for SHAKE256 is

1,600 bits. We utilize the “state” and “tmp” blocks as registers to hold the entire state. These are

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:14 R. Elkhatib et al.

Fig. 6. Proposed Keccak accelerator architecture.

Table 5. Summary of SHAKE256 Execution Time in SIKE Parameter Sets

SIKE # Total Cycles % of SIKE # #
Parameters Permutations [cc × 1,000] E+D cycles Slices BRAMs

Hardware SHAKE256

SIKEp434 14 21 1.26% 177 1
SIKEp503 16 24 1.15% 177 1
SIKEp610 20 30 0.91% 177 1
SIKEp751 24 36 0.79% 177 1

Software SHAKE256

SIKEp434 14 840 51.10% 0 ~1.7
SIKEp503 16 960 46.47% 0 ~1.7
SIKEp610 20 1,200 36.64% 0 ~1.7
SIKEp751 24 1,440 31.92% 0 ~1.7

Total SIKE encapsulation and decapsulation latency (E + D) is for our one multiplier architecture.

stored in a 64 × 64 simple dual port block RAM. 25 addresses in the first 32 addresses are utilized by
the state register, while 25 addresses in the last 32 addresses are utilized by the temporary register.
The Keccak accelerator starts with an initial state stored in the “state” block. First, a 320-bit

PreTheta is computed in 25 cycles and stored in the “PreTheta” block. The PreTheta value is a
parity value that is reused in the Theta function. Next, the Theta, Rho, and Pi function are applied
to the state (“ThetaRhoPi”) and stored in the temporary register, which requires 25 cycles. The
round function is then completed after the Chi and Iota function (“ChiIota”) are applied to the
temporary register, requiring 35 cycles. The ChiIota results are stored in the “state” block, while
the “PreTheta” value is simultaneously computed for the next round, which also requires 35 cycles.
Overall, we have a 25-cycle initialization time followed by 24 rounds each requiring 60 cycles.
There is additionally a 35-cycle overhead, most of which is coming from the RISC-V controller
covered in Section 5, so this totals to about 1,500 cycles per permutation.
Based on the SIKE Round 3 parameter sets, we can quantify the total number of cycles occupied

from the SHAKE256 hashing. This is summarized in Table 5, where we show how many total per-
mutations are required for each NIST security level. Furthermore, we also calculate the percentage
of time we are hashing for each security level based on our one multiplier architecture and results.
There are a total of 14 permutations in the smallest parameter set and 24 permutations in the
largest parameter set. However, because the large-degree isogeny computations scale slower than
the SHAKE computations, we see that the percentage of total SIKE encapsulation and decapsula-
tion latency drops from 1.26% for SIKEp434 to 0.79% for SIKEp751. Opting for a faster SHAKE256
accelerator would have cost significantly more LUTs and flip-flops for only a small improvement
in SIKE performance.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:15

Fig. 7. High-level view of our SIKE design.

To further express the need for a hardware SHAKE256 accelerator, we include the % of SIKE
computations when a bare-bones RISC-V software processor performs the hash operations. To
fully perform the Keccak operations across the 1,600 bit state, we require about 1.7 BRAMs. For
SIKEp434, the hashing takes just above 50% of the total SIKE encapsulation + decapsulation latency.
This is lower for larger parameter sets, as the arithmetic becomes much more expensive, costing
32% of the total SIKE operation time for the NIST Level 5 SIKEp751. Even though the hardware
accelerator is 40 times faster than the RISC-V implementation, we found that the area cost is similar
between the two. The 177 slices needed for SHAKE256 are roughly equivalent to a BRAM, which
is now needed by the software processor for the large internal state. Thus, the small SHAKE256
hardware module is extremely area-time efficient for the SIKE application.

5 A RISC-V TOP-LEVEL CONTROLLER

looseness-1 In this section, we discuss the top-level components of our SIKE design, which is
depicted in Figure 7. The goal of the top-level design is to efficiently control our isogeny accelerator
and Keccak unit to facilitate the SIKE operation. Similar to References [21, 24], we utilize a RISC-
V processor as our top-level controller. Our primary difference is that all isogeny functions and
subroutines have been moved into the hardware. These isogeny subroutines and functions cover
a core set of basic elliptic curve group operations such as a small degree isogeny, point doubling,
or point addition. Higher-level algorithms and control are performed by the software. The RISC-V
processor performs the following:

• Memorymanagement: Simplifying loading and unloading data between the memories of the
different hardware accelerators (Keccak accelerator and isogeny accelerator) as well as the
IO.
• Program flow (transitioning between the different isogeny subroutines, looping through
isogeny subroutines).
• Loading special cases for some isogeny subroutines:
— Copying data between addresses in the isogeny RAM
— Selecting pivot points in the large-degree isogeny
— Selecting between two points in the three-point ladder
— Selecting multiplication value in the Fp inversion sliding window method

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:16 R. Elkhatib et al.

Table 6. Summary of Isogeny Accelerator Subroutines

SIKE Latency
Algorithm Description

Subroutine [cc]

xDBL 206 Large-degree isogeny Double a point, Q = 2P
xTPL 401 Large-degree isogeny Triple a point, Q = 3P
xQUAD 414 Large-degree isogeny Quadruple a point, Q = 4P
GET2_ISO 67 Large-degree isogeny Compute a 2-isogeny, ϕ2 : E/〈P2〉
GET3_ISO 188 Large-degree isogeny Compute a 3-isogeny, ϕ3 : E/〈P3〉
GET4_ISO 108 Large-degree isogeny Compute a 4-isogeny, ϕ4 : E/〈P4〉
EVAL2_ISO 174 Large-degree isogeny Push a point through a 2-isogeny, P ′ = ϕ2 (P)
EVAL3_ISO 235 Large-degree isogeny Push a point through a 3-isogeny, P ′ = ϕ3 (P)
EVAL4_ISO 273 Large-degree isogeny Push a point through a 4-isogeny, P ′ = ϕ4 (P)
xDBLADD 349 Kernel generation Double and add a point, R = 2P +Q

INV 14,964
Large-degree isogeny

Perform an Fp inversion, A−1
Coeffient Recovery

Latency for SIKEp434 implementation with one multiplier.

• Modular correction to ensure the arithmetic result is between 0 andm, which is required at
the end of each isogeny operation.
• Perform the comparison needed for key decapsulation.

The highlight of this RISC-V controller is that it greatly reduces the time needed to implement
control logic at the cost of a slight increase in area compared to a pure hardware implementation.

5.1 Isogeny Accelerator

The isogeny accelerator is the primary computational workhorse in our SIKE architecture. There
are two input/output buffers for the isogeny accelerator. The first is to receive subroutines from
the master APB bus. Essentially, upon receiving a specific subroutine, the subroutine controller
will retrieve the instructions from the subroutine memory and execute the instructions one-by-
one. These subroutines represent a block of code that is executed through a series of Fp addition
and Fp multiplication operations. Although SIKE performs Fp2 operations such as Fp2 addition,
multiplication, squaring, or inversion, these can be broken down into Fp addition, subtraction,
and multiplication.
The isogeny accelerator subroutines were created by breaking down each isogeny operation into

a combination of Fp addition, Fp subtraction, and Fp multiplication and then using the scheduling
algorithm from Farzam et al. [25]. This is a greedy scheduling algorithm that schedules the isogeny
formulas using contraint programming to ensure a high throughput with various computing re-
sources. A simple custom assembly language was created that had a strong correspondence to the
isogeny accelerator machine code instructions. The isogeny accelerator supports three assembly
instructions:

(1) FPADD OUTPUT INPUT1 INPUT2 - Performs OUTPUT = INPUT1 + INPUT2 modm
(2) FPSUB OUTPUT INPUT1 INPUT2 - Performs OUTPUT = INPUT1 - INPUT2 modm
(3) FPMUL OUTPUT INPUT1 INPUT2 - Performs OUTPUT = INPUT1 × INPUT2 modm

Likewise, the subroutine memory also holds the complex subroutines needed for large-degree
isogenies. Our implementation uses the fastest known isogeny and scalar point multiplication for-
mulas, which can be found in the SIKE submission [4]. These same formulas are found in the ma-
jority of the state-of-the-art hardware implementations. We summarize our formulas in Table 6 for

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:17

Fig. 8. Field arithmetic unit pipeline.

our latencies with a one-multiplier SIKEp434 implementation. Notably, the large-degree isogeny
is performed by chaining together many small isogeny computations (GET2_ISO, GET3_ISO,
GET4_ISO), evaluations (EVAL2_ISO, EVAL3_ISO, EVAL4_ISO), and scalar point multiplications
(xDBL, xTPL, xQUAD), which accounts for about 80% of SIKE operations. The three-point differ-
ential ladder as proposed by Faz-Hernández et al. [27] is also used to generate a kernel point via an
elliptic curve scalar point multiplication by using differential point arithmetic (xDBLADD) similar
to the Montgomery powering ladder [49]. Last, the Fp inversion (INV) is composed of many Fp
addition and multiplication operations in a sliding window fashion.
The isogeny accelerator’s ALU contains an Fp addition unit and one or many Fp multiplication

units. More multiplication units can take advantage of parallelism in some subroutines, resulting
in a speedup at the cost of more resources. Figure 8 illustrates our pipelines for field addition
and field multiplication. Field addition is a simple linear process by which there are 2 cycles to
fetch the instruction operands and 2 cycles to perform the arithmetic. The field multiplication
pipeline has a three-stage pipeline for each supported multiplier. The stage 1 counter is s cycles,
which indicates the number of cycles before a new multiplication can be interleaved. The stage
2 counter is an additional s cycles to complete the multiplication. Last, the stage 3 counter is 8
cycles to keep track of the 6-cycle pipeline from the multiplier as well as 2 cycles from fetching
the instruction operands. Both operations require 1 cycle to store the result during which fetching
new instructions is halted.

5.2 RISC-V SIKE Controller

The RISC-V processor acts as the top-level brains of our SIKE accelerator. Inside the RISC-V SIKE
accelerator, we have connected the CPU’s data bus and instruction bus using VexRiscV’s native
interface.1 Specifically, the code RAM block is connected through both the data bus and the in-
struction bus, while the SRAM and APB bridges are only connected through the data bus. The
code RAM is designed to hold the text and data sections of the codes, which totals to 8 KB for all
security levels. The SRAM holds the Keccak state and temporary registers as well as the BSS, heap
(unused), and stack sections of the code. The SRAM is a 4 KB simple dual port RAM at all security
levels. This SRAM is actually implemented as two simple dual port RAMs of size 512 × 32. From
the perspective of the CPU, it sees it as a single port RAM of size 1,024 × 32. In a two-word aligned
address, the first word maps to the first RAM and the second word maps to the second RAM. How-
ever, from the perspective of the Keccak accelerator, it sees this as a dual port RAM of size 512 × 64.

1https://github.com/SpinalHDL/VexRiscv.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

https://github.com/SpinalHDL/VexRiscv

31:18 R. Elkhatib et al.

Table 7. Summary of BRAM Usage across Our

Implementations

SIKE Isogeny Accelerator Controller
Parameters #BRAM #BRAM

SIKEp434 12.5 5
SIKEp503 14 5
SIKEp610 17 5
SIKEp751 21 5

The APB bridge is used to connect the RISC-V processor to the isogeny accelerator, Keccak ac-
celerator, and IO. For the isogeny accelerator, it controls both data and instruction interfaces of the
isogeny accelerator. The data interface is implemented as a shift-register buffer to transfer data to
and from the isogeny accelerator RAM. The instruction interface is used to send subroutines to the
isogeny accelerator. This is buffered to increase throughput. To reduce the amount of instructions
that need to be stored in the subroutine memory, we also send special addresses that are used in
copying data between addresses in the RAM, selecting pivot points in the large-degree isogeny, se-
lecting between two points in the three-point ladder, and multiplication in the Fp inversion sliding
window method.

The APB bridge’s connection to the Keccak accelerator is only used to control the instruction
interface of the Keccak accelerator as the data interface is handled by the SRAM block.
The APB bridge’s connection to the IO is used for top-level SIKE control. Here, each signal

indicates parts of an operation. The mode indicates whether to load constants, perform keygen,
perform key encapsulation, or perform key decapsulation. The status indicates if the SIKE accel-
erator is ready to receive any data after the mode is changed. The di and do signals are used as
a bus to exchange data, byte by byte. In the load constant mode, constants are loaded through di.
In the keygen mode, we load Bob’s secret key skB through di and return the resulting public key
through do. In key encapsulation mode, we load Alice’s secret message msgA followed by Bob’s
public key through di and get the resulting ciphertext followed by the shared secret through do.
In key decapsulation mode, we load Bob’s secret key followed by Alice’s ciphertext through di
and get the resulting shared secret through do.

5.3 Total BRAM Usage

Across each parameter set, we use five Xilinx 7th generation BRAMs (36k) for our top-level control.
One BRAM is used for the CPU register file. Two BRAMs are used for the code RAM. One BRAM is
used for SRAM. One last BRAM is used for the isogeny subroutine memory. Then, our remaining
BRAMs are used in the isogeny accelerator’s RAM to hold intermediate values as a register file in
the SIKE computations. This total BRAM sizes are summarized in Table 7.

6 FPGA IMPLEMENTATION RESULTS

6.1 Summary of Results

In this section, we present and discuss the results of our FPGA implementation. In general, our
code is written in SpinalHDL, a high-level HDL that can generate a Verilog implementation. The
only exceptions are the highly optimized adder, multiplier, and Keccak blocks that are written in
SystemVerilog. The architecture is implemented in Xilinx Virtex-7 xc7vx690tffg1157-3 as well as
the Xilinx Artix-7 xc7a200tffg 1156-3, as these are used by the majority of SIKE implementations
found in the literature. All results obtained are post-place and route.
Tables 8 and 9 summarize the timing and area results of our architecture, respectively. Specifi-

cally, we synthesized our designs on the Virtex-7 and Artix-7 FPGA platforms. Some other SIKE

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:19

Table 8. Timing Results of SIKE Accelerator in Selected FPGA Devices

Security # Freq. #CC (×106) Total time
Level Multipliers [MHz] Keygen Encap Decap E+D E+D [ms]

Virtex-7 FPGA

1
1 275.5 0.502 0.796 0.869 1.664 6.04
2 274.0 0.367 0.611 0.654 1.264 4.62

2
1 283.3 0.636 0.997 1.092 2.089 7.37
2 273.2 0.459 0.763 0.815 1.578 5.78

3
1 284.1 0.921 1.627 1.677 3.304 11.63
2 279.3 0.618 1.167 1.171 2.338 8.37

5
1 284.1 1.375 2.175 2.371 4.546 16.00
2 279.3 0.906 1.483 1.595 3.078 11.02

Artix-7 FPGA

1
1 189.8 0.502 0.796 0.869 1.664 8.77
2 186.6 0.367 0.611 0.654 1.264 6.78

2
1 186.9 0.636 0.997 1.092 2.089 11.18
2 185.5 0.459 0.763 0.815 1.578 8.51

3
1 180.2 0.921 1.627 1.677 3.304 18.34
2 185.5 0.618 1.167 1.171 2.338 12.60

5
1 186.6 1.375 2.175 2.371 4.546 24.37
2 178.6 0.906 1.483 1.595 3.078 17.24

implementations include Xilinx UltraScale+ results, but our design was specially crafted to run on
the Virtex-7/Artix-7 FPGA’s carry chain and DSP units. Each implementation targets and supports
only one parameter set. For instance, the NIST security level 1 implementations only support the
SIKEp434 parameter set, and the NIST security level 5 implementations only support the SIKEp751
parameter set. The multiplier and adder could be made generic to support all smaller parameter
sets, but this would require additional control logic as well as arithmetic logic, resulting in extra
area overhead as well as a slowdown. Within each security level, we also feature two implementa-
tions, targeting one or two replicated multipliers. More multipliers enable additional parallelism to
achieve a speedup. An additional replicated multiplier speeds up the execution time by about 25%
for the smallest parameter set SIKEp434 and by about 33% for the largest parameter set SIKEp751.
However, the additional replicated multiplier also increases the total area by about 33% more slices
and 100% more DSPs.
Table 10 provides an area breakdown for our SIKEp434 implementation with one multiplier on

the Virtex-7 FPGA device. As we can see, the isogeny accelerator accounts for approximately 85%
of the total slices. This is to be expected, as a high-speed 434-bit modular addition or multiplication
operation requires a significant usage of resources. The multiplier is the only block that requires
DSPs and uses a total of 84 DSPs to efficiently perform the multiplications needed for Montgomery
multiplication and reduction. Note that in the isogeny accelerator some subcomponents share
slices. As we havementioned in the previous section, this design attempts to minimize large BRAM
blocks and keeps to only 17.5 BRAMs.

6.2 Comparison to State-of-the-art

Table 11 shows a detailed area and timing comparison among state-of-the-art SIKE implemen-
tations. Unfortunately, many of these implementation papers target various optimization met-
rics, making a fair comparison difficult. Nevertheless, this work’s implementation shines as the

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:20 R. Elkhatib et al.

Table 9. Area Results of SIKE Accelerator on Selected FPGA Devices

Security # Freq. Area Total time
Level Multipliers [MHz] #FFs #LUTs #DSPs #BRAMs #Slices E+D [ms]

Virtex-7 FPGA

1
1 275.5 10,700 10,915 84

17.5
3,857 6.04

2 274.0 17,047 17,371 168 5,978 4.62

2
1 283.3 12,430 11,584 98

19.0
4,152 7.37

2 273.2 18,505 18,616 196 6,541 5.78

3
1 284.1 15,219 13,790 120

22.0
4,962 11.63

2 279.3 21,638 22,382 240 8,000 8.37

5
1 284.1 17,765 16,325 146

26.0
5,730 16.00

2 279.3 27,015 26,837 292 9,556 11.02

Artix-7 FPGA

1
1 189.8 10,755 10,412 84

17.5
3,721 8.77

2 186.6 16,743 16,703 168 5,964 6.78

2
1 186.9 11,812 11,030 98

19.0
4,011 11.18

2 185.5 18,374 18,040 196 6,499 8.51

3
1 180.2 14,489 12,972 120

22.0
4,754 18.34

2 185.5 22,241 21,599 240 7,669 12.60

5
1 186.6 16,829 15,472 146

26.0
5,568 24.37

2 178.6 26,383 25,776 292 9,340 17.24

Table 10. Area Breakdown of SIKEp434 with One Multiplier on Virtex-7 FPGA

Design Unit #FFs #LUTs #DSPs #BRAMs #Slices

Keccak 597 500 0 0.0 177
RISC-V CPU 614 982 0 1.0 347
CPU Code RAM - - - 2.0 -
CPU/Keccak Shared RAM - - - 1.0 -
- Isogeny Accelerator 9,324 9,240 84 13.5 3,273
- Isogeny RAM 72 1,089 0 12.5 384
- Isogeny Subroutine Controller 137 47 0 1.0 41
- Isogeny Instruction Controller 139 455 0 0.0 269
- Isogeny Multiplier 5,821 5,973 84 0.0 2,373
- Isogeny Adder 2,663 1,291 0 0.0 902
Total 10,700 10,915 84 17.5 3,857

fastest known implementation for SIKEp434, SIKEp503, and SIKEp610. This FPGA with two mul-
tipliers is about 2 milliseconds faster than the next best work for SIKEp434 and just under 4
milliseconds faster than the next best work for SIKEp610. For SIKEp751, only the work of Tian
et al. [64] outperforms this work by 1.7 ms, however, at the cost of about three times as many
resources.
This work’s implementations, both the one and two multiplier variants, achieve the highest

area-time product compared to the state-of-the-art. To equalize the impact of the various FPGA
resources to area, we have used the equivalence 1 DSP = 100 Slices and 1 BRAM = 200 Slices. With
this conversion, we can add up the equivalent number of slices for each of these implementations
and multiply them by the SIKE execution time in milliseconds to get an area-time product. This
area-time product is listed in the final column of Table 11. As we can see, the one multiplier

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:21

Table 11. Comparison of Area and Timing Results in Virtex-7 FPGA

Reference
Time

Area E+D AT

#FFs #LUTs #Slices #DSPs #BRAMs Freq [MHz] [cc × 106] [ms] (×10−3)
SIKEp434 (NIST Level 1)

Koziel et al. [36] 23,819 21,059 8,121 240 26.5 168.4 1.91 11.3 422.9
Elkhatib et al. [22] 18,271 12,818 5,527 195 32.0 249.6 1.99 8 251.4
Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 7.67 50.4 671.1
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 3.46 24.3 758.4
Elkhatib et al. [21] - - 4,611 78 34.5 243.6 4.68 19.2 370.8
Farzam et al. [26] 31,869 25,317 9,855 264 45.5 198.1 1.41 7.1 323.4
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 4.39 14.5 254.4
Ni et al. [51] 30,327 29,468 9,578 108 23 251 1.65 6.6 164.1
This work (1 mult) 10,700 10,915 3,857 84 17.5 275.5 1.66 6.0 95.2
This work (2 mults) 17,047 17,371 5,978 168 17.5 274.0 1.26 4.6 121.4

SIKEp503 (NIST Level 2)
Koziel et al. [36] 27,609 23,746 8,907 264 33.5 165.9 2.35 14.1 592.3
Elkhatib et al. [22] 19,935 13,963 6,163 225 34.0 243.7 2.65 10.9 386.5
Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 9.06 59.5 792.2
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 4.08 28.7 895.7
Elkhatib et al. [21] - - 4,611 78 34.5 243.6 6.11 25.1 484.7
Farzam et al. [26] 36,731 27,148 10,707 312 47 197.9 1.72 8.68 445.3
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 5.81 19.2 336.8
Ni et al. [51] 36,200 34,255 12,478 192 25 227 1.92 8.45 309.9
This work (1 mult) 12,430 11,584 4,152 98 19 273.2 2.09 7.37 130.8
This work (2 mults) 18,505 18,616 6,541 196 19 284.1 1.578 5.78 173.1

SIKEp610 (NIST Level 3)
Koziel et al. [36] 33,297 28,217 10,675 312 39.5 165.8 3.59 21.6 1,075.1
Elkhatib et al. [22] 26,757 16,226 7,461 270 38.5 239 4.26 17.8 750.5
Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 16.3 107.2 1,427.4
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 7.37 51.8 1,616.6
Elkhatib et al. [21] - - 4,611 78 34.5 243.6 9.43 38.7 747.3
Farzam et al. [26] 44,753 30,562 12,848 384 50 183.4 2.40 13.1 801.1
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 9.04 29.8 522.8
Ni et al. [51] 37,331 40,769 13,566 243 27.5 206 2.53 12.3 532.5
This work (1 mult) 15,219 13,790 4,962 120 22 284.1 3.30 11.6 248.4
This work (2 mults) 21,638 22,382 8,000 240 22 279.3 2.34 8.37 304.7

SIKEp751 (NIST Level 5)
Koziel et al. [36] 50,079 39,953 15,834 512 43.5 163.1 4.55 27.8 2,105.4
Farzam et al. [25]∗∗ - - 15,336 512 45.0 160.9 3.88 24.1 1,820.4
Elkhatib et al. [22] 39,339 20,207 11,136 452 41.5 232.7 5.24 22.5 1,454.3
Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 27.34 179.6 2,391.4
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 8.65 60.8 1,897.4
Tian et al. [64]∗ 68,695 90,940 27,286 834 73.5 155.8 1.44 9.3 1,166.1
Elkhatib et al. [21] - - 4,611 78 34.5 243.6 13.40 55.0 1,062.1
Farzam et al. [26] 54,121 37,502 15,246 456 54 182.3 3.31 18.2 1,301.1
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 12.94 42.7 749.0
Ni et al. [51] 50,941 44,604 16,834 432 33 178 2.98 16.7 1,115.5
This work (1 mult) 17,765 16,325 5,730 146 26 284.1 4.55 16.0 408.5
This work (2 mults) 27,015 26,837 9,556 292 26 279.3 3.08 11.0 484.4
∗ SIDH.
∗∗ SIKE Round 1 Parameters.

implementation has a slightly better area-time product, but both implementations outperform all
other implementations by at least 30%.
Across SIKE implementations, our implementations generally achieve the second highest fre-

quency of 275 MHz, only losing out to Elkhatib et al. [24] by about 25 MHz. We attribute this high
frequency as a result of using an incredibly optimized addition and multiplication unit. Most other

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

31:22 R. Elkhatib et al.

implementations chose to use an addition unit with a larger critical path, slowing down their entire
implementation.
When considering memory efficiency, our implementation notably uses the fewest number of

BRAM units for SIKEp434 and SIKEp503. Only the small implementation of Massolino et al. [47]
requires fewer BRAM blocks for SIKEp610 and SIKEp751. This shows that our implementation
minimizes the impact of memory storage in multiple places, including program ROM, isogeny
accelerator RAM, and isogeny accelerator instructions.

7 CONCLUSION

In this article, we designed and implemented a fast and efficient FPGA implementation of SIKE.
Although SIKE is slower thanmost of its competitors, SIKE’s speed continues to improve, and SIKE
shines with its extremely small public key sizes. Our hardware implementation achieves new speed
records across most of SIKE’s parameter sets while still maintaining an efficient area profile. With
new area-time product records, efficient deployment of SIKE becomes more feasible. Our future
work will involve exploring efficient implementation of compressed SIKE, for which no hardware
implementation yet exists.
At the time of completing this work, SIKE was shown to be secure, as detailed in Sections 1

and 2. However, recent attacks [11, 46, 53] have shown that SIKE is not secure and should not be
used as a cryptosystem in the current state. This work might be beneficial for implementation of
signatures based on isogenies such as SQISign by De Feo et al. [19].

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their comments.

REFERENCES

[1] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes, and Francisco Rodríguez-

Henríquez. 2018. On the Cost of Computing Isogenies Between Supersingular Elliptic Curves. Cryptology ePrint

Archive, Report 2018/313.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller,

DustinMoody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. 2020. Status report on the second

round of the NIST post-quantum cryptography standardization process. NIST IR 8309.

[3] Mila Anastasova, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2021. Fast strategies for the implementation

of SIKE round 3 on ARM cortex-M4. IEEE Trans. Circ. Syst. Regul. Pap. (2021), 1–13. DOI:https://doi.org/10.1109/TCSI.
2021.3096916

[4] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir Jalali,

David Jao, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost

Renes, Vladimir Soukharev, and David Urbanik. 2020. Supersingular Isogeny Key Encapsulation. Submission to the

NIST Post-Quantum Standardization Project. Retrieved from https://sike.org/.

[5] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, David Jao, Brian

Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. 2017.

Supersingular Isogeny Key Encapsulation. Submission to the NIST Post-Quantum Standardization Project. Retrieved

from https://sike.org/.

[6] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi. 2016. Key compression for

isogeny-based cryptosystems. In 3rd ACM International Workshop on ASIA Public-Key Cryptography. 1–10.

[7] Reza Azarderakhsh, David Jao, Brian Koziel, Jason T. LeGrow, Vladimir Soukharev, and Oleg Taraskin. 2020. How

not to create an isogeny-based PAKE. In Applied Cryptography and Network Security - 18th International Conference,

ACNS 2020, Rome, Italy, October 19-22, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12146). Springer,

169–186. DOI:https://doi.org/10.1007/978-3-030-57808-4_9
[8] Reza Azarderakhsh, Rami El Khatib, Brian Koziel, and Brandon Langenberg. 2021. Hardware Deployment of Hybrid

PQC. Cryptology ePrint Archive, Report 2021/541.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

https://doi.org/10.1109/TCSI.2021.3096916
https://sike.org/
https://sike.org/
https://doi.org/10.1007/978-3-030-57808-4_9

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:23

[9] U. Banerjee, S. Das, and A. P. Chandrakasan. 2020. Accelerating post-quantum cryptography using an energy-

efficient TLS crypto-processor. In IEEE International Symposium on Circuits and Systems (ISCAS). 1–5. DOI:https:
//doi.org/10.1109/ISCAS45731.2020.9180550

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. 2012. Keccak Implementation

Overview. Retrieved from https://keccak.team/files/Keccak-implementation-3.2.pdf.

[11] Wouter Castryck and Thomas Decru. 2022. An efficient key recovery attack on SIDH (preliminary version). Cryptol-

ogy ePrint Archive, Paper 2022/975.

[12] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. 2009. Cryptographic hash functions from expander graphs. J.

Cryptol. 22, 1 (01 Jan. 2009), 93–113. DOI:https://doi.org/10.1007/s00145-007-9002-x
[13] AndrewM. Childs, David Jao, and Vladimir Soukharev. 2014. Constructing elliptic curve isogenies in quantum subex-

ponential time. J. Math. Cryptol. 8, 1 (2014), 1–29.

[14] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik. 2017. Efficient com-

pression of SIDH public keys. In Annual International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 679–706.

[15] Craig Costello, Patrick Longa, and Michael Naehrig. 2016. Efficient algorithms for supersingular isogeny Diffie-

Hellman. In 36th Annual International Cryptology Conference: Advances in Cryptology. 572–601.

[16] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia. 2019. Improved Classical Crypt-

analysis of the Computational Supersingular Isogeny Problem. Cryptology ePrint Archive, Report 2019/298. Re-

trieved from https://eprint.iacr.org/2019/298.

[17] Jean-Marc Couveignes. 2006. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291.

[18] Luca De Feo, David Jao, and Jérôme Plût. 2014. Towards quantum-resistant cryptosystems from supersingular elliptic

curve isogenies. Cryptology ePrint Archive, Report 2011/506. J. Math. Cryptol. 8, 3 (Sep. 2014), 209–247.

[19] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. 2020. SQISign: Compact

post-quantum signatures from quaternions and isogenies. In International Conference on the Theory and Application

of Cryptology and Information Security. Springer, 64–93.

[20] Rami El Khatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. 2019. Optimized algorithms and architectures

for montgomery multiplication for post-quantum cryptography. In International Conference on Cryptology and Net-

work Security. Springer, 83–98.

[21] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2021. Accelerated RISC-V for SIKE. In 28th IEEE

Symposium on Computer Arithmetic. IEEE, 131–138. DOI:https://doi.org/10.1109/ARITH51176.2021.00035
[22] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani. 2020. Highly optimized montgomery multiplier for SIKE

primes on FPGA. In IEEE 27th Symposium on Computer Arithmetic (ARITH). 64–71. DOI:https://doi.org/10.1109/
ARITH48897.2020.00018

[23] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. 2021. High-performance FPGA accelerator for

SIKE. IEEE Trans. Comput. (2021). DOI:https://doi.org/10.1109/TC.2021.3078691
[24] Rami Elkhatib, Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2022. Accelerated RISC-V for SIKE

(extended version). IEEE Trans. Circ. Syst. Regul. Pap. (2022). DOI:https://doi.org/10.1109/TCSI.2022.3162626
[25] Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, and Hatameh Mosanaei-Boorani. 2020. Implementation of su-

persingular isogeny-based Diffie-Hellman and key encapsulationusing an efficient scheduling. IEEE Trans. Circ. Syst.

Regul. Pap. (2020). https://ieeexplore.ieee.org/document/9113666.

[26] Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, Hatameh Mosanaei-Boorani, and Armin Alivand. 2021. Hard-

ware architecture for supersingular isogeny Diffie-Hellman and key encapsulation using a fast montgomery multi-

plier. IEEE Trans. Circ. Syst. Regul. Pap. 68, 5 (2021), 2042–2050. DOI:https://doi.org/10.1109/TCSI.2021.3062871
[27] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Francisco Rodríguez-Henríquez. 2017. A faster

software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans. Comput.

67, 11 (2017), 1622–1636.

[28] Luca De Feo. 2017. Mathematics of isogeny based cryptography. CoRR abs/1711.04062.

[29] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. 2016. On the security of supersingular isogeny

cryptosystems. In Advances in Cryptology Conference. 63–91. DOI:https://doi.org/10.1007/978-3-662-53887-6_3
[30] Steven D. Galbraith, Christophe Petit, and Javier Silva. 2017. Identification protocols and signature schemes based

on supersingular isogeny problems. In Advances in Cryptology Conference. Cham, 3–33.

[31] Alexandre Gélin and Benjamin Wesolowski. 2017. Loop-abort faults on supersingular isogeny cryptosystems. In 8th

International Workshop on Post-Quantum Cryptography. 93–106. DOI:https://doi.org/10.1007/978-3-319-59879-6_6
[32] Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. In 28th Annual ACM Symposium

on Theory of Computing (STOC’96). Association for Computing Machinery, New York, NY, 212–219. DOI:https://doi.
org/10.1145/237814.237866

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

https://doi.org/10.1109/ISCAS45731.2020.9180550
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://doi.org/10.1007/s00145-007-9002-x
https://eprint.iacr.org/2019/298
https://doi.org/10.1109/ARITH51176.2021.00035
https://doi.org/10.1109/ARITH48897.2020.00018
https://doi.org/10.1109/TC.2021.3078691
https://doi.org/10.1109/TCSI.2022.3162626
https://ieeexplore.ieee.org/document/9113666
https://doi.org/10.1109/TCSI.2021.3062871
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1145/237814.237866

31:24 R. Elkhatib et al.

[33] David Jao and Luca De Feo. 2011. Towards quantum-resistant cryptosystems from supersingular elliptic curve iso-

genies. In 4th International Workshop on Post-Quantum Cryptography. 19–34. DOI:https://doi.org/10.1007/978-3-642-
25405-5_2

[34] Samuel Jaques and John M. Schanck. 2019. Quantum cryptanalysis in the RAMmodel: Claw-finding attacks on SIKE.

Cryptology ePrint Archive, Report 2019/103. Retrieved from https://eprint.iacr.org/2019/103.

[35] A. Karmakar, S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient finite field multiplication for isogeny

based post quantum cryptography. In International Workshop on the Arithmetic of Finite Fields. to ap-

pear. https://www.semanticscholar.org/paper/Efficient-Finite-field-multiplication-for-isogeny-Karmakar-

Roy/af5c8211e98ea7bfe7d67a11fa2071e6269cb2b7.

[36] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani. 2020. SIKE’d Up: Fast hardware architectures

for supersingular isogeny key encapsulation. IEEE Trans. Circ. Syst. Regul. Pap. (2020), 1–13. https://ieeexplore.ieee.

org/document/9093826.

[37] Brian Koziel, Reza Azarderakhsh, and David Jao. 2018. An exposure model for supersingular isogeny Diffie-Hellman

key exchange. In he Cryptographers’ Track at the RSA Conference: Topics in Cryptology. 452–469. DOI:https://doi.org/
10.1007/978-3-319-76953-0_24

[38] Brian Koziel, Reza Azarderakhsh, and David Jao. 2018. Side-channel attacks on quantum-resistant supersingular

isogeny Diffie-Hellman. In 24th International Conference on Selected Areas in Cryptography. 64–81.

[39] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2018. A high-performance and scalable hardware

architecture for isogeny-based cryptography. IEEE Trans. Comput. 67, 11 (2018), 1594–1609.

[40] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. 2016. Fast hardware architectures for supersingu-

lar isogeny Diffie-Hellman key exchange on FPGA. In 17th International Conference on Cryptology in India: Progress

in Cryptology. 191–206.

[41] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari-Kermani, and David Jao. 2017. Post-quantum cryptography on

FPGA based on isogenies on elliptic curves. IEEE Trans. Circ. Syst. Regul. Pap. 64, 1 (Jan. 2017), 86–99. DOI:https:
//doi.org/10.1109/TCSI.2016.2611561

[42] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaffari-Kermani. 2016. NEON-SIDH: Effi-

cient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In 15th International

Conference on Cryptology and Network Security. 88–103. DOI:https://doi.org/10.1007/978-3-319-48965-0_6
[43] Chunyang Liu, Jian Ni, Weiqiang Liu, Zhe Liu, and Máire O’Neill. 2018. Design and optimization of modular mul-

tiplication for SIDH. In IEEE International Symposium on Circuits and Systems (ISCAS). 1–5. DOI:https://doi.org/10.
1109/ISCAS.2018.8351082

[44] Weiqiang Liu, Jian Ni, Zhe Liu, Chunyang Liu, and Máire O’Neill. 2019. Optimized modular multiplication for super-

singular isogeny Diffie-Hellman. IEEE Trans. Comput. 68, 8 (2019), 1249–1255. DOI:https://doi.org/10.1109/TC.2019.
2899847

[45] W. Liu, Z. Ni, J. Ni, C. Rafferty, and M. O’Neill. 2020. High performance modular multiplication for SIDH. IEEE Trans.

Comput.-aid. Des. Integ. Circ. Syst. 39, 10 (2020), 3118–3122. DOI:https://doi.org/10.1109/TCAD.2019.2960330
[46] Luciano Maino and Chloe Martindale. 2022. An attack on SIDH with arbitrary starting curve. Cryptology ePrint

Archive, Paper 2022/1026.

[47] Pedro Maat C. Massolino, Patrick Longa, Joost Renes, and Lejla Batina. 2020. A compact and scalable hard-

ware/software co-design of SIKE. IACR Trans. Cryptog. Hardw. Embed. Syst. (2020), 245–271. https://tches.iacr.org/

index.php/TCHES/article/view/8551.

[48] Peter L. Montgomery. 1985. Modular multiplication without trial division. Math. Comput. 44, 170 (1985), 519–521.

[49] Peter L. Montgomery. 1987. Speeding the pollard and elliptic curve methods of factorization. Math. Com-

put. (1987), 243–264. https://www.semanticscholar.org/paper/Speeding-the-Pollard-and-elliptic-curve-methods-of-

Montgomery/a377c34ff3252c94ae864b7e0cfa64c05d01ef6d.

[50] Michael Naehrig and Joost Renes. 2019. Dual isogenies and their application to public-key compression for isogeny-

based cryptography. In Advances in Cryptology Conference. Springer International Publishing, Cham, 243–272.

[51] Ziying Ni, Dur-e-Shahwar Kundi, Máire O’Neill, and Weiqiang Liu. 2022. A high-performance SIKE hardware accel-

erator. IEEE Trans. Very Large Scale Integ. Syst. (2022), 1–13. DOI:https://doi.org/10.1109/TVLSI.2022.3152011
[52] Geovandro C. C. F. Pereira and Paulo S. L. M. Barreto. 2021. Isogeny-based key compression without pairings. In

Public-Key Cryptography Conference. Springer International Publishing, Cham, 131–154.

[53] Damien Robert. 2022. Breaking SIDH in polynomial time. Cryptology ePrint Archive, Paper 2022/1038.

[54] Alexander Rostovtsev and Anton Stolbunov. 2006. Public-Key Cryptosystem Based on Isogenies. Cryptology ePrint

Archive, Report 2006/145.

[55] Debapriya Basu Roy, Tim Fritzmann, and Georg Sigl. 2020. Efficient hardware/software co-design for post-quantum

crypto algorithm SIKE on ARM and RISC-V based microcontrollers. In IEEE/ACM International Conference on Com-

puter Aided Design (ICCAD’20). 1–9.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2019/103
https://www.semanticscholar.org/paper/Efficient-Finite-field-multiplication-for-isogeny-Karmakar-Roy/af5c8211e98ea7bfe7d67a11fa2071e6269cb2b7
https://ieeexplore.ieee.org/document/9093826
https://doi.org/10.1007/978-3-319-76953-0_24
https://doi.org/10.1109/TCSI.2016.2611561
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1109/ISCAS.2018.8351082
https://doi.org/10.1109/TC.2019.2899847
https://doi.org/10.1109/TCAD.2019.2960330
https://tches.iacr.org/index.php/TCHES/article/view/8551
https://www.semanticscholar.org/paper/Speeding-the-Pollard-and-elliptic-curve-methods-of-Montgomery/a377c34ff3252c94ae864b7e0cfa64c05d01ef6d
https://doi.org/10.1109/TVLSI.2022.3152011

Cryptographic Engineering a Fast and Efficient SIKE in FPGA 31:25

[56] Debapriya Basu Roy and Debdeep Mukhopadhyay. 2019. Post Quantum ECC on FPGA Platform. Cryptology ePrint

Archive, Report 2019/568.

[57] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. 2020. Supersingular isogeny key encapsulation

(SIKE)round 2 on ARM cortex-M4. IEEE Trans. Comput. (2020). DOI:https://doi.org/10.1109/TC.2020.3023045
[58] Hwajeong Seo, Pakize Sanal, Amir Jalali, and Reza Azarderakhsh. 2020. Optimized implementation of SIKE round 2

on 64-bit ARM cortex-a processors. IEEE Trans. Circ. Syst. I Regul. Pap. 67-I, 8 (2020), 2659–2671. DOI:https://doi.org/
10.1109/TCSI.2020.2979410

[59] Peter W. Shor. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Sym-

posium on Foundations of Computer Science (FOCS’94). 124–134.

[60] Oleg Taraskin, Vladimir Soukharev, David Jao, and Jason T. LeGrow. 2021. Towards isogeny-based password-

authenticated key establishment. J. Math. Cryptol. 15, 1 (2021), 18–30. DOI:https://doi.org/doi:10.1515/jmc-2020-0071

[61] The National Institute of Standards and Technology (NIST). 2017–2018. Post-Quantum Cryptography Standard-

ization. Retrieved from https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-

standardization.

[62] Yan Bo Ti. 2017. Fault attack on supersingular isogeny cryptosystems. In 8th InternationalWorkshop on Post-Quantum

Cryptography. Springer International Publishing, Cham, 107–122. DOI:https://doi.org/10.1007/978-3-319-59879-6_7
[63] Jing Tian, Jun Lin, and Zhongfeng Wang. 2019. Ultra-fast modular multiplication implementation for isogeny-

based post-quantum cryptography. In IEEE International Workshop on Signal Processing Systems (SiPS’19). 97–102.

DOI:https://doi.org/10.1109/SiPS47522.2019.9020384
[64] Jing Tian, Bo Wu, and Zhongfeng Wang. 2021. High-speed FPGA implementation of SIKE based on an ultra-low-

latency modular multiplier. IEEE Trans. Circ. Syst. I: Regul. Pap. 68, 9 (2021), 3719–3731. DOI:https://doi.org/10.1109/
TCSI.2021.3094889

[65] Jacques Vélu. 1971. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie Des Sciences Paris Séries A-B

273 (1971), A238–A241.

[66] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev. 2017. A post-quantum digital

signature scheme based on supersingular isogenies. In 21st International Conference on Financial Cryptography and

Data Security. Springer International Publishing, Cham, 163–181. DOI:https://doi.org/10.1007/978-3-319-70972-7_9

Received 9 April 2022; revised 25 October 2022; accepted 24 January 2023

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 31. Publication date: March 2024.

https://doi.org/10.1109/TC.2020.3023045
https://doi.org/10.1109/TCSI.2020.2979410
https://doi.org/doi:10.1515/jmc-2020-0071
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1109/SiPS47522.2019.9020384
https://doi.org/10.1109/TCSI.2021.3094889
https://doi.org/10.1007/978-3-319-70972-7_9

