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Abstract— Modeling a human-driven vehicle is a difficult
subject since human drivers have a variety of stochastic
behavioral components that influence their driving styles. We
develop a cooperative driving framework to incorporate dif-
ferent human behavior aspects, including the attentiveness of
a driver and the tendency of the driver following advising
commands. To demonstrate the framework, we consider the
merging coordination between a human-driven vehicle and
an autonomous vehicle (AV) in a connected environment. We
propose a stochastic model predictive controller (sMPC) to
address the stochasticity in human driving behavior and design
coordinated merging actions to optimize the AV input and
influence human driving behavior through advising commands.
Simulation and human-in-the-loop (HITL) experimental results
show that our formulation is capable of accommodating a
distracted driver and optimizing AV inputs based on human
driving behavior recognition.

I. INTRODUCTION
Autonomous vehicles (AVs) are entering the transportation

systems at an increasing pace. It is estimated that more
than 33 million AVs will be sold worldwide in 2040, with
7.4 million of those being sold in the United States, 14.5
million in China, 5.5 million in European countries, and
6.3 million in other international markets [1]. It is expected
that AVs and human-driven vehicles will co-exist for a
long time. Therefore, it is important to consider how to
ensure safety in mixed traffic consisting of both AVs and
human-driven vehicles. Cooperative driving between AVs
and human-driven vehicles is a way to improve transportation
safety in mixed traffic scenarios.

To facilitate cooperative driving, appropriate human mod-
eling of stochastic elements in human behaviors is crucial.
Researchers have worked on human driver modeling for
applications in driver assistance systems in the last decade.
In [2], the authors use hidden mode stochastic hybrid systems
to simulate the interaction between the driver and the vehicle
in an assistive driving system. In [3], partially observable
Markov decision processes (POMDPs) are used to develop a
unified framework modeling machine dynamics and human
behavior in HITL control of semi-autonomous vehicles.

Cooperative driving in mixed traffic has been attracting
great interest from many researchers in recent years. The
authors in [4] establish risk-bounded motion policies using
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a chance-constrained POMDP for AVs when the system
is uncertain due to human intervention or road conditions.
In [5], future environmental data are predicted, and the opti-
mal action for the AV is adjusted to account for anticipated
changes in future prediction. Reference [6] investigates the
control of connected AVs to react properly to uncertain
maneuvers of human-driven vehicles. Reference [7] consid-
ers how AVs can influence the behavior of human-driven
vehicles. The aforementioned references focus on human-AV
interaction and predict or influence human driving behavior
to optimize AV maneuvers. However, human-driven vehicles
are considered disconnected to the AVs and can only be
indirectly influenced. They do not consider AVs operating
with human-driven vehicles in a connected environment.

In this paper, we investigate cooperative driving between
AVs and human-driven vehicles in a connected environment
for a lane merging scenario. We consider an intelligent
human-driven vehicle (IHV) that can monitor driver status,
provide advisory commands, sense its environment, and
exchange information with surrounding connected vehicles
through vehicle-to-vehicle (v2v) communication. We pro-
pose a discrete system for IHV and AV interaction, using
stochastic model predictive control (sMPC) to generate con-
trol inputs and advisory commands. In [8], [9], [10], we
formulate the optimization of cooperative driving between
an IHV and an AV considering only one driver’s state, i.e.,
the driver’s tendency to follow advisory commands. Building
on [8], [10], we develop a multi-state cooperative driving
framework to incorporate human driver’s attentiveness as
an additional state, since human drivers behave differently
when driving inattentively. The framework can be extended
to accommodate any number of human states.

The rest of this paper is organized as follows. The driver’s
state understanding including distraction detection and hu-
man maneuver modeling is presented in Section II. The
hybrid system modeling for the coordination of AV and
IHV is presented in Section III. The system constraints and
the sMPC formulation are discussed in Section IV and V,
respectively. Simulation results for the proposed sMPC are
presented in Section VI. HITL experimental results validat-
ing the performance of our method are given in Section VII.
Conclusions and future work are discussed in Section VIII.

II. DRIVER STATE UNDERSTANDING

An AV can be effectively controlled to complete a complex
driving task efficiently. On the other hand, a human driver,
depending on her/his skill of driving and attention state,
may struggle to perform the same task without guidance
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or advice. Unlike robotic drivers in AVs, human drivers
possess characteristics such as uncertainty and flexibility. Un-
derstanding human’s state of driving is critical for developing
a cooperative driving system for a mixed traffic scenario.

We consider two characteristics of human driving behavior
to formulate the human driver model: first, whether the
human is following an announced advisory command, and
second, whether the human is attentive or distracted. We
denote by xB

k the binary state of whether the human driver
is following the advisory, where the subscript k ∈ Z+ is
the discrete-time index. xB

k = 1 means that the human is
following the advisory command. Otherwise, xB

k = 0. We also
define the binary state ak = {0,1} as the driver’s attention
state. If the driver is attentive, ak = 1, otherwise ak = 0.

We propose two distinct models for detecting and compre-
hending human driver’s behavior in the cooperative driving
system. The first model focuses on detecting the human
driver’s distraction using image data from a camera ob-
serving the driver, while the second model is capable of
recognizing the maneuver actions of the human driver and
thus inferring the driver’s tendency to follow, based on
vehicle control data such as gas pedal, brake, etc.

A. Distraction detection

Distraction detection is an important task in the field of as-
sisted driving. To detect instances of distracted driving using
camera data, we trained a Residual Network (ResNet-50).
The proposed model is a deep neural network that consists
of 50 layers, allowing it to extract high-level features from
video frames. The image classification algorithm categorized
7 types of distracted driving behaviors and 1 type of normal
driving behavior given in Table I.

TABLE I
CATEGORIES OF HUMAN DRIVING BEHAVIOR

safe driving drinking/eating
texting on the phone reaching behind

talking on the phone using the left hand talking to the passenger
talking on the phone using the right hand doing hair and makeup

We fine-tuned the pre-trained ResNet-50 model on a mixed
dataset of local samples collected in our laboratory and
images from an open-source database. The architecture of
the ResNet-50 model can be found in [11]. The input images
were resized to 224 ∗ 224 pixels and then trained on a
powerful computer. The resulting merged dataset improved
the accuracy of our model to 95% during testing, making it
adaptable to both laboratory and real-world driving scenarios.

During inference, we utilized a Jetson Nano and a camera
to capture the driver’s top half image at 5hz frequency. The
model resized the image and then processed it to generate a
probability matrix of 8 classes. By extracting the probability
value for normally driving from the matrix, we derived the
probability of attentive driving P(ak = 1).

B. Human driver maneuver modeling

In a cooperative driving HITL system that interacts with
the human driver by providing guidance and advice, it is

important to assess the effectiveness of the advice, in other
words, the driver’s tendency of following. To determine the
driver’s tendency of following, we need to recognize the
driving action of the human driver and then compare it with
the advice. To achieve this, we employed an HMM-based
probability model, which was previously introduced in [10].

We defined an action set of the human driver as, A =
{accelerate, decelerate, maintain}, which includes events
of speeding up, slowing down, and maintaining a constant
speed, respectively. We trained an HMM model for each
action, using the driving data that includes gas pedal per-
centage, brake pedal percentage, and vehicle velocity. During
inference, a sequence of driving data is fed into each of
these models, and a probability distribution is obtained,
which represents the probability of the sequence fitting each
HMM model. Comparing it with the advised action from
the previous guidance for the human driver, the probability
of tendency of following, P(xB

k = 1), is obtained.

III. DYNAMIC MODELS OF AV AND IHV
We consider the coordination of lane merging between

an AV and an IHV as shown in Fig. 1. The goal is to
quickly create the gap between the cars for a secure and
seamless merging. The AV can be directly controlled through
control inputs but only the driver can have an impact on the
motion of the IHV. The driver’s action can be influenced
through advisory directives. To identify the optimal advisory
instructions for the IHV and the best autonomous controls
for the AV, we propose an sMPC problem with constraints on
both state and control. In this section, we discuss the dynamic
models used in the sMPC. Sections IV and V present the
constraints and the sMPC formulation, respectively.

Fig. 1. Merging scenario considered in this paper.

A. AV dynamics

We consider a linear dynamic model of an AV

xr
k+1 = Arxr

k +Brur
k, (1)

where the longitudinal position and velocity with respect to
the origin are represented by xr

k ∈R2, Ar and Br are matrices
of suitable dimensions that define the AV dynamics, and ur ∈
R is the input (acceleration) to the AV.

B. IHV dynamics

The IHV dynamics is modeled as discrete hybrid stochas-
tic automata (DHSA) [12]. We model the human driver’s
states as discrete parameters. The IHV dynamics can change
between different models based on these discrete states.
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We denote the set of possible human states by one hot en-
coded vector Sk = [s1

k ,s
2
k , . . . ,s

n
k ]
⊤ ∈ Zn where s1

k ,s
2
k , . . . ,s

n
k ∈

{0,1}, each representing a discrete human state and n is
the total number of possible states. Only one element in
Sk is 1 while all other elements are zero. Each non-zero
si

k, where i ∈ {1, · · · ,n}, represents a different combination
of behavioral aspects being considered. Specifically, we
consider two aspects of human driver behavior: the following
state xB

k and the attention state ak. Based on xB
k and ak, there

are in total four human states: 1) distracted and not following,
2) distracted and following, 3) attentive and not following,
and 4) attentive and following. When in a distracted state,
humans tend to behave similarly regardless of whether they
follow instructions or not. Due to this reason, we consider
the following three states Sk = [s1

k ,s
2
k ,s

3
k ] defined as

s1
k = 1 ⇔ ak = 0, xB

k = 0 or 1, (2)

s2
k = 1 ⇔ ak = 1, xB

k = 0, (3)

s3
k = 1 ⇔ ak = 1, xB

k = 1. (4)

Depending on the current human state, the dynamics of the
IHV is given by

s1
k = 1 ⇒ xh

k+1 = Ahxh
k +Bhud

k , sa
k+1 = ud

k , (5)

s2
k = 1 ⇒ xh

k+1 = Ahxh
k +Bhuh

k , sa
k+1 = uh

k , (6)

s3
k = 1 ⇒ xh

k+1 = Ahxh
k +Bhsa

k , sa
k+1 = λ sa

k +(1−λ )ua
k ,
(7)

where Ah and Bh are matrices of suitable dimensions that
define the IHV dynamics, ud

k ∈ R is the human input when
the human is distracted (inattentive), uh

k ∈ R is the human
input when the human is not distracted, ua

k ∈R is the advisory
commands for the IHV. The human inputs ud

k and uh
k can be

predicted using the method presented in [10].
In (7) where s3

k = 1, the human tries to follow a given
advisory control. As the human driver tries to execute an
advisory command, there is a delay. As a result, rather
than being applied instantly to the vehicle, the advising
directive is gradually executed by the human driver. More
delays can result from the computation lag of the optimal
commands and the transmission and announcement delay
of the advised commands. To take these delay effects into
account, we employ a first-order system of the form shown
in (7). The state sa

k holds the input applied from the previous
step to account for that delay. The reaction constant λ ∈ [0,1)
represents how fast the human in the IHV is adapting to
the advisory action ua

k after it is announced. If λ = 0, the
driver applies the advised control command ua

k exactly at
the (k + 1)th step. In other words, it is anticipated that
the calculation, announcement, and driver tracking of the
advisory directives will all be finished in a single step. As
λ → 1, the driver’s response to the advisory action ua

k is
slowed down. Note that the first-order delay model can be
replaced by other human actuation dynamics, such as the
second-order dynamics in [13], [14].

Define x̄h
k = [xh

k ;sa
k ]. We rewrite the dynamics (5)–(7) as

x̄h
k+1 =

[
Ah 0
0 0

]
x̄h

k +

[
Bh Bh Bh 0
1 λ 1 (1−λ )

]
z̄1

k
z̄2

k
z̄3

k
z̄4

k

 , (8)

where z̄1
k = s1

kud
k , z̄2

k = s3
ksa

k , z̄3
k = s2

kuh
k , and z̄4

k = s3
kua

k . Based
on z̄1

k , z̄2
k , z̄3

k , z̄4
k , and the initial conditions xr

0 and xh
0, we

obtain the solution to xh
k and sa

k as:

xh
k = Ak

hxh
0 +

k−1

∑
j=0

Ak− j−1
h Bh

(
z̄1

j + z̄2
j + z̄3

j
)
, (9)

sa
k+1 = z̄1

k +λ z̄2
k + z̄3

k +(1−λ )z̄4
k . (10)

C. Stochastic human state transitions

We consider human state transitions from si
k to s j

k+1
as stochastic events and define one hot encoded tk =
[t1

k , t
2
k , . . . , t

n2

k ], where n is the number of discrete human states
and each element t p

k ∈ {0,1}, ∀ p ∈ {1,2, . . . ,n2}, indicates
an event of transitioning from si

k = 1 → s j
k+1 = 1 when

uB
k = 1 (advising on) where i, j ∈ {1,2, . . . ,n}. Similarly,

we define one hot encoded t̄k = [t̄1
k , t̄

2
k , . . . , t̄

n2

k ], where each
element t̄ p

k ∈{0,1}, ∀ p∈{1,2, . . . ,n2}, indicates an event of
transitioning from si

k = 1 → s j
k+1 = 1 when uB

k = 0 (advising
off) where i, j ∈ {1,2, . . . ,n}.

Fig. 2. sFSM for human state transitions. Blue transitions indicate
transitions for uB

k = 1 and red transitions indicate the transitions for uB
k = 0.

The transitions in our system where n = 3 is illustrated
using a stochastic finite state machine (sFSM) in Fig. 2.
The total number of possible transitions is 18. Among these
transitions, the transitions that are not possible to occur have
probabilities of 0. These transitions are not shown in the
sFSM. In total, we have 15 transitions.

IV. SYSTEM CONSTRAINTS

We take into account the following four sets of constraints
to coordinate the actions of the IHV and the AV.
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A. State constraints:

The new variables z̄1
k , z̄

2
k , z̄

3
k and z̄4

k and their relationships
with the states and inputs lead to state constraints. The state
and input limits are also included in these constraints. Us-
ing the mixed-logic dynamical (MLD) systems formulation
in [15], the state constraints are formulated as inequalities.
The expressions of these inequalities can be found in [11].

B. Human state transition constraints:

Following the human state transition from the sFSM, each
transition from si

k to s j
k+1 for uB

k = 1 is encoded by the binary
event t p

k . Therefore, the event t p
k takes place only when si

k =

s j
k+1 = uB

k = 1. Such a transition is converted to the following
inequality constraints:

s j
k+1 + si

k +uB
k ≤ 2+ t p

k , t p
k ≤ si

k, t p
k ≤ s j

k+1, t p
k ≤ uB

k . (11)

Similarly, each transition from si
k to s j

k+1 when uB
k = 0

is encoded by the binary event t̄ p
k and the event t̄ p

k takes
place only when si

k = s j
k+1 = (1−uB

k ) = 1. This transition is
formulated using the following inequalities:

s j
k+1 + si

k −uB
k ≤ 1+ t̄ p

k , t̄ p
k ≤ si

k, t̄ p
k ≤ s j

k+1, t̄ p
k ≤ (1−uB

k ).
(12)

Each event pair {t p
k , t̄

p
k }, ∀p ∈ {1,2, . . . ,32} will produce

constraints similar to (11)–(12). Since only one event occurs
in the kth time step, it follows that

t1
k + t2

k + · · ·+ tn2

k + t̄1
k + t̄2

k + · · ·+ t̄n2

k = 1. (13)

The transition probability of an event t p
k is denoted by

P(t p
k ) = P(s j

k+1 = 1|si
k = 1,uB

k = 1). Similarly the transition
probability of an event t̄ p

k is denoted by P(t̄ p
k ) = P(s j

k+1 =
1|si

k = 1,uB
k = 0). These transition probabilities indicate the

human’s driving pattern and level of compliance, which can
be estimated based on prior driving data. For simulation
and experiments in this paper, we have carefully chosen the
transition probabilities, which can be found in [11].

In the initial step k = 0, the probabilities P(xB
0 = 1) and

P(a0 = 1) are estimated as described in Section II. We
assume that the two estimated probabilities are independent,
resulting in P(s1

0) = P(a0 = 0), P(s2
0) = P(a0 = 1)P(xB

0 = 0),
and P(s3

0) = P(a0 = 1)P(xB
0 = 1).

C. Merging gap constraints:

The longitudinal position between the two merging ve-
hicles must be more than a threshold dr > 0 for accident
prevention during lane merging. This condition formulates
the merging gap constraints:

|xr
k,1 − xh

k,1| ≥ dr, (14)

where xk,1 denotes the position state. The detailed formula-
tion can be found in [8].

D. Chance constraints

Any solutions that have a low chance of occurring are
removed from the list of potential solutions using chance
constraints. The potential human state transition events in our
formulation are Tk = [t1

k . . . tn2

k t̄1
k . . . t̄n2

k ]⊤ and the transition

probabilities are P =
[
P[t1

k ] . . . P[tn2

k ] P[t̄1
k ] . . . P[t̄n2

k ]
]⊤

.
The chance constraint becomes

K−1

∑
k=0

n2

∑
i=1

(
t i
k ln(P[t i

k])+ t̄ i
k ln(P[t̄ i

k])
)
≥ ln(p̃), (15)

with p̃ ∈ [0,1] being a probability bound. This chance con-
straint (15) enforces that T realizes with at least p̃ probability.

V. STOCHASTIC MPC FORMULATION

The sMPC aims to meet all the constraints necessary
to model the coordination of the IHV and the AV while
optimizing the decision variables at each time step k. All the
aforementioned constraints are accumulated and formulated
as inequality constraints Gkθk ≤ gk, where Gk ∈ Rnc×nt ,
gk ∈Rnc×1, nt is the total number of decision variables, and
nc is the total number of constraints. The decision variable
set θk contains the future K steps of variables necessary to
formulate the model and the inputs we want to optimize.

We optimize a cost function as a weighted sum of five
objectives: minimizing control inputs, minimizing time for
achieving the merging distance, maximizing AV and IHV
speed, minimizing the number of advisory directives, and
maximizing the probability of stochastic events. The com-
bined cost function is given by

J(θk) = θ
⊤
k Qθk + c⊤θk, (16)

where Q ∈ Rnt×nt , c ∈ R1×nt are the designed objective
weights for the system. The weights are important factors
in determining optimal maneuvers of the vehicles. A human
driver’s long-term driving data may be compiled to assess
how much weight to be assigned to each of the objectives.
In the experiments, we manually tune the weights to produce
desired vehicle behaviors.

To evaluate the effect of advisory commands on humans,
we create two sMPC setups: 1) multi-advisory setup and 2)
max-one advisory setup. For the multi-advisory setup, the
system is allowed to advise multiple times to influence the
human driver. The max-one advisory setup is allowed to
advise once to influence the driver’s behavior. To enforce
this condition in the max-one advisory setup, we use an
additional constraint on the number of advisory commands:

uB
0 +uB

1 + · · ·+uB
K ≤ 1. (17)

Once an advisory command is issued, no advisory commands
will be generated in the future.

Considering the current human state as a deterministic
parameter, the sMPC optimization problem is formulated as

min
θk

J(θk), s.t. Gkθk ≤ gk. (18)

However, the human state is an uncertain parameter that can
only be estimated. To tackle this stochasticity of the human
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state, we formulate three sets of optimization that correspond
to three possible human states. If the human is in s1, s2, or
s3 state, the optimized decision variables are denoted by θ 1

k ,
θ 2

k and θ 3
k respectively. Based on the probabilities of each

state, we solve the following sMPC

min
θ 1

k ,θ
2
k ,θ

3
k

J(θ 1
k ,θ

2
k ,θ

3
k ) = P(s1

k)
(
(θ 1

k )
⊤Qθ

1
k + c⊤θ

1
k

)
+P(s2

k)
(
(θ 2

k )
⊤Qθ

2
k + c⊤θ

2
k

)
+P(s3

k)
(
(θ 3

k )
⊤Qθ

3
k + c⊤θ

3
k

)
(19)

s.t. P(s1
k)Gk

∣∣∣
s1
k=1

θ
1
k ≤ P(s1

k)gk

∣∣∣
s1
k=1

, (20)

P(s2
k)Gk

∣∣∣
s2
k=1

θ
2
k ≤ P(s2

k)gk

∣∣∣
s2
k=1

(21)

P(s3
k)Gk

∣∣∣
s3
k=1

θ
3
k ≤ P(s3

k)gk

∣∣∣
s3
k=1

(22)

[ur
k ua

k uB
k ]

⊤
∣∣∣
s1
k=1

= [ur
k ua

k uB
k ]

⊤
∣∣∣
s2
k=1

= [ur
k ua

k uB
k ]

⊤
∣∣∣
s3
k=1

.

(23)

The constraint (23) enforces that the control inputs to be
implemented on the AV and the IHV must be the same for
the three possible states. The sMPC solution provides the
control inputs applied to the AV and the advisory commands
conveyed to the IHV at each time step. After the inputs are
implemented, the optimization moves one step forward with
the new human state estimates and initial conditions and
calculates the optimal input for the next time step.

VI. SIMULATION RESULTS

In simulations, we apply the aforementioned sMPC for-
mulation. For vehicle dynamics, a double integrator model
is used. Up until the safe merging distance of dr = 7m
is reached, the sMPC optimization is solved based on the
vehicle states, human input prediction, and the human state
probabilities to provide the input for the AV and the advisory
command for the IHV. The look-ahead window is K = 10 for
all simulations, and each time step is 0.8 seconds. We used
the Gurobi solver [16] to solve the optimization problem.

In Fig. 3, an attentive driver (left column) is simulated to
transition to following advisory after the advisory announce-
ment. We observe that the merging action is distributed
between the IHV and the AV and the attentive driver is
advised to speed up where the AV slows down to perform
the merging. An inattentive driver (right column) is simulated
to stay distracted throughout the merge. For the inattentive
driver, the system advises the driver to decelerate more in
the initial two steps. As the human is distracted, the AV
takes up more merging action in the initial two time steps
with a higher acceleration compared to the attentive scenario.
Toward the end, the system advises the human in both
attentive and inattentive scenarios to keep a steady speed.

The simulation results show that the sMPC formulation
generates coordinated merging trajectories for both vehicles
We then implement the sMPC on a HITL experiment testbed
to test its performance with a real human driver.

Fig. 3. Simulation results with multi-advisory setup for human attentive
(left column) and human inattentive (right column). Upwards, downward
arrows, and no arrow in advising action when the advising state is 1 indicate
speed-up, slow-down, and keep speed advising respectively.

VII. EXPERIMENTAL RESULTS

For HITL experimentation, we developed a driving simu-
lator testbed, a detailed description of which can be found
in [17]. Using this testbed, we conducted 30 merging tests
with two advisory setups: 1) multi-advisory setup and 2)
max-one advisory setup on a human driver volunteer with
proficient driving experience. Half of the tests were com-
pleted with the driver being attentive, and the other half with
the driver exhibiting one of the 7 distracted driving behaviors.
Based on the optimization results, the AV input and the IHV
advisory command are updated every 0.8 seconds. Given
the advisory command, the copilot announces ‘speed up’,
‘slow down’, or ‘keep’ to advise the human to speed up,
slow down or keep speed, respectively. The current speed
and the advised speed derived from the advised acceleration
are shown on a speed circular chart on a display screen.

In Fig. 4(a), the performance of the sMPC in the multi-
advisory setup with an attentive driver (left column) and an
inattentive driver (right column) is presented. The attentive
driver tries to follow the advisory commands and increase
the speed of the vehicle initially. After the third time step,
the system advises the driver to keep speed since the distance
for merging is about to be established. On the other hand,
the inattentive driver slows down with a small deceleration
and is advised to slow down more. In the last four steps,
the human is advised to keep speed to prevent unnecessary
slowdown. But as the driver is inattentive, she/he does not
follow the commands and decelerates at her/his own rate.

Fig. 4(b) illustrates the performance of the sMPC in the
max-one advisory setup for an attentive driver (left column)
and an inattentive driver (right column). Initially, the attentive
driver speeds up slightly, so the sMPC advises the IHV to
accelerate while the AV slows down to facilitate the merge.
The inattentive driver who also slightly speeds up in the
beginning, is also advised to speed up more. But compared
to the attentive scenario the inattentive driver accelerates less.
Thus, the AV decelerates at a higher rate than in the attentive
case to achieve the safe merging distance quickly.

Table II shows the average merging time for each scenario.
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(a) Multi-advisory

(b) Max-one advisory

Fig. 4. HITL driving experimental results for human attentive (left column)
and human inattentive (right column). Upwards, downward arrows, and no
arrow in advising actions when the advising state is 1 indicate speed-up,
slow-down, and keep speed advising respectively.

TABLE II
AVERAGE TIME TO MERGE (SECONDS)

Scenario Attentive Inattentive
Multi-advisory 4.53 5.17

Max-one advisory 5.12 5.28

Comparing the time for the 30 tests, it is evident that the
sMPC algorithm successfully generates effective merging
scenarios for both attentive and inattentive human drivers.
Comparing between the multi-advisory and max-one advi-
sory, the average merging time is slightly higher for max-
one advisory for both attentive and inattentive drivers. This
is expected as the max-one advisory has a limited chance to
advise the human and influence their action.

We conclude from these findings that the sMPC algorithm
provides appropriate merging solutions for both attentive and
inattentive drivers with a reasonable merging time. Moreover,
the advisory commands play a vital role in the coordination
of the AV and IHV. With less advisory commands in the
max-one advisory setup, there is less control over the human
driver thus the time for the merge are comparatively higher
than the multi-advisory setup.

VIII. CONCLUSIONS AND FUTURE WORK

We present an sMPC formulation that takes human states
into consideration to coordinate the motion of an IHV
and an AV for optimal merging. The formulation includes
state variables affecting a human driver’s behavior, such as
attention and tendency to follow advisory commands. The

sMPC solution takes the stochasticity of human behaviors
into account and produces optimal inputs for the AV and
advisory instructions for the IHV. By conducting simulations
and experiments, we demonstrate the effectiveness of the
proposed approach. In the future, we plan to improve the
model of human driver behaviors by incorporating additional
human states, such as aggressively driving and conservatively
driving and studying their responses in challenging driving
conditions, such as in a platoon.
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