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ABSTRACT KEYWORDS
As more mobile collaborative robots (cobots) are being deployed in Human-Robot Interaction, Physical Adaptation,
domestic environments, it is necessary to ensure safety while Neurophysiological Adaptation, Retail Environment
interacting with humans. To this end, a better understanding of ACM Reference Format

individuals’ physical and neurophysiological responses (i.e., short
term adaptation) during those interactions becomes crucial to frame
the cobot’s behavioral and control algorithms. The primary
objective of this study was to assess individuals’ physical and
neurophysiological responses to the mobile cobot in a retail
environment. Eight participants were recruited to complete typical
grocery shopping tasks (i.e., cart pushing, item picking, and item
sorting) with and without a mobile robot running in the same space.
Results showed the co-existence of mobile cobot in the retail
environment stimulated individuals’ physical responses, by
significantly changing their upper-limb kinematics, i.e., reducing
the average flexion angles of L5/S1 (lower back), T12/L1 (middle
back), and right shoulder in the sagittal plane. However, no
significant differences were observed in the neurophysiological
adaptation based on the measures of muscle activity of the
latissimus dorsi, anterior deltoid, and bicep brachii, nor the pupil
diameter.
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1 INTRODUCTION

In 2021, the global industrial robot market was valued at around 43.8
billion U.S. dollars. The market is anticipated to increase at a nearly
10% compound annual growth rate by 2028 and will be worth close
to $70.6 billion U.S. dollars [1], Industrial robots are becoming more
and more widespread in the workplace, particularly in industries
like agriculture [2], manufacturing [3], healthcare [4] and customer
service [5]. The market for industrial robots has grown, and their
deployment formats have evolved as well. Traditionally, robots are
physically isolated from human workers for safety concerns, which
has limited their use in industries that require frequent and direct
interactions between humans and robots. As a result, collaborative
robots (cobots), a new form of robotic automation designed to work
safely alongside human workers, emerge as a viable option. In
industrial examples such as wholesale and retail trade (WRT) [6],
[7], cobots are deployed to take over repetitive and tedious tasks
(e.g., cleaning, disinfection, inspection, and delivery), freeing up
human workers to focus on tasks that require advanced
environment decision-making, and/or object
manipulation that are beyond the capability of current robotic
technologies [8], [9]. While cobots are intended to complement
human workers and increase the overall system efficiency, it is

perception,

crucial to assure their safety by correctly perceiving and predicting
how people respond to them in a shared space. Previous literature
has focused on the psychological aspects involved in human-robot
interaction (HRI), such as acceptance [10] and trust [11], to calibrate
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humans’ perception of advanced technologies. In this study, we
aimed to further expanding our knowledge base by investigating
not only individuals’ neurophysiological but also their physical
responses (i.e., short term adaptation) to mobile cobots that work
closely with humans in the WRT environment. By including
individuals’ neurophysiological and physical responses, human
behavior can be better quantified or even predicted. benefiting an
efficient and effective interaction between human and cobots. The
research question and hypotheses are constructed as follows:
Research Question: What effect does the presence of the mobile
cobot have on individuals’ physical and neurophysiological
adaptation in the retail environment?

Research Hypothesis 1: The presence of the mobile cobot can
alter individuals’ physical behavior in the retail environment, as
indicated by their upper-limb kinematics measures.

Research Hypothesis 2: The presence of the mobile cobot can
alter individuals’ neurophysiological behavior in the retail
environment, as indicated by their muscle activities and pupillary
response measures.

2 METHODS
2.1 Participants

Eight participants, three females and five males, were recruited
from the university student population to participate in this
experiment. Their mean (SD) age and height were 19.4 (2.0) years
and 176.7 (10.2) cm. All participants reported being healthy, with no
recent musculoskeletal problems requiring medical attention. One
participant claimed to be ambidextrous, while the others claimed to
be right-handed. The University of Florida Institutional Review
Board authorized this study (IRB202002765).

2.2 System Setup

2.2.1 Experiment site: The experiment was conducted in a high-
fidelity retail environment (Figure 1). The facility is equipped with
movable shelves and essential accessories such as a checkout
machine, a shopping cart, and over 100 common grocery items.
2.2.2 Robot platform: The retail robot used in the experiment
consisted of a Fetch Freight Base (Fetch Robotics, Inc., San Jose,
California) and a UR5 robot manipulator (Universal Robots, Odense,
Denmark) as shown in Figure 1. The robot is 1.295 meters tall and
has a 0.508 by 0.559 meter footprint. The robot had a 2D LiDAR
sensor, a webcam, a 6D inertial measurement unit (IMU) sensor, and
two wheel-encoders. It was controlled by the Robot Operating
System (ROS) with an Intel i3 CPU, an 8 GB RAM, and a 120 GB
SSD. Using the same control scheme as in our earlier experiments
[7], the robot was programmed to travel between predefined
waypoints with the capacity of obstacle avoidance and path re-
planning. During the experiment, the robot's maximum moving
speed was set at 1.0 m/s, while the UR5 remained deactivated and
retractable.

2.2.3 Motion capture system: The IMU-based motion capture system
Xsens (MVN Awinda, Xsens Technologies BV, Enschede,
Netherlands) was used to record participants’ positions and body
postures during the experiment to overcome the marker occlusion
issue that arises in camera-based motion capture systems. The
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system consists of a total of seventeen IMU sensors (~ 10 g per
sensor) that can be affixed to the top of participants’ outfits in
accordance with the manufacturer's instructions [12]. The sampling
frequency of the system was 60 Hz.

2.2.4 Electromyography system: Muscle activities were recorded
using the surface electromyography (EMG) system (Delsys Trigno,
Delsys Inc., Boston, MA). Each wireless EMG sensor has four silver
bar electrodes and an integrated amplifier. The muscle groups, i.e.,
latissimus dorsi, anterior deltoid, and bicep brachii on the right side
of participants were selected and the sensors were attached to them
using double-sided adhesive tape with no electrode gel required.
The maximal voluntary contraction (MVC) of these muscles was
measured with reference to [13].

2.2.5 Eye tracking system: A head-worn eye tracker, Tobii Pro
Glasses 2 (Tobii, Danderyd Municipality, Sweden), was utilized to
record pupil diameter, which is a sensitive physiological indicator
of cognitive workload [14]. Appropriate corrective lenses were
snapped on if needed. The sampling frequency of the eye tracker

was set at 50 Hz.
= ey

Figure 1: Experiment site and robot platform.

2.3 Experimental Design

A within-subject experiment was designed to evaluate the effect of
the robot on individuals’ physical and neurophysiological
adaptation in the retail environment. The independent variable was
the robot condition, i.e., “no robot” and “with robot”. The dependent
variables included measures that depict the physical (i.e., body
kinematics) and neurophysiological (i.e., muscle activity and
pupillary response) responses of each participant. During the
experiment, participants were instructed to complete ten grocery
shopping tasks with (#:5) and without (#:5) the retail robot. The
grocery shopping task was designed as a series of continuous
actions, which included: (1) pushing a shopping cart between
shelves, i.e., cart pushing task, (2) scanning and picking eight items,
one from each shelf, i.e., item picking task, and (3) sorting the items
into two bins at the checkout machine, i.e., item sorting task) (Figure
2). At the beginning of each trial, a list including all the items of the
target was given to the participants. And the participants were
asked to pick up items in the correct sequence using their right
hand. During the trials in which the participants performed the
grocery shopping tasks alongside the mobile robot (i.e., the “with
robot” condition), the retail robot was designed to circle the “store”,
representing a platform realizing functions, such as disinfection,
cleaning, and inventory management in retail environments. The
waypoints of the robot were illustrated in Figure 2. The order of the
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robot condition was presented at random to prevent systematic
errors and potential learning effects.

2.4 Procedures

Upon arrival, participants first consented to participate in the study
and provided their demographic information including their
gender, age, height (with shoes on), and handedness. Following that,
three EMG sensors were placed on the right side of the latissimus
dorsi, anterior deltoid, and bicep brachii muscles. MVC for each
muscle was then tested following the guideline [13]. After the MVC
trials, motion capture sensors and the eye tracker were attached to
the participant's body and both systems were calibrated. Ten
grocery shopping tasks were subsequently given to the participants,
five “with robot” and five “without robot”. To prevent fatigue, a
mandatory rest of at least 2 mins was designed between each trial.

X
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Figure 2: The SLAM map of the experiment site and
illustrations of participants’ grocery shopping tasks as well
as the robot’s path to circle the store.

2.5 Data Analysis

This study focused on participants' upper limbs since the tasks
designed for the experiment (e.g., picking and sorting items)
required a lot of movement in that region. Participants’ physical
response data is their kinematics captured by the motion capture
system, to indicate participants’ motor adaptation to perturbations
[15]. The average joint flexion angle of L5/S1, T12/L1, Head/C1, and
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right shoulder in the sagittal plane were calculated using custom
MATLAB code [12] after loading the raw joint angle exported from
the software, MVN Analyze (Xsens Technologies BV, Enschede,
The Netherlands). The neurophysiological measures contain muscle
activity from the EMG system [16] and pupillary responses [17]
from the eye-tracking system. Muscle activity represents the levels
of muscle activation for the upper body and it was calculated from
the EMG signals normalized by participants’ MVC, after steps of: 1)
mean removal, 2) bandpass filter (4th order Butterworth, 20-500 Hz),
3) absolute value acquisition, and 4) root mean square calculation
(window length 300ms, no overlaps) following [18]. The pupillary
responses were depicted by calculating the average pupil diameter
for each trial, by pooling the left and right sides of pupil diameter
together.

2.6 Statistical Analysis

One-way repeated ANOVAs were conducted using R studio (R
version 3.6.0), with the robot condition as the independent variables,
measures of upper-limb kinematics, muscle activity, and pupillary
responses being the dependent variables. The assumptions of the
model (normality & homogeneity of variance) were visually
checked. Although moderate deviations from normality were noted,
ANOVAs were reported to be robust to these discrepancies [19].
During the analysis, participants were treated as the random effect.
The significance level of o = 0.05 was used across all tests.

3 RESULTS AND DISCUSSION
3.1 Upper-limb Kinematics

The significant difference in the upper-limb kinematics measures
under two robot conditions revealed the effect of a robot on
individuals’ physical adaptation. As shown in Table I, when
compared to the “no robot” condition, the “with robot” condition
induced a decrease in joint flexion angle of L5/S1 (4.80 vs. 4.14
degrees, F (1,68) = 4.23, p = 0.044), T12/L1 (2.13 vs. 1.84 degrees, F
(1,68) = 4.10, p = 0.047), and right shoulder (25.06 vs. 22.42 degrees,
F (1,68) = 9.84, p = 0.003). No significant changes were observed in
terms of Head/C1 flexion angle between conditions.

Participants were found to flex less of their trunk (ie., L5/S1 &
T12/L1) and their shoulder throughout the trial, indicating a more
erect standing posture with the presence of a robot in the retail
environment. One of the reasons for the adaptation of an erect

TABLE L. MEAN (STANDARD DEVIATION) OF TEN PARAMETERS AND THE EFFECT OF ROBOT CONDITION ON THESE PARAMETERS.
Robot Conditions
Parameters -
No Robot With Robot p-value
L5/S1 4.80 (4.43) 4.14 (5.06) 0.044
Upper Lib Kinematics — T12/L1 2.13 (1.97) 1.84 (2.25) 0.047
Average Flexion Angle
(degrees) Head/C1 -0.81 (6.21) 0.10 (8.00) 0.354
Right Shoulder 25.06 (7.09) 22.42 (7.60) 0.003
Latissimus Dorsi 5.33(3.89) 5.15 (3.60) 0.823
Muscle Activity — % - -
Activation (%) Anterior Deltoid 491 (2.54) 4.89 (2.92) 0.543
Bicep Brachii 4.26 (4.95) 3.96 (4.7) 0.406
Pupillary Responses (mm) | Pupil diameter (L & R) 4.35(0.25) 4.34 (0.26) 0.632
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standing posture during the HRI can be the participants’
unintentional effort to minimize their physical footprint in the
environment, minimizing potential collisions with the retail robot,
and ensuring timely responses to the unexpected actions executed
by the retail robot.

3.2 Muscle Activity

There was no significant difference found in the levels of muscle
activation of the latissimus dorsi, anterior deltoid, and bicep brachii
muscles between two robot conditions (Table I). Overall, the three
muscles that are evaluated had low levels of muscle activation (less
than 10%), which is expected as normal retail tasks that do not
generate intense short-term muscle strains. The presence of a robot
did not lead to muscle activity changes in the three muscles.
According to 3.1, the reduction in the right shoulder flexion angles
may be related to the changes in the activation level of other muscle
groups, for example, pectoralis major and coracobrachialis [20],
rather than the anterior deltoid. Also, it might be the case that the
co-existence of a mobile cobot could strongly influence personal
physical behavior at some critical moments (e.g., when the two
agents interact or surpass) and their EMG patterns, but not so at the
whole trial level. In order to investigate this, we plan to conduct
more detailed analysis with a higher resolution and sensitivity.

3.3 Pupillary Response

In terms of pupillary responses caused by the robot, no significant
difference was found in the pupil diameter measure between “with
robot” and “no robot” conditions. Pupil diameter is commonly
regarded as a physiological measure of an individual’s cognitive
workload, which tends to increase as the workload increases [14].
Although no difference was observed in the pupil diameter in this
experiment, our previous research efforts have shown that
participants’ workload was negatively affected when they were
interacting with a robot in the WRT environments [7], [21]. The
conflict in results is probably due to different sets of tasks designed
in the human-robot interaction environment. Further follow-up
studies can take this into consideration and investigate individuals’
pupillary response to robots while they were performing tasks at
varied engagement levels.
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