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ABSTRACT 
As more mobile collaborative robots (cobots) are being deployed in 
domestic environments, it is necessary to ensure safety while 
interacting with humans. To this end, a better understanding of 
individuals’ physical and neurophysiological responses (i.e., short 
term adaptation) during those interactions becomes crucial to frame 
the cobot’s behavioral and control algorithms. The primary 
objective of this study was to assess individuals’ physical and 
neurophysiological responses to the mobile cobot in a retail 
environment. Eight participants were recruited to complete typical 
grocery shopping tasks (i.e., cart pushing, item picking, and item 
sorting) with and without a mobile robot running in the same space. 
Results showed the co-existence of mobile cobot in the retail 
environment stimulated individuals’ physical responses, by 
significantly changing their upper-limb kinematics, i.e., reducing 
the average flexion angles of L5/S1 (lower back), T12/L1 (middle 
back), and right shoulder in the sagittal plane. However, no 
significant differences were observed in the neurophysiological 
adaptation based on the measures of muscle activity of the 
latissimus dorsi, anterior deltoid, and bicep brachii, nor the pupil 
diameter. 
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1 INTRODUCTION 
In 2021, the global industrial robot market was valued at around 43.8 
billion U.S. dollars. The market is anticipated to increase at a nearly 
10% compound annual growth rate by 2028 and will be worth close 
to $70.6 billion U.S. dollars [1], Industrial robots are becoming more 
and more widespread in the workplace, particularly in industries 
like agriculture [2], manufacturing [3], healthcare [4] and customer 
service [5]. The market for industrial robots has grown, and their 
deployment formats have evolved as well. Traditionally, robots are 
physically isolated from human workers for safety concerns, which 
has limited their use in industries that require frequent and direct 
interactions between humans and robots. As a result, collaborative 
robots (cobots), a new form of robotic automation designed to work 
safely alongside human workers, emerge as a viable option. In 
industrial examples such as wholesale and retail trade (WRT) [6], 
[7], cobots are deployed to take over repetitive and tedious tasks 
(e.g., cleaning, disinfection, inspection, and delivery), freeing up 
human workers to focus on tasks that require advanced 
environment perception, decision-making, and/or object 
manipulation that are beyond the capability of current robotic 
technologies [8], [9]. While cobots are intended to complement 
human workers and increase the overall system efficiency, it is 
crucial to assure their safety by correctly perceiving and predicting 
how people respond to them in a shared space. Previous literature 
has focused on the psychological aspects involved in human-robot 
interaction (HRI), such as acceptance [10] and trust [11], to calibrate 
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humans’ perception of advanced technologies. In this study, we 
aimed to further expanding our knowledge base by investigating 
not only individuals’ neurophysiological but also their physical 
responses (i.e., short term adaptation) to mobile cobots that work 
closely with humans in the WRT environment. By including 
individuals’ neurophysiological and physical responses, human 
behavior can be better quantified or even predicted. benefiting an 
efficient and effective interaction between human and cobots. The 
research question and hypotheses are constructed as follows: 
Research Question: What effect does the presence of the mobile 
cobot have on individuals’ physical and neurophysiological 
adaptation in the retail environment? 
Research Hypothesis 1: The presence of the mobile cobot can 
alter individuals’ physical behavior in the retail environment, as 
indicated by their upper-limb kinematics measures. 
Research Hypothesis 2: The presence of the mobile cobot can 
alter individuals’ neurophysiological behavior in the retail 
environment, as indicated by their muscle activities and pupillary 
response measures. 

2 METHODS 

2.1 Participants 
Eight participants, three females and five males, were recruited 
from the university student population to participate in this 
experiment. Their mean (SD) age and height were 19.4 (2.0) years 
and 176.7 (10.2) cm. All participants reported being healthy, with no 
recent musculoskeletal problems requiring medical attention. One 
participant claimed to be ambidextrous, while the others claimed to 
be right-handed. The University of Florida Institutional Review 
Board authorized this study (IRB202002765). 

2.2 System Setup 
2.2.1 Experiment site: The experiment was conducted in a high-
fidelity retail environment (Figure 1). The facility is equipped with 
movable shelves and essential accessories such as a checkout 
machine, a shopping cart, and over 100 common grocery items.  
2.2.2 Robot platform: The retail robot used in the experiment 
consisted of a Fetch Freight Base (Fetch Robotics, Inc., San Jose, 
California) and a UR5 robot manipulator (Universal Robots, Odense, 
Denmark) as shown in Figure 1. The robot is 1.295 meters tall and 
has a 0.508 by 0.559 meter footprint. The robot had a 2D LiDAR 
sensor, a webcam, a 6D inertial measurement unit (IMU) sensor, and 
two wheel-encoders. It was controlled by the Robot Operating 
System (ROS) with an Intel i3 CPU, an 8 GB RAM, and a 120 GB 
SSD. Using the same control scheme as in our earlier experiments 
[7], the robot was programmed to travel between predefined 
waypoints with the capacity of obstacle avoidance and path re-
planning. During the experiment, the robot's maximum moving 
speed was set at 1.0 m/s, while the UR5 remained deactivated and 
retractable. 
2.2.3 Motion capture system: The IMU-based motion capture system 
Xsens (MVN Awinda, Xsens Technologies BV, Enschede, 
Netherlands) was used to record participants’ positions and body 
postures during the experiment to overcome the marker occlusion 
issue that arises in camera-based motion capture systems. The 

system consists of a total of seventeen IMU sensors (~ 10 g per 
sensor) that can be affixed to the top of participants' outfits in 
accordance with the manufacturer's instructions [12]. The sampling 
frequency of the system was 60 Hz. 
2.2.4 Electromyography system: Muscle activities were recorded 
using the surface electromyography (EMG) system (Delsys Trigno, 
Delsys Inc., Boston, MA). Each wireless EMG sensor has four silver 
bar electrodes and an integrated amplifier. The muscle groups, i.e., 
latissimus dorsi, anterior deltoid, and bicep brachii on the right side 
of participants were selected and the sensors were attached to them 
using double-sided adhesive tape with no electrode gel required. 
The maximal voluntary contraction (MVC) of these muscles was 
measured with reference to [13].  
2.2.5 Eye tracking system: A head-worn eye tracker, Tobii Pro 
Glasses 2 (Tobii, Danderyd Municipality, Sweden), was utilized to 
record pupil diameter, which is a sensitive physiological indicator 
of cognitive workload [14]. Appropriate corrective lenses were 
snapped on if needed. The sampling frequency of the eye tracker 
was set at 50 Hz.  

Figure 1: Experiment site and robot platform. 

2.3 Experimental Design 
A within-subject experiment was designed to evaluate the effect of 
the robot on individuals’ physical and neurophysiological 
adaptation in the retail environment. The independent variable was 
the robot condition, i.e., “no robot” and “with robot”. The dependent 
variables included measures that depict the physical (i.e., body 
kinematics) and neurophysiological (i.e., muscle activity and 
pupillary response) responses of each participant. During the 
experiment, participants were instructed to complete ten grocery 
shopping tasks with (#:5) and without (#:5) the retail robot. The 
grocery shopping task was designed as a series of continuous 
actions, which included: (1) pushing a shopping cart between 
shelves, i.e., cart pushing task, (2) scanning and picking eight items, 
one from each shelf, i.e., item picking task, and (3) sorting the items 
into two bins at the checkout machine, i.e., item sorting task) (Figure 
2). At the beginning of each trial, a list including all the items of the 
target was given to the participants. And the participants were 
asked to pick up items in the correct sequence using their right 
hand. During the trials in which the participants performed the 
grocery shopping tasks alongside the mobile robot (i.e., the “with 
robot” condition), the retail robot was designed to circle the “store”, 
representing a platform realizing functions, such as disinfection, 
cleaning, and inventory management in retail environments. The 
waypoints of the robot were illustrated in Figure 2. The order of the 
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robot condition was presented at random to prevent systematic 
errors and potential learning effects. 

2.4 Procedures 
Upon arrival, participants first consented to participate in the study 
and provided their demographic information including their 
gender, age, height (with shoes on), and handedness. Following that, 
three EMG sensors were placed on the right side of the latissimus 
dorsi, anterior deltoid, and bicep brachii muscles. MVC for each 
muscle was then tested following the guideline [13]. After the MVC 
trials, motion capture sensors and the eye tracker were attached to 
the participant's body and both systems were calibrated. Ten 
grocery shopping tasks were subsequently given to the participants, 
five “with robot” and five “without robot”. To prevent fatigue, a 
mandatory rest of at least 2 mins was designed between each trial. 

Figure 2: The SLAM map of the experiment site and 
illustrations of participants’ grocery shopping tasks as well 
as the robot’s path to circle the store. 

2.5 Data Analysis 
This study focused on participants' upper limbs since the tasks 
designed for the experiment (e.g., picking and sorting items) 
required a lot of movement in that region. Participants’ physical 
response data is their kinematics captured by the motion capture 
system, to indicate participants’ motor adaptation to perturbations 
[15]. The average joint flexion angle of L5/S1, T12/L1, Head/C1, and 

right shoulder in the sagittal plane were calculated using custom 
MATLAB code [12] after loading the raw joint angle exported from 
the software, MVN Analyze (Xsens Technologies BV, Enschede, 
The Netherlands). The neurophysiological measures contain muscle 
activity from the EMG system [16] and pupillary responses [17] 
from the eye-tracking system. Muscle activity represents the levels 
of muscle activation for the upper body and it was calculated from 
the EMG signals normalized by participants’ MVC, after steps of: 1) 
mean removal, 2) bandpass filter (4th order Butterworth, 20-500 Hz), 
3) absolute value acquisition, and 4) root mean square calculation 
(window length 300ms, no overlaps) following [18]. The pupillary 
responses were depicted by calculating the average pupil diameter
for each trial, by pooling the left and right sides of pupil diameter 
together.

2.6 Statistical Analysis 
One-way repeated ANOVAs were conducted using R studio (R 
version 3.6.0), with the robot condition as the independent variables, 
measures of upper-limb kinematics, muscle activity, and pupillary 
responses being the dependent variables. The assumptions of the 
model (normality & homogeneity of variance) were visually 
checked. Although moderate deviations from normality were noted, 
ANOVAs were reported to be robust to these discrepancies [19]. 
During the analysis, participants were treated as the random effect. 
The significance level of α = 0.05 was used across all tests. 

3 RESULTS AND DISCUSSION 

3.1 Upper-limb Kinematics 
The significant difference in the upper-limb kinematics measures 
under two robot conditions revealed the effect of a robot on 
individuals’ physical adaptation. As shown in Table I, when 
compared to the “no robot” condition, the “with robot” condition 
induced a decrease in joint flexion angle of L5/S1 (4.80 vs. 4.14 
degrees, F (1,68) = 4.23, p = 0.044), T12/L1 (2.13 vs. 1.84 degrees, F 
(1,68) = 4.10, p = 0.047), and right shoulder (25.06 vs. 22.42 degrees, 
F (1,68) = 9.84, p = 0.003). No significant changes were observed in 
terms of Head/C1 flexion angle between conditions.  
Participants were found to flex less of their trunk (i.e., L5/S1 & 
T12/L1) and their shoulder throughout the trial, indicating a more 
erect standing posture with the presence of a robot in the retail 
environment. One of the reasons for the adaptation of an erect 

TABLE I. MEAN (STANDARD DEVIATION) OF TEN PARAMETERS AND THE EFFECT OF ROBOT CONDITION ON THESE PARAMETERS. 

Parameters 
Robot Conditions 

No Robot With Robot p-value

Upper Lib Kinematics – 
Average Flexion Angle 

(degrees) 

L5/S1 4.80 (4.43) 4.14 (5.06) 0.044 
T12/L1 2.13 (1.97) 1.84 (2.25) 0.047 

Head/C1 -0.81 (6.21) 0.10 (8.00) 0.354 
Right Shoulder 25.06 (7.09) 22.42 (7.60) 0.003 

Muscle Activity –  % 
Activation (%) 

Latissimus Dorsi 5.33 (3.89) 5.15 (3.60) 0.823 
Anterior Deltoid 4.91 (2.54) 4.89 (2.92) 0.543 

Bicep Brachii 4.26 (4.95) 3.96 (4.7) 0.406 
Pupillary Responses (mm) Pupil diameter (L & R) 4.35 (0.25) 4.34 (0.26) 0.632 
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standing posture during the HRI can be the participants’ 
unintentional effort to minimize their physical footprint in the 
environment, minimizing potential collisions with the retail robot, 
and ensuring timely responses to the unexpected actions executed 
by the retail robot.  

3.2 Muscle Activity 
There was no significant difference found in the levels of muscle 
activation of the latissimus dorsi, anterior deltoid, and bicep brachii 
muscles between two robot conditions (Table I). Overall, the three 
muscles that are evaluated had low levels of muscle activation (less 
than 10%), which is expected as normal retail tasks that do not 
generate intense short-term muscle strains. The presence of a robot 
did not lead to muscle activity changes in the three muscles. 
According to 3.1, the reduction in the right shoulder flexion angles 
may be related to the changes in the activation level of other muscle 
groups, for example, pectoralis major and coracobrachialis [20], 
rather than the anterior deltoid. Also, it might be the case that the 
co-existence of a mobile cobot could strongly influence personal 
physical behavior at some critical moments (e.g., when the two 
agents interact or surpass) and their EMG patterns, but not so at the 
whole trial level. In order to investigate this, we plan to conduct 
more detailed analysis with a higher resolution and sensitivity. 

3.3 Pupillary Response 
In terms of pupillary responses caused by the robot, no significant 
difference was found in the pupil diameter measure between “with 
robot” and “no robot” conditions. Pupil diameter is commonly 
regarded as a physiological measure of an individual’s cognitive 
workload, which tends to increase as the workload increases [14]. 
Although no difference was observed in the pupil diameter in this 
experiment, our previous research efforts have shown that 
participants’ workload was negatively affected when they were 
interacting with a robot in the WRT environments [7], [21]. The 
conflict in results is probably due to different sets of tasks designed 
in the human-robot interaction environment. Further follow-up 
studies can take this into consideration and investigate individuals’ 
pupillary response to robots while they were performing tasks at 
varied engagement levels.  
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