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We provide an unconditional L2 upper bound for the boundary layer Received 10 March 2023
separation of Leray-Hopf solutions in a smooth bounded domain. By ~ Accepted 16 April 2024
layer separation, we mean the discrepancy between a (turbulent) low-
viscqsity _Lera'ay—H.op.f sqlgtjon u” e.ar?d a fixed (laminar) regular Euler Navier—Stokes equation:
solution u with similar initial conditions and body force. We show an inviscid limit; boundary
asymptotic upper bound C||D||EOQT on the layer separation, anomalous regularity; blow-up
dissipation, and the work done by friction. This extends the previous technique; layer separation
result when the Euler solution is a regular shear in a finite channel. The
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key estimate is to control the boundary vorticity in a way that does not MSC SUBJECT
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degenerate in the vanishing viscosity limit. 76D05: 35030

1. Introduction

Let T > 0andlet Q C R3 be a smooth bounded domain. Given a smooth solution # :
(0, T) x Q2 — R3 to the Euler equation with impermeability boundary condition 1_4| s =0

and a regular external force f :(0,T) x Q - R3:
dit+u-Viu+VP=f divii =0 in Q, (EE)

we estimate the L2(2) difference at time T between & and any Leray-Hopf weak solution
u’ (0, T) x  — R to the Navier-Stokes equation with kinematic viscosity v > 0, body
force f¥ € L'(0, T; L*(R)), and non-slip boundary condition u” |asz =0:

o’ +u” - Vu' + VP" = vAu’ +f¥ divu" =0 in Q. (NSE,)

By Leray-Hopf solutions, we mean distributional solutions " in the space Cy, (0, T; L2(Q)N
L*(0, T; HY(R2)) satisfying the following energy inequality for every T’ € [0, T]:

1 T
310 gy @+ [ [ vivuParar w

1 v/
< = lull2q (0)+/ /u”-f”dxdt.
2 o Jo
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One of the fundamental questions in fluid dynamics is whether ideal fluids, governed by the
Euler equation, can be used to model viscous fluids with sufficiently small viscosity v. This can
be formulated as the so-called inviscid limit problem, which questions whether the following
limit of layer separation is zero:

- v =112 ) u“(O)_—> #(0) in L*(Q)
1S = limsup { o =l D o Fin pi0, 1120020 |
To the best of our knowledge, this question remains open for Leray-Hopf solutions, even for
dimension 2.

This paper aims to provide the following unconditional upper bound for layer separation.

Theorem 1. There exists a universal constant C > 0 such that the following holds. Let T > 0
and let @ C R> be a domain with compact, smooth boundary satisfying Assumption 1. Let
it € L0, T; CH(RQ)) be a solution of (EE) with a forcing term]_‘ e LY0, T; L*(Q)). Let u” be
a family of Leray-Hopf weak solutions to the Navier-Stokes equation (NSE,) with force f* €
LY(0, T; L*(S2)). Then the layer separation is bounded by

T
LS(it) < CA’T|992| exp (2/ D)l < () dt),
0

where A = ||utl| oo ((0,1) x 82) 1S the maximum boundary velocity of the Euler solution, and Du =
%(Vljl + Vi) is the symmetric velocity gradient, also known as the rate-of-strain tensor. !

Assumption 1 will be discussed in Section 2.3. It guarantees that the boundary 9<2, as a
compact manifold, can be triangularized in a uniform way. We conjecture this assumption
should be satisfied by all smooth domains.

We remark that the norm || Di|| 1 (q) only measures the rate of strain in the interior of €.
On the boundary 3%, # can be nonzero, and as a distribution in R?, Dii can be a measure.
Indeed, if u vanishes on the boundary, then A = 0 and LS(%) = 0, which can also be verified
by elementary computation.

This result is a generalization of the previous work by the authors [1] which studied the
setting when  is a static shear flow in a finite channel without force.

1.1. Literature review

Boundary layer and the inviscid limit problem. The gap between the Euler solution # and
the low-viscosity Navier—Stokes solution " is due to the “boundary layer”, which refers to a
thin layer of fluid near the boundary 92 that exhibits instability and turbulent structure, in
contrast with the regular Euler solution & whose behavior near the boundary is predicted to
be laminar. This has been observed from physical experiments [2] and numerical simulations
[3]. Using a singular asymptotic expansion, Prandtl [4] conducted an asymptotic analysis of
the Navier-Stokes system near the boundary and suggested that the turbulent structure is
supported in a boundary layer of width O(y/v). Even though the width of the boundary
layer converges to zero in the inviscid limit, it is unclear whether the energy inside the
boundary layer always converges to zero. In fact, the Prandtl layer with a non-monotonic
shear background flow is unstable and ill-posed in Sobolev spaces. See [5-8].

'The norm of D should be interpreted as its largest absolute eigenvalue, which corresponds to the maximum
expansion/contraction rate.
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An important positive result for the inviscid limit to hold is the celebrated work of Kato
[9], where he proved LS(u#) = 0 if the energy dissipation in a boundary layer of width § = cv
vanishes.

Theorem A (Kato’s Criterion [9]). Let Us (92, 2) be the §-tubular neighborhood of 02 in Q2
with § = cv for some ¢ > 0. If the following limit holds:

T
lim / / v |Vu”|2dxdt=0, (2)
v=0Jo  JuUs(02,9)

then LS(u) = 0.

Notice that this width is thinner than the Prandtl layer. This indicates that the inviscid limit
fails only when the velocity gradient near the boundary has order Vu” ~ O(v™!). There
have also been unconditional results for the inviscid limit to hold when the solution and the
domain enjoy additional structure, for instance, analyticity or symmetry [10-12].

Nonuniqueness and anomalous dissipation. One important piece of theoretical evidence that
suggests the inviscid limit may fail for Leray—-Hopf solutions is the nonuniqueness. The recent
work of Albritton, Brie and Colombo [13, 14] exhibits the nonuniqueness of Leray-Hopf
solutions for the forced Navier-Stokes equation. Their construction is based on self-similar
solutions [15] and Euler instability [16-18]. Moreover, at the Euler level, even near a constant
plug flow u = Ae;, Széklyhidi [1, 19] constructed nonunique Euler solutions # using convex
integrations with a layer separation of

|a(T) = CA’T.

_2
- ”HLZ(Q)
Note that this rate is consistent with our upper bound of layer separation. Using convex
integration or self-similar solutions, there has been an extensive amount of work in the
study of the nonuniqueness of the Euler and the Navier-Stokes equations in the past decades
[20-23].

Moreover, the layer separation is closely related to anomalous dissipation, which we define
under our context as

T v - : 2
- V12 u (0)_—> u(0) in L~ (R2)
AD(n) = lllgl_fgp{/o /QV|VM | dxdt.fv S FinIi(o, T;Lz(Q))}'

Kato’s criterion shows that if AD(#) = 0 then LS(z) = 0. It is also straightforward to see
from the energy inequality (1) that LS(z) = 0 would imply AD(%) = 0 as well. From this
perspective, the validity of the inviscid limit is equivalent to whether the Kolmogorov’s zeroth
law of turbulence [24-26] can hold in a neighborhood of regular solution . In the absence of
boundary, Brué and De Lellis [27] constructed examples of classical solutions to the forced
Navier-Stokes equation with positive anomalous dissipation. However, both the nonunique
Leray-Hopf solutions in [13] and the anomalous dissipation of [27] are away from a smooth
Euler solution, so they do not fall into the scope of this paper. Nevertheless, we provide the
same unconditional bound on the limiting energy dissipation as well.
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Corollary 1. Under the same assumptions of Theorem 1, the anomalous dissipation is also

bounded by

T
AD(i1) < CA®T|9S| exp (2/ IDE) Il (g2 dt).
0

Work of boundary friction and Kato’s criterion. Let us briefly discuss the main ideas of the
proof. The crucial term when estimating layer separation and anomalous dissipation is the
work done by the friction on the boundary. It is easy to see that the validity of the inviscid
limit is equivalent to the vanishing of the negative work of boundary friction in u direction:

_ ) _ V(0) — u(0) in L*(Q)
Wieic (1) := lim su —v/ du’ - udyx dt: u( =, )
fric (4) v—>0p { (O,T)X%Q fv —>f1n LI(O, T; LZ(Q))
where d,u" - 4 = @” - (n x u) on the boundary 2.
Using energy inequality and Grénwall inequality, it is easy to see that

T
LS(u) + AD(u4) < Wiric(u) exp (2/ 1Dl poo () df) : 3)
0

Hence, measuring the layer separation and anomalous dissipation relies on the estimation of
boundary vorticity »”. We will provide a uniform bound in L3 weak space in Theorem 3,
using the energy dissipation in the Kato’s layer. As a consequence of this vorticity estimate,
we can control the total work of boundary friction force asymptotically by

_ _ _.2 1 .2
Wrric(@) < Cllullzsio,myxa0) ADew(@)3 < CA(T[0€2])3 AD.y (1) 3,

where AD,, (1) is the limiting energy dissipation in the boundary layer of width cv. Therefore,
if Kato’s criterion holds, the work of; (3) implies both layer separation and anomalous
dissipation are also zero. Otherwise, by absorbing the anomalous dissipation into the left side
of (3) we show the layer separation LS(u), anomalous dissipation AD(#), and total friction
work Wi () are all bounded by CA®T|3S2|, up to an exponential factor which depends on
the largest absolute eigenvalue of the strain-rate tensor Du:

T
LS(@) + AD(#) + Wiic (i) < CA>T|9Q] exp <2 / D) | oo 2y dt) :
0

See Remark 2 for a further discussion on physical relevance.

1.2. Main results

Both Theorem 1 and Corollary 1 are the consequence of the following bound at the Navier—
Stokes level.

Theorem 2. Let @ C R? be a bounded domain with compact, smooth boundary satisfying
Assumption 1 with width 8. There exists a constant C(Q2) > 0 depending only on Q and a
universal constant C such that the following is true. Given T > 0, let u be a regular solution
to (EE) with maximum boundary velocity A = ||utl|poo((0,1)xa02)> and let u” be a Leray-Hopf
weak solution to (NSE,) with initial value u’(0) € H'(Q) and force f¥ € LY(0, T; L*(2)) N
L3 ((0, T) x Q). Define the characteristic frequency and Reynolds number by

AL

A _ _ _
=4 18t oo 0,1y x a2 + I VIl L (0,1 x4 052.92)) » Re = o
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Here § = min {S,A‘lv}. Then
_ v
” u’ — ””iZ(Q) (1) + 3 ”V”V ”iz((O,T)xQ)

< (||u” — 1]} (O + CAPTIR| + RU(T)>

T -
X exp </ 21Dl o ) () + [f* = £ o) ® dt) ,
0
where the remainder term R, (T) is defined by
£ 12
Ry(T) = ”fv _f||L1(0,T;L2(Q)) v IVUlliz o1y x0)

1 4 4 2
v ”fV”Z%«o ey T2 [EROI .

4AL vI  C(Q)A+Vv)E,T
+2<410g (T>++S_2+ ne Av]dQ.

As mentioned earlier, the crucial step is to bound the boundary vorticity in a way that does
not degenerate as v — 0. We show that the averaged boundary vorticity can be bounded in

L2 weak norm, up to a remainder, by the energy dissipation in the boundary layer (2).

Theorem 3. There exists a universal constant C such that the following is true. Let & C R3 be
a smooth bounded domain satisfying Assumption 1 with §. Let u” € L*(0, T; H'(Q)) be a weak

solution to (NSE,) with]forcef” € L% ((0, T) x 2). We denote w¥ = curl u” to be the vorticity

field. For any 0 < & < 6, there exists a o-algebra F of (0, T) x 0S2, depending on u’ and §,
such that

1. F is a sub o-algebra of the Borel o -algebra on (0, T) x 9S2. For every integer | > 0 with
47T < 82, the set (0,47'71T) x Q is F-measurable.
2. Forg € CY((0,T) x dR), we have

8
lle — Elp|Flll~ <8 <; 19:ll e + IIV§0I|L0<>> : (4)

3. Denote @* = E[w"|F]. Then for everyy <1,

- 2
vl

(5)

{V|JIV|>V max{%):;%}} L%’Oo((O,T)Xag)

T
SC)/_;/ / v|Vu”|2+v% Lf"|%dxdt.
o Juspa.e)

Remark 1. If we set the boundary layer to have the width § = O(v) as in Kato’s condition, then
(4) will be of order O(v). We will recover Kato’s results if the right-hand side of (5) vanishes
in the inviscid limit.

The o -algebra is constructed by a partition of (0, T) x 92 in a dyadic way. Morally
speaking, we ensure in each piece with size r < v in space and length v=!2 in time, the
average energy dissipation near it is f v|Vu"|? dxdt ~ covr~*, from which we control the
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average boundary vorticity by @’ = { " dx’dt < vr~? via a linear Stokes estimate. After a
Calderén-Zygmund argument, we can control @" in a weak norm by (5).

This paper is organized as follows. Section 2 introduces the technical tools that will help
deal with the non-flatness of the boundary, especially the dyadic decomposition. In Section 3
we prove the boundary vorticity estimate in Theorem 3. The main results will be proven in
Section 4.

2, Preliminary on curved boundary

In this section, we discuss issues that arise due to the non-flatness of the boundary. We first
rigorously define the triangular decomposition of 2. Then we recall some classical estimates
with curved boundaries.

2.1. Notation

Let D; denote the set of open triangles in R? with barycenter at the origin and side lengths
between % and % Define W to be the set of diffeomorphisms between any such triangle A, €
D, and any piece of two-dimensional surface T, C R? under the following restriction:

Ay €Dy, T, CRL,Y(0) =0
VY (0) = iga, |V | oo < é}

Here Diff (A,; T,) is the set of smooth diffeomorphisms between A; and T, and ip2 is the
natural inclusion from R? to R* defined by (x1,x2) + (x1,%2,0). By translation, rotation,

reflection and dilation/contraction, we define ¥ " to be the set of diffeomorphisms ¥ : Ay —
T,r C R? using the following:

U= {rRoy : ¢ € U,R € E3)}, r>0.

V.= :Iﬂ € Diff (A;T,) :

E(3) is the isometry group of R3.
We could also extend it with width. Denote Ay, = A; x (0,2), and for ¢ € W™ denote
the unit normal vector by n = 09XV \We can define the extended diffeomorphism ¥ €

T |01 xa v
C°°(A2;]R3)by
V(E,2) = V(E) —rn(), &€ Ayze(0,2).

The first and second derivative constraint ensures that v is also a homeomorphism.
By rA; we mean the scaling of A, by a factor of r > 0, and rA; refers to the scaling of A,
by a factor of r. For r > 0, we define the set of curved triangles with size r by

1
T = {W(Al) cy e WD A = EDoml//} ,
and we define the set of curved triangular cylinders with size r by
~ 1 ~
¢ = {w(AI) Yy e WO A = 3 Domw}.

Therefore, each curved triangle (triangular cylinder) has a neighborhood that is diffeomor-
phic to a triangle (triangular cylinder) with a uniform bound on the second derivative of the
diffeomorphism. If T} = ¢(A;) and C; = 1/~/(A1), we say C; is the extension of T; and Ty is
the base of C;. For r € (0,2) we denote rT; = ¥ (rA;) and rC; = ¥ (#Cy). Note that these
definitions do not depend on the choice of diffeomorphisms up to the orientation.
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2.2. Dyadic decomposition of boundary

Below we describe the dyadic decomposition of triangles, cylinders, and time. Recall >~ means
that two sets are equal up to zero measure sets, and Ll is the disjoint union operator.

1. Foratriangle A, € D,, it can be decomposed into four similar sub-triangles with half the

side lengths, by connecting mid-points. Denote the four sub-triangles by AY), i=1,...,4
Then

4
Ay x| |AY.
i=1
2. For a triangular cylinder Ay = A, x (0,2), we decompose A, x (0, 1) into four pieces

Agi) = Agi) x (0, 1), by decompose the base A,. See Figure 1. The top part A5 = A1 x(1,2)
will be discarded.

L2

xr1

Figure 1. Dyadic decomposition of Ay = (|_|;‘:1 A%D> U AJ.

3. ForT, € T@,itis diffeomorphic to A, via W(%') for some ¢ € W@ : %Az — T,. We

first decompose Aj. Then we map the four pieces to T, via ¥ Tf) = w(%Aii) ). In this
way, T is decomposed into

4
T~ | T
i=1

Each Tgi) belongs to 7. This decomposition is not unique and depends on the choice of
the diffeomorphism.

4. For C, € C9, itis diffeomorphic to A, via 1/7(%-) for some Y € W® . %Az — Ts.
We first decompose A,. Then we map the four pieces into C, via ¥: Cgi) = &(Agi)). The
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remaining part C; = \/Nf(A;) is discarded.

4
G~ <|_| cﬁ”) ey
i=1

Each Cii) belongs to C'V). Moreover, the base of C; is correspondingly decomposed to the
bases of C(ll).
5. For Q; := (—4,0) x Ty, it can be decomposed into 16 pieces in both time and space:

QY = (—j,—j+ 1) x T, wherei,j = 1,...,4.

4 4
6= [ [ [0
i=1j=1
6. If C, is the extension of some T, € C®, we say Qa2 = (—4,0) x C; is the extension
of Q = (—4,0) x Ta. Q; can be decomposed into 16 pieces in both time and space:
Q(lz’]) =(—j,—j+1) x Cgi), where i,j = 1,...,4. The remaining part Q; = (—4,0) x C}
is discarded.

4 4
Q= ([ ] | uas

i=1 j=1

By scaling, every T € 7 can be decomposed into four curved triangles in T(%), and every

)
C € C can be decomposed into four curved triangular cylinders in C'2) with a remainder
part.

2.3. Structural assumption on the domain

Let Q@ C R? be a bounded domain, whose boundary 9<2 is a compact smooth manifold. We
assume the following geometric property for the set .

Assumption 1. Assume there exists a constant 8, such that 2 has a §-tubular neighborhood
Us (09, Q) == {x € Q: dist(x,9Q) < 8},

and (¥, ¢) > X' — en(x') is a diffeomorphism from 92 x (0, 3) to Us (32, 2), where n(x’) is
the outer normal vector of 32 at x". Moreover, we assume that for every § € (0,8), Q2 has a
curved triangular decomposition:

s~ | [T, TP eTO.
i

Intuitively, the assumption should hold for any compact smooth manifold with 5« ZL
where y,q is the greatest sectional curvature of 2. In the computer vision community,
the “marching triangle” algorithm [28, 29] is used to generate a triangular mesh for two-
dimensional manifolds (or in general Lipschitz surfaces [30]) with triangular patches uniform
in shape and size, meaning that each patch is close to an equilateral triangle and has
comparable edge lengths. However, the authors did not provide explicit estimates for the size
8 and the angles of the triangulation (Figure 2).
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Figure 2. Triangulation of a torus.

2.4. Soboley, trace, and Stokes on a curved cylinder

This subsection includes basic analysis tools that will be used later in the proofs. The constants
in the following estimates must be uniform in the geometry of the boundaries of our interest.

The first lemma contains the Sobolev embedding and the trace theorem. We remind the
reader that their constants are uniform for all C € CV). These results are well-known so we
omit the proof.

Lemma 1. Let C; € CY be a curved cylinder with base Ty € TWD, Let Vu € LP(Cy) with
either fCl udx=0or u|T] = 0. and p € [1,3). Then there exists a constant C, depending only
on p, such that

lull o ¢,y < Cp IVullzec,) -

Here p* = jTPp. Note that C, does not depend on Cy. Moreover, with p* = (dd—T?p)

lull 1,y < Cp IVullipicy) -
In this paper, d = dim C; = 3.
The next lemma is for the local boundary linear Stokes estimate, which is an extension of

[1, Corollary 2.3]. The only difference is that the boundary part T, is no longer flat, yet the
bound is still uniform for all C; € CV.

Lemma 2. Let C; € CV be a curved cylinder with base T, € TD. Let C, be the image of
a diffeomorphism  associated with Cy, and denote its base by Ty. Let 1 < p; < p; < 00,
1 < q1,92 < 00, f € LP1(—4,0; L1 (Cy)). If (u, P) solves the linear evolutionary Stokes system

du+VP=Au+f in(—40) xC
divu =0 in (—4,0) x G,
u=20 on (—4,0) x T, ,

then there exists a decomposition u = uy + u such that for any q' < oo, there exists a constant
C = C(p1, P2, 9192, 9') such that

” 8] + |V 2u | Hm (—1,0.L1(Cy)) T ” |8¢ua] + | V2us) Hl,vz(_Lo;Lq/(cl))
=<C (||f||LP1(74,o;Lq1(cz)) + [lul + [Vul + Pl 1p2 (— 40,092 (cz))) .

In particular, C does not depend on the geometry of C;.
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The proof of this lemma relies on Lemma 1, and also the corresponding uniform bound for
boundary estimates and the Cauchy problem for the Stokes with curved boundary. See [31].

Proof Pick a set Q with C? boundary such that C; C © C C,. Note that the C? norm of
92 can be uniformly bounded for all C; € C @, By [32, Theorem 4.5], there exists a unique
solution u; to the initial-boundary value problem

o1 + VP = Aup +f  in(—4,0) x Q

divu; =0 in (—4,0) x Q
u =0 on (—4,0) x Q2
u1|t=74 =0 in Q

with bound
[0eur] + IVPU o1 (—a000 ()) T llunll o (—4,0;W241(Q))

<C|f ||LP1(—4,O;Lq1 (@)’

where C = C(p1, q1, 2). Dependence on  can be dropped if the C? norm of 92 is uniformly
bounded (see [31, 33, Lemma 1.2]).
Let uy = u — uy. Then u; is a solution to

oty + VPy = Auy  in (—4,0) x Q
divu, =0 in (—4,0) x Q
u) =0 on (—4,0) x (02 NTy)
The local boundary estimates of Stokes equation in [32] imply the following bound:
H |0tz + V212 ||LP2(71,0;Lq/(C1))
< Cllfuz] + [Vua| + [Palll 1py g 0,pmin{a1.02) () *

where C = C(p2, q1, 92, 2). Again, the dependence on 2 can be dropped. Combining with
estimates of u;, we finish the proof of the lemma. OJ

Finally, we quote the following global Stokes theorem in [34, Theorem 1.1].

Lemma 3. Let @ C R? be a bounded C* domain with d > 2, and T > 0. Let f €
LP(0, T; L1(2)) and ug € B;;Z/P(Q), where Bé’p(Q) is the Besov space, and 1 < p,q < 00
satisfy 2 — 2/p < 1/q. Then the following linear evolutionary Stokes system

ou+VP=Au+f in(0,T) x Q

divu =0 in(0,T) x Q
u=20 on (0, T) x 092
“|t=0=”0 in Q

has a unique solution u € LP(0, T; W>49(Q)) with VP, d,u € LP(0, T; L1(Q)), and

lull oo, w2acey + 19l o,mzacey + [ VP oo rinace)

=¢ (Hf lorase + “”0”33472/"(@) ’

where C = C(2,p, q).
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3. Boundary vorticity estimate

In this section, we provide several estimates for the boundary vorticity " = curl u”. We first
use linear parabolic theory to directly derive a coarse estimate. This estimate will degenerate
in the inviscid limit. We compensate with a refined estimate Theorem 3, which is based on a
new local boundary vorticity estimate for the linear Stokes system.

3.1. Nadive linear global estimate

By treating Navier-Stokes equation as a Stokes system with a forcing term, we can derive the
following naive bound using parabolic regularization.

Proposition 1. Letu” € Cy (0, T; L*>(2))NL*(0, T; Hé (R2)) be a weak solution to (NSE,)) with
divergence-free initial value u"(0) € Hé(Q) and force f¥ € L3 (0, T;Lg (2)). There exists a
universal constant C(2), independent of u’ and v, such that

/ WV’ |3 dy dt<C(§2)[||f ||3
(0,T)x02 L3 (0, TLS(Q))

2 1 2
+ ||uv||zw(O,T;L2(Q)) (/(O e IVu' | dxdt + v3 |[u”(0) ||13-11(sz))]'

Proof Let u”(t,x) = vv(vt,x) and f"(t, x) = vzg(vt, x). Then v solves (NSE;) in (0,vT) x
with unit viscosity and force g. Treating the nonlinear term v- Vv as a force, Lemma 3 implies

IvIl 4 @) [ |-v-Vv+g| s + IIvoll

L3(0 Tw> 5(52)) L3(0 TLS(Q)) B2 ,(Q)

IO\ D=

4

°3
Here C(£2) represent general constants depending only on €2, and vy = v|t=0. For the forcing
term,

1NVl s oo = M Isowren VYl xe)

=< ||V||EOO(OUTL2(Q)) ||V||L2(0VTL6(Q)) ”VV”LZ((O,UT)XQ)

= C(©) IIVII ) IIVVII

Lo®(0,vT;L2(R) L2((0,vT)xR) "’

where in the last step we used Sobolev embedding in Q C R>. For the initial value, we use
Besov embedding and interpolation so

< C(2) ol
4@ B
3

= C(€) [voll

"
lIvoll @ @
3

B

IO Bl
[SSEN ST

1 1

By the Sobolev embedding and the trace theorem in €2,

1YV, 4 oo < C I3

= CE) Vvl 4
L3 uTw"S (@)

16
WT;Wes (€2))

< C(R2
C(Q) Ilv IIB(O rwt@)’
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Combining the above estimates, we have

((OvT)XdQ) WT5L%(R2))

”gHLs ovriLé @)
Noting the scaling of the v and g, we have for any p € [1, 00] and any norm X

”VV”LZ((O VT)XQ) + ||V0||H1(Q)>

1 1
|4 o) = v IVl our - I eo.r = v &l oo
By this scaling, we have the corresponding estimates on u" as

v Ve g Y

L3((OT)><852) L3(OTL5(SZ))+

_1 > _3 2 1 1
+v7 ”uUHzO"(O,T;LZ(Q)) (‘) i v’ ||22((0,T)xsz) tv 2 H“V(O)Hi{l(g))

This completes the proof of the proposition. O

In the inviscid limit v — 0, the main term f(o T)xQ |Vu'|? dx dt cannot be uniformly
bounded, and the force H fY H does not vanish. Therefore, we need to look for
LiorLs @)
another bound that does not degenerate in the inviscid limit.

3.2. Local estimate for the linear Stokes system

To overcome the degeneracy of the naive bound in the inviscid limit, we show an improved
bound in the next subsection, which is based on the following linear estimates for the Stokes
system at the unit scale and unit viscosity.

Proposition 2. LetC; € C@ with base T,, and denote Qy = (—4,0) x Cy, Q, = (—4,0) x T,.
Suppose u € L*(—4,0; H'(Cy)) is a solution to the following Stokes system with forcing term
feLll(—4,0;L3(Cy)):

ou+VP=Au+f inQ
divu=0 inQ, (6)
u=2~0 on Qz .

Then the average vorticity on the boundary is bounded by

0
/_a)(t,x/,O)dx’dt 5/ / a)(t,x/,O)dt‘dx/
Q: T IV -1

<C (IIVUHLZLZ(Qz) + ”f”L 115 (Q, ))

Proof The proof is the same as the one in [1], with only some mild modifications to
resolve the curved boundary issue. Without loss of generality, assume by linearity that

fl, e =L

L} L (Q2)
Fort € (—3,0), x € Cy, we define

t
U(t,x):/ u(s, x) ds.
t—1

||VM||L2L2(Q2) 5
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Denote p(t) = 1jo,17(t). Then U = u *; p, where *; stands for convolution in ¢ variable only.
If we denote Q = P x; p, and F = f #; p, then U satisfies the Stokes system:

U+ VQ=AU+F in(-3,0) x ¢,
divU =0 in (—3,0) x G,
U=0 on(—3,0) xT,.

We have via Sobolev embedding Lemma 1 and u |T2 = 0 that
”u”L%L?c(Qz) <C. (7)
Since 0;U(t, x) = u(t,x) — u(t — 1, x), we have
19:Ull 263,00y = €
On the other hand, the Laplacian of U is bounded by
1AUN o1 (301 = CllAUIzE @ = ClIVUll2Qy) = €

Note that the Sobolev constants depend on the geometry of C;. However, they are uniformly
bounded as long as C; € C®@, since the Lipschitz norms of the boundary are uniformly
bounded. Again by convolution, we bound F by

”F”LOOH*1 —3.0)xC = C”F” 6 <C.
£ Hy ((=3,00xCy) L?oLxS((fi’),O)XCz)

Next, we estimate Q. Using VQ = AU + F — 9;U we have
IVQIl 221 (—30xc,) = C

Without loss of generality, we assume that the average of Q is zero at every t. Then by Necas
theorem (see [32], Section 1.4),

||Q||Ltz,x((_3’0)XT2) <C.

Note that the constant of Necas theorem also depends on the Lipschitz norm of dC;, which
is uniform for allC; € CV.
By Lemma 2, we can split U = U; + U,, where for any p < 0o, we have

+ [18:U2] + V20| ”L%Lﬁ(ol) = C(p).

1

2
v+ |90,

Denote Q(t,2) := fT1 |VU(t, X — zn(x/))| dx’. Then

0.2 < c/ |V2U(t, %' — zn(x))| dx’.
T

6
Since V2U is in L%Lg + L‘l;Lz5 (Qy), 9,9 is bounded in

6
9,2 € L2 4+ IPL: ((—1,0) x (0,1))

for any p < oco. Note that

10, < c/ |Vu(t,x' — zn(x'))|dx’ € L} ((—1,0) x (0,1)).
Ti
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Since by interpolation, L{L3° N L{°L! C L7, by duality 9,2 is bounded in L}, C L{L +
L®°LL. Similarly, 8,2 is bounded in
6
9,2 € L21L + IFL ((—=1,0) x (0,1)) C LILS® + L®LL((—1,0) x (0,1))
for some p > 6 with r > 1 sufficiently small. Now we can use [1, Lemma 2.4] to show € is
continuous up to the boundary with oscillation bounded by
€21l osc((~1,0)x0,1)) = C-
Since the average of 2 is also bounded as

/dedt <C |Vu|dxdt < C,
Q

we have € is bounded in L*°, in particular

J

This concludes the proof of this proposition. O

0
/ Vu(t,x',0) dt‘ dx' = ©(0,0) < C.
-1

3.3. Refined global estimate

Now we are ready to prove the main boundary vorticity estimate.

Proof of Theorem 3 The proof can be divided into four steps. In the first step, we triangularize
02 and obtain a course partition (0, T) x 9€2. Next, we construct o-algebra F, which is
generated by a finer partition of (0, T) x 9€2, by introducing a suitability criterion. Then
we verify that in each piece of the partition, average boundary vorticity is controlled by the
maximal function of the energy dissipation and the external force. Finally, we estimate the L3
weak norm of the averaged vorticity function.

Up to rescaling u" (t,x) = vu(vt,x) and f* = vzf(vt, x), we assume v = 1 first and drop
the superscript for simplicity.

Step 1. First, we introduce an initial partition of (0, T) x € as follows. Select Ly = 4 KT,
where K = (|_10g4 (S—TZ)-|) L s the smallest nonnegative integer such that Ly = 47T < §2.

Set rog = %4’140 = 2_K_1ﬁ < 8. Then
1
rg < Emin {S,ﬁ} < 2rp.

Let {T%)},- C T be a partition of 32 with size g, as specified in Assumption 1. Then
4K
0,1 xaQ~| || |]Q¥  where Q" = ((j — 1)Ly, jLo) x T,
j=1 i
We denote Qg = {Q(i’f) }ij. By part (5) of Section 2.2, each Q") admits a sequence of dyadic
decomposition. For k > 1, denote Q_k to be the set of dyadic decompositions of spacetime
curved triangles in Qj_;. Then any Q € Oy is a Cartesian product of curved triangles of size
e :=2"kryin space and length ri = 4”‘1’(2) in time.
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Step2. The next goal is to finda partition of (0, T) x Q consisting of “suitable” cubes, defined
as follows. Let Q = ( — ri, 1) x T, € O for some 7 € (0, T] and T, € T ). Denote X to be
the barycenter of T,,. We say Q is suitable if both 7 > 4r7 and

21y

i
][ ][ ][(|Vu|2 +1f13) (6% = 2n(@)) dzd¥ dt < cor™ (s)

i—4r2 99QNBy, () 0

for some cq to be determined. Recall n(x’) is the outer normal vector at x' € 9.

Now we construct a partition according to suitability. Denote Sg C Qp to be the set of
suitable cubes, Ny = Q, \ Sp be the set of non-suitable cubes. For k > 1, we perform a
dyadic decomposition on each cube Q € Nj_1, then put the suitable ones in Sy and non-
suitable ones in N. This process may continue indefinitely, and we define S = U8 to be
the set of suitable cubes that we obtained from this process.

We claim that S is a partition of (0, T) x 9S2. It is easy to see from our process that cubes
in S are mutually disjoint. Moreover, for almost every (¢,x") € (0, T) x 9%, the cube whose
closure contains (¢, x') becomes suitable if the cube is sufficiently small, by a partial regularity
argument. Indeed, denote the singular set Sing(u, f) to be the complement of the closure of
Uges Qin (0, T) x 9%. For every (£,X') € Sing(u,f), for every k > 0, there exists a cube
Qi € N such that Qy fails the suitability condition (S). Then we find a neighborhood of (%, ')
in (0, T) x €2 which is

U={(t,x —zn(x)): t € (1 — 4}, D), x' € QN Bay (X),z € (0,210},

~

parabolic cylinder of radius r. These neighborhoods form an open cover of Sing(u, f). By
Vitali covering lemma, we find a disjoint subcollection U; which covers Sing(u, f) if dilating

by a factor of 5. The radii are summable because ) ;1 <), fo |Vul? + [f|§ dxdt < o0, so
the parabolic Hausdorff dimension of Sing(u, f) is at most 1.

Define 7 = o (S) to be the o-algebra generated by these countably many suitable cubes.
Then the conditional expectation @ := E[w|F] is simply a piecewise function, taking the
average value of w on eachQ € S.

Next we prove claim (1) and (2). First, we show the set A = (0, 471-1 % 9Q is F-
measurable. If 47!T < §2and ! > 0, then 47IT < i min {82, T} < 4r(2). Hence
47T = 47171 4K = 4= K 442 = 442, for some k' > 0,and A = (0,4r%) x IS
On the one hand, for k < k', S only contains cubes of the form (f — r]%,?) x Ty, with
t— r]% > 31’,% > 41’1%,, so A is disjoint from every cube in Sk. On the other hand, for k > &/,
Sk C Oy only contains cubes of the form (iri, G+ l)r]%) x Tp,. Since 4r,%, = 4k_k/+1r,%, each
cube in Sy is either contained in A or disjoint from A. In conclusion, every set in S is either
a subset of A or a subset of (0, T) x 02\ A, hence A € o(S) = F.

To prove (2), note that each Q in S has size at most ry < & in space and 12 < §2 in time,
so for (t1,x1), (12, x%2) € Q

such that [, U |Vul? + [flg dxdt 2 r¢. Moreover, this neighborhood is comparable with a

lo(t1, x1) — @(t2, x2)| < le(t1, x1) — @(t2, x1)| + l@(f2, x1) — @(f2, x2)|
< 8spllpeo It1 — to] + V@l oo [x1 — x2]
<813l + 8 Vol .
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Step 3. Take any cube Q € Sk. By using the canonical scaling of the Navier-Stokes equation
u(t, x) == ru(r*t + t, rx) and f,(t,x) := r3f(r2t + 1, rx) with size r = 7, u, solves the Stokes
equation (6) in (—4,0) x C; with some C; € C @) and force term fr —uy- Vu,, and (S) implies

1
2
IVUurlli2(-a0)xcp) =< o>

17|
llur - V||

3
IR

Ll(—4,O;Lg () = ||fr||L%((—4,O)xC2)

Ll(—4,O;L%(C2)) S IVurllz (a0 xc) el 22— 40,08 () S <.
In the last step we used the Sobolev embedding
lurll a8y S IVHrllz(-40 %) »

when u, = 0 on the base T,. Therefore, Proposition 2 implies that after scaling, the average
vorticity is bounded by

1 -2
< —yr, -,
= 16yk

&g == '][_ w(t,x)dx' dt
Q

where we choose ¢y = %yz <1
Next, we separate two scenarios, k = 0 and k > 0. If k = 0, then for any Q € Sy, for any
0<t<T,

1
lolg < 1—6yr0_2 < ymax{S_z, T‘l},

Ifk > 0, then Q € St has an antecedent cube P € Ny_;. Cube P = (f — r,%_l, 1) x Ty, isnot
suitable, so either of the following two cases must be true.
1. < 4r£_1. In this case, for any (¢, x) € QcC P,

|c7)|-<i R
Q= 167"k 2V T=1=YE =

wlY

2 2
2. t>4ri_,, but
2rk—1

[
f f ][ (|Vu|2 + [f|%> (t,x' — zn(x')) dzdx' dt > cor,:fl.

t—4r2_ 9QNBy, (&) O

In the latter case, note that the integral region is comparable to Q, the extension of Q, which is
contained in (0, T') x Us (352, $2). We then know that for any (t,x) € Q, the parabolic maximal
function is bounded from below by

M(t,x) = M(Vul + [fI) 1o 11xus00.0) (6 %)

t+r2 4
= Sup][ ][ <|VH|2 + lf|§> (5, M) 1o, T1xtts (92,2) (5, ¥) dy ds
t—r2  JB,(x)

r>0

" vy’ —4
> ECOT’k = Erk .
Note that the parabolic maximal function M is a bounded map from L' (R x R?) to L (R x
R?).
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In summary, for any Q € Sk, we have Id)l(2 < 1—16)/rl;2 < yr,:z, and

11 -
either [@]g < y max TR or M’Q > Erk_ .

Step 4. Denote S = {(_Q(i)} and let Q® has size r. For any r, = 211’0 with [ € Z, we have
{(t,x’) € (0,T) x 99 : @] > y max {r; %, t71,6~ }}

2
A . () Y (i) —4
ckwo D <me@sz) }

0 2
Therefore the measure of the upper level set is controlled by the total measure of these suitable
cubes, that is

HIJ)I >ymax{r 2l s }”

ZH a0

1

2
(1) = 2_kr*aM‘Q(i) > %(Z_kr*)_4}

K‘

2
(z‘)‘: @ = 2k, M| . 4 2Ky )4
HQ r T |Q(z) = _C ( )

=~
Il
_

2
(tx) € (0,T) x Q: M(t,x) > %(2—’%)—4}

P———

k=1
—k
SZ v 1Ml groe(o,myx ) 27 r)*
k=1 c"*
<42 H Vul? + If|s 3
~V | I LU0, T)xUs (32,)) *

3

(rr?) 2.

This is true for any r, = ero. By the definition of Lorentz space, for every y < 1 we have

T

_1
2

Vul® + [f]3

LY((0,T) xUs (092,22))

2

L%’OO((O,T) x0€2)

1
<73 | 1Vul? 3
~Y (” ||L2((0,T)xZ/{5(852,S2)) ||f||L3((O x5, Q)))
This completes the proof of the theorem with v = 1, and for general v > 0 the conclusion
follows by scaling. 0

4. Proof of the main result

In this section, we first derive an estimate for the pairing between boundary vorticity with
any C! vector field, which is the work done by the friction force, then apply this to estimate
the layer separation.
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Corollary 2. Let Q C R be a smooth bounded domain satisfying Assumption 1 with 8. There
exists a constant C(2) > 0 depending only on Q and a universal constant C such that the
following holds. Given T > 0, A > 0, L > 0, suppose ¢ is a C' velocity field defined on
(0, T) x 0K, satisfying

L
l@llzee0,1)x0%) > 1 10t oo 0,1y x09) > L I V@l 0,1y x00) < A- (8)

Given any weak solution u” € Cy(0, T; L>(2)) N L2(0, T; Hé(Q)) to (NSE,) with initial value
u”(0) € HY(Q) and force f* € L%((O, T) x ), denote

E, = ” u “iOO(O,T;LZ(Q)) > Dy :=v ”V”v ”iz

H, = ||MV(0) Hi]l(ﬂ) > F, = V3 Hf ”

((0,T)x)

L3 (0)x)
Then the vorticity w" satisfies

T
v/ / w’ - @dx dt
0 Q2

4AL v  C(Q)A +vHE,T
+<4log<—> +S_2+ ( )(AL4 )

3 1 1 45
< CA°T|o2| + Z_LDV + ZFV + v3H;

)Avlan.

Proof Forsomes < & to be determined later, let F be the o -algebra introduced in Theorem 3.
For some T, = 4~XT with k to be determined later, we compute the integral by

T Ty
v/ / a)”-(pdx’dt:v/ / ' - @dx dt
0o Jaa

+v/ / (@’ — E[w"|F]) - @dx dt
Ty

+v/ / Elw"|F] - ¢dx dt

=I1+1I+1IIL
We start with the second term. Note that since T, = 4 KT, (T,, T) x 9S2 is a F-measurable
set, so
/ / (0" —E[w"|F]) - @ dx dt = / / (¢ — Elp|F]) d’ dt.
Therefore, V

T
1+ 11] =/ / v’ - (¢li<t,) + (¢ — Elp| FD1je=1,)) d' dt
0 Q2

= H v ”L%((O,T)XE)Q) ”(pl{tﬁT\,} + ((P - E[90|]:])1{tzTV} L4((0,T)x3%) *

By assumption (8) on ¢ and (4) of Theorem 3,

||¢||%4((O’TU)X39) S A4TU |8Q|s

sA2 A\
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Hence, by choosing § = min {S 21} and choosing T, to satisfy

1 .
— Tmin

% 4 v 4
— 1} STVSTmin{—,l} ,
AL AL

o~
’—"—>

we can bound

leLie<r,) + (9 — El@| FD =1,

LA0,T)x09) = (T|89|)4'

4
As for the L3 norm of vw”, we use the global linear estimate Proposition 1:

lve |3, ; < C(Q)[FV +E; (lev + uéHé)]
L3 ((0,1)x02)
Here we used ”f"(t) ”LS @ ”f"( )”L3 @ |Q|$. Combined we can bound the first two

terms by
vl o T o
|I+II|§C(Q)E Vv 3F, +Ej v D, +v3H; (T|92])*

(le3§2|)4

3 1
< C(Q)[v%F;* + E! (Dv + H,,>:| :

For the third term, denote & = E[w"|F]. Then
vo 'l . o dx’ dt
/(Tv,T)xaQ {Vlw |>y max{? 57}}

v
+)// —Igoldx/dt—i-y/ 2Igaldxdl‘
(T, T)xo0 & (T, T)x8Q 0

va'l

| <

< el 0,m)x00)

LTOO((O,T)XBQ)
+A T 25-2
y | vIoQilog | — ) +v267*TIaR ).
v

Recalling the choice of T, and §, we have

{vlw”|>y max{ rs? }}

T
v|8§2|log( >+v28 2T10Q)|
44L 252 2
<w[dQllog | — ) +v*8T9Q + A°T|3L.
v /4

Moreover, by Theorem 3 we control the L? weak norm by

1 2
va'l ) <Cy 3(Dy+F,))s. %)
{vlw >y max{t 3T % (0,T)x5)
And [lellz31 0,1 x00) < A(T|3R)3. Hence
| < CA(TIAQN3y 3 (Dy + B3 (10)

4AL vT 3
+ | 4log —~ + = yAv|0Q| 4+ yA’T|0L2|.
+
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In conclusion, we have shown that
14 11 + 11| < CA(T|9Q))3y 3 (D, + F.)3 + yA3T|9Q| + Ry,
with a remainder

(vT|3$2|)4

3 1
R, = C(Q)[uiF;‘ 4 Ef (D“ + vH! )} -

4AL vT
+ | 4log| — + = Av|0L2].
v /o 6

Next, we use Young’s inequality on each product, so
1 C
CATIARD ™3 Dy + F)T < oDy -+ F) + 4TI, (an

s WTAQDT 1 3T|8$2|
—— < -F, + C(Q)—
L 8
L3 (pT]aQ2)4 1 asz
C(QEI D} % < D, + C@) B,

L(pT|082 1 TI0Q2
CQE! Hu%iv% Hi + (m” <2

C(Q2)v2 F4

E,.

Hence for every y < 1, we have

C 1 1 1
I+ 11+ 111 < (; 4 y) A’TI9RI + Dy + Ly + VIH]

4AL vI  C(Q)1 +v3)E,T
<4log( 5 )++S_2+ N Av|0Q|.

This finishes the proof of the corollary by selecting y = 1. O

To prove the main theorem, we will use the following elementary lemma, which computes
the evolution of L? distance between a Navier—Stokes weak solution and a smooth vector field.

Lemma 4. Let u = u’ € Cy(0, T; L*(Q)) N L*(0, T; H} () be a weak solution to (NSE,)
with force f = f¥ € L1(0, T; L1(RQ)), and let v be any C! divergence-free flow withv-n = 0 on
9. Then the L? inner product (u, v) has the following time derivative:

d

E(”’V) = / u-@v+v-V) +[(u—v) ® (u—v)] : Dvdx + (VAu +f,v)

Q
where
(Au,v) = / Opu - vdx — / Vu: Vvdx.
92 Q

If v = i solves the Euler equation (EE) with force f € L'(0, T; L*(2)), then

%(u,ﬁ)=/[(u—it)®(u—l_4)—vVu]:Vit—l—u-f—l—z}-fdx
Q

+v/ u - udx.
a0
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In addition, if u is a Leray-Hopf solution with f € L'(0, T; L*(2)), then

1 -2 1 -2 U/ 2 =12
—u—u T — - |lu—u 0)+ — Vu|* — |Vu|*dxdt
2 ” ||L2(Q) ( ) 2 ” ”LZ(Q) ( ) 2 (O)T)XQ | | | |
T
5/ lu — @72 g I Ditll oo (g dt — v/ Inut - 11 dx’ dt
0 0,T)x0Q

+/ (u— 1) - (f—f)dxdt.
(0,T)x 2

Proof For u € L®(0, T; L*(R2)) N L2(0, T; HY (R)), v € L>(0, T; L3(2)) N L?(0, T; H' (2)) N
L0, T; WH®(2)) with v - n = 0 on 92, we have

Wu-Vu)y+ (u,v-Vv) = (v,u-Vu—v)) + (u—v,v-Vvy)
=wu-Viu—v))—w-Vu—v),v)
=Ww—v)-Vu—v)
= (v, div[(u —v) @ (u —v)])

:—/[(u—v)@(u—v)]:Vvdx
Q

:—/[(u—v)@(u—v)]:Dvdx.
Q

In the last step, we can replace Vv by its symmetric part Dv because (u — v) ® (u — v) is
symmetric. B
If v = u solves the Euler equation, then ;v +v- Vv = —Vp +f, so

E(u,a)z/ u-f +[(u—i)® (u—i)]: Didx
dt Q

+v/ Bnu~vdx/—v/Vu:Vvdx+/u-fdx.
Elo) Q Q

Integrate between 0 and T:

T
(u,a)(T)—(u,a)m):/ /[(u—ﬁ)@(u—ﬁ)—vVu]:Vadxdt
0 Q

T T _
+v/ / Bnu-i{dx’—i-/ /it-f+u-fdxdt.
0o Ja@ 0o Ja

Recall the energy inequality of the Leray-Hopf solutions to the Navier-Stokes equation and
energy conservation for the Euler equation:

1 T 1 r
—Ilulliz(g) (T)+/ /VIWI2 < —IIHIIfz(m (0)+/ /u-fdxdt,
2 0o JQ 2 0 JQ

1 1, _ Tr_ -
5 152y (1) = 5 Nl 2 g (0) + /0 /Q - fdxd.
Combined we have

1 _ 1 -
E ”u - ””iZ(Q) (T) - E ”u - u”iZ(Q) (0) +v ”vu”iz((O,T)XQ)

T T
5—/ /[(u—ﬁ)@(u—ﬁ)—vVu]:Vitdx—v/ / v -t dx’
0 Q 0 Q2
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+/0T/Quf+i¢f—uf—i¢fdxdt

T
= / llu u“LZ(Q) ”Du”LOO(Q) dt + = “VMHLZ(Q) + = “Vu”LZ(Q)

//(u—u) f — f)dxdt—v/ / Opu - udx.

This completes the proof of the lemma.

Proof of Theorem 2 For any 0 < t < T, by Lemma 4,

1 _ v 1% _
5 || u' — “”iZ(Q) )+ 5 “v”v ”iZ((O,t)XQ) ) ”v“”iZ((o,t)xsz)

1 i} g _ i}
=5 H u' — “”iZ(Q) (0) +/0 H u' — “”iZ(Q) 1 Ditlpoe () ds

-2
t
—v/ / a)”-][ﬁ]dx/ds+/ W —a) - (f* —f) dxds.
o Joao 0,Hx

Here J[u] = n x u. Using Corollary 2, we can control the total work of the friction force by

t
v// o’ - J[u] dx’ dt

é g
+- ‘” If ||L33((0t) Q)"“” ””V(O)H;JI(Q)

2
(410g <4AL> n vT + C()(1+v )EUT) AviaQ.

< CA9Q + — | vu |
= 1 12((0.H%9)

8 AL
Using Cauchy-Schwartz inequality, the forcing term can be controlled by

/ (u—u)- (f —f)dxdt
(0,1)x 2

tlu” — Ijt||22 (s)+1 )
= /o o If* =7l 2 ) ds.

2

By absorbing the dissipation term, we have

_ v _
u - ”HiZ(Q) ) + 3 HVu” ||iz((0,t)x9) - “”v - ””il(sz) ) (12)

t -
= /0 ” u’ — ’7‘||12,2(Q) (2 ||D1—4||L°C(Q) + ”fv _f”LZ(Q)) ds

+ CAtaQ| + R, (1),

where the remainder is
v n =12
Ry (1) = ”f _f||L1(0tL2(Q)) + v IVullz o0

4 2
AL O,

4AL T C(Q)(1+Vv3)E,T
(410g(—> 4T, c@a+ vk, )Av|asz|.
+

v 52 AL
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By Gronwall inequality, we conclude that
- v
H u’ — ”HiZ(Q) (1) + 3 HV”U ||i2((O,T)><SZ)

= ([l = 720y @ + CA*TI091 + Ry(T) )

T -
X €xp (/0 2 ||Dull oo (@) + va _f”LZ(Q) dt) :

Note that
2
R, (0) = 8(log4Re) ; Av|dQ| +2v3 [u'(0)[ ;1> Ru(T) — Oasv — 0
. 2 1 -
provided v? [|u” (0) | 1) + v [f” ||L%((O,T)x§2) + | —f||L1(0)T;L2(Q)) — 0. O

Theorem 1 and Corollary 1 are the consequence of Theorem 2.

Proof of Theorem 1 and Corollary 1 We first prove these results with an additional assump-
tion that

v 4 Loy
fYeL3((0,T) x Q) and vi |f HL%((O,T)XQ) — 0asv — 0. (13)

For each v we pick some T, > 0 to be determined. By the energy inequality, it holds that

T,
v N 2 1 N 2
”/O HVu (t)”LZ(Q) dt < 5 H“ (0)||L2(Q)'
Therefore, there exists some time £¥ € (0, T such that

1
vT, ”VUV(SV)”;(Q) = ) “ uv(o)leﬂ(Q) )

Moreover, we know ||u" (§") II%Z @ = [l (0) ||%2 @ due to energy inequality. Therefore

3
vt ||MU(SV)||§{1(Q) < (% + v4) ||u”(0)||i2(m — 0 asv — 0 (14)
v

provided v T; ! — 0. Picking T, = v? will work, for instance.
We claim that the work of the friction force between 0 and £V is negligible:

gl)
v/ / o’ - J[u] dx’ dt
o Jag

This is because by Lemma 4, we integrate from 0 to £":
", (") — (", u)(0)
EU
=/ /[(u”—ﬁ)@(u”—ﬁ)—vVu”]:sztdxdt
0 Ja

& £ }
+v/ / a)”-][it]dx/dt+/ /a-f”-i-u” - fdxdt,
0 191 0 Q

in which as v — 0, we establish the following convergences.

lim inf =0.
v—0
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o W,w(é&") — (uu)(0): u(¢’) — u(0) strongly in L*(S2), while u”(£") — u(0)
weakly in L?*(2) up to a subsequence. This is because v’ — # up to a subse-
quence in C(0, T; H~1(R2)) using Aubin-Lions lemma, and #" are uniformly bounded in
L>®(0, T; L*>()), hence u” — # in Cy (0, T; L*>(2)). Thus as v — 0,

W', w)EY) = W' &), uE") —u(0) + " E") — uE"),u(0))
+ (@(E") — w(0), u(0)) + [#(0)[I72 (g, — #O)]1*.

o (1, u)(0) — (u,u)(0): this is simply because u"(0) — #(0) in L2(Q).

o [[1w’ —w)® —vVu’]: Vi — 0:u’ — i is uniformly bounded in L>(0, T; L*(2)), and
VIV is uniformly bounded in L2((0,T) x Q).

o [[@-f" — 0:this is because

SU
/ /a.f”dxdt
0 Q

< llall oo, r2c0) If” _J_C”Ll(o,T;LZ(Q))

g _
/ /a.fdxdt
0 Q

. ff u’ j_" — 0: " is uniformly bounded in L*°(0, T; L*(Q)).
These convergences prove the claim. Since this claim holds for any sequence of ", it must
hold that

— 0.

_|_

SU
R,()l)zv/ / o’ - Ju]ldx dt — 0 asv — 0.
o Jaa

Next, by Corollary 2, we can control the work of the friction force from £ to t whenever
EV <t<T:

t
v - / 3 V v
v/v /mw - J[u] dx dt‘ = CA’M9Q| + 7 [V ] 12 0y x
13 V% ] % v
+ v ) +VIH] (")
4 L3((0,H)x)

4AL vT  C(Q)(1 +v3)E, T
. 82 AL4

)Av|8§2|.

1
Here H, (V) = IIu"(S”)Hip(Q), and ngS (&Y) — 0asv — 0 by (14). Together with the
energy inequalities, we have for every 0 < t < T:

_ v _
H u’ — ”HiZ(Q) ) + 3 HV”U ||§,2((0,t)x52) - “”v - ””il(sz) )

t -
= /0 H u’ — ’7‘”12,2(9) (2 ||Df’||L°C(§z) + ”fv _f”LZ(Q)) ds
+ CA3taQ2| + R, (1),
where

— R 7 ||
Ro(®) = R + [If* = flpnorzeany TV IVEI 20 <0

4 1
43 ||f”||2%((0 e 205 HE (8Y)
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4AL vT  C(Q)(1 +v?)E,T

From our assumptions, we know R, (t) — 0as v — 0. By Gronwall inequality, we conclude
-2 v 2
H u” — ””LZ(Q) (T) + 5 HV”U ||L2((0,T)><§2)

= ([l = [ f2(q) @ + CA*TI091 + Ry(T))

T -
X exp (/0 2 || Ditll gy + va _f”LZ(Q) dt) :

Theorem 1 and Corollary 1 are proven by sending v — 0.
Finally, let us drop the assumption (13). Similar as before, we may assume 4’ — u in

Cyw (0, T; L2(R2)). When f is not L5 intime and space, we can take an average in time as follows.
Let p,(t) = %l{oftyv}, for some ¢, > 0 depending on v to be determined, with &, — 0 as

v — 0.Define i’ = u” %, p*, f* = f* % p” by

t t
u’(t,x) = ][ u” (s, x) ds, f”(t, X) = ][ fY(s,x)ds
t

—ey t—g,

fort € [e,, T]. We extend our definition by u” () = u" (¢,) andf” (t) = f" (&y) for0 < t < &y.
Then %V solves the Navier-Stokes equation in (e,, T):

dit” + 1" - Vit + VP = AR’ + [ + £,

where

—_ — t
fi=u"-Vvit" —u¥ - Vu¥ = ﬁ”-Vft”—][ u’ - Vu'ds.
t—gy
Then #* — 4’ — 0 in Cy(0, T;L2(R)), f* — f* — 0in L'(0, T;L3(R)), f¥ — 0 in
LY(o, T;L% (2)), and thus

fV

1 1 —
VIR N8 oy = C@ViEy

< C(Q)vis,

1 1
. L%((O,T)XQ) - ! ||fv HLl(O,T;LZ(Q)) >

1
! || u" ||L2(0,T;L6(Q)) || 0 ”LZ(o,T;LZ(Q)) :

1 1
If we set, for instance, &, = v2, then v — 0asv — 0.

v + Y
LA I (0,7)xQ)
By Lemma 4, we can estimate the inner product of #” and u:

@, u)(T) — (@", u)(&v)

T
=/ /[(ﬁv—ﬁ)®(ﬂ”—ﬁ)—vVﬂ”]:Vzldxdt
&g, JQ

T T B B
+v/ / Bnﬂ"-ﬁdx/—i-/ /a~f“+a“-fdxdt.
g, JOQ gy JQ

Due to convergence &’ — u” — 0 in Cy(0, T; L*(R2)), Vi’ — Vu¥ — 0in L*((0, T) x Q),
andfrv +f = f*in LY(0, T; L3 (2)), we conclude
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", u)(T) — (u”, u)(0)

T
=/ /[(M—z})@(u”—ﬁ)—vVu"]:Vﬁdxdt
0o Jo

T T
+v/ / Bnﬁ”-ﬁdx'+/ /Et-f”—l—u”-fdxdt—FR‘()z).
e JoQ o Ja

for some R — 0asv — 0. Using Corollary 2, we can bound the boundary term by

T
v/ / 01" - ndx' dt
gy JOQ

1 T
§CA3T|8§2|+—1)/ / |Vu|? dx dt
4 Jo Ja

1

-F, + Ry,
+4v+ v
4
3

whereRv—>0asv—>0,andFv=v% Oasv — 0 as

PR s

L3 ((0,T)x )
well. Combining with the energy inequality and Gronwall inequality, we finish the proof of
Theorem 1 and Corollary 1 for general force without assumption (13). O

Finally, we recover the result of Kato from our analysis.

Proof of Theorem A The term CA3T|32| of Theorem 2 is due to the integral IIT in (10) in the
proof of Corollary 2, which comes from two sources: §A3 T|9€2] in (11) can be traced back

to the boundary vorticity estimate (9), and the other was y A3T|9%|. For the former, if the
Kato’s condition (2) holds for § = v/A, then by Theorem 3 we have for any y < 1,

3

2
lim
v—0

3 =0,
L2%°((0,T)x0K)
thus lim sup,_, , [III] < yA3T|9Q|. Consequently, LS(&t) < yA*T|d|. This is true for any
y € (0, 1], therefore LS(1) = 0. The general case § = cv for ¢ > 0 is a simple consequence of
the rescaling of time. O

~v
vw'l; .
{vle|>y max{%,;—i}}

Remark 2. The main part of the proof of Theorem 2 is to use Corollary 2 to bound the work
of boundary friction toward the Euler flow. One could also study the work of fluid toward the
boundary. This is related to the well-known d’Alembert’s paradox: for an object traveling at a
constant speed in a steady potential flow, there is no drag force, so the ambient fluid does zero
work toward the object. However, in reality, an object moving in a fluid experiences a drag
force, no matter how small the viscosity is or how fast the speed is.

To be more precise, imagine that an object K is moving at a constant velocity Ue; in a
low-viscosity incompressible fluid in a large periodic domain. Sending the period to infinity
is another nontrivial task, but we ignore it here. Then in the reference frame of K, the fluid
around it solves the Navier-Stokes equation in = T3\ K, with a background flow  ~ —Ue,
away from the object. Denote ¥ = —PVId + 2vDu" to be the stress tensor of the fluid. Then
the total force exerted on the object by the fluid at a given time is

/ —anx’:/ P’n — vo,u’ dx'. (15)
a0 IQ

Here n is the outer normal of €2, i.e. the inward normal of dK. This force contains two parts:
the first is due to pressure, and the second is due to friction. In e; direction, the former is
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called “form drag”, whereas the latter is called “skin drag”. The work done on the object in the
static frame of reference is

/ —%n- Ue dx/dtz/ Yn - (—Ue)dx dt.
0,T)x3% 0,T)x8Q

Recall that the work done on the Euler solution in the object’s frame of reference is

v/ Bnu”-ﬂdx/dt=/ Sn-udx dt.
0,T)x 9L 0,T)x 922

If u &~ —Ue; on the boundary, then they are approximately the same. In particular, they are
the same when K is a flat plate moving at a constant velocity tangential to its surface.

The drag force experienced by the object has the following empirical formula, which is
derived from dimensional analysis by Lord Rayleigh:

1
Firg = 2p ca(Re)U”S.

Here p is the density of the fluid, c4(Re) is a dimensionless parameter called drag coefficient,
depending on the shape of the object, and the Reynolds number Re = %, where L is the
characteristic length, and S is the reference area. One may choose L to be the diameter of the
object K. It is customary to choose S as the cross-sectional area, but for wings it should be
chosen as the lifting area. It has been observed experimentally that the drag coeflicient c4(Re)
has a finite limit as Re — oo, i.e. v — 0. For instance, a rigorous analysis shows the drag
coeflicient of a flat plate can be bounded by approximately 295.49 [35] as Re — oco. Upon
fixing a unit system such that p = 1, the work done by the drag force from time 0 to T is
exactly cq4(Re) U3TS. In the case of a flat plate, it = —Ue;, A = U,and S = %IBQI. Our work
then shows that even for weak solutions, the inviscid limit of drag coefficient has an upper
bound:

. AN og|
limsup cg(Re) < C ) s <C.

Re— o0 S -

For a general object K, we can set ¢ = —Ue; in Corollary 2 to provide a constant upper bound
for the limiting skin drag coeflicient

i (Re) < CUT|3Q| - C|asz|
1m sup ¢, 3
Re—>oop dskin - %UZSUT - S

>

where cq skin is defined similarly as cq but considering only the skin friction drag, neglecting
the form drag component.
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