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ABSTRACT

We provide an unconditional L2 upper bound for the boundary layer
separation of Leray–Hopf solutions in a smooth bounded domain. By
layer separation, we mean the discrepancy between a (turbulent) low-
viscosity Leray–Hopf solution u

ν and a �xed (laminar) regular Euler
solution ū with similar initial conditions and body force. We show an

asymptotic upper bound C‖ū‖3
L∞T on the layer separation, anomalous

dissipation, and the work done by friction. This extends the previous
result when the Euler solution is a regular shear in a �nite channel. The
key estimate is to control the boundary vorticity in a way that does not
degenerate in the vanishing viscosity limit.
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1. Introduction

Let T > 0 and let � ⊂ R3 be a smooth bounded domain. Given a smooth solution ū :
(0,T)×� → R3 to the Euler equation with impermeability boundary condition ū

∣

∣

∂�
·n = 0

and a regular external force f̄ : (0,T) × � → R3:

∂tū + ū · ∇ū + ∇P̄ = f̄ div ū = 0 in �, (EE)

we estimate the L2(�) di�erence at time T between ū and any Leray–Hopf weak solution
uν : (0,T) × � → R3 to the Navier–Stokes equation with kinematic viscosity ν > 0, body
force f ν ∈ L1(0,T; L2(�)), and non-slip boundary condition uν

∣

∣

∂�
= 0:

∂tu
ν + uν · ∇uν + ∇Pν = ν�uν + f ν div uν = 0 in �. (NSEν)

By Leray–Hopf solutions, we mean distributional solutions uν in the space Cw(0,T; L2(�))∩
L2(0,T;H1(�)) satisfying the following energy inequality for every T′ ∈ [0,T]:

1

2

∥

∥uν
∥

∥

2
L2(�)

(T′) +
ˆ T′

0

ˆ

�

ν|∇uν |2 dx dt (1)

≤ 1

2
‖u‖2L2(�)

(0) +
ˆ T′

0

ˆ

�

uν · f ν dx dt.

CONTACT Jincheng Yang jincheng@uchicago.edu Department of Mathematics, The University of Chicago, 5734 S
University Ave, Chicago, IL 60637, USA.
© 2024 Taylor & Francis Group, LLC



382 A. F. VASSEUR AND J. YANG

One of the fundamental questions in �uid dynamics is whether ideal �uids, governed by the
Euler equation, can be used tomodel viscous �uids with su�ciently small viscosity ν. This can
be formulated as the so-called inviscid limit problem, which questions whether the following
limit of layer separation is zero:

LS(ū) := lim sup
ν→0

{

∥

∥uν − ū
∥

∥

2
L2(�)

(T) :
uν(0) → ū(0) in L2(�)

f ν → f̄ in L1(0,T; L2(�))

}

.

To the best of our knowledge, this question remains open for Leray–Hopf solutions, even for
dimension 2.

This paper aims to provide the following unconditional upper bound for layer separation.

Theorem 1. There exists a universal constant C > 0 such that the following holds. Let T > 0
and let � ⊂ R3 be a domain with compact, smooth boundary satisfying Assumption 1. Let

ū ∈ L∞(0,T;C1(�)) be a solution of (EE) with a forcing term f̄ ∈ L1(0,T; L2(�)). Let uν be

a family of Leray–Hopf weak solutions to the Navier–Stokes equation (NSEν) with force f ν ∈
L1(0,T; L2(�)). Then the layer separation is bounded by

LS(ū) ≤ CA3T|∂�| exp
(

2

ˆ T

0
‖Dū(t)‖L∞(�) dt

)

,

where A = ‖ū‖L∞((0,T)×∂�) is the maximum boundary velocity of the Euler solution, andDū =
1
2 (∇ū + ∇ū�) is the symmetric velocity gradient, also known as the rate-of-strain tensor. 1

Assumption 1 will be discussed in Section 2.3. It guarantees that the boundary ∂�, as a
compact manifold, can be triangularized in a uniform way. We conjecture this assumption
should be satis�ed by all smooth domains.

We remark that the norm ‖Dū‖L∞(�) only measures the rate of strain in the interior of �.
On the boundary ∂�, ū can be nonzero, and as a distribution in R3, Dū can be a measure.
Indeed, if ū vanishes on the boundary, then A = 0 and LS(ū) = 0, which can also be veri�ed
by elementary computation.

This result is a generalization of the previous work by the authors [1] which studied the
setting when ū is a static shear �ow in a �nite channel without force.

1.1. Literature review

Boundary layer and the inviscid limit problem. The gap between the Euler solution ū and
the low-viscosity Navier–Stokes solution uν is due to the “boundary layer”, which refers to a
thin layer of �uid near the boundary ∂� that exhibits instability and turbulent structure, in
contrast with the regular Euler solution ū whose behavior near the boundary is predicted to
be laminar. This has been observed from physical experiments [2] and numerical simulations
[3]. Using a singular asymptotic expansion, Prandtl [4] conducted an asymptotic analysis of
the Navier–Stokes system near the boundary and suggested that the turbulent structure is
supported in a boundary layer of width O(

√
ν). Even though the width of the boundary

layer converges to zero in the inviscid limit, it is unclear whether the energy inside the
boundary layer always converges to zero. In fact, the Prandtl layer with a non-monotonic
shear background �ow is unstable and ill-posed in Sobolev spaces. See [5–8].

1The norm of Dū should be interpreted as its largest absolute eigenvalue, which corresponds to the maximum
expansion/contraction rate.
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An important positive result for the inviscid limit to hold is the celebrated work of Kato
[9], where he proved LS(ū) = 0 if the energy dissipation in a boundary layer of width δ = cν

vanishes.

Theorem A (Kato’s Criterion [9]). Let Uδ(∂�,�) be the δ-tubular neighborhood of ∂� in �

with δ = cν for some c > 0. If the following limit holds:

lim
ν→0

ˆ T

0

ˆ

Uδ(∂�,�)

ν
∣

∣∇uν
∣

∣

2
dx dt = 0, (2)

then LS(ū) = 0.

Notice that this width is thinner than the Prandtl layer. This indicates that the inviscid limit
fails only when the velocity gradient near the boundary has order ∇uν ∼ O(ν−1). There
have also been unconditional results for the inviscid limit to hold when the solution and the
domain enjoy additional structure, for instance, analyticity or symmetry [10–12].

Nonuniqueness and anomalous dissipation. One important piece of theoretical evidence that
suggests the inviscid limit may fail for Leray–Hopf solutions is the nonuniqueness. The recent
work of Albritton, Brúe and Colombo [13, 14] exhibits the nonuniqueness of Leray–Hopf
solutions for the forced Navier–Stokes equation. Their construction is based on self-similar
solutions [15] and Euler instability [16–18]. Moreover, at the Euler level, even near a constant
plug �ow ū = Ae1, Széklyhidi [1, 19] constructed nonunique Euler solutions ũ using convex
integrations with a layer separation of

∥

∥ũ(T) − ū
∥

∥

2
L2(�)

= CA3T.

Note that this rate is consistent with our upper bound of layer separation. Using convex
integration or self-similar solutions, there has been an extensive amount of work in the
study of the nonuniqueness of the Euler and the Navier–Stokes equations in the past decades
[20–23].

Moreover, the layer separation is closely related to anomalous dissipation, which we de�ne
under our context as

AD(ū) := lim sup
ν→0

{
ˆ T

0

ˆ

�

ν|∇uν |2 dx dt : uν(0) → ū(0) in L2(�)

f ν → f̄ in L1(0,T; L2(�))

}

.

Kato’s criterion shows that if AD(ū) = 0 then LS(ū) = 0. It is also straightforward to see
from the energy inequality (1) that LS(ū) = 0 would imply AD(ū) = 0 as well. From this
perspective, the validity of the inviscid limit is equivalent to whether the Kolmogorov’s zeroth
law of turbulence [24–26] can hold in a neighborhood of regular solution ū. In the absence of
boundary, Brué and De Lellis [27] constructed examples of classical solutions to the forced
Navier–Stokes equation with positive anomalous dissipation. However, both the nonunique
Leray–Hopf solutions in [13] and the anomalous dissipation of [27] are away from a smooth
Euler solution, so they do not fall into the scope of this paper. Nevertheless, we provide the
same unconditional bound on the limiting energy dissipation as well.
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Corollary 1. Under the same assumptions of Theorem 1, the anomalous dissipation is also

bounded by

AD(ū) ≤ CA3T|∂�| exp
(

2

ˆ T

0
‖Dū(t)‖L∞(�) dt

)

.

Work of boundary friction and Kato’s criterion. Let us brie�y discuss the main ideas of the
proof. The crucial term when estimating layer separation and anomalous dissipation is the
work done by the friction on the boundary. It is easy to see that the validity of the inviscid
limit is equivalent to the vanishing of the negative work of boundary friction in ū direction:

Wfric(ū) := lim sup
ν→0

{

−ν

ˆ

(0,T)×∂�

∂nu
ν · ū dx′ dt :

uν(0) → ū(0) in L2(�)

f ν → f̄ in L1(0,T; L2(�))

}

,

where ∂nu
ν · ū = ων · (n × ū) on the boundary ∂�.

Using energy inequality and Grönwall inequality, it is easy to see that

LS(ū) + AD(ū) ≤ Wfric(ū) exp

(

2

ˆ T

0
‖Dū‖L∞(�) dt

)

. (3)

Hence, measuring the layer separation and anomalous dissipation relies on the estimation of

boundary vorticity ων . We will provide a uniform bound in L
3
2 weak space in Theorem 3,

using the energy dissipation in the Kato’s layer. As a consequence of this vorticity estimate,
we can control the total work of boundary friction force asymptotically by

Wfric(ū) ≤ C ‖ū‖L3,1((0,T)×∂�) ADcν(ū)
2
3 ≤ CA(T|∂�|) 1

3 ADcν(ū)
2
3 ,

where ADcν(ū) is the limiting energy dissipation in the boundary layer of width cν. Therefore,
if Kato’s criterion holds, the work of; (3) implies both layer separation and anomalous
dissipation are also zero. Otherwise, by absorbing the anomalous dissipation into the le� side
of (3) we show the layer separation LS(ū), anomalous dissipation AD(ū), and total friction
work Wfric(ū) are all bounded by CA3T|∂�|, up to an exponential factor which depends on
the largest absolute eigenvalue of the strain-rate tensor Dū:

LS(ū) + AD(ū) + Wfric(ū) ≤ CA3T|∂�| exp
(

2

ˆ T

0
‖Dū(t)‖L∞(�) dt

)

.

See Remark 2 for a further discussion on physical relevance.

1.2. Main results

Both Theorem 1 and Corollary 1 are the consequence of the following bound at the Navier–
Stokes level.

Theorem 2. Let � ⊂ R3 be a bounded domain with compact, smooth boundary satisfying

Assumption 1 with width δ̄. There exists a constant C(�) > 0 depending only on � and a

universal constant C such that the following is true. Given T > 0, let ū be a regular solution

to (EE) with maximum boundary velocity A = ‖ū‖L∞((0,T)×∂�), and let uν be a Leray–Hopf

weak solution to (NSEν) with initial value uν(0) ∈ H1(�) and force f ν ∈ L1(0,T; L2(�)) ∩
L

4
3 ((0,T) × �). De�ne the characteristic frequency and Reynolds number by

A

L
= A−1 ‖∂tū‖L∞((0,T)×∂�) + ‖∇ū‖L∞((0,T)×Uδ(∂�,�)) , Re = AL

ν
.
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Here δ = min
{

δ̄,A−1ν
}

. Then

∥

∥uν − ū
∥

∥

2
L2(�)

(T) + ν

2

∥

∥∇uν
∥

∥

2
L2((0,T)×�)

≤
(

∥

∥uν − ū
∥

∥

2
L2(�)

(0) + CA3T|∂�| + Rν(T)
)

× exp

(
ˆ T

0
2 ‖Dū‖L∞(�) (t) +

∥

∥f ν − f̄
∥

∥

L2(�)
(t) dt

)

,

where the remainder term Rν(T) is de�ned by

Rν(T) =
∥

∥f ν − f̄
∥

∥

L1(0,T;L2(�))
+ ν ‖∇ū‖2L2((0,T)×�)

+ ν
1
3
∥

∥f ν
∥

∥

4
3

L
4
3 ((0,T)×�)

+ 2ν
4
3
∥

∥uν(0)
∥

∥

2
3
H1(�)

+ 2

(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.

As mentioned earlier, the crucial step is to bound the boundary vorticity in a way that does
not degenerate as ν → 0. We show that the averaged boundary vorticity can be bounded in

L
3
2 weak norm, up to a remainder, by the energy dissipation in the boundary layer (2).

Theorem 3. There exists a universal constant C such that the following is true. Let � ⊂ R3 be

a smooth bounded domain satisfying Assumption 1 with δ̄. Let uν ∈ L2(0,T;H1(�)) be a weak

solution to (NSEν) with force f ν ∈ L
4
3 ((0,T) × �). We denote ων = curl uν to be the vorticity

�eld. For any 0 < δ ≤ δ̄, there exists a σ -algebra F of (0,T) × ∂�, depending on uν and δ,

such that

1. F is a sub σ -algebra of the Borel σ -algebra on (0,T) × ∂�. For every integer l ≥ 0 with

4−lT ≤ δ2, the set (0, 4−l−1T) × � is F-measurable.

2. For ϕ ∈ C1((0,T) × ∂�), we have

‖ϕ − E[ϕ|F]‖L∞ ≤ δ

(

δ

ν
‖∂tϕ‖L∞ + ‖∇ϕ‖L∞

)

. (4)

3. Denote ω̃ν = E[ων |F]. Then for every γ ≤ 1,
∥

∥

∥

∥

νω̃ν1{
ν|ω̃ν |>γ max

{

ν
t ,

ν2

δ2

}}

∥

∥

∥

∥

3
2

L
3
2 ,∞((0,T)×∂�)

(5)

≤ Cγ − 1
2

ˆ T

0

ˆ

Uδ(∂�,�)

ν
∣

∣∇uν
∣

∣

2 + ν
1
3
∣

∣f ν
∣

∣

4
3 dx dt.

Remark 1. If we set the boundary layer to have thewidth δ = O(ν) as in Kato’s condition, then
(4) will be of order O(ν). We will recover Kato’s results if the right-hand side of (5) vanishes
in the inviscid limit.

The σ -algebra is constructed by a partition of (0,T) × ∂� in a dyadic way. Morally
speaking, we ensure in each piece with size r < ν in space and length ν−1r2 in time, the
average energy dissipation near it is

ffl

ν|∇uν |2 dx dt ∼ c0ν
3r−4, from which we control the
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average boundary vorticity by ω̃ν =
ffl

ων dx′ dt � νr−2 via a linear Stokes estimate. A�er a
Calderón–Zygmund argument, we can control ω̃ν in a weak norm by (5).

This paper is organized as follows. Section 2 introduces the technical tools that will help
deal with the non-�atness of the boundary, especially the dyadic decomposition. In Section 3
we prove the boundary vorticity estimate in Theorem 3. The main results will be proven in
Section 4.

2. Preliminary on curved boundary

In this section, we discuss issues that arise due to the non-�atness of the boundary. We �rst
rigorously de�ne the triangular decomposition of ∂�. Then we recall some classical estimates
with curved boundaries.

2.1. Notation

Let D2 denote the set of open triangles in R2 with barycenter at the origin and side lengths
between 5

3 and
7
3 . De�ne � to be the set of di�eomorphisms between any such triangle �2 ∈

D2 and any piece of two-dimensional surface T2 ⊂ R3 under the following restriction:

� :=
{

ψ ∈ Di�(�2; T2) :
�2 ∈ D2, T2 ⊂ R3,ψ(0) = 0
∇ψ(0) = iR2 ,

∥

∥∇2ψ
∥

∥

L∞ ≤ 1
9

}

.

Here Di�(�2; T2) is the set of smooth di�eomorphisms between �2 and T2, and iR2 is the
natural inclusion from R2 to R3 de�ned by (x1, x2) �→ (x1, x2, 0). By translation, rotation,
re�ection anddilation/contraction,we de�ne�(r) to be the set of di�eomorphismsψ : �2 →
T2r ⊂ R3 using the following:

�(r) := {rR ◦ ψ : ψ ∈ � ,R ∈ E(3)} , r > 0.

E(3) is the isometry group of R3.
We could also extend it with width. Denote �2 = �2 × (0, 2), and for ψ ∈ �(r), denote

the unit normal vector by n = ∂1ψ×∂2ψ
|∂1ψ×∂2ψ | . We can de�ne the extended di�eomorphism ψ̃ ∈

C∞(�2;R3) by

ψ̃(ξ , z) = ψ(ξ) − rzn(ξ), ξ ∈ �2, z ∈ (0, 2).

The �rst and second derivative constraint ensures that ψ̃ is also a homeomorphism.
By r�2 we mean the scaling of �2 by a factor of r > 0, and r�2 refers to the scaling of �2

by a factor of r. For r > 0, we de�ne the set of curved triangles with size r by

T (r) :=
{

ψ(�1) : ψ ∈ �(r),�1 = 1

2
Domψ

}

,

and we de�ne the set of curved triangular cylinders with size r by

C(r) :=
{

ψ̃(�1) : ψ ∈ �(r),�1 = 1

2
Dom ψ̃

}

.

Therefore, each curved triangle (triangular cylinder) has a neighborhood that is di�eomor-
phic to a triangle (triangular cylinder) with a uniform bound on the second derivative of the
di�eomorphism. If T1 = ψ(�1) and C1 = ψ̃(�1), we say C1 is the extension of T1 and T1 is
the base of C1. For r ∈ (0, 2) we denote rT1 = ψ(r�1) and rC1 = ψ(rC1). Note that these
de�nitions do not depend on the choice of di�eomorphisms up to the orientation.
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2.2. Dyadic decomposition of boundary

Belowwe describe the dyadic decomposition of triangles, cylinders, and time. Recall�means
that two sets are equal up to zero measure sets, and � is the disjoint union operator.

1. For a triangle�2 ∈ D2, it can be decomposed into four similar sub-triangles with half the

side lengths, by connectingmid-points. Denote the four sub-triangles by�
(i)
1 , i = 1, . . . , 4.

Then

�2 �
4
⊔

i=1

�
(i)
1 .

2. For a triangular cylinder �2 = �2 × (0, 2), we decompose �2 × (0, 1) into four pieces

�
(i)
1 = �

(i)
1 ×(0, 1), by decompose the base�2. See Figure 1. The top part�∗

2 = �1×(1, 2)
will be discarded.

�2 �
(

4
⊔

i=1

�
(i)
1

)

� �∗
2 .

Figure 1. Dyadic decomposition of�2 =
(

⊔4
i=1 �

(i)
1

)

� �∗
2 .

3. For T2 ∈ T (2), it is di�eomorphic to �2 via ψ( 12 ·) for some ψ ∈ �(2) : 1
2�2 → T2. We

�rst decompose �2. Then we map the four pieces to T2 via ψ : T(i)
1 = ψ( 12�

(i)
1 ). In this

way, T2 is decomposed into

T2 �
4
⊔

i=1

T
(i)
1 .

Each T(i)
1 belongs to T (1). This decomposition is not unique and depends on the choice of

the di�eomorphism.
4. For C2 ∈ C(2), it is di�eomorphic to �2 via ψ̃( 12 ·) for some ψ ∈ �(2) : 1

2�2 → T2.

We �rst decompose �2. Then we map the four pieces into C2 via ψ : C(i)
1 = ψ̃(�

(i)
1 ). The
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remaining part C∗
2 = ψ̃(�∗

2) is discarded.

C2 �
(

4
⊔

i=1

C
(i)
1

)

� C∗
2 .

Each C
(i)
1 belongs to C(1). Moreover, the base of C2 is correspondingly decomposed to the

bases of C(i)
1 .

5. For Q̄2 := (−4, 0) × T2, it can be decomposed into 16 pieces in both time and space:

Q̄
(i,j)
1 = (−j,−j + 1) × T

(i)
1 , where i, j = 1, . . . , 4.

Q̄2 �
4
⊔

i=1

4
⊔

j=1

Q̄
(i,j)
1 .

6. If C2 is the extension of some T2 ∈ C(2), we say Q2 := (−4, 0) × C2 is the extension
of Q̄2 = (−4, 0) × T2. Q2 can be decomposed into 16 pieces in both time and space:

Q
(i,j)
1 = (−j,−j + 1) × C

(i)
1 , where i, j = 1, . . . , 4. The remaining part Q∗

2 = (−4, 0) × C∗
2

is discarded.

Q2 �

⎛

⎝

4
⊔

i=1

4
⊔

j=1

Q
(i,j)
1

⎞

⎠ � Q∗
2 .

By scaling, every T ∈ T (δ) can be decomposed into four curved triangles in T ( δ
2 ), and every

C ∈ C(δ) can be decomposed into four curved triangular cylinders in C( δ
2 ) with a remainder

part.

2.3. Structural assumption on the domain

Let � ⊂ R3 be a bounded domain, whose boundary ∂� is a compact smooth manifold. We
assume the following geometric property for the set �.

Assumption 1. Assume there exists a constant δ̄, such that � has a δ̄-tubular neighborhood

Uδ̄(∂�,�) :=
{

x ∈ � : dist(x, ∂�) < δ̄
}

,

and (x′, ε) �→ x′ − εn(x′) is a di�eomorphism from ∂� × (0, δ) to Uδ(∂�,�), where n(x′) is
the outer normal vector of ∂� at x′. Moreover, we assume that for every δ ∈ (0, δ̄), ∂� has a
curved triangular decomposition:

∂� �
⊔

i

T
(i)
δ , T

(i)
δ ∈ T (δ).

Intuitively, the assumption should hold for any compact smooth manifold with δ̄ � γ −1
∂� ,

where γ∂� is the greatest sectional curvature of ∂�. In the computer vision community,
the “marching triangle” algorithm [28, 29] is used to generate a triangular mesh for two-
dimensionalmanifolds (or in general Lipschitz surfaces [30]) with triangular patches uniform
in shape and size, meaning that each patch is close to an equilateral triangle and has
comparable edge lengths. However, the authors did not provide explicit estimates for the size
δ and the angles of the triangulation (Figure 2).
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Figure 2. Triangulation of a torus.

2.4. Sobolev, trace, and Stokes on a curved cylinder

This subsection includes basic analysis tools that will be used later in the proofs. The constants
in the following estimates must be uniform in the geometry of the boundaries of our interest.

The �rst lemma contains the Sobolev embedding and the trace theorem. We remind the
reader that their constants are uniform for all C ∈ C(1). These results are well-known so we
omit the proof.

Lemma 1. Let C1 ∈ C(1) be a curved cylinder with base T1 ∈ T (1). Let ∇u ∈ Lp(C1) with

either
´

C1
u dx = 0 or u

∣

∣

T1
= 0. and p ∈ [1, 3). Then there exists a constant Cp depending only

on p, such that

‖u‖Lp� (C1)
≤ Cp ‖∇u‖Lp(C1) .

Here p� = dp
d−p . Note that Cp does not depend on C1. Moreover, with p∗ = (d−1)p

d−p ,

‖u‖Lp∗ (T1)
≤ Cp ‖∇u‖Lp(C1) .

In this paper, d = dimC1 = 3.

The next lemma is for the local boundary linear Stokes estimate, which is an extension of
[1, Corollary 2.3]. The only di�erence is that the boundary part T2 is no longer �at, yet the
bound is still uniform for all C1 ∈ C(1).

Lemma 2. Let C1 ∈ C(1) be a curved cylinder with base T1 ∈ T (1). Let C2 be the image of

a di�eomorphism ψ associated with C1, and denote its base by T2. Let 1 < p2 < p1 < ∞,

1 < q1, q2 < ∞, f ∈ Lp1(−4, 0; Lq1(C2)). If (u, P) solves the linear evolutionary Stokes system
⎧

⎪

⎨

⎪

⎩

∂tu + ∇P = �u + f in (−4, 0) × C2

div u = 0 in (−4, 0) × C2

u = 0 on (−4, 0) × T2 ,

then there exists a decomposition u = u1 + u2 such that for any q
′ < ∞, there exists a constant

C = C(p1, p2, q1, q2, q′) such that
∥

∥|∂tu1| + |∇2u1|
∥

∥

Lp1 (−1,0;Lq1 (C1))
+
∥

∥|∂tu2| + |∇2u2|
∥

∥

Lp2 (−1,0;Lq
′
(C1))

≤ C
(

∥

∥f
∥

∥

Lp1 (−4,0;Lq1 (C2))
+ ‖|u| + |∇u| + |P|‖Lp2 (−4,0;Lq2 (C2))

)

.

In particular, C does not depend on the geometry of C1.
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The proof of this lemma relies on Lemma 1, and also the corresponding uniform bound for
boundary estimates and the Cauchy problem for the Stokes with curved boundary. See [31].

Proof Pick a set � with C2 boundary such that C1 ⊂ � ⊂ C2. Note that the C2 norm of
∂� can be uniformly bounded for all C1 ∈ C(1). By [32, Theorem 4.5], there exists a unique
solution u1 to the initial-boundary value problem

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂tu1 + ∇P1 = �u1 + f in (−4, 0) × �

div u1 = 0 in (−4, 0) × �

u1 = 0 on (−4, 0) × ∂�

u1
∣

∣

t=−4 = 0 in �

with bound

‖|∂tu1| + |∇P1|‖Lp1 (−4,0;Lq1 (�)) + ‖u1‖Lp1 (−4,0;W2,q1 (�))

≤ C
∥

∥f
∥

∥

Lp1 (−4,0;Lq1 (�))
,

whereC = C(p1, q1,�). Dependence on� can be dropped if theC2 norm of ∂� is uniformly
bounded (see [31, 33, Lemma 1.2]).

Let u2 = u − u1. Then u2 is a solution to
⎧

⎪

⎨

⎪

⎩

∂tu2 + ∇P2 = �u2 in (−4, 0) × �

div u2 = 0 in (−4, 0) × �

u2 = 0 on (−4, 0) × (∂� ∩ T2) .

The local boundary estimates of Stokes equation in [32] imply the following bound:
∥

∥|∂tu2| + |∇2u2|
∥

∥

Lp2 (−1,0;Lq
′
(C1))

≤ C ‖|u2| + |∇u2| + |P2|‖Lp2 (−4,0;Lmin{q1,q2}(�))
,

where C = C(p2, q1, q2,�). Again, the dependence on � can be dropped. Combining with
estimates of u1, we �nish the proof of the lemma.

Finally, we quote the following global Stokes theorem in [34, Theorem 1.1].

Lemma 3. Let � ⊂ Rd be a bounded C2 domain with d ≥ 2, and T > 0. Let f ∈
Lp(0,T; Lq(�)) and u0 ∈ B

2−2/p
q,p (�), where Blq,p(�) is the Besov space, and 1 < p, q < ∞

satisfy 2 − 2/p < 1/q. Then the following linear evolutionary Stokes system
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂tu + ∇P = �u + f in (0,T) × �

div u = 0 in (0,T) × �

u = 0 on (0,T) × ∂�

u
∣

∣

t=0 = u0 in �

has a unique solution u ∈ Lp(0,T;W2,q(�)) with ∇P, ∂tu ∈ Lp(0,T; Lq(�)), and

‖u‖Lp(0,T;W2,q(�)) + ‖∂tu‖Lp(0,T;Lq(�)) +
∥

∥∇p
∥

∥

Lp(0,T;Lq(�))

≤ C

(

∥

∥f
∥

∥

Lp(0,T;Lq(�))
+ ‖u0‖B2−2/p

q,p (�)

)

,

where C = C(�, p, q).
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3. Boundary vorticity estimate

In this section, we provide several estimates for the boundary vorticity ων = curl uν . We �rst
use linear parabolic theory to directly derive a coarse estimate. This estimate will degenerate
in the inviscid limit. We compensate with a re�ned estimate Theorem 3, which is based on a
new local boundary vorticity estimate for the linear Stokes system.

3.1. Naïve linear global estimate

By treating Navier–Stokes equation as a Stokes system with a forcing term, we can derive the
following naïve bound using parabolic regularization.

Proposition 1. Let uν ∈ Cw(0,T; L2(�))∩L2(0,T;H1
0(�)) be a weak solution to (NSEν)with

divergence-free initial value uν(0) ∈ H1
0(�) and force f ν ∈ L

4
3 (0,T; L

6
5 (�)). There exists a

universal constant C(�), independent of uν and ν, such that
ˆ

(0,T)×∂�

|ν∇uν | 43 dx′ dt ≤ C(�)

[

∥

∥f ν
∥

∥

4
3

L
4
3 (0,T;L

6
5 (�))

+

+
∥

∥uν
∥

∥

2
3
L∞(0,T;L2(�))

(
ˆ

(0,T)×�

|∇uν |2 dx dt + ν
1
3
∥

∥uν(0)
∥

∥

2
3
H1(�)

)]

.

Proof Let uν(t, x) = νv(νt, x) and f ν(t, x) = ν2g(νt, x). Then v solves (NSE1) in (0, νT) × �

with unit viscosity and force g. Treating the nonlinear term v ·∇v as a force, Lemma 3 implies

‖v‖
L
4
3 (0,νT;W2, 65 (�))

≤ C(�)

⎛

⎝

∥

∥−v · ∇v + g
∥

∥

L
4
3 (0,νT;L

6
5 (�))

+ ‖v0‖
B
1
2
6
5 ,

4
3
(�)

⎞

⎠ .

Here C(�) represent general constants depending only on�, and v0 = v
∣

∣

t=0. For the forcing
term,

‖v · ∇v‖
L
4
3 (0,νT;L

6
5 (�))

≤ ‖v‖L4(0,νT,L3(�)) ‖∇v‖L2((0,νT)×�)

≤ ‖v‖
1
2
L∞(0,νT;L2(�))

‖v‖
1
2

L2(0,νT;L6(�))
‖∇v‖L2((0,νT)×�)

≤ C(�) ‖v‖
1
2
L∞(0,νT;L2(�))

‖∇v‖
3
2
L2((0,νT)×�)

,

where in the last step we used Sobolev embedding in � ⊂ R3. For the initial value, we use
Besov embedding and interpolation so

‖v0‖
B
1
2
6
5 ,

4
3
(�)

≤ C(�) ‖v0‖
B
1
2
4
3 ,

4
3
(�)

≤ C(�) ‖v0‖
H

1
2 (�)

≤ C(�) ‖v0‖
1
2
L2(�)

‖v0‖
1
2
H1(�)

.

By the Sobolev embedding and the trace theorem in �,

‖∇v‖
L
4
3 ((0,νT)×∂�)

≤ C(�) ‖∇v‖
L
4
3 (0,νT;W

1
6 ,

6
5 (∂�))

≤ C(�) ‖∇v‖
L
4
3 (0,νT;W1, 65 (�))

≤ C(�) ‖v‖
L
4
3 (0,νT;W2, 65 (�))

.
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Combining the above estimates, we have

‖∇v‖
L
4
3 ((0,νT)×∂�)

� ‖v‖
1
2
L∞(0,νT;L2(�))

(

‖∇v‖
3
2
L2((0,νT)×�)

+ ‖v0‖
1
2
H1(�)

)

+
∥

∥g
∥

∥

L
4
3 (0,νT;L

6
5 (�))

.

Noting the scaling of the v and g, we have for any p ∈ [1,∞] and any norm X
∥

∥uν
∥

∥

Lp(0,T;X)
= ν

1− 1
p ‖v‖Lp(0,νT;X) ,

∥

∥f ν
∥

∥

Lp(0,T;X)
= ν

2− 1
p
∥

∥g
∥

∥

Lp(0,νT;X)
.

By this scaling, we have the corresponding estimates on uν as

ν− 1
4
∥

∥∇uν
∥

∥

L
4
3 ((0,T)×∂�)

� ν− 5
4
∥

∥f ν
∥

∥

L
4
3 (0,T;L

6
5 (�))

+

+ ν− 1
2
∥

∥uν
∥

∥

1
2
L∞(0,T;L2(�))

(

ν− 3
4
∥

∥∇uν
∥

∥

3
2
L2((0,T)×�)

+ ν− 1
2
∥

∥uν(0)
∥

∥

1
2
H1(�)

)

.

This completes the proof of the proposition.

In the inviscid limit ν → 0, the main term
´

(0,T)×�
|∇uν |2 dx dt cannot be uniformly

bounded, and the force
∥

∥f ν
∥

∥

L
4
3 (0,T;L

6
5 (�))

does not vanish. Therefore, we need to look for

another bound that does not degenerate in the inviscid limit.

3.2. Local estimate for the linear Stokes system

To overcome the degeneracy of the naïve bound in the inviscid limit, we show an improved
bound in the next subsection, which is based on the following linear estimates for the Stokes
system at the unit scale and unit viscosity.

Proposition 2. Let C2 ∈ C(2) with base T2, and denoteQ2 = (−4, 0)×C2, Q̄2 = (−4, 0)×T2.

Suppose u ∈ L2(−4, 0;H1(C2)) is a solution to the following Stokes system with forcing term

f ∈ L1(−4, 0; L
6
5 (C2)):

⎧

⎪

⎨

⎪

⎩

∂tu + ∇P = �u + f in Q2

div u = 0 in Q2

u = 0 on Q̄2 .

(6)

Then the average vorticity on the boundary is bounded by
∣

∣

∣

∣

ˆ

Q̄1

ω(t, x′, 0) dx′ dt

∣

∣

∣

∣

≤
ˆ

T1

∣

∣

∣

∣

ˆ 0

−1
ω(t, x′, 0) dt

∣

∣

∣

∣

dx′

≤ C

(

‖∇u‖L2t L2x(Q2)
+
∥

∥f
∥

∥

L1t L
6
5
x (Q2)

)

.

Proof The proof is the same as the one in [1], with only some mild modi�cations to
resolve the curved boundary issue. Without loss of generality, assume by linearity that
‖∇u‖L2t L2x(Q2)

,
∥

∥f
∥

∥

L1t L
6
5
x (Q2)

≤ 1.

For t ∈ (−3, 0), x ∈ C2, we de�ne

U(t, x) =
ˆ t

t−1
u(s, x) ds.
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Denote ρ(t) = 1[0,1](t). Then U = u ∗t ρ, where ∗t stands for convolution in t variable only.
If we denote Q = P ∗t ρ, and F = f ∗t ρ, then U satis�es the Stokes system:

⎧

⎪

⎨

⎪

⎩

∂tU + ∇Q = �U + F in (−3, 0) × C2

divU = 0 in (−3, 0) × C2

U = 0 on (−3, 0) × T2 .

We have via Sobolev embedding Lemma 1 and u
∣

∣

T2
= 0 that

‖u‖L2t L6x(Q2)
≤ C. (7)

Since ∂tU(t, x) = u(t, x) − u(t − 1, x), we have

‖∂tU‖L2t L6x((−3,0)×C2)
≤ C.

On the other hand, the Laplacian of U is bounded by

‖�U‖L∞
t H−1

x ((−3,0)×C2)
≤ C ‖�u‖L2tH−1

x (Q2)
≤ C ‖∇u‖L2(Q2)

≤ C.

Note that the Sobolev constants depend on the geometry of C2. However, they are uniformly
bounded as long as C2 ∈ C(2), since the Lipschitz norms of the boundary are uniformly
bounded. Again by convolution, we bound F by

‖F‖L∞
t H−1

x ((−3,0)×C2)
≤ C ‖F‖

L∞
t L

6
5
x ((−3,0)×C2)

≤ C.

Next, we estimate Q. Using ∇Q = �U + F − ∂tU we have

‖∇Q‖L2tH−1
x ((−3,0)×C2)

≤ C.

Without loss of generality, we assume that the average of Q is zero at every t. Then by Nečas
theorem (see [32], Section 1.4),

‖Q‖L2t,x((−3,0)×T2)
≤ C.

Note that the constant of Nečas theorem also depends on the Lipschitz norm of ∂C1, which
is uniform for all C1 ∈ C(1).

By Lemma 2, we can split U = U1 + U2, where for any p < ∞, we have
∥

∥|∂tU1| +
∣

∣∇2U1

∣

∣

∥

∥

L
p
t L

6
5
x (Q1)

+
∥

∥|∂tU2| +
∣

∣∇2U2

∣

∣

∥

∥

L2t L
p
x(Q1)

≤ C(p).

Denote �(t, z) :=
´

T1

∣

∣∇U(t, x′ − zn(x′))
∣

∣ dx′. Then

|∂z�| ≤ C

ˆ

T1

∣

∣∇2U(t, x′ − zn(x′))
∣

∣ dx′.

Since ∇2U is in L2t L
p
z + L

p
t L

6
5
z (Q1), ∂z� is bounded in

∂z� ∈ L2t L
p
z + L

p
t L

6
5
z ((−1, 0) × (0, 1))

for any p < ∞. Note that

|∂t�| ≤ C

ˆ

T1

∣

∣∇u(t, x′ − zn(x′))
∣

∣ dx′ ∈ L2t,z((−1, 0) × (0, 1)).
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Since by interpolation, L1t L
∞
z ∩ L∞

t L1z ⊂ L2t,z, by duality ∂t� is bounded in L2t,z ⊂ L1t L
∞
z +

L∞
t L1z . Similarly, ∂z� is bounded in

∂z� ∈ L2t L
p
z + L

p
t L

6
5
z ((−1, 0) × (0, 1)) ⊂ LrtL

∞
z + L∞

t Lrz((−1, 0) × (0, 1))

for some p > 6 with r > 1 su�ciently small. Now we can use [1, Lemma 2.4] to show � is
continuous up to the boundary with oscillation bounded by

‖�‖osc((−1,0)×(0,1)) ≤ C.

Since the average of � is also bounded as
ˆ

� dz dt ≤ C

ˆ

Q1

|∇u| dx dt ≤ C,

we have � is bounded in L∞, in particular
ˆ

T1

∣

∣

∣

∣

ˆ 0

−1
∇u(t, x′, 0) dt

∣

∣

∣

∣

dx′ = �(0, 0) ≤ C.

This concludes the proof of this proposition.

3.3. Re�ned global estimate

Now we are ready to prove the main boundary vorticity estimate.

Proof of Theorem 3 The proof can be divided into four steps. In the �rst step, we triangularize
∂� and obtain a course partition (0,T) × ∂�. Next, we construct σ -algebra F , which is
generated by a �ner partition of (0,T) × ∂�, by introducing a suitability criterion. Then
we verify that in each piece of the partition, average boundary vorticity is controlled by the

maximal function of the energy dissipation and the external force. Finally, we estimate the L
4
3

weak norm of the averaged vorticity function.
Up to rescaling uν(t, x) = νu(νt, x) and f ν = ν2f (νt, x), we assume ν = 1 �rst and drop

the superscript for simplicity.

Step 1. First, we introduce an initial partition of (0,T) × � as follows. Select L0 = 4−KT,
where K =

(⌈

log4
(

T
δ2

)⌉)

+ is the smallest nonnegative integer such that L0 = 4−KT ≤ δ2.

Set r0 = 1
2

√
L0 = 2−K−1

√
T ≤ δ. Then

r0 ≤ 1

2
min
{

δ,
√
T
}

< 2r0.

Let {T(i)
r0 }i ⊂ T (r0) be a partition of ∂� with size r0, as speci�ed in Assumption 1. Then

(0,T) × ∂� �
4K
⊔

j=1

⊔

i

Q̄(i,j) where Q̄(i,j) = ((j − 1)L0, jL0) × T(i)
r0
.

We denote Q̄0 =
{

Q̄(i,j)
}

i,j. By part (5) of Section 2.2, each Q̄(i,j) admits a sequence of dyadic

decomposition. For k ≥ 1, denote Q̄k to be the set of dyadic decompositions of spacetime
curved triangles in Q̄k−1. Then any Q̄ ∈ Q̄k is a Cartesian product of curved triangles of size
rk := 2−kr0 in space and length r2k = 4−kr20 in time.
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Step 2. The next goal is to �nd a partition of (0,T)×� consisting of “suitable” cubes, de�ned
as follows. Let Q̄ = (t̂ − r2k , t̂) × Trk ∈ Q̄k for some t̂ ∈ (0,T] and Trk ∈ T (rk). Denote x̂ to be

the barycenter of Trk . We say Q̄ is suitable if both t̂ ≥ 4r2k and

t̂
 

t̂−4r2k

 

∂�∩B2rk (x̂)

2rk
 

0

(

|∇u|2 + |f | 43
)

(t, x′ − zn(x′)) dz dx′ dt ≤ c0r
−4
k . (S)

for some c0 to be determined. Recall n(x′) is the outer normal vector at x′ ∈ ∂�.
Now we construct a partition according to suitability. Denote S0 ⊂ Q̄0 to be the set of

suitable cubes, N0 = Q̄0 \ S0 be the set of non-suitable cubes. For k ≥ 1, we perform a
dyadic decomposition on each cube Q̄ ∈ Nk−1, then put the suitable ones in Sk and non-
suitable ones in Nk. This process may continue inde�nitely, and we de�ne S = ∪kSk to be
the set of suitable cubes that we obtained from this process.

We claim that S is a partition of (0,T) × ∂�. It is easy to see from our process that cubes
in S are mutually disjoint. Moreover, for almost every (t, x′) ∈ (0,T) × ∂�, the cube whose
closure contains (t, x′) becomes suitable if the cube is su�ciently small, by a partial regularity
argument. Indeed, denote the singular set Sing(u, f ) to be the complement of the closure of
⋃

Q̄∈S Q̄ in (0,T) × ∂�. For every (t̂, x̂′) ∈ Sing(u, f ), for every k > 0, there exists a cube

Q̄k ∈ Nk such that Q̄k fails the suitability condition (S). Thenwe �nd a neighborhood of (t̂, x̂
′)

in (0,T) × � which is

U =
{

(t, x′ − zn(x′)) : t ∈ (t̂ − 4r2k , t̂), x
′ ∈ ∂� ∩ B2rk(x̂), z ∈ (0, 2rk)

}

,

such that
´

U |∇u|2 + |f | 43 dx dt � rk. Moreover, this neighborhood is comparable with a
parabolic cylinder of radius rk. These neighborhoods form an open cover of Sing(u, f ). By
Vitali covering lemma, we �nd a disjoint subcollection Ui which covers Sing(u, f ) if dilating

by a factor of 5. The radii are summable because
∑

i rk �
∑

i

´

Ui
|∇u|2 + |f | 43 dx dt < ∞, so

the parabolic Hausdor� dimension of Sing(u, f ) is at most 1.
De�ne F = σ(S) to be the σ -algebra generated by these countably many suitable cubes.

Then the conditional expectation ω̃ := E[ω|F] is simply a piecewise function, taking the
average value of ω on each Q̄ ∈ S .

Next we prove claim (1) and (2). First, we show the set A = (0, 4−l−1) × ∂� is F-
measurable. If 4−lT ≤ δ2 and l ≥ 0, then 4−l−1T ≤ 1

4 min
{

δ2,T
}

< 4r20 . Hence

4−l−1T = 4−l−1 · 4K+1r20 = 4−(l+1−K) · 4r20 = 4r2k′ for some k′ > 0, and A = (0, 4r2k′) × ∂�.
On the one hand, for k < k′, Sk only contains cubes of the form (t̂ − r2k , t̂) × Trk with
t̂ − r2k ≥ 3r2k > 4r2k′ , so A is disjoint from every cube in Sk. On the other hand, for k ≥ k′,

Sk ⊂ Q̄k only contains cubes of the form (jr2k , (j + 1)r2k) × Trk . Since 4r
2
k′ = 4k−k′+1r2k , each

cube in Sk is either contained in A or disjoint from A. In conclusion, every set in S is either
a subset of A or a subset of (0,T) × ∂� \ A, hence A ∈ σ(S) = F .

To prove (2), note that each Q̄ in S has size at most r0 < δ in space and r20 < δ2 in time,
so for (t1, x1), (t2, x2) ∈ Q̄,

|ϕ(t1, x1) − ϕ(t2, x2)| ≤ |ϕ(t1, x1) − ϕ(t2, x1)| + |ϕ(t2, x1) − ϕ(t2, x2)|
≤ ‖∂tϕ‖L∞ |t1 − t2| + ‖∇ϕ‖L∞ |x1 − x2|
≤ δ2 ‖∂tϕ‖L∞ + δ ‖∇ϕ‖L∞ .
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Step 3. Take any cube Q̄ ∈ Sk. By using the canonical scaling of the Navier-Stokes equation
ur(t, x) := ru(r2t + t̂, rx) and fr(t, x) := r3f (r2t + t̂, rx) with size r = rk, ur solves the Stokes
equation (6) in (−4, 0)×C2 with some C2 ∈ C(2) and force term fr −ur ·∇ur, and (S) implies

‖∇ur‖L2((−4,0)×C2) ≤ c
1
2
0 ,

∥

∥fr
∥

∥

L1(−4,0;L
6
5 (C2))

≤
∥

∥fr
∥

∥

L
4
3 ((−4,0)×C2)

� c
3
4
0 ,

‖ur · ∇ur‖
L1(−4,0;L

6
5 (C2))

� ‖∇ur‖L2((−4,0)×C2) ‖ur‖L2(−4,0;L6(C2)) � c0.

In the last step we used the Sobolev embedding

‖ur‖L2(−4,0;L6(C2)) � ‖∇ur‖L2((−4,0)×C2) ,

when ur = 0 on the base T2. Therefore, Proposition 2 implies that a�er scaling, the average
vorticity is bounded by

|ω̃|Q̄ :=
∣

∣

∣

∣

 

Q̄

ω(t, x′) dx′ dt

∣

∣

∣

∣

≤ 1

16
γ r−2

k ,

where we choose c0 = 1
Cγ 2 ≤ 1.

Next, we separate two scenarios, k = 0 and k > 0. If k = 0, then for any Q̄ ∈ S0, for any
0 < t < T,

|ω̃|Q̄ ≤ 1

16
γ r−2

0 < γ max
{

δ−2,T−1} .

If k > 0, then Q̄ ∈ Sk has an antecedent cube P̄ ∈ Nk−1. Cube P̄ = (t̂− r2k−1, t̂) × Trk−1 is not
suitable, so either of the following two cases must be true.

1. t̂ < 4r2k−1. In this case, for any (t, x) ∈ Q̄ ⊂ P̄,

|ω̃|Q̄ ≤ 1

16
γ r−2

k = 1

4
γ r−2

k−1 ≤ γ t̂−1 ≤ γ

t
.

2. t̂ ≥ 4r2k−1, but

t̂
 

t̂−4r2k−1

 

∂�∩B2rk−1
(x̂)

2rk−1
 

0

(

|∇u|2 + |f | 43
)

(t, x′ − zn(x′)) dz dx′ dt > c0r
−4
k−1.

In the latter case, note that the integral region is comparable toQ, the extension of Q̄, which is
contained in (0,T)×Uδ(∂�,�).We then know that for any (t, x) ∈ Q, the parabolic maximal
function is bounded from below by

M(t, x) := M((|∇u|2 + |f | 43 )1[0,T]×Uδ(∂�,�))(t, x)

:= sup
r>0

 t+r2

t−r2

 

Br(x)

(

|∇u|2 + |f | 43
)

(s, y)1[0,T]×Uδ(∂�,�)(s, y) dy ds

≥ 1

C
c0r

−4
k = γ 2

C
r−4
k .

Note that the parabolicmaximal functionM is a boundedmap from L1(R×R3) to L1,∞(R×
R3).
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In summary, for any Q̄ ∈ Sk, we have |ω̃|Q̄ ≤ 1
16γ r

−2
k ≤ γ r−2

k , and

either |ω̃|Q̄ ≤ γ max

{

1

t
,
1

δ2

}

orM
∣

∣

Q
≥ γ 2

C
r−4
k .

Step 4. Denote S =
{

Q̄(i)
}

and let Q̄(i) has size r(i). For any r� = 2lr0 with l ∈ Z, we have
{

(t, x′) ∈ (0,T) × ∂� : |ω̃| > γ max
{

r−2
� , t−1, δ−2}

}

⊂
⋃

i

{

Q̄(i) : r(i) < r�,M
∣

∣

Q(i) ≥ γ 2

C
(r(i))−4

}

⊂
⋃

i

∞
⋃

k=1

{

Q̄(i) : r(i) = 2−kr�,M
∣

∣

Q(i) ≥ γ 2

C
(2−kr�)

−4
}

.

Therefore themeasure of the upper level set is controlled by the totalmeasure of these suitable
cubes, that is

∣

∣

∣

{

|ω̃| > γ max
{

r−2
� , t−1, δ−2}

}∣

∣

∣

≤
∞
∑

k=1

∑

i

{

∣

∣

∣
Q̄(i)
∣

∣

∣
: r(i) = 2−kr�,M

∣

∣

Q(i) ≥ γ 2

C
(2−kr�)

−4
}

=
∞
∑

k=1

2k

r�

∑

i

{

∣

∣

∣
Q(i)
∣

∣

∣
: r(i) = 2−kr�,M

∣

∣

Q(i) ≥ γ 2

C
(2−kr�)

−4
}

�

∞
∑

k=1

2k

r�

∣

∣

∣

∣

{

(t, x) ∈ (0,T) × � : M(t, x) ≥ γ 2

C
(2−kr�)

−4
}
∣

∣

∣

∣

�

∞
∑

k=1

2k

γ 2

C r�
‖M‖L1,∞((0,T)×�) (2−kr�)

4

� γ −2
∥

∥

∥
|∇u|2 + |f | 43

∥

∥

∥

L1((0,T)×Uδ(∂�,�))
r3�

= γ − 1
2

∥

∥

∥
|∇u|2 + |f | 43

∥

∥

∥

L1((0,T)×Uδ(∂�,�))

(

γ r−2
�

)− 3
2 .

This is true for any r� = 2lr0. By the de�nition of Lorentz space, for every γ ≤ 1 we have
∥

∥

∥

∥

ω̃1{|ω̃|>γ max
{

1
t ,

1
δ2

}}

∥

∥

∥

∥

3
2

L
3
2 ,∞((0,T)×∂�)

� γ − 1
2

(

‖∇u‖2L2((0,T)×Uδ(∂�,�))
+
∥

∥f
∥

∥

4
3

L
4
3 ((0,T)×Uδ(∂�,�))

)

.

This completes the proof of the theorem with ν = 1, and for general ν > 0 the conclusion
follows by scaling.

4. Proof of themain result

In this section, we �rst derive an estimate for the pairing between boundary vorticity with
any C1 vector �eld, which is the work done by the friction force, then apply this to estimate
the layer separation.
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Corollary 2. Let � ⊂ R3 be a smooth bounded domain satisfying Assumption 1 with δ̄. There

exists a constant C(�) > 0 depending only on � and a universal constant C such that the

following holds. Given T > 0, A > 0, L > 0, suppose ϕ is a C1 velocity �eld de�ned on

(0,T) × ∂�, satisfying

‖ϕ‖L∞((0,T)×∂�) ,
L

A
‖∂tϕ‖L∞((0,T)×∂�) , L ‖∇ϕ‖L∞((0,T)×∂�) ≤ A. (8)

Given any weak solution uν ∈ Cw(0,T; L2(�)) ∩ L2(0,T;H1
0(�)) to (NSEν) with initial value

uν(0) ∈ H1(�) and force f ν ∈ L
4
3 ((0,T) × �), denote

Eν :=
∥

∥uν
∥

∥

2
L∞(0,T;L2(�))

, Dν := ν
∥

∥∇uν
∥

∥

2
L2((0,T)×�)

,

Hν :=
∥

∥uν(0)
∥

∥

2
H1(�)

, Fν := ν
1
3
∥

∥f ν
∥

∥

4
3

L
4
3 ((0,T)×�)

.

Then the vorticity ων satis�es
∣

∣

∣

∣

ν

ˆ T

0

ˆ

∂�

ων · ϕ dx′ dt

∣

∣

∣

∣

≤ CA3T|∂�| + 1

4
Dν + 1

4
Fν + ν

4
3H

1
3
ν

+
(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.

Proof For some δ ≤ δ̄ to be determined later, letF be the σ -algebra introduced in Theorem 3.
For some Tν = 4−kT with k to be determined later, we compute the integral by

ν

ˆ T

0

ˆ

∂�

ων · ϕ dx′ dt = ν

ˆ Tν

0

ˆ

∂�

ων · ϕ dx′ dt

+ ν

ˆ T

Tν

ˆ

∂�

(ων − E[ων |F]) · ϕ dx′ dt

+ ν

ˆ T

Tν

ˆ

∂�

E[ων |F] · ϕ dx′ dt

= I + II + III.

We start with the second term. Note that since Tν = 4−kT, (Tν ,T) × ∂� is a F-measurable
set, so

ˆ T

Tν

ˆ

∂�

(ων − E[ων |F]) · ϕ dx′ dt =
ˆ T

Tν

ˆ

∂�

ων · (ϕ − E[ϕ|F]) dx′ dt.

Therefore,

|I + II| =
ˆ T

0

ˆ

∂�

νων ·
(

ϕ1{t≤Tν} + (ϕ − E[ϕ|F])1{t≥Tν}
)

dx′ dt

≤
∥

∥νων
∥

∥

L
4
3 ((0,T)×∂�)

∥

∥ϕ1{t≤Tν} + (ϕ − E[ϕ|F])1{t≥Tν}
∥

∥

L4((0,T)×∂�)
.

By assumption (8) on ϕ and (4) of Theorem 3,

‖ϕ‖4
L4((0,Tν)×∂�)

≤ A4Tν |∂�|,

‖ϕ − E[ϕ|F]‖4L4((0,T)×∂�)
≤
[

δ

(

δ

ν

A2

L
+ A

L

)]4

T|∂�|.
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Hence, by choosing δ = min
{

δ̄, ν
A

}

and choosing Tν to satisfy

1

4
Tmin

{ ν

AL
, 1
}4

≤ Tν ≤ Tmin
{ ν

AL
, 1
}4

,

we can bound
∥

∥ϕ1{t≤Tν} + (ϕ − E[ϕ|F])1{t≥Tν}
∥

∥

L4((0,T)×∂�)
≤ ν

L
(T|∂�|) 1

4 .

As for the L
4
3 norm of νων , we use the global linear estimate Proposition 1:

∥

∥νων
∥

∥

4
3

L
4
3 ((0,T)×∂�)

≤ C(�)

[

Fν + E
1
3
ν

(

ν−1Dν + ν
1
3H

1
3
ν

)]

.

Here we used
∥

∥f ν(t)
∥

∥

L
6
5 (�)

≤
∥

∥f ν(t)
∥

∥

L
4
3 (�)

|�| 1
12 . Combined we can bound the �rst two

terms by

|I + II| ≤ C(�)
ν

L

[

ν− 1
3 Fν + E

1
3
ν

(

ν−1Dν + ν
1
3H

1
3
ν

)]

3
4

(T|∂�|) 1
4

≤ C(�)

[

ν
1
2 F

3
4
ν + E

1
4
ν

(

D
3
4
ν + νH

1
4
ν

)]

(νT|∂�|) 1
4

L
.

For the third term, denote ω̃ν = E[ων |F]. Then

|III| ≤
∣

∣

∣

∣

ˆ

(Tν ,T)×∂�

νω̃ν1{
ν|ω̃ν |>γ max

{

ν
t ,

ν2

δ2

}} · ϕ dx′ dt

∣

∣

∣

∣

+ γ

ˆ

(Tν ,T)×∂�

ν

t
|ϕ| dx′ dt + γ

ˆ

(Tν ,T)×∂�

ν2

δ2
|ϕ| dx′ dt

≤
∥

∥

∥

∥

νω̃ν1{
ν|ω̃ν |>γ max

{

ν
t ,

ν2

δ2

}}

∥

∥

∥

∥

L
3
2 ,∞((0,T)×∂�)

‖ϕ‖L3,1((0,T)×∂�)

+ Aγ

(

ν|∂�| log
(

T

Tν

)

+ ν2δ−2T|∂�|
)

.

Recalling the choice of Tν and δ, we have

ν|∂�| log
(

T

Tν

)

+ ν2δ−2T|∂�|

≤ 4ν|∂�| log
(

4AL

ν

)

+
+ ν2δ̄−2T|∂�| + A2T|∂�|.

Moreover, by Theorem 3 we control the L
3
2 weak norm by

∥

∥

∥

∥

νω̃ν1{
ν|ω̃ν |>γ max

{

ν
t ,

ν2

δ2

}}

∥

∥

∥

∥

L
3
2 ,∞((0,T)×∂�)

≤ Cγ − 1
3 (Dν + Fν)

2
3 . (9)

And ‖ϕ‖L3,1((0,T)×∂�) ≤ A(T|∂�|) 1
3 . Hence

|III| ≤ CA(T|∂�|) 1
3 γ − 1

3 (Dν + Fν)
2
3 (10)

+
(

4 log

(

4AL

ν

)

+
+ νT

δ̄2

)

γAν|∂�| + γA3T|∂�|.
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In conclusion, we have shown that

|I + II + III| ≤ CA(T|∂�|) 1
3 γ − 1

3 (Dν + Fν)
2
3 + γA3T|∂�| + Rν ,

with a remainder

Rν = C(�)

[

ν
1
2 F

3
4
ν + E

1
4
ν

(

D
3
4
ν + νH

1
4
ν

)]

(νT|∂�|) 1
4

L

+
(

4 log

(

4AL

ν

)

+
+ νT

δ̄2

)

Aν|∂�|.

Next, we use Young’s inequality on each product, so

CA(T|∂�|) 1
3 γ − 1

3 (Dν + Fν)
2
3 ≤ 1

8
(Dν + Fν) + C

γ
A3T|∂�|, (11)

C(�)ν
1
2 F

3
4
ν

(νT|∂�|) 1
4

L
≤ 1

8
Fν + C(�)

ν3T|∂�|
L4

,

C(�)E
1
4
ν D

3
4
ν

(νT|∂�|) 1
4

L
≤ 1

8
Dν + C(�)

νT|∂�|
L4

Eν ,

C(�)E
1
4
ν νH

1
4
ν

(νT|∂�|) 1
4

L
≤ ν

4
3H

1
3
ν + C(�)

νT|∂�|
L4

Eν .

Hence for every γ ≤ 1, we have

|I + II + III| ≤
(

C

γ
+ γ

)

A3T|∂�| + 1

4
Dν + 1

4
Fν + ν

4
3H

1
3
ν

+
(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.

This �nishes the proof of the corollary by selecting γ = 1.

To prove the main theorem, we will use the following elementary lemma, which computes
the evolution of L2 distance between aNavier–Stokes weak solution and a smooth vector �eld.

Lemma 4. Let u = uν ∈ Cw(0,T; L2(�)) ∩ L2(0,T;H1
0(�)) be a weak solution to (NSEν)

with force f = f ν ∈ L1(0,T; L1(�)), and let v be any C1 divergence-free �ow with v · n = 0 on
∂�. Then the L2 inner product (u, v) has the following time derivative:

d

dt
(u, v) =

ˆ

�

u · (∂tv + v · ∇v) + [(u − v) ⊗ (u − v)] : Dv dx + (ν�u + f , v)

where

(�u, v) =
ˆ

∂�

∂nu · v dx′ −
ˆ

�

∇u : ∇v dx.

If v = ū solves the Euler equation (EE) with force f̄ ∈ L1(0,T; L2(�)), then

d

dt
(u, ū) =

ˆ

�

[(u − ū) ⊗ (u − ū) − ν∇u] : ∇ū + u · f̄ + ū · f dx

+ ν

ˆ

∂�

∂nu · ū dx′.
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In addition, if u is a Leray–Hopf solution with f ∈ L1(0,T; L2(�)), then

1

2
‖u − ū‖2L2(�)

(T) − 1

2
‖u − ū‖2L2(�)

(0) + ν

2

ˆ

(0,T)×�

|∇u|2 − |∇ū|2 dx dt

≤
ˆ T

0
‖u − ū‖2L2(�)

‖Dū‖L∞(�) dt − ν

ˆ

(0,T)×∂�

∂nu · ū dx′ dt

+
ˆ

(0,T)×�

(u − ū) · (f − f̄ ) dx dt.

Proof For u ∈ L∞(0,T; L2(�)) ∩ L2(0,T;H1
0(�)), v ∈ L∞(0,T; L3(�)) ∩ L2(0,T;H1(�)) ∩

L1(0,T;W1,∞(�)) with v · n = 0 on ∂�, we have

(v, u · ∇u) + (u, v · ∇v) = (v, u · ∇(u − v)) + (u − v, v · ∇v)

= (v, u · ∇(u − v)) − (v · ∇(u − v), v)

= (v, (u − v) · ∇(u − v))

= (v, div[(u − v) ⊗ (u − v)])

= −
ˆ

�

[(u − v) ⊗ (u − v)] : ∇v dx

= −
ˆ

�

[(u − v) ⊗ (u − v)] : Dv dx.

In the last step, we can replace ∇v by its symmetric part Dv because (u − v) ⊗ (u − v) is
symmetric.

If v = ū solves the Euler equation, then ∂tv + v · ∇v = −∇p + f̄ , so

d

dt
(u, ū) =

ˆ

�

u · f̄ + [(u − ū) ⊗ (u − ū)] : Dū dx

+ ν

ˆ

∂�

∂nu · v dx′ − ν

ˆ

�

∇u : ∇v dx +
ˆ

�

u · f̄ dx.

Integrate between 0 and T:

(u, ū)(T) − (u, ū)(0) =
ˆ T

0

ˆ

�

[(u − ū) ⊗ (u − ū) − ν∇u] : ∇ū dx dt

+ ν

ˆ T

0

ˆ

∂�

∂nu · ū dx′ +
ˆ T

0

ˆ

�

ū · f + u · f̄ dx dt.

Recall the energy inequality of the Leray–Hopf solutions to the Navier–Stokes equation and
energy conservation for the Euler equation:

1

2
‖u‖2L2(�)

(T) +
ˆ T

0

ˆ

�

ν|∇u|2 ≤ 1

2
‖u‖2L2(�)

(0) +
ˆ T

0

ˆ

�

u · f dx dt,

1

2
‖ū‖2L2(�)

(T) = 1

2
‖ū‖2L2(�)

(0) +
ˆ T

0

ˆ

�

ū · f̄ dx dt.

Combined we have
1

2
‖u − ū‖2L2(�)

(T) − 1

2
‖u − ū‖2L2(�)

(0) + ν ‖∇u‖2L2((0,T)×�)

≤ −
ˆ T

0

ˆ

�

[(u − ū) ⊗ (u − ū) − ν∇u] : ∇ū dx − ν

ˆ T

0

ˆ

∂�

∂nu · ū dx′
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+
ˆ T

0

ˆ

�

uf + ūf̄ − uf̄ − ūf dx dt

≤
ˆ T

0
‖u − ū‖2L2(�)

‖Dū‖L∞(�) dt + ν

2
‖∇u‖2L2(�)

+ ν

2
‖∇ū‖2L2(�)

+
ˆ T

0

ˆ

�

(u − ū) · (f − f̄ ) dx dt − ν

ˆ T

0

ˆ

∂�

∂nu · ū dx′.

This completes the proof of the lemma.

Proof of Theorem 2 For any 0 < t < T, by Lemma 4,

1

2

∥

∥uν − ū
∥

∥

2
L2(�)

(t) + ν

2

∥

∥∇uν
∥

∥

2
L2((0,t)×�)

− ν

2
‖∇ū‖2L2((0,t)×�)

≤ 1

2

∥

∥uν − ū
∥

∥

2
L2(�)

(0) +
ˆ t

0

∥

∥uν − ū
∥

∥

2
L2(�)

‖Dū‖L∞(�) ds

− ν

ˆ t

0

ˆ

∂�

ων · J[ū] dx′ ds +
ˆ

(0,t)×�

(uν − ū) · (f ν − f̄ ) dx ds.

Here J[ū] = n × u. Using Corollary 2, we can control the total work of the friction force by
∣

∣

∣

∣

ν

ˆ t

0

ˆ

∂�

ων · J[ū] dx′ dt

∣

∣

∣

∣

≤ CA3t|∂�| + ν

4

∥

∥∇uν
∥

∥

L2((0,t)×�)

+ 1

4
ν

1
3
∥

∥f ν
∥

∥

4
3

L
4
3 ((0,t)×�)

+ ν
4
3
∥

∥uν(0)
∥

∥

2
3
H1(�)

+
(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.

Using Cauchy–Schwartz inequality, the forcing term can be controlled by
ˆ

(0,t)×�

(u − ū) · (f − f̄ ) dx dt

≤
ˆ t

0

‖uν − ū‖2
L2(�)

(s) + 1

2

∥

∥f ν − f̄
∥

∥

L2(�)
(s) ds.

By absorbing the dissipation term, we have
∥

∥uν − ū
∥

∥

2
L2(�)

(t) + ν

2

∥

∥∇uν
∥

∥

2
L2((0,t)×�)

−
∥

∥uν − ū
∥

∥

2
L2(�)

(0) (12)

≤
ˆ t

0

∥

∥uν − ū
∥

∥

2
L2(�)

(

2 ‖Dū‖L∞(�) +
∥

∥f ν − f̄
∥

∥

L2(�)

)

ds

+ CA3t|∂�| + Rν(t),

where the remainder is

Rν(t) =
∥

∥f ν − f̄
∥

∥

L1(0,t;L2(�))
+ ν ‖∇ū‖2L2((0,t)×�)

+ ν
1
3
∥

∥f ν
∥

∥

4
3

L
4
3 ((0,t)×�)

+ 2ν
4
3
∥

∥uν(0)
∥

∥

2
3
H1(�)

+ 2

(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.
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By Grönwall inequality, we conclude that

∥

∥uν − ū
∥

∥

2
L2(�)

(T) + ν

2

∥

∥∇uν
∥

∥

2
L2((0,T)×�)

≤
(

∥

∥uν − ū
∥

∥

2
L2(�)

(0) + CA3T|∂�| + Rν(T)
)

× exp

(
ˆ T

0
2 ‖Dū‖L∞(�) +

∥

∥f ν − f̄
∥

∥

L2(�)
dt

)

.

Note that

Rν(0) = 8(log 4Re)+Aν|∂�| + 2ν
4
3
∥

∥uν(0)
∥

∥

2
3
H1(�)

, Rν(T) → 0 as ν → 0

provided ν2 ‖uν(0)‖H1(�) + ν
1
4
∥

∥f ν
∥

∥

L
4
3 ((0,T)×�)

+
∥

∥f ν − f̄
∥

∥

L1(0,T;L2(�))
→ 0.

Theorem 1 and Corollary 1 are the consequence of Theorem 2.

Proof of Theorem 1 and Corollary 1 We �rst prove these results with an additional assump-
tion that

f ν ∈ L
4
3 ((0,T) × �) and ν

1
4
∥

∥f ν
∥

∥

L
4
3 ((0,T)×�)

→ 0 as ν → 0. (13)

For each ν we pick some Tν > 0 to be determined. By the energy inequality, it holds that

ν

ˆ Tν

0

∥

∥∇uν(t)
∥

∥

2
L2(�)

dt ≤ 1

2

∥

∥uν(0)
∥

∥

2
L2(�)

.

Therefore, there exists some time ξ ν ∈ (0,Tν) such that

νTν

∥

∥∇uν(ξ ν)
∥

∥

2
L2(�)

≤ 1

2

∥

∥uν(0)
∥

∥

2
L2(�)

.

Moreover, we know ‖uν(ξ ν)‖2
L2(�)

≤ ‖uν(0)‖2
L2(�)

due to energy inequality. Therefore

ν4
∥

∥uν(ξ ν)
∥

∥

2
H1(�)

≤
(

ν3

2Tν

+ ν4
)

∥

∥uν(0)
∥

∥

2
L2(�)

→ 0 as ν → 0 (14)

provided ν3T−1
ν → 0. Picking Tν = ν2 will work, for instance.

We claim that the work of the friction force between 0 and ξ ν is negligible:

lim inf
ν→0

∣

∣

∣

∣

∣

ν

ˆ ξν

0

ˆ

∂�

ων · J[ū] dx′ dt

∣

∣

∣

∣

∣

= 0.

This is because by Lemma 4, we integrate from 0 to ξ ν :

(uν , ū)(ξ ν) − (uν , ū)(0)

=
ˆ ξν

0

ˆ

�

[(uν − ū) ⊗ (uν − ū) − ν∇uν] : ∇ū dx dt

+ ν

ˆ ξν

0

ˆ

∂�

ων · J[ū] dx′ dt +
ˆ ξν

0

ˆ

�

ū · f ν + uν · f̄ dx dt,

in which as ν → 0, we establish the following convergences.
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• (uν , ū)(ξ ν) → (ū, ū)(0): ū(ξ ν) → ū(0) strongly in L2(�), while uν(ξ ν) ⇀ ū(0)
weakly in L2(�) up to a subsequence. This is because uν → ū up to a subse-
quence in C(0,T;H−1(�)) using Aubin–Lions lemma, and uν are uniformly bounded in
L∞(0,T; L2(�)), hence uν → ū in Cw(0,T; L2(�)). Thus as ν → 0,

(uν , ū)(ξ ν) = (uν(ξ ν), ū(ξ ν) − ū(0)) + (uν(ξ ν) − ū(ξ ν), ū(0))

+ (ū(ξ ν) − ū(0), ū(0)) + ‖ū(0)‖2L2(�)
→ ‖ū(0)‖2 .

• (uν , ū)(0) → (ū, ū)(0): this is simply because uν(0) → ū(0) in L2(�).
•

˜

[(uν − ū)⊗2 − ν∇uν] : ∇ū → 0: uν − ū is uniformly bounded in L∞(0,T; L2(�)), and

ν
1
2 ∇uν is uniformly bounded in L2((0,T) × �).

•
˜

ū · f ν → 0: this is because
∣

∣

∣

∣

∣

ˆ ξν

0

ˆ

�

ū · f ν dx dt
∣

∣

∣

∣

∣

≤ ‖ū‖L∞(0,T;L2(�))

∥

∥f ν − f̄
∥

∥

L1(0,T;L2(�))

+
∣

∣

∣

∣

∣

ˆ ξν

0

ˆ

�

ū · f̄ dx dt
∣

∣

∣

∣

∣

→ 0.

•
˜

uν · f̄ → 0: uν is uniformly bounded in L∞(0,T; L2(�)).
These convergences prove the claim. Since this claim holds for any sequence of uν , it must
hold that

R(1)
ν = ν

ˆ ξν

0

ˆ

∂�

ων · J[ū] dx′ dt → 0 as ν → 0.

Next, by Corollary 2, we can control the work of the friction force from ξ ν to t whenever
ξ ν < t ≤ T:

∣

∣

∣

∣

ν

ˆ t

ξν

ˆ

∂�

ων · J[ū] dx′ dt

∣

∣

∣

∣

≤ CA3t|∂�| + ν

4

∥

∥∇uν
∥

∥

L2((0,t)×�)

+ 1

4
ν

1
3
∥

∥f ν
∥

∥

4
3

L
4
3 ((0,t)×�)

+ ν
4
3H

1
3
ν (ξ ν)

+
(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.

Here Hν(ξ
ν) = ‖uν(ξ ν)‖2

H1(�)
, and ν

4
3H

1
3
ν (ξ ν) → 0 as ν → 0 by (14). Together with the

energy inequalities, we have for every 0 < t < T:
∥

∥uν − ū
∥

∥

2
L2(�)

(t) + ν

2

∥

∥∇uν
∥

∥

2
L2((0,t)×�)

−
∥

∥uν − ū
∥

∥

2
L2(�)

(0)

≤
ˆ t

0

∥

∥uν − ū
∥

∥

2
L2(�)

(

2 ‖Dū‖L∞(�) +
∥

∥f ν − f̄
∥

∥

L2(�)

)

ds

+ CA3t|∂�| + Rν(t),

where

Rν(t) = R(1)
ν +

∥

∥f ν − f̄
∥

∥

L1(0,t;L2(�))
+ ν ‖∇ū‖2L2((0,t)×�)

+ ν
1
3
∥

∥f ν
∥

∥

4
3

L
4
3 ((0,t)×�)

+ 2ν
4
3H

1
3
ν (ξ ν)
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+ 2

(

4 log

(

4AL

ν

)

+
+ νT

δ̄2
+ C(�)(1 + ν2)EνT

AL4

)

Aν|∂�|.

From our assumptions, we know Rν(t) → 0 as ν → 0. By Grönwall inequality, we conclude

∥

∥uν − ū
∥

∥

2
L2(�)

(T) + ν

2

∥

∥∇uν
∥

∥

2
L2((0,T)×�)

≤
(

∥

∥uν − ū
∥

∥

2
L2(�)

(0) + CA3T|∂�| + Rν(T)
)

× exp

(
ˆ T

0
2 ‖Dū‖L∞(�) +

∥

∥f ν − f̄
∥

∥

L2(�)
dt

)

.

Theorem 1 and Corollary 1 are proven by sending ν → 0.
Finally, let us drop the assumption (13). Similar as before, we may assume uν → ū in

Cw(0,T; L2(�)).When f is not L
4
3 in time and space, we can take an average in time as follows.

Let ρν(t) = 1
εν
1{0≤t≤εν }, for some εν > 0 depending on ν to be determined, with εν → 0 as

ν → 0. De�ne ũν = uν ∗t ρν , f̃ ν = f ν ∗t ρν by

ũν(t, x) =
 t

t−εν

uν(s, x) ds, f̃ ν(t, x) =
 t

t−εν

f ν(s, x) ds

for t ∈ [εν ,T].We extend our de�nition by ũν(t) = ũν(εν) and f̃ ν(t) = f̃ ν(εν) for 0 < t < εν .
Then ũν solves the Navier–Stokes equation in (εν ,T):

∂tũ
ν + ũν · ∇ũν + ∇P̃ν = �ũν + f̃ ν + f ν1 ,

where

f ν1 = ũν · ∇ũν − ˜uν · ∇uν := ũν · ∇ũν −
 t

t−εν

uν · ∇uν ds.

Then ũν − uν → 0 in Cw(0,T; L2(�)), f̃ ν − f ν → 0 in L1(0,T; L2(�)), f ν1 → 0 in

L1(0,T; L
3
2 (�)), and thus

ν
1
4

∥

∥

∥
f̃ ν
∥

∥

∥

L
4
3 ((0,T)×�)

≤ C(�)ν
1
4 ε

− 1
4

ν

∥

∥f ν
∥

∥

L1(0,T;L2(�))
,

ν
1
4
∥

∥f ν1
∥

∥

L
4
3 ((0,T)×�)

≤ C(�)ν
1
4 ε

− 1
4

ν

∥

∥uν
∥

∥

L2(0,T;L6(�))

∥

∥∇uν
∥

∥

L2(0,T;L2(�))
.

If we set, for instance, εν = ν
1
2 , then ν

1
4

∥

∥

∥
f̃ ν + f ν1

∥

∥

∥

L
4
3 ((0,T)×�)

→ 0 as ν → 0.

By Lemma 4, we can estimate the inner product of ũν and ū:

(ũν , ū)(T) − (ũν , ū)(εν)

=
ˆ T

εν

ˆ

�

[(ũν − ū) ⊗ (ũν − ū) − ν∇ũν] : ∇ū dx dt

+ ν

ˆ T

εν

ˆ

∂�

∂nũ
ν · ū dx′ +

ˆ T

εν

ˆ

�

ū · f̃ ν + ũν · f̄ dx dt.

Due to convergence ũν − uν → 0 in Cw(0,T; L2(�)), ∇ũν − ∇uν → 0 in L2((0,T) × �),

and f̃ ν + f ν1 → f ν in L1(0,T; L
3
2 (�)), we conclude
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(uν , ū)(T) − (uν , ū)(0)

=
ˆ T

0

ˆ

�

[(uν − ū) ⊗ (uν − ū) − ν∇uν] : ∇ū dx dt

+ ν

ˆ T

εν

ˆ

∂�

∂nũ
ν · ū dx′ +

ˆ T

0

ˆ

�

ū · f ν + uν · f̄ dx dt + R(2)
ν .

for some R(2)
ν → 0 as ν → 0. Using Corollary 2, we can bound the boundary term by
∣

∣

∣

∣

ν

ˆ T

εν

ˆ

∂�

∂nũ
ν · ū dx′ dt

∣

∣

∣

∣

≤ CA3T|∂�| + 1

4
ν

ˆ T

0

ˆ

�

|∇uν |2 dx dt

+ 1

4
Fν + Rν ,

where Rν → 0 as ν → 0, and Fν = ν
1
3

∥

∥

∥
f̃ ν + f ν1

∥

∥

∥

4
3

L
4
3 ((0,T)×�)

→ 0 as ν → 0 as

well. Combining with the energy inequality and Grönwall inequality, we �nish the proof of
Theorem 1 and Corollary 1 for general force without assumption (13).

Finally, we recover the result of Kato from our analysis.

Proof of Theorem A The term CA3T|∂�| of Theorem 2 is due to the integral III in (10) in the
proof of Corollary 2, which comes from two sources: C

γ
A3T|∂�| in (11) can be traced back

to the boundary vorticity estimate (9), and the other was γA3T|∂�|. For the former, if the
Kato’s condition (2) holds for δ = ν/A, then by Theorem 3 we have for any γ < 1,

lim
ν→0

∥

∥

∥

∥

νω̃ν1{
ν|ω̃ν |>γ max

{

ν
t ,

ν2

δ2

}}

∥

∥

∥

∥

3
2

L
3
2 ,∞((0,T)×∂�)

= 0,

thus lim supν→0 |III| ≤ γA3T|∂�|. Consequently, LS(ū) ≤ γA3T|∂�|. This is true for any
γ ∈ (0, 1], therefore LS(ū) = 0. The general case δ = cν for c > 0 is a simple consequence of
the rescaling of time.

Remark 2. The main part of the proof of Theorem 2 is to use Corollary 2 to bound the work
of boundary friction toward the Euler �ow. One could also study the work of �uid toward the
boundary. This is related to the well-known d’Alembert’s paradox: for an object traveling at a
constant speed in a steady potential �ow, there is no drag force, so the ambient �uid does zero
work toward the object. However, in reality, an object moving in a �uid experiences a drag
force, no matter how small the viscosity is or how fast the speed is.

To be more precise, imagine that an object K is moving at a constant velocity Ue1 in a
low-viscosity incompressible �uid in a large periodic domain. Sending the period to in�nity
is another nontrivial task, but we ignore it here. Then in the reference frame of K, the �uid
around it solves theNavier–Stokes equation in� = T3\K, with a background �ow ū ≈ −Ue1
away from the object. Denote � = −PνId + 2νDuν to be the stress tensor of the �uid. Then
the total force exerted on the object by the �uid at a given time is

ˆ

∂�

−�n dx′ =
ˆ

∂�

Pνn − ν∂nu
ν dx′. (15)

Here n is the outer normal of ∂�, i.e. the inward normal of ∂K. This force contains two parts:
the �rst is due to pressure, and the second is due to friction. In e1 direction, the former is
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called “form drag”, whereas the latter is called “skin drag”. The work done on the object in the
static frame of reference is

ˆ

(0,T)×∂�

−�n · Ue1 dx′ dt =
ˆ

(0,T)×∂�

�n · (−Ue1) dx
′ dt.

Recall that the work done on the Euler solution in the object’s frame of reference is

ν

ˆ

(0,T)×∂�

∂nu
ν · ū dx′ dt =

ˆ

(0,T)×∂�

�n · ū dx′ dt.

If ū ≈ −Ue1 on the boundary, then they are approximately the same. In particular, they are
the same when K is a �at plate moving at a constant velocity tangential to its surface.

The drag force experienced by the object has the following empirical formula, which is
derived from dimensional analysis by Lord Rayleigh:

Fdrag = 1

2
ρ cd(Re)U

2 S .

Here ρ is the density of the �uid, cd(Re) is a dimensionless parameter called drag coe�cient,
depending on the shape of the object, and the Reynolds number Re = UL

ν
, where L is the

characteristic length, and S is the reference area. One may choose L to be the diameter of the
object K. It is customary to choose S as the cross-sectional area, but for wings it should be
chosen as the li�ing area. It has been observed experimentally that the drag coe�cient cd(Re)
has a �nite limit as Re → ∞, i.e. ν → 0. For instance, a rigorous analysis shows the drag
coe�cient of a �at plate can be bounded by approximately 295.49 [35] as Re → ∞. Upon
�xing a unit system such that ρ = 1, the work done by the drag force from time 0 to T is
exactly cd(Re)U

3T S. In the case of a �at plate, ū = −Ue1, A = U, and S = 1
2 |∂�|. Our work

then shows that even for weak solutions, the inviscid limit of drag coe�cient has an upper
bound:

lim sup
Re→∞

cd(Re) ≤ C

(

A

U

)3

· |∂�|
S

≤ C.

For a general objectK, we can set ϕ = −Ue1 in Corollary 2 to provide a constant upper bound
for the limiting skin drag coe�cient

lim sup
Re→∞

cd,skin(Re) ≤ CU3T|∂�|
1
2U

2 S ·UT
≤ C

|∂�|
S

,

where cd,skin is de�ned similarly as cd but considering only the skin friction drag, neglecting
the form drag component.

Acknowledgments

The authors would like to thank American Institute of Mathematics for the workshop “Criticality and
stochasticity in quasilinear �uid systems”, where this project was initiated.

Funding

The �rst author was partially supported by the NSF grant: DMS 2306852. The second author was
partially supported by the NSF grant: DMS 2054888.



408 A. F. VASSEUR AND J. YANG

References

[1] Vasseur, A. F., Yang, J. (2023). Boundary vorticity estimates for Navier–Stokes and application
to the inviscid limit. SIAM J. Math. Anal. 55(4):3081–3107.

[2] Lee, J., de Silva, C., Monty, J., Hutchins, N. (2014). Video: Spatially developing turbulent
boundary layers: The return of the plate. In: 67th Annual Meeting of the APS Division of Fluid
Dynamics - Gallery of Fluid Motion, DFD 2014. American Physical Society.

[3] Deck, S. (2018). The spatially developing �at plate turbulent boundary layer. In: Mockett,
C., Haase, W., Schwamborn, D., eds. Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES
Methods. Cham: Springer, pp. 109–121.

[4] Prandtl, L. (1904). Über �ussigkeitsbewegung bei sehr kleiner reibung. In: Actes du 3me
Congrès International des Mathématiciens, Heidelberg, Teubner, Leipzig, pp. 484–491.

[5] Grenier, E. (2000). On the nonlinear instability of Euler and Prandtl equations. Commun. Pure
Appl. Math. 53(9):1067–1091.

[6] Weinan, E. (2000). Boundary layer theory and the zero-viscosity limit of the Navier–Stokes
equation. Acta Math. Sin. (Engl. Ser.) 16(2):207–218.

[7] Gérard-Varet, D., Dormy, E. (2010). On the ill-posedness of the Prandtl equation. J. Amer.
Math. Soc. 23(2):591–609.

[8] Gérard-Varet, D., Nguyen, T. T. (2012). Remarks on the ill-posedness of the Prandtl equation.
Asymptot. Anal. 77(1–2):71–88.

[9] Kato, T. (1984). Remarks on zero viscosity limit for nonstationary Navier–Stokes �ows with
boundary. In: Chern, S. S., ed. Seminar on Nonlinear Partial Di�erential Equations. New York:
Springer, pp. 85–98.

[10] Maekawa, Y. (2014). On the inviscid limit problem of the vorticity equations for viscous
incompressible �ows in the half-plane. Commun. Pure Appl. Math. 67(7):1045–1128.

[11] Maekawa, Y., Mazzucato, A. L. (2018). The inviscid limit and boundary layers for Navier–
Stokes �ows. In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 781–
828. Cham: Springer.

[12] Fei, M., Tao, T., Zhang, Z. (2018). On the zero-viscosity limit of the Navier–Stokes equations
in R

3
+ without analyticity. J. Math. Pures Appl. (9) 112:170–229.

[13] Albritton, D., Bruè, E., Colombo, M. (2022). Non-uniqueness of Leray solutions of the forced
Navier–Stokes equations. Ann. Math. (2) 196(1):415–455.

[14] Albritton, D., Bruè, E., Colombo,M. (2023). Gluing non-uniqueNavier–Stokes solutions.Ann.
PDE 9(2):17.

[15] Jia, H., Sverak, V. (2015). Are the incompressible 3D Navier–Stokes equations locally ill-posed
in the natural energy space? J. Funct. Anal. 268(12):3734–3766.

[16] Vishik, M. (2018). Instability and non-uniqueness in the Cauchy problem for the Euler
equations of an ideal incompressible �uid. Part I. arXiv:1805.09426.

[17] Vishik, M. (2018). Instability and non-uniqueness in the Cauchy problem for the Euler
equations of an ideal incompressible �uid. Part II. arXiv:1805.09440.

[18] De Lellis, C., Bruè, E., Albritton, D., Colombo, M., Giri, V., Janisch, M., Kwon, H. (2024).
Instability and Non-uniqueness for the 2D Euler Equations, a�er M. Vishik, Princeton, NJ:
Princeton University Press.

[19] Székelyhidi, L. (2011). Weak solutions to the incompressible Euler equations with vortex sheet
initial data. Comptes Rendus Mathematique 349(19):1063–1066.

[20] Buckmaster, T., De Lellis, C., Székelyhidi, L., Vicol, V. (2019). Onsager’s conjecture for admis-
sible weak solutions. Commun. Pure Appl. Math. 72(2):229–274.

[21] Buckmaster, T., Vicol, V. (2019). Nonuniqueness of weak solutions to the Navier–Stokes
equation. Ann. Math. (2) 189(1):101–144.

[22] De Lellis, C., Székelyhidi, L. (2010). On admissibility criteria for weak solutions of the Euler
equations. Arch. Rational Mech. Anal. 195(1):225–260.

[23] Isett, P. (2018). A proof of Onsager’s conjecture. Ann. Math. (2) 188(3):871–963.
[24] Kolmogoro�, A. N. (1941). The local structure of turbulence in incompressible viscous �uid

for very large Reynold’s numbers. C. R. (Doklady) Acad. Sci. URSS (N. S.) 30:301–305.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 409

[25] Kolmogoro�, A. N. (1941). On degeneration of isotropic turbulence in an incompressible
viscous liquid. C. R. (Doklady) Acad. Sci. URSS (N. S.) 31:538–540.

[26] Kolmogoro�, A. N. (1941). Dissipation of energy in the locally isotropic turbulence. C. R.
(Doklady) Acad. Sci. URSS (N. S.) 32:16–18.

[27] Bruè, E., De Lellis, C. (2023). Anomalous dissipation for the forced 3D Navier–Stokes equa-
tions. Commun. Math. Phys. 400:1507–1533.

[28] Hilton, A., Illingworth, J., et al. (1997). Marching triangles: Delaunay implicit surface triangu-
lation. University of Surrey.

[29] Hartmann, E. (1998). A marching method for the triangulation of surfaces. Visual Comput.
14(3):95–108.

[30] McCormick, N. H., Fisher, R. B. (2002). Edge-constrained marching triangles. In Proceed-
ings. First International Symposium on 3D Data Processing Visualization and Transmission,
pp. 348–351.

[31] Maremonti, P., Solonnikov, V. A. (1997). Estimates for solutions of the nonstationary Stokes
problem in anisotropic sobolev spaces with mixed norm. J. Math. Sci. 87(5):3859–3877.

[32] Seregin, G. (2014). Lecture Notes on Regularity Theory for the Navier–Stokes Equations. Singa-
pore: World Scienti�c.

[33] Maremonti, P., Solonnikov, V. A. (1995). On estimates for the solutions of the nonstationary
Stokes problem in S. L. Sobolev anisotropic spaces with a mixed norm. Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222(Issled. po Linĕın. Oper. i Teor. Funktsĭı.
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