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ABSTRACT

We establish a high-dimensional statistical learning framework for individualized asset allocation. Our pro-
posed methodology addresses continuous-action decision-making with a large number of characteristics.
We develop a discretization approach to model the effect of continuous actions and allow the discretization
frequency to be large and diverge with the number of observations. We estimate the value function of
continuous-action using penalized regression with our proposed generalized penalties that are imposed on
linear transformations of the model coefficients. We show that our proposed Discretization and Regression
with generalized fOlded concaVe penalty on Effect discontinuity (DROVE) approach enjoys desirable theo-
retical properties and allows for statistical inference of the optimal value associated with optimal decision-
making. Empirically, the proposed framework is exercised with the Health and Retirement Study data in
finding individualized optimal asset allocation. The results show that our individualized optimal strategy
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improves the financial well-being of the population. Supplementary materials for this article are available

online.

1. Introduction

With the rapid development of artificial intelligence, particu-
larly machine learning, a revolution is underway in individual-
ization. In precision medicine, thousands or millions of genetic
characteristics are taken into consideration to determine the
optimal treatment for an individual patient. Large retail corpo-
rations analyze massive datasets of the behavior and personal
characteristics of customers to tailor their offerings to individual
customers.

Individualization is not new in asset allocation. For example,
before providing financial advice, investment companies ask
their customers to answer questionnaires in order to determine
their customers’ risk profiles. An asset allocation strategy would
then be recommended in the form of, for instance, a given pro-
portion of stocks versus bonds that the customer should hold in
their portfolio. However, often in these questionnaires, many of
the questions are subjective and/or hypothetical. Incorporating
objective data of the investors can ameliorate the weakness of
the reliance of such personalization on subjective opinion.

In this study, we develop a statistical learning framework for
individualized asset allocation. We focus on finding an individ-
ualized optimal proportion of wealth that should be invested
in stocks for a consumption-based utility optimization prob-
lem. The essence of the problem is decision-making, where the
action can take value on a continuous set. More broadly, our
study provides a theoretical basis and practical showcase for
continuous-action decision-making research, such as dose deci-

sion in precision medicine, movement angle in robotic control,
and campaign duration in personalized marketing.

1.1. Related Literature

Methodologically, our study is closely related to the studies
seeking the optimal individualized treatment rule (ITR) in fields
such as personalized medicine. Q-learning and A-learning are
the most popular methods for finding the optimal ITR. Q-
learning (Watkins 1989) models the treatment responses, and
A-learning (Murphy 2003; Robins 2004) models the contrast
(regret) function; see, for example, Qian and Murphy (2011),
Zhaoetal. (2012), Shietal. (2018), Athey and Wager (2019),and
Zhu, Zeng, and Song (2019). These studies focus primarily on
the problem in which the treatment comes from a fixed number
of discrete levels, typically binary treatment.

There is a growing interest in the study of continuous-action
decision-making where the treatment comes from a continuous
set. Laber and Zhao (2015) propose a direct tree-based optimal
rule searching method. Chen, Zeng, and Kosorok (2016) pro-
pose a direct nonparametric method by extending the outcome-
weighted learning method of Zhao et al. (2012). More recently,
Cai et al. (2020) propose an off-policy evaluation method by
adaptively discretizing the action space using a deep jump Q-
learning; Zhu et al. (2020) study a kernel assisted optimal dose
rule method; while Zhou, Zhu, and Zeng (2021) propose a
dimension reduced kernel approximation method. These stud-
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ies focus on the estimation of optimal policy or the effect of
continuous policy with low-dimensional covariates.

Theoretically, our study relates to the literature on penalized
regression, especially in high-dimensional settings. The well-
known approaches of penalized regression include the least
absolute shrinkage and selection operator (LASSO, Tibshirani
1996), smoothly clipped absolute deviation (SCAD, Fan and
Li 2001), and minimax concave penalty (MCP, Zhang 2010).
The theoretical properties and implementation of the penal-
ized regression estimator under high-dimensional settings are
investigated by Meinshausen and Biihlmann (2006), Zhao and
Yu (2006), Zhang and Huang (2008), Lv and Fan (2009), Fan
and Lv (2011), Wang, Kim, and Li (2013), among others. These
studies investigate the problem with penalties imposed directly
on model coefficients. For the generalized penalties that are
imposed on a linear transformation of coefficients, Tibshirani
and Taylor (2011) and Arnold and Tibshirani (2016) investigate
the generalized penalty problems using lasso penalties (general-
ized lasso) and their studies focus mainly on the computational
aspect. She (2010) discusses the sparsity recovery property of
the generalized lasso estimator when the number of variables is
fixed.

In economics and finance, our study relates to the literature
on household finance for the elderly and studies that use Health
and Retirement Study (HRS) and Consumption and Activities
Mail Survey (CAMS) data. Using HRS and CAMS data, the
“retirement savings puzzle” (Banks, Blundell, and Tanner 1998;
Palumbo 1999) is studied by Hurd and Rohwedder (2003) and
Haider and Stephens, Jr (2007). Rosen and Wu (2004), Hong,
Kubik, and Stein (2004), and De Nardi and Yang (2014) study
the problem of asset allocation modeling. By analyzing HRS
and CAMS data, Engen et al. (1999) and Munnell, Webb, and
Golub-Sass (2012) underscore a universal inadequacy of post-
retirement savings.

1.2. Main Challenges and Our Contributions

Developing methodologies for continuous-action decision
making is challenging. Today, it is common to collect a
large number of characteristics and incorporate them into
the decision-making process. When there are many action
levels, the dimensionality of the problem becomes even larger,
posing challenges in identifying informative characteristics
and estimating the model. The policy value, especially the
optimal value, is an important target of inference for policy
evaluation. For continuous-action decision-making, there are
infinite possible options in the search for the optimal policy,
posing substantial challenges to the statistical inference of the
optimal value.

Empirically, substantial challenges come from the data. The
HRS and CAMS survey data contain noisy and incomplete
observations. The observed stock ratio data are skewed and con-
centrated around zero. In addition, the important utility variable
is unobserved. Data preparation needs to be carefully done in
order to obtain sufficient high-quality data for the statistical
learning.

The main contributions of our paper are as follows.

First, in the field of individualized decision-making, we
develop a high-dimensional statistical learning framework

to study continuous-action decision-making. Specifically, we
develop a discretization approach to model the effect of
continuous actions and allow the discretization level to be
large and diverge with the number of observations. The size
of the discretization level is carefully analyzed in order to
balance the approximation accuracy of the discretization with
the compatibility in the penalized regression framework.

Second, we propose a Discretization and Regression with
generalized fOlded concaVe penalty on Effect discontinuity
(DROVE) method to estimate the model for continuous-action
decision-making, whose design accommodates the continuous
nature of the actions. Different from the standard penalized
regression that penalizes the coefficients directly, DROVE
penalizes the effect differences between adjacent action levels.
Our estimator enjoys model coefficient estimation consistency.

Third, our novel approach provides valid statistical inference
for the optimal value of continuous action when there are a large
number of characteristics. We obtain the central limit theorem
for the proposed DROVE estimator of the model coefficients
as well as the value that is associated with optimal decision-
making. To the best of our knowledge, our study is the first to
achieve optimal value inference for continuous action, especially
under a setting with high-dimensional characteristics.

Last but not least, in the fields of economics and finance,
as a pioneer work, our study provides an individualized asset
allocation using a high-dimensional statistical learning method
that processes personal characteristic information. To address
the data challenges, we use trajectory path models, which
allow us to generate pseudo consumption and income for
randomly assigned stock ratios. We then obtain the utility from
the pseudo consumption paths and individual risk aversion
models. Our empirical exercise with HRS and CAMS data
shows that our individualized optimal asset allocation strategy
substantially improves the financial well-being of the population
and surpasses benchmark strategies that assign fixed stock ratios
to all households. The superior performance of our method
demonstrates the importance of individualization in asset
allocation.

The article proceeds as follows. We present the statistical
learning framework in Section 2 and develop the theoretical
properties in Section 3. Sections 4 and 5 are devoted to sim-
ulation and empirical studies, respectively. Section 6 contains
concluding remarks.

2. Statistical Learning Framework for
Continuous-Action Decision-Making

2.1. Model Setup

Suppose that we have n observations (Xj, A;, Yi)i=1,....n» Where
X; € X is a length-d vector of covariates, A; is the action that
comes from a continuous support A, and Y; is a random out-
come. Under the potential outcome framework (Rubin 1974),
we denote Y® as the potential outcome that would have been
observed under action level a € .A. Following the literature
of causal inference (e.g., Robins 2004), we make the stable unit
treatment value assumption (SUTVA) that Y = Y if the action
A = a (consistency). In addition, we consider the randomiza-



tion assumption that A is independent of X and the potential
outcomes (e.g., Murphy 2005), and the positivity assumption on
the density function of A € A (e.g., Chen, Zeng, and Kosorok
2016). A deterministic policy = maps the features space to the
action space, ¥ : A — .A. Under the SUTVA assumption,
the optimal policy 7* determines the optimal action that max-
imizes the expected reward given the characteristics X, that is,
¥ (x) = argmax, E(Y?|X = x,A = a) = argmax_ E(Y|X =
x,A = a).

Under the above framework, a particular example of inter-
est is finding the optimal individualized asset allocation. For
individualized asset allocation, X is individual characteristics,
such as the financial and demographic status; Y is the economic
reward or utility; A is the proportion of total wealth invested in
stocks, that is, stock ratio, which can be continuous between 0
and 1; and 7*(-) : B9 — [0,1] is the investment decision
rule that yields the optimal stock ratio given the individual
characteristics.

We study the optimal continuous-action decision-making by
modeling the conditional expected reward as a value function
Q(x,a) = E(Y|X = x,A = a). We consider the following
model

L

Y =Qu(X,A)+e, Qu(X,A)= w{{x+2 lﬁ;{x- LAe[Agy A
k=2
(2.1)

where Q, (X, A) is the value function and ¢ is the noise term
that is independent of X, {0 = Ay < --- < A, = 1}
is a series of grids, L, < n is the number of grids that can
be large and increase with sample size n, and ¥, ¥5,- -, ¥ »
are d-dimensional vectors, ¥, = 0 and Az, 1) > 1. The two
components, ¥ X and Zi‘iz vix. 1{A€[A ) Ags1)))> TEPrEsent
the main effect of characteristics and the treatment effect of the
action on individual characteristics, respectively.

We write X; = (X)7, XDT - 1areiag g - - X' -

Lty dayen)) >384 By = Bro- - BT = BT VT-
qerTﬂ)T as alength-p vector of the coefficients, where p = d x L,,.
Hence, the value function can be represented as Q,(X;, A;) =
BIX;. We allow p to be large, such that logp = o(n). In
particular, we include the case where characteristics space can
be large, so that logd = o(n). As to the discretization level L,,,
it can grow slowly with » so that the approximation error in
the working model diminishes to zero as n — oco. We discuss
the growth rate of L, in more detail in Section 2.2. Under the
working model (2.1), we denote the true population parameter

T T T\T
as B = WL 3T,y

2.2. Penalized Regression with Generalized Penalties

In order to estimate the coefficients 8}, in the high-dimensional
Q-function (2.1), we develop a novel penalized regression for-
mulation, which accommodates the fact that decisions are made
from a continuum. Intuitively, when the discretization level L,, is
large, the distance between adjacent action levels |A k) — A1)l
becomes small and so is the difference in their effects, (|¢; i~
Vis1jD1<j<d- We impose penalties on [Vij— ¥ipr,lto shrink
the difference in effect between two adjacent decisions, A
and A 1), on each covariate j=1,...,d.
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Formally, we write the following penalized regression:

n

Ly
min (Y — BEX)* + 1) pr, (W)
Bu=(W LW )T ; ! g
Ly—1 d
+1) Y Wk — Virry)s (2.2)
k=2 j=1

where the penalty function is p;  (§) := ZLI Pa, (&) for any
vector £ = (£1,&2,...,&,)T, and Pa,(-) is a penalty function
with tuning parameter A,. The first penalties Zilo P, (Vi)
penalize the main effect and the treatment effect, similar to the
binary case; see, for example, Zhu, Zeng, and Song (2019). The
second penalties Zi;;l Z;il Do, (¥kj — Viy1,) penalize the

discontinuity.

Remark 2.1. The penalties, (P)L”(Wk,j - Wk+1,j))25k5,g"_1,15j5d’
generalize the idea of fused lasso (Tibshirani et al. 2005), which
imposes penalties on the difference in adjacent coordinates
[Bi — Bit1l. She (2010), Tibshirani and Taylor (2011) and
Arnold and Tibshirani (2016) study the generalized lasso
problem, which is a penalized regression as formulated in (2.3)
with the lasso penalty function for p; (-). In contrast to these
works, we propose a generalized folded concave penalty and
investigate the statistical properties of the estimator under the
high-dimensional setting. In the literature on individualized
decision making, to the best of our knowledge, it is the first time
that regression with a generalized folded concave penalized is
formulated in studying the effect of continuous actions.

The proposed penalized regression (2.2) can be categorized
as one with generalized penalties, where penalization is imposed
on linear transformations of the coefficients, Dg,,, for some
K x pmatrix D = (d;,... ,dp) T

1 w ;
min - > (¥ — BIX)? + pa,(DB,). (2.3)
" i=1

More generally, we consider the following generalized linear
model (Fan and Lv 2011) where the density function f(Y; X, B
satisfies

fOGX B, =] [fo¥s 81X
i=1
B ? YiBIX; — b(BIX))
~[Jew [ -

]C(Yf,tﬁ), 24)

where 8, = (B1,..., ,SP)T is a p x 1 vector of regression
coefficients, ¢ € (0, 0o) is the nuisance parameter of dispersion,
X = XX, ... X)7T, b()istwice continuously differentiable
with 8”(-) > 0, and ¢(Y;, ¢) is the base measure that represents
the density function for Y; when 8,, = 0, for example, c(Y;, ¢) =
(r¢)~Y/? exp(—Y?2 /@) for normal density. For a given matrix D,
the penalized likelihood function with generalized penalties is

K
Ly(Bypdn,D) = In(ﬁn) - Ep)un(d}'{ﬁn)
k=1

K
1 - .
= —(Y"XB, —1"bXB) — 31, (@{ By (25)
k=1
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where I,(8,) = (Y'XB, — 1"b(X8,))/n and bXB,) =

(b(BIXY), ..., b(BTX.)) .
We next write D = (D;:gml, DE:“H)T, where Dsignal isa Ky x p
matrix, Dy is a Ko x p matrix, and K = Ky + K. Suppose that
the true coefficients, g, = (B],.. .,ﬁ;)r, satisfy D8 = 0,
that is, d;{,&: =0,fork = K; + 1,K; + 2,...,K. In terms of
Dsignalr we impose no constraint on its shape or rank.
For any positive semidefinite matrix A = (a;), we define

[[All2 = max)g),<1 |AX|l2 and [|x]]2 = fo for any vector
X = (x;).
We impose the following assumptions on D and p(t,A) =

)/

Assumption 2.1. ¢k (DpaiD! ) > cand max; <<k [|dkll2 <

C for some constants ¢, C > 0, where g’rjl'in(Dmﬂl DE: 1) denotes
the smallest nonzero eigenvalue of DnuuDE:uﬂ.

Remark 2.2. Assumption 2.1 is met by our design of D in (2.2)
as g;in(Dnu]nglﬂl) > land max)<k<g [ldgll2 < \/E

Assumption 2.2. (1) p(t,A) is increasing and concave in
t € [0,00); (2) p(t,A) is differentiable in ¢t € (0, c0) with
p'(0+,4) > 0; and (3) if p'(t, 1) is dependent on A, p’(t, 1)
is increasing in A € (0, 00) and p’(0+) is independent of A.

Remark 2.3. Assumption 2.2 describes the characteristics of
a folded concave function class; see, for example, Lv and Fan
(2009) and Fan and Lv (2011). Popular examples of folded
concave functions include SCAD (Fan and Li 2001) and MCP
(Zhang 2010). Our numerical examples uses SCAD as represen-
tative of the folded concave penalty function family.

We define s, = p — rank(Dyqn). We regard s, as the nonsparsity
coefficient, which is a natural extension of the nonsparsity coef-
ficient for standard penalized regression when D is an identity
matrix. The definition of s, is in line with that of the degrees
of freedom for generalized lasso (Tibshirani and Taylor 2011,
2012). The true model is considered to be sparse in the sense
that s, < n. The sparsity of the model comes from two sources.
One source of sparsity is the large covariate space in which there
can be many irrelevant variables. In real applications, for exam-
ple, investment agencies collect a large number of covariates,
although only a small proportion of the variables are useful.
The sparsity that comes from high-dimensional covariates is the
usual notion of model sparsity discussed in the literature. In
addition, we assume sparsity on the treatment effect difference
between adjacent action levels. This is essentially to assume
that the effect of continuous action exhibits smoothness; hence,
when L, is large, many adjacent action levels have roughly the
same treatment effect. This is sensible in real applications. For
example, in asset allocation, when there are small changes in
stock ratio, utility would not vary drastically.

Let g, = 27! minud}ﬁm,d}"ﬁ; # 0} be half of the
minimum signal. We impose the following assumptions.

Assumption 2.3. g, > Ay, > max(/sn/n,/(logp)/n), max(s,,

logp) = o(n),andp} (g,) = o(min(n—lﬁsﬂ_l’lz, n—lfzKl_ls,l,ﬁ).

Assumption 2.3 states that the minimal signal should be
sufficiently large to be distinguishable from the noise. If g,
decreases as L, grows, the minimal signal condition would
constrain the number of discretization levels that we are able
to handle. Asymptotically, L,, can be O(n¢) for some ¢ < 1/3.
In Appendix A of the supplementary materials, we discuss the
rate of L, under a varying coefficient example. We illustrate
the choice of L, with our practical example in Section 4.1.
Additional regularity conditions (Assumptions C.1-C.4) are in
Appendix C of the supplementary materials.

We summarize the proposed approach for continuous-action
decision-making: Discretization and Regression with general-
ized fOlded concaVe penalty on Effect discontinuity (DROVE)
as follows.

Algorithm DROVE

Step I. Discretize the action support into a series of grids A(;) <
.-+ < A, with L, growing with n,and L,, = O(n¢) for some
¢ < 1/3.

Step II. Perform the penalized regression with the generalized
folded concave penalty on effect discontinuity, (2.2), and
obtain the estimated value function Q,(X,A). The GLLN
algorithm to be introduced in Section 3.1 can be used to solve
(2.2).

Step I The estimated optimal decision making is 77, (X) :=
min{A : Q,(X,A) = maxy, <a<a,,, Qu(&,A)}foran indi-
vidual with characteristics A, and the optimal value function

is Q(X) = Vo X + max (0, B Vi, 1, )-

3. Statistical Properties

In this section, we present the statistical properties of the pro-
posed DROVE methodology for continuous-action decision-
making. The proofs are in Appendix E of the supplementary
materials.

3.1. Theoretical Properties of Coefficient Estimation

The following theorems give the statistical properties of our
coefficient estimator.

Theorem 3.1. Under Assumptions 2.1-2.3, C.1, and C.2, there

exists a strict local maximizer ﬁn = (@g , f&j seens @gﬂ)T of the
penalized likelihood function £,,, which satisfies

P(¥z,=0) - lasn— oo, and [|B, — Bjll2 = Op(/su/1),

where ¥, = (Vi)ipezor Zo = (L)) = ¥]; = 0,i =

0,2,...,L,, 1 <j < d}. In addition,

P(Dmﬂl,’éﬂ =0) > lasn— oo, and ||/6‘i\ﬂ — 07112 = Op(y/sn/n),
(3.1)

where 6, = M~!8, and 8% = M~!8* for the transformation

matrix M defined in (B.2) in Appendix B.

Theorem 3.2. Under the assumptions of Theorem 3.1 and
Assumption C.3, with probability tending to 1 as n — o0,
the local maximizer in Theorem 3.1 satisfies

Jn2,@B, — %) B N(0,96G),



where ,, is a g xp matrix, g < s, and fixed, n,UB;, ! Ugﬂz —

G, G is a g x g positive definite matrix, ||G||; = O(1), Up and
B, are defined in (B.1) in Appendix B and Assumption C.3,
respectively.

In practice, the covariance matrix ¢G needs to be estimated.
Following the conventional technique (e.g., that of Fan and Li
2001), we estimate the variance using the following sandwich

formula: n€ ﬁgﬁ_l( KN 0777 ,"TAZ)) -1UI'eI, where U

is the orthogonal matrix that spans the null s space of Dnull’
Pnull is the sub- matrix of D, whlch satisfies Dm,nﬁ,, = 0,
B, = mgnalz(xﬁ )X51gnal’ Xs1gnal =(,... vzn) = XUO:
and X (8) = diag(b”(81),...b"(8,)) forany § € R".

According to Theorems 3.1 and 3.2, our coefficient estimator
achieves the oracle property in that it identifies the true model
with probability tending to one and enjoys strong consistency
property.

Next, with regard to implementation, we introduce the fol-
lowing generalized local linear approximation (GLLA) algo-
rithm, which is a generalization of the LLA algorithm (Zou and
Li 2008; Fan, Xue, and Zou 2014).

Algorithm Generalized local linear approximation (GLLA)
Step I. Initialize Eio) = E;nit, nd 6 r?(ﬂ) ﬁgo),...,

t?(ﬂ)) where 7\ = " d;, and 7" = P, (|dT§(D)|
forl1 <k <K.

Step IL. For m=1, 2, ..., repeat the following till convergence.

1. Solve Eﬁm) = argmaxg Iﬂ(gn)_ln”@(m_l)gr:” 1, where
|| - ||l1 denotes the £, vector norm, such that ||w|; =

YL, |wi| forany w = (wy,...,wy)T.

2. Update o™ — F(m) (m),. :9%’”)) where@ém) =

w,(cm)dk, and wﬁm) = pln(|dk,8,, |) for1 <k <K.

Assumption 2.2°. p'(0+,1) = ay; p'(t, 1) = a; fort € (0,a21);
p'(t,1) = 0for t > a) with constantsa > a; > 0,and a; > 0.

Remark 3.1. Assumption 2.2’ holds for the folded concave
penalty, such as SCAD and MCP.

Proposition 3.1 gives the property of the GLLA algorithm.

Proposition 3.1. Under the assumptions of Theorem 3.1 and

Assumption 2.2, assume that the oracle estimator E,, in The-
orem 3.1 is unique. In addition, assume that

max [0 < ayh,, and min |dfB,"| > ak,,
sntl<j<p " 1<k<K;
(32)
init it
for a; and a defined in Assumption 2.2’ and @qm IF:I .

Then with probablllty tending to 1, the GLLA algorlthm initial-
ized by ,8,, " finds the oracle estimator ,Bﬂ after one iteration.

Remark 3.2. One potential choice of the initial value is the gen-
eralized lasso estimator, which uses £; penalty. The algorithm
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for solving generalized lasso problem is discussed in Tibshirani
and Taylor (2011) and Arnold and Tibshirani (2016). When
D = I, the error bound exists for standard lasso estimator under
proper designs; see (C1) and Corollary 3 in Fan, Xue, and Zou
(2014).

About the computation cost of the algorithm, in particular
the computation complexity with respect to L,,, heuristically, the
generalized lasso needs O(max(K 2p, Kn?)) operations; see, for
example, Tibshirani and Taylor (2011). The total computation
costs of Steps I and II, therefore, are O(max(dL,, n)dL,n) and
O(max(dLy,, n)dL,n), respectively. In practice, the maximum
iterations can be set as O(log n) and the algorithm converges
fast within a few iterations. The total computation cost of the
algorithm is O((log n) max(dL,, n)dL,n), which is polynomial
in L,, implying that the algorithm is scalable to high dimensions.

3.2. Optimal Value Estimation and Inference

One important advantage of our DROVE approach is that it
allows for proper inference of the value associated with a deci-
sion rule, in particular, the optimal decision that achieves the
maximum value.

Let A be the personal characteristic vector that belongs to the
testing population. We use a different notation, X', to distinguish
the testing population from the estimation sample X and stress
that A’ is independent of Y. Suppose that the value function
(2.1) holds for X; thus, it follows that E(R|X,A) = Q,(&X,A).
Let 7} (-) denote the optimal decision, and let Q¥ (-) denote the
optimal Q-function associated with (). More formally,

7*(X):=min{A: Q,(X,A) = max Q,(X,A)}, (3.3)

A =AZAwy)

Q) = ¥ X + max (0.1 Vs, .1, ). (34)

Suppose that X ~ F, and the optimal value is E(Q}(X)) =
f Q! (X)dF(X). The expectation is taken over the distribution
of the testing population A" given the working model Q,. More
generally, for any given decision rule 7(-) : R¢ — [0,1] and
for X € R9, we use X, to denote a length-p vector

Xy = ((X)T, . Lin(X)elAgyAa)b -« >

T T
(&) -l{n(X)e[A{L,,),A@,,H;)}) : (3.5)
Using the notation in (3.5), the optimal Q-function is Q}(X) =
ﬁ;Ti’n;, and the optimal value is: E(Q} (X)) = [ Q}(X)dF(X)
=B, [ Xz dF(X) = B} E(Xry).

Let Py(-) denote the empirical mean measure for a sample of
size N: Py(w) = Zil w;/N for any @ = (@;)1<i<n. Given a
testing sample of size N, (X})1<i<n ~ F, we estimate the optimal
value by

N N

PNQ) = 1 S Q) = By (3 3 Him) = BrPw(Aay),
i=1 i=1

(3.6)
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where

max  Qu(X,A)}, (3.7)

A =A=Ag,)

7*(X) := min{A : Qu(X,A) =

Q) 1= Vo X + max (0, B Vi, 1, )- (38)
Remark 3.3. To estimate and make inference about the optimal
value, we use the testing sample that is distinct from the Q-
function estimation sample. This approach is similar in spirit
to the sample-splitting method in machine learning literature
and is advocated by many recent studies on treatment effect
evaluation, such as Chernozhukov et al. (2017), Wager and
Athey (2018), and Athey and Wager (2019). The sample-
splitting reduces bias and facilitates the valid inference of the
optimal value. A discussion about the results of optimal value
estimation using the estimation sample is in Appendix D of the
supplementary materials. On the other hand, because we are
mostly interested in predicting the decision-making effect on
a broad population that extends beyond the estimation sample
for which the decision-making effects are observable, it is also
practically reasonable to use the testing sample to evaluate the
effect of optimal decision-making.

Assumption 3.1. Assume

1. s, = o(n®) and L, = o(n®) for some 8,8, > 0, and 25; +
52 < 1.

2. (&))1<j<n are iid and independent of Y, E(Q}(X)?) < oo,
n = ON), and N = O#nM) for some M > 1. There exist
some constants ro,r; and r, > 0,foranyt > 0, P(|xj| > f) <
roexp(—rit?) forall1 <j < d, where X =: (x1,..., Xd)T.

For the statistical inference of the optimal value, we further
impose regularity condition; see Assumption C.4 in Appendix C
of the supplementary materials.

Theorem 3.3 gives the asymptotic distribution of the esti-
mated optimal value.

Theorem 3.3. Under the assumptions of Theorem 3.1 and
Assumption 3.1, with probability tending to 1 as n,N — oo,
the Py Q7 (X) defined in (3.6) satisfies

@)

PNQ(X) — E(Q(X)) = 0,(1). (3.9)

(ii) If, in addition, 26; + 82 < 1/2, Assumptions C.3
and C4 hold, lim, o nEX , UoB,'UlEXpi¢p = o
and lim,, N_, o var(Q}(X))n/N = o7 for some constants
01> 0,02 > 0. Leto? = of + o}, then

- D
Vi(PNQX) — E(Q4()) > N©.oD).  (310)
In practice, in order to apply Theorem 3.3 to perform fea-
sible statistical inference, we need to estimate the variance. We
estimate the variance using the following sandwich formula:

n
52 = nPy AL 00, (Y @) B, OlPa sy
i=1

+var(Q}(X))n/N,

where [PNAV’@ and ﬁr@;( X )) are the sample mean of zf’f: and
sample variance of Q}(X), respectively, based on the testing
sample (X})1<j<N.

(3.11)

Remark 3.4. Our Theorems 3.1 and 3.3 are established for the
continuous-action decision making in which the discretization
level L, — oo and hence require intrinsically different method-
ological design and novel mathematical treatment than existing
studies on the binary case (e.g., Shi, Song, and Lu 2016). We
device a innovative DROVE approach, and obtain a new result
(3.1) in Theorem 3.1, which ensures that the adjacent treatment
levels can be identified. Unlike Shi, Song, and Lu (2016), we
work under the assumptions for transformed design matri-
ces and transformed parameters (Assumptions C.1-C.3). More
essentially, we consider a more relaxed constraint on the general
penalty matrix D. We use a partial reparameterization technique
to show the statistical properties of DROVE; see Appendix B of
the supplementary materials for more details.

Remark 3.5. For continuous action, there exists no nonparamet-
ric/semiparametric approach that yields a ,/n-consistent esti-
mator of effect curve without imposing parametric assumptions;
see, for example, the discussion in Kennedy et al. (2017). In
this study, on the other hand, we focus on the high-dimensional
parametric model (2.1), in which the parameter space is sparse
in the general sense, hence, our approach recovers the true
sparse model consistently. In addition, we allow the discretiza-
tion level L, to diverge slowly with n, such that L,s2 = o(/n),
under which setting, inference of the optimal value is obtainable.

In addition to the optimal value, our approach also allows for
inference of the value difference between the optimal decision
and a given decision rule. For a given decision rule, say, 7 (-) :
R [0, 1], the associated Q-function and the value of 7 (-) are
QuX.m) = YT X + 7, W17 - Layetgo Ay ad

E(Qu(X,m)) = f Qu(X,m)dF(X) = B3 EXy).  (3.12)

The value difference between m} and 7 is E(Q}(X)) —
E(Qu(X,m)), which is also called the regret of the policy x;
see, for example, Athey and Wager (2019). R

We estimate the value associated with 7z (-) using Pn Q, (X, ),
that is,

N
- 1 - - v
PNQu(X,m) = 1 3 Qu(X (X)) = B, Bu(En), (3.13)
i=1

and we estimate the value difference between 77 and « using
PnQE(X) — PnQu(X, 7).

Proposition 3.2 gives the asymptotic distribution of the esti-
mated value difference PyQJ(X) — PNQyu (X, 7).

Proposition 3.2. Under the assumptions of Theorem 3.1 and
Assumption 3.1, given a decision rule 7 (-): R4 — [0,1],
with probability tending to 1 as n,N — o0, the ]P’Na; and
PnQn (X, ) defined in (3.6) and (3.13) satisfy



(i)
PNQ}(X) — PN Qu(X. ) — (EQ4(X) — EQu(X.m) ) = 0p(1).
(ii) If, in addition, 28, + 8, < 1/2, Assumptions C.3 and C.4
hold, limy,, o0 NE(Xzz — X ) TUB; UL E(Xs — X )gp =
of, and lim, N, var(Q’:(Ft’) — Qu(X, rr)) n/N = o} for

some constants o1 > 0, and o3 > 0. Let 07, = o + 07,
then

V(PN Q) — PNQu(X, ) — (EQ}(X) — EQu(X. ) )
2 N©.02,).

Similar to (3.11), we can esimate o7,
sandwich formula

using the following
n]PN(A?ﬁ‘: — i}r)Tﬁﬂﬁﬂ—l

(3 GaTe)B, O (o — )
i=1

—~7 _
Jsk,rr -

+ var(Q}(X) — Qu(X, m))n/N,

where Py X, and ﬁi’@’: (X)— a,, (X, :rr)) are the sample mean
of ?E}r and sample variance of aﬁ (X) — a,,( X, ), respectively.

(3.14)

4. Simulation Study
4.1. Simulation Setup

We generate data from the model Y = y[X + Zi‘iz W{X .
1{A=A4,} +¢ and calibrate the parameters based on the empirical
data as described in Section 5. Specifically, the covariates X is
a vector of length 9 and randomly drawn from the personal
characteristics that are used in the Q-learning estimation in the
empirical study, which includes three binary variables, two cat-
egorical variables, three continuous variables and one intercept
term.

We divide the continuous action interval [0, 1] into 11 dis-
crete levels, that is, L, = 11. The stock ratio A; for each X; is
randomly assigned from {0,0.1,...,1} with equal probability.
The choice of L, is the same as that in the empirical studies.
Empirically, in order to balance the applicability of the method-
ology with the approximation accuracy of the working model,
the choice of L,, takes both the theoretical rate and the common
practice into consideration. For example, in our personalized
asset allocation study using the HRS data, the training sample
size is n = 2000, n'/3> =~ 13, and we choose L, = 11. On
the other hand, it is a common practice for mutual funds to
use a 10% incrementation and make 0%, 10%, 20%, ..., 100%
recommendations.! We illustrate the case when L, = 20 in
Appendix G of the supplementary materials. When a larger n is
available, nice numerical properties can be expected for a larger
range of L.

The Q-function parameters are learned from the empiri-
cal study and with hard thresholding (see Appendix F of the
supplementary materials for a full description). The number

1See: https://institutional.vanguard.com/assets/pdf/vrpa/InvestorQuestionn
aireAssetAllocationInsert.pdf.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION @ 645

of coefficients is therefore p = 11 x 9 = 99. The noise, &, is
generated from A (0,0.5%). We design the generalized penalty
matrix D = (D;:gml’ DI )T according to (2.2). The 8, =
(w[{, wg", .. .,W{")T has 55 zeros, and rank(Dy,1) = 76, thus,
the nonsparsity coefficient is s, = 99 — 76 = 23. The minimal

signal is g, = 0.4.

4.2. Simulation Results

We estimate the model using the DROVE method. For com-
parison, we also evaluate the results using the standard lasso
(std-lasso) and standard scad? (std-scad). We also present the
results of the infeasible oracle estimator. The oracle solution
is obtained by performing a least squares regression of the
response Y over isignalr as defined in (C.2) in Appelldix C. The

regression yields the oracle transformed estimator 6, and the
oracle estimator g, is obtained by the transformation 8, =
M#,,. The tuning parameters are chosen by minimizing the
validation error.

We conduct 500 independent replications with the sample
sizes n = 2000 and n = 3000. We evaluate the coefficient esti-
mation accuracy of various methods by the £, and ¢, errors, and
measure the parameter selection accuracy by the false positive
rate (FP/N, the number of all false positives divided by that of all
total negatives in f8,), and false negative rate (FN/P, the number
of all false negatives divided by that of all total positives in ,,).
The total negatives (N) and the total positives (P) in 8, are 55
and 44, respectively. For counting the false positives and false
negatives, we set the threshold level to be 10~*. The results are
in Table 1. The results show that our DROVE estimator has the
lowest estimation error among all compared methods.

Next, we estimate the optimal value and construct its confi-
dence interval (CI). According to Theorem 3.3, the confidence
interval of the optimal value at a significance level « > 0
is (PnQ:(X)) £G(PNQY) x N (1 —0.5a), where N/(-) is the
cumulative distribution function of the standard normal distri-
bution, 7 (PNQ}) = &, //n. The feasible variance estimator in
(3.11) is used. The estimation sample sizes are n = 2000 and
3000, and the testing sample sizes are N = 5000 and 15,000.
The testing sample is randomly generated independently based
on empirical data of the personal characteristics. Table 2 reports
the estimated optimal and empirical coverages of 90%, 95%,
and 99% CI from 500 replications. The results suggest that
the estimated optimal value is close to the actual one and the
estimated Cls show good accuracy. When the estimation sample
size increases from 2000 to 3000, the empirical coverage goes
closer to the nominal one.

Finally, we construct confidence intervals for the difference
between the optimal value and the value of a pre-specified
decision rule 7 (-). We build confidence intervals according to
Proposition 3.2 and use the feasible standard deviation esti-
mator in (3.14). We calculate the empirical coverage from 500
replications. The results are in Table 3. The results show that the

2Existing approaches for the decision-making problem under the high-
dimensional setting focus on binary problems, among which one of the
most comparable to ours is Shi, Song, and Lu (2016), who use the SCAD
estimator to fit Q-function. The std-scad estimator we evaluate, therefore,
can be considered as an ad-hoc extension of Shi, Song, and Lu (2016) by
discretization to the continuous-action setting.
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Table 1. Coefficient estimation and parameter selection accuracy of various meth-
ods.

Error Oracle DROVE std-scad std-lasso

n = 2000

||Fn - B nll2  1.683(0.322) 4.370(0.986) 4.844(0.788) 5.348(0.904)
1By — Bolll  8.158(1.628) 24.054(7.083) 29.113(6.089) 37.195(6.034)
FP/N - 0.148(0.083)  0.242(0.109)  0.740(0.082)
FN/P - 0.135(0.070)  0.177(0.069)  0.073(0.046)
n = 3000

1B, — Bnlla 1.348(0239)  3.221(0.862)  3.909(0.723)  4.344(0.699)
1B, — Balln  6558(1225) 16.486(5.648) 23.033(5.555) 30.466(4.964)
FP/N - 0.095(0.076)  0.237(0.118)  0.772(0.074)
FN/P - 0.094(0.068)  0.124(0.062)  0.042(0.035)

NOTE: Coefficient estimation accuracy is measured by the £; and £7 errors, and
parameter selection accuracy is measured by the false positive rate (FP/N) and
false negative rate (FN/P). We report the mean and standard deviation (in paren-
theses) from 500 replications.

Table 2. Estimated optimal value and empirical coverage of confidence intervals
for the optimal value.

(n, N) (2000,5000) (2000,15,000) (3000,5000) (3000,15,000)
Estimates E(Q%) = 0.667

Pﬂaﬁﬁ 0.665 0.663 0.664 0.667

G (PNQE) 0.024 0.023 0.020 0.019
Coverage

90% Cl 0.838 0.828 0.874 0.864
95% Cl 0.898 0.896 0932 0.928
99% Cl 0.958 0.952 0.988 0.990

NOTE: The estimation sample sizes are n = 2000 and 3000, and the testing
sample sizes are N = 5000 and 15,000. The results are the empirical coverage
of 90%, 95% and 99% Cl from 500 replications, together with the mean of the
estimated optimal values, Py(Q%), and the mean of the estimated standard
deviations,ﬁ“(PNa:).

estimated value difference is close to the true one for different
estimation sample sizes and testing sample sizes. Moreover,
the estimated CIs exhibit good accuracy. When the estimation
sample size increases from 2000 to 3000, the empirical coverage
of the confidence interval goes closer to the nominal level.

More simulation examples under different simulation set-
tings with various nonsparsity degree s, and various choices
of L, are in Appendix G of the supplementary materials. The
results show robustness in the performance of our estimator
under various settings.

In summary, the simulation results show that our proposed
methodology gives rise to better model estimation accuracy
than the standard penalized regression when sparsity occurs
to the linear projection of the coefficients. Our approach also
allows for valid inferences of the optimal value and value differ-
ences using the feasible variance estimator, which performs well
in terms of empirical coverage.

5. Empirical Study
5.1. Individualized Asset Allocation Optimization

We study the asset allocation optimization problem under a
consumption-based utility framework. Specifically, we adopt
the additive utility with constant relative risk aversion (CRRA,
e.g., Hall 1978). The utility has the form U(C;,Cs,...,Cr) =

Table 3. Estimated value differences and the empirical coverage of confidence
intervals for the value difference between the optimal decision and pre-specified
decision rules.

(n, N) (2000,5000) (2000,15,000) (3000,5000) (3000,15,000)
Estimates E(@p) — E(Qny) =1.037

PNQR_\— PnGQn, Egl 1.034 1.030 1.039 1.040
G(PyQE — PyQnmy) 0032 0.030 0.026 0.025
Coverage

90% Cl 0.830 0.816 0.856 0.844
95% Cl 0.896 0.888 0914 0.902
99% Cl 0.958 0.954 0.978 0.978
Estimates E(@}) — E(Qnzy) = 1.734

PNQR_\— Pnonm 1.736 1.732 1.730 1.733
G(PyQE — PyOnzy) 0036 0.036 0.030 0.029
Coverage

90% Cl 0.846 0.846 0.866 0.862
95% Cl 0.902 0.908 0.928 0.920
99% Cl 0.962 0.958 0.988 0.988

NOTE: The estimation sample sizes are n = 2000 and 3000, and the testing sample
sizes are N = 5000 and 15,000. The results are the empirical coverage of 90%, 95%
and 99% Cl frg_m 500 rep_!ications, together with the mean of the estimated value
d'rFferg_che ]P’NQ}!* — PynQnx and the mean of the estimated standard deviation

& (PnQp — PnQna)-

ZLI y'u(Cy), where C; is the consumption at time t, u(C) =
C!=P/(1 — p), p is the risk aversion parameter that reflects the
sensitivity of utility to the randomness in the income, and y is
the discount rate (set as 0.96; see, e.g., Gourinchas and Parker
2002). The consumption evolves according to the net income I;
and wealth W; constraint I; — C; = Wy — Wy The objective
is to maximize the expected utility by choosing the optimal
proportion of the total financial asset invested in stocks, that is,
the stock ratio, A. The utility optimization problem spans the
preceding five years (ie., T = 5).

Formally, the optimal stock ratio solves the following opti-
mization problem®: 7*(X) = argmax, E(U(C, Gy, ...
Cs|X, A)), where X is the personal characteristics. The asset
allocation decision A determines the distribution of income and
consequently influences the dynamics of wealth and consump-
tion. We consider randomness in income from not only the
financial returns but also from other sources such as wages and
medical expenses, the distributions of which vary from individ-
ual to individual. Furthermore, the risk aversion parameter y
also differs between individuals and relates to their personal
characteristics.

5.2. Data

We use the Health and Retirement Study (HRS) data from 1992
to 2014. HRS is a national-level longitudinal survey of more
than 22,000 U.S. residents over the age of 50. We include key

3In this exploratory study, we consider a simplified situation where utilities
are only determined by the consumption within the next five years. This
does not mean, however, that individuals do not care what happens after
five years. In fact, in our model, consumption is considered optimal with
respect to wealth, in particular, C5 depends on Ws. An individual's prefer-
ence for a high Cs is typically consistent with a high W5, which means that
one does care about having enough savings for five years later. In future
works where multi-stage decision-making is studied, this would become
even less an issue.



variables on households finance (e.g., total financial wealth,
value of stocks held and income) and individual characteris-
tics (e.g., age, marital status, education level, health condition
and working status) in our analysis. We also incorporate the
Consumption and Activities Mail Survey (CAMS) data that
contain consumption information, which began in 2002, com-
plementing the HRS. The CAMS data cover approximately 6800
people, which is a subset of respondents covered in the HRS
data. The relevant variable in CAMS that we incorporate in
our analysis is the nondurable consumption. The raw HRS and
CAMS data are noisy and contain many missing observations.
In addition, the observed stock ratios are concentrated around
zero. Instead of using the raw data, we use pseudo observations
that are randomly generated from models of trajectory paths for
consumption and income. We also learn risk aversion parame-
ters by matching observed investment profiles with individual
characteristics. Details of the model-based random experiment
generation are in Appendix H of the supplementary materials.

5.3. Statistical Learning Implementation and Results

We conduct the analysis based on three samples: estimation sam-
ple, evaluation sample, and testing sample. For the observations
that are covered by both CAMS and HRS, we split them into
an estimation sample and an evaluation sample. The estimation
of the Q-function is performed on the estimation sample, which
contains 2000 observations. The model fitting is evaluated on
the evaluation sample, which includes 1000 observations. We
put all the 15,000+ observations that are not used for the model
estimation in the festing sample, which includes those that are
not covered by CAMS. The testing sample is used in evaluating
the value of strategies.

5.3.1. Q-function Estimation

We include the following covariates in the Q-function (2.1):
gender, education, unhealthiness, working status, marital status,
age, household wealth, income, and an intercept term, thus,
d = 9. We follow the common practice in asset allocation appli-
cations and adopt the 0.1 incrementation in stock ratios. The
stock ratios are divided into 11 levels 0,0.1,...,1 (ie, L, = 11).
The total number of coefficients is therefore p = 9 x 11 = 99.
All covariates are standardized to have a mean of 0 and standard
deviation of 0.1. For each individual i in the estimation sample,
we randomly assign a stock ratio A4; (0, 0.1, ..., 1) and perform
the model-based random experiments. We set the utility reward
variable Y; to be a Gaussianized score based on the rank of
the average utility achieved by A; within all stock ratio levels;
see Appendix H.3. We estimate the value function (2.1) using
these 2000 observations in the estimation sample. The details
of the personal characteristics included in the model and the
estimated model coefficients are in Appendix I of the supple-
mentary materials.

We then check the goodness of fit of the model on the eval-
uation sample of size 1000. The evaluation sample is different
from the estimation sample but within the subset covered by
the CAMS that has consumption information, and hence the
utility scores are obtainable. The out-of-sample R? is 31.4% (in-
sample R%: 45.0%), suggesting a good fit.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION @ 647

Table 4. Performance of various strategies.

Strategy  PyQnx PyQ* — PyQnx 95% Cl of (EQ* — EQp )
Tobs 0.216 0.403 0328 0.479
b)) 0.303 0.316 0.227 0.406
01 0.238 0.381 0.268 0.493
T2 0.244 0375 0.273 0477
3 0272 0347 0.255 0.439
To4 0.267 0352 0.250 0.454
o5 —0.382 1.001 0.857 1.145
s —0.334 0.953 0.816 1.091
o7 —0.362 0.981 0.841 1121
T8 —0.374 0.993 0.850 1.137
09 —1.089 1.708 1.546 1.870
T —1.079 1.698 1.541 1.855
g 0.619 - - -

NOTE: This table gives the results of the value comparison among the estimated
optimal strategy, (), observed strategy, (mops), and fixed strategies, (nj =j,
j=0,0.1,...,1). The values are the estij_pated value (i.e., the average estimated
utility reward) for various strategies, PyyQn,, the estimated value improvement
when using the optimal strategy over the benchmark strategies, [PNa: —[PNanr,, ,
and the 95% Cls of the value difference EQ}; — EQp - . The model estimation uses a
random estimation sample of 2000. The testing sample comprises the remaining
15,000+ observations in the HRS from distinct individuals.

5.3.2. Strategy Performance

We evaluate the performance of our estimated individualized
optimal asset allocation on the testing sample (N > 15,000).
The testing sample contains the individuals in HRS who are
not included in the estimation sample. Because most obser-
vations of the testing sample are not covered by CAMS, con-
sumption information is scarce. Nevertheless, because our final
Q-function does not include the consumption variable, using
the estimated Q-function, we can evaluate the performance of
various strategies on the testing sample.

We compare the performance of our individualized optimal
asset allocation strategy® ¥ with the following benchmark
strategies: (a) we assign the same fixed (0, 0.1, ..., 1) stock
ratio to all individuals, a strategy denoted by n; = j,j =
0,0.1,0.2,...,1; (b) we assign the originally observed stock
ratio, which is denoted by 7.

For each strategy, we compute the estimated policy value
PNGM = Zil an(kf,n(k}))fN. We construct CIs for
E(Q}) — E(Qu(X, 7)) according to Proposition 3.2. The results
are in Table 4.

The results in Table 4 suggest that our individualized opti-
mal asset allocation decisions substantially improve over the
benchmark strategies in terms of policy values. Compared to
the observed stock ratios, the individualized strategy improves
the average utility reward from 0.216 to 0.619. It also yields an
average utility reward that is 0.316-1.708 greater, relative to the
fixed strategies. The 95% Cls of the value differences are away
from zero, suggesting that the individualized optimal strategy
achieves a significantly higher value compared with the values
of the observed and fixed strategies. This result demonstrates
the importance of individualization in asset allocation.

*The proposed strategy is based on the DROVE estimator we develope. We
also evaluated the strategy based on standard SCAD estimator (std-scad)
used in Shi, Song, and Lu (2016) by direct discretization to the continuous-
action setting. Compared to the std-scad strategy, our DROVE approach
achieves a higher average value (0.619 vs. 0.597), and the difference
between the two is statistically significant.
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A low proportion of households participate in the equity
market; few of them hold stocks (e.g., Hong, Kubik, and Stein
2004; Campbell 2006). We also find a low participation in equi-
ties. Notably, when adopting the optimal strategy, stock market
participation increases from 38% to 63%; see Appendix J of the
supplementary materials for more details. These results show
that our optimal individualized strategy improves the financial
well-being of the population and it entails a higher stock market
participation on average, which indicates a healthier and more
active stock market.

6. Conclusion and Discussion

We develop a high-dimensional statistical learning methodol-
ogy for continuous-action decision-making with an important
application in individualized asset allocation. We show that our
DROVE approach enjoys consistency in the model coefficients
estimation. Moreover, our approach achieves valid statistical
inference on the optimal value. Empirically, we apply the pro-
posed methodology to study the individualized asset allocation
problem using HRS and CAMS data. Under a consumption-
based utility framework, our individualized optimal asset allo-
cation strategy substantially improves the financial well-being
of the population. The outperformance of our individualized
optimal strategy over the fixed stock ratio strategies highlights
the benefit of individualization.

The statistical learning framework developed in this article
has broad implications. Methodologically, our approach can be
extended to the study of stochastic policies, which can have
advantages for problems with partially observed states (e.g.,
Singh, Jaakkola, and Jordan 1994) and be of interest for applica-
tions such as mobile health under infinite horizon settings (e.g.,
Luckett et al. 2019; Liao, Klasnja, and Murphy 2021). Another
important direction is to extend our framework from the single
period to multiple-period decision-making. For multiple-stage
problems, one potential approach would be to model the Q-
function for each stage using the method developed in this
article and then perform a backward recursive procedure to
obtain the optimal dynamic decisions. About estimation and
inference of the optimal value, challenges arise in the multi-stage
problem given that the estimation errors in the optimal rule and
the associated optimal value in the latter stage carry over to the
former stages. In terms of application, for example, not limited
to the setting exercised in this article, the framework can be
readily applied to achieving other wealth management objec-
tives, such as post-retirement saving adequacy. The framework
can also be extended to the study of multi-class asset allocation,
and to incorporate dynamic prediction models of mean and
volatility of financial returns.

Supplementary Materials
The online supplementary materials contain the additional assumptions,

proofs of the main results in the article, and additional discussions on the
theoretical and numerical results.
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