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ABSTRACT

We establish a high-dimensional statistical learning framework for individualized asset allocation. Our pro-
posed methodology addresses continuous-action decision-making with a large number of characteristics.
We develop a discretization approach to model the efect of continuous actions and allow the discretization
frequency to be large and diverge with the number of observations. We estimate the value function of
continuous-action using penalized regression with our proposed generalized penalties that are imposed on
linear transformations of the model coeicients. We show that our proposed Discretization and Regression
with generalized fOlded concaVe penalty on Efect discontinuity (DROVE) approach enjoys desirable theo-
retical properties and allows for statistical inference of the optimal value associated with optimal decision-
making. Empirically, the proposed framework is exercised with the Health and Retirement Study data in
inding individualized optimal asset allocation. The results show that our individualized optimal strategy
improves the inancial well-being of the population. Supplementary materials for this article are available
online.
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1. Introduction

With the rapid development of artiicial intelligence, particu-
larly machine learning, a revolution is underway in individual-
ization. In precision medicine, thousands or millions of genetic
characteristics are taken into consideration to determine the
optimal treatment for an individual patient. Large retail corpo-
rations analyze massive datasets of the behavior and personal
characteristics of customers to tailor their oferings to individual
customers.
Individualization is not new in asset allocation. For example,

before providing inancial advice, investment companies ask
their customers to answer questionnaires in order to determine
their customers’ risk proiles. An asset allocation strategy would
then be recommended in the form of, for instance, a given pro-
portion of stocks versus bonds that the customer should hold in
their portfolio. However, oten in these questionnaires, many of
thequestionsaresubjectiveand/orhypothetical.Incorporating
objective data of the investors can ameliorate the weakness of
therelianceofsuchpersonalizationonsubjectiveopinion.
In this study, we develop a statistical learning framework for

individualized asset allocation. We focus on inding an individ-
ualized optimal proportion of wealth that should be invested
in stocks for a consumption-based utility optimization prob-
lem. The essence of the problem is decision-making, where the
action can take value on a continuous set. More broadly, our
study provides a theoretical basis and practical showcase for
continuous-action decision-making research, such as dose deci-
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sion in precision medicine, movement angle in robotic control,
andcampaigndurationinpersonalizedmarketing.

1.1. Related Literature

Methodologically, our study is closely related to the studies
seeking the optimal individualized treatment rule (ITR) in ields
such as personalized medicine. Q-learning and A-learning are
the most popular methods for inding the optimal ITR. Q-
learning (Watkins1989) models the treatment responses, and
A-learning (Murphy2003;Robins2004) modelsthecontrast
(regret) function; see, for example, Qian and Murphy (2011),
Zhao et al. (2012), Shi et al. (2018), Athey and Wager (2019), and
Zhu, Zeng, and Song (2019). These studies focus primarily on
the problem in which the treatment comes from a ixed number
of discrete levels, typically binary treatment.
There is a growing interest in the study of continuous-action

decision-making where the treatment comes from a continuous
set. Laber and Zhao (2015) propose a direct tree-based optimal
rule searching method. Chen, Zeng, and Kosorok (2016)pro-
pose a direct nonparametric method by extending the outcome-
weighted learning method of Zhao et al. (2012). More recently,
Cai et al. (2020) propose an of-policy evaluation method by
adaptively discretizing the action space using a deep jump Q-
learning; Zhu et al. (2020) study a kernel assisted optimal dose
rule method; while Zhou, Zhu, and Zeng (2021)proposea
dimension reduced kernel approximation method. These stud-
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ies focus on the estimation of optimal policy or the efect of
continuous policy with low-dimensional covariates.
Theoretically, our study relates to the literature on penalized

regression, especially in high-dimensional settings. The well-
known approaches of penalized regression include the least
absolute shrinkage and selection operator (LASSO, Tibshirani
1996),smoothlyclippedabsolutedeviation(SCAD,Fanand
Li2001), and minimax concave penalty (MCP, Zhang2010).
The theoretical properties and implementation of the penal-
ized regression estimator under high-dimensional settings are
investigated by Meinshausen and Bühlmann (2006), Zhao and
Yu (2006), Zhang and Huang (2008), Lv and Fan (2009), Fan
andLv(2011), Wang, Kim, and Li (2013), among others. These
studies investigate the problem with penalties imposed directly
on model coeicients. For the generalized penalties that are
imposed on a linear transformation of coeicients, Tibshirani
and Taylor (2011) and Arnold and Tibshirani (2016)investigate
the generalized penalty problems using lasso penalties (general-
ized lasso) and their studies focus mainly on the computational
aspect. She (2010) discusses the sparsity recovery property of
the generalized lasso estimator when the number of variables is
ixed.
In economics and inance, our study relates to the literature

on household inance for the elderly and studies that use Health
and Retirement Study (HRS) and Consumption and Activities
Mail Survey (CAMS) data. Using HRS and CAMS data, the
“retirement savings puzzle” (Banks, Blundell, and Tanner1998;
Palumbo1999) is studied by Hurd and Rohwedder (2003)and
Haider and Stephens, Jr (2007). Rosen and Wu (2004), Hong,
Kubik, and Stein (2004), and De Nardi and Yang (2014)study
the problem of asset allocation modeling. By analyzing HRS
and CAMS data, Engen et al. (1999) and Munnell, Webb, and
Golub-Sass (2012) underscore a universal inadequacy of post-
retirement savings.

1.2. Main Challenges and Our Contributions

Developing methodologies for continuous-action decision
making is challenging. Today, it is common to collect a
large number of characteristics and incorporate them into
the decision-making process. When there are many action
levels, the dimensionality of the problem becomes even larger,
posing challenges in identifying informative characteristics
and estimating the model. The policy value, especially the
optimal value, is an important target of inference for policy
evaluation. For continuous-action decision-making, there are
ininite possible options in the search for the optimal policy,
posing substantial challenges to the statistical inference of the
optimal value.
Empirically, substantial challenges come from the data. The

HRS and CAMS survey data contain noisy and incomplete
observations. The observed stock ratio data are skewed and con-
centrated around zero. In addition, the important utility variable
is unobserved. Data preparation needs to be carefully done in
order to obtain suicient high-quality data for the statistical
learning.
Themaincontributionsofourpaperareasfollows.
First, in the ield of individualized decision-making, we

develop a high-dimensional statistical learning framework

to study continuous-action decision-making. Speciically, we
develop a discretization approach to model the efect of
continuous actions and allow the discretization level to be
large and diverge with the number of observations. The size
of the discretization level is carefully analyzed in order to
balance the approximation accuracy of the discretization with
the compatibility in the penalized regression framework.
Second, we propose a Discretization and Regression with

generalized fOlded concaVe penalty on Efect discontinuity
(DROVE) method to estimate the model for continuous-action
decision-making, whose design accommodates the continuous
nature of the actions. Diferent from the standard penalized
regression that penalizes the coeicients directly, DROVE
penalizes the efect diferences between adjacent action levels.
Our estimator enjoys model coeicient estimation consistency.
Third, our novel approach provides valid statistical inference

for the optimal value of continuous action when there are a large
number of characteristics. We obtain the central limit theorem
for the proposed DROVE estimator of the model coeicients
as well as the value that is associated with optimal decision-
making. To the best of our knowledge, our study is the irst to
achieve optimal value inference for continuous action, especially
under a setting with high-dimensional characteristics.
Last but not least, in the ields of economics and inance,

as a pioneer work, our study provides an individualized asset
allocation using a high-dimensional statistical learning method
that processes personal characteristic information. To address
thedatachallenges, weusetrajectorypath models, which
allow us to generate pseudo consumption and income for
randomly assigned stock ratios. We then obtain the utility from
the pseudo consumption paths and individual risk aversion
models. Our empirical exercise with HRS and CAMS data
shows that our individualized optimal asset allocation strategy
substantially improves the inancial well-being of the population
and surpasses benchmark strategies that assign ixed stock ratios
to all households. The superior performance of our method
demonstrates the importance of individualization in asset
allocation.
The article proceeds as follows. We present the statistical

learning framework inSection 2anddevelopthetheoretical
properties inSection 3.Sections 4and5are devoted to sim-
ulation and empirical studies, respectively.Section 6contains
concluding remarks.

2. Statistical Learning Framework for
Continuous-Action Decision-Making

2.1. Model Setup

Suppose that we havenobservations(Xi,Ai,Yi)i=1,...,n,where
Xi∈X is a length-dvector of covariates,Aiis the action that
comes from a continuous supportA,andYiis a random out-
come. Under the potential outcome framework (Rubin1974),
we denoteYaas the potential outcome that would have been
observed under action levela ∈ A. Following the literature
of causal inference (e.g., Robins2004), we make the stable unit
treatment value assumption (SUTVA) thatY=Yaif the action
A= a(consistency). In addition, we consider the randomiza-
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tion assumption thatAis independent ofXand the potential
outcomes (e.g., Murphy2005), and the positivity assumption on
the density function ofA∈A(e.g., Chen, Zeng, and Kosorok
2016). A deterministic policyπmaps the features space to the
action space,π :X → A. Under the SUTVA assumption,
the optimal policyπ∗determines the optimal action that max-
imizes the expected reward given the characteristicsX,thatis,
π∗(x)= arg maxaE(Y

a|X= x,A= a)= arg maxaE(Y|X=
x,A=a).
Under the above framework, a particular example of inter-

est is inding the optimal individualized asset allocation. For
individualized asset allocation,Xis individual characteristics,
such as the inancial and demographic status;Yis the economic
reward or utility;Ais the proportion of total wealth invested in
stocks, that is, stock ratio, which can be continuous between 0
and 1; andπ∗(·):Rd →[0, 1]is the investment decision
rule that yields the optimal stock ratio given the individual
characteristics.
We study the optimal continuous-action decision-making by

modeling the conditional expected reward as a value function
Q(x,a)= E(Y|X = x,A = a). We consider the following
model

Y=Qn(X,A)+ε, Qn(X,A)=ψ
T
0X+

Ln

k=2

ψTkX·1{A∈[A(k),A(k+1))},

(2.1)

whereQn(X,A)is the value function andεis the noise term
that is independent ofX,{0= A(1)< ···< A(Ln)= 1}
is a series of grids,Ln≤ nisthenumberofgridsthatcan
be large and increase with sample sizen,andψ0,ψ2,···,ψLn,
ared-dimensional vectors,ψ1= 0andA(Ln+1)>1. The two

components,ψT0Xand
Ln
k=2ψ

T
kX·1{A∈[A(k),A(k+1))},represent

the main efect of characteristics and the treatment efect of the
action on individual characteristics, respectively.
We wr ite X̌i= (Xi)

T,(Xi)
T·1{Ai∈[A(2),A(3))},...,(Xi)

T·

1{Ai∈[A(Ln),A(Ln+1))}
T
,andβn= (β1,...,βp)

T= (ψT0,ψ
T
2,...,

ψTLn)
Tas a length-pvector of the coeicients, wherep=d×Ln.

Hence, the value function can be represented asQn(Xi,Ai)=
βTnX̌i. Weallowpto be large, such that logp = o(n).In
particular,weincludethecasewherecharacteristicsspacecan
be large, so that logd= o(n). As to the discretization levelLn,
it can grow slowly withnso that the approximation error in
the working model diminishes to zero asn→ ∞. Wediscuss
the growth rate ofLnin more detail inSection 2.2. Under the
working model (2.1), we denote the true population parameter
asβn=(ψ

T
0,ψ

T
2,...,ψ

T
Ln
)T.

2.2. Penalized Regression with Generalized Penalties

In order to estimate the coeicientsβnin the high-dimensional
Q-function (2.1), we develop a novel penalized regression for-
mulation, which accommodates the fact that decisions are made
from a continuum. Intuitively, when the discretization levelLnis
large, the distance between adjacent action levels|A(k)−A(k+1)|
becomessmallandsoisthediferenceintheirefects,(|ψk,j−
ψk+1,j|)1≤j≤d. Weimposepenaltieson|ψk,j−ψk+1,j|to shrink
the diference in efect between two adjacent decisions,A(k)
andA(k+1),oneachcovariatej=1,...,d.

Formally, we write the following penalized regression:

min
βn=(ψ

T
0,...,ψ

T
Ln
)T

n

i=1

(Yi−β
T
nX̌i)

2+n

Ln

k=0

pλn(ψk)

+n

Ln−1

k=2

d

j=1

pλn(ψk,j−ψk+1,j), (2.2)

where the penalty function ispλn(ξ):=
h
i=1pλn(ξi)for any

vectorξ=(ξ1,ξ2,...,ξh)
T,andpλn(·)is a penalty function

with tuning parameterλn.Theirstpenalties
Ln
k=0pλn(ψk)

penalize the main efect and the treatment efect, similar to the
binary case; see, for example, Zhu, Zeng, and Song (2019). The

second penalties Ln−1
k=2

d
j=1pλn(ψk,j−ψk+1,j)penalize the

discontinuity.

Remark 2.1.The penalties, pλn(ψk,j−ψk+1,j)2≤k≤Ln−1,1≤j≤d
,

generalize the idea of fused lasso (Tibshirani et al.2005), which
imposes penalties on the diference in adjacent coordinates
|βi− βi+1|.She(2010), Tibshirani and Taylor (2011)and
Arnold and Tibshirani (2016) study the generalized lasso
problem, which is a penalized regression as formulated in (2.3)
with the lasso penalty function forpλ(·).Incontrasttothese
works, we propose a generalized folded concave penalty and
investigate the statistical properties of the estimator under the
high-dimensional setting. In the literature on individualized
decision making, to the best of our knowledge, it is the irst time
that regression with a generalized folded concave penalized is
formulated in studying the efect of continuous actions.

The proposed penalized regression (2.2)canbecategorized
as one withgeneralizedpenalties, where penalization is imposed
on linear transformations of the coeicients,Dβn,forsome
K×pmatrixD=(d1,...,dK)

T:

min
βn

1

n

n

i=1

(Yi−β
T
nX̌i)

2+pλn(Dβn).  (2.3)

More generally, we consider the following generalized linear

model (Fan and Lv2011) where the density functionf(Y;̌X,βn)
satisies

f(Y;̌X,βn)=

n

i=1

f0(Yi;β
T
nX̌i)

=

n

i=1

exp
Yiβ

T
nX̌i−b(β

T
nX̌i)

φ
c(Yi,φ),  (2.4)

where βn = (β1,...,βp)
Tis ap× 1vectorofregression

coeicients,φ∈(0,∞)is the nuisance parameter of dispersion,

X̌=(̌X1,̌X2,...,̌Xn)
T,b(·)is twice continuously diferentiable

withb(·)>0, andc(Yi,φ)is the base measure that represents
the density function forYiwhenβn=0, for example,c(Yi,φ)=
(πφ)−1/2exp(−Y2i/φ)for normal density. For a given matrixD,
the penalized likelihood function with generalized penalties is

Ln(βn,λn,D)=ln(βn)−

K

k=1

pλn(d
T
kβn)

=
1

n
YTX̌βn−1

Tb(̌Xβn)−

K

k=1

pλn(d
T
kβn), (2.5)
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whereln(βn)= Y
TX̌βn− 1

Tb(̌Xβn)/nandb(̌Xβn)=

b(βTnX̌1),...,b(β
T
nX̌n)

T
.

We next write D=(DTsignal,D
T
null)

T,whereDsignalis aK1×p

matrix,Dnullis aK0×pmatrix, andK=K0+K1.Supposethat
the true coeicients,βn= (β1,...,βp)

T,satisfyDnullβn= 0,

that is,dTkβn= 0, fork= K1+1,K1+2,...,K.Intermsof
Dsignal,weimposenoconstraintonitsshapeorrank.
For any positive semideinite matrixA=(aij), we deine

A2= maxx2≤1 Ax2and x2= x2ifor any vector

x=(xi).
We impose the following assumptions on Dandρ(t,λ)=

pλ(t)/λ.

Assumption 2.1. ζ+min(DnullD
T
null)≥ cand max1≤k≤K dk2≤

Cfor some constantsc,C> 0, whereζ+min(DnullD
T
null)denotes

the smallest nonzero eigenvalue ofDnullD
T
null.

Remark 2.2. Assumption 2.1is met by our design ofDin (2.2)
asζ+min(DnullD

T
null)≥1andmax1≤k≤K dk2≤

√
2.

Assumption 2.2. (1)ρ(t,λ) is increasing and concave in
t∈[0,∞);(2)ρ(t,λ)is diferentiable int∈ (0,∞)with
ρ(0+,λ) >0; and (3) ifρ(t,λ)is dependent onλ,ρ(t,λ)
is increasing inλ∈(0,∞)andρ(0+)is independent ofλ.

Remark 2.3. Assumption 2.2 describes the characteristics of
a folded concave function class; see, for example, Lv and Fan
(2009) and Fan and Lv (2011). Popular examples of folded
concave functions include SCAD (Fan and Li2001)and MCP
(Zhang2010). Our numerical examples uses SCAD as represen-
tative of the folded concave penalty function family.

We deine sn=p−rank(Dnull). Weregardsnas the nonsparsity
coeicient, which is a natural extension of the nonsparsity coef-
icient for standard penalized regression whenDis an identity
matrix. The deinition of snis in line with that of the degrees
of freedom for generalized lasso (Tibshirani and Taylor2011,
2012). The true model is considered to be sparse in the sense
thatsn n. The sparsity of the model comes from two sources.
Onesourceofsparsityisthelargecovariatespaceinwhichthere
can be many irrelevant variables. In real applications, for exam-
ple, investment agencies collect a large number of covariates,
although only a small proportion of the variables are useful.
The sparsity that comes from high-dimensional covariates is the
usual notion of model sparsity discussed in the literature. In
addition, we assume sparsity on the treatment efect diference
between adjacent action levels. This is essentially to assume
that the efect of continuous action exhibits smoothness; hence,
whenLnis large, many adjacent action levels have roughly the
same treatment efect. This is sensible in real applications. For
example, in asset allocation, when there are small changes in
stock ratio, utility would not vary drastically.
Letgn = 2

−1min{|dTjβn|,d
T
jβn = 0}be half of the

minimum signal. We impose the following assumptions.

Assumption 2.3. gn λn max(
√
sn/n, (logp)/n),max(sn,

logp)=o(n),andpλn(gn)=omin(n
−1/2s

−1/2
n ,n−1/2K−11 s

1/2
n ).

Assumption 2.3 states that the minimal signal should be
suicientlylargetobedistinguishablefromthenoise.Ifgn
decreases asLngrows, the minimal signal condition would
constrain the number of discretization levels that we are able
to handle. Asymptotically,Lncan beO(n

ς)for someς <1/3.
In Appendix A of the supplementary materials, we discuss the
rate ofLnunder a varying coeicient example. We illustrate
the choice ofLnwith our practical example in Section 4.1.
Additional regularity conditions (Assumptions C.1–C.4) are in
Appendix C of the supplementary materials.
We summarize the proposed approach for continuous-action

decision-making: Discretization and Regression with general-
ized fOlded concaVe penalty on Efect discontinuity (DROVE)
as follows.

AlgorithmDROVE

Step I. Discretize the action support into a series of gridsA(1)<
···<A(Ln)withLngrowing withn,andLn=O(n

ς)for some
ς <1/3.
Step II. Perform the penalized regression with the generalized
folded concave penalty on efect discontinuity, (2.2), and
obtain the estimated value functionQn(X,A). The GLLN
algorithm to be introduced inSection 3.1canbeusedtosolve
(2.2).
Step III. The estimated optimal decision making isπ∗n(X):=
min{A:Qn(X,A)=maxA(1)≤A≤A(Ln)Qn(X,A)}for an indi-
vidual with characteristicsX,andtheoptimalvaluefunction

isQ∗n(X):=ψ
T
0X+max 0,(ψ

T
kX)k=2,...,Ln .

3. Statistical Properties

In this section, we present the statistical properties of the pro-
posed DROVE methodology for continuous-action decision-
making. The proofs are in Appendix E of the supplementary
materials.

3.1. Theoretical Properties of Coeicient Estimation

The following theorems give the statistical properties of our
coeicient estimator.

Theorem 3.1. UnderAssumptions 2.1–2.3, C.1, and C.2, there

exists a strict local maximizerβn=(ψ
T
0,ψ

T
2,...,ψ

T
Ln
)Tof the

penalized likelihood functionLn, which satisies

P(ψZ0=0)→ 1asn→ ∞, and βn−βn2=Op( sn/n),

whereψZ0 = (ψi,j)(i,j)∈Z0,Z0 ={(i,j):ψi,j= 0,i=
0, 2,...,Ln,1≤j≤d}. In addition,

PDnullβn=0 → 1asn→ ∞, and θn−θn2=Op( sn/n),
(3.1)

whereθn= M
−1βnandθn= M

−1βnfor the transformation
matrixM deined in (B.2) in Appendix B.

Theorem 3.2. Under the assumptions of Theorem 3.1 and
Assumption C.3, with probability tending to 1 asn → ∞,
the local maximizer inTheorem 3.1satisies

√
n n(βn−βn)

D
−→N(0,φG),
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where nis aq×pmatrix,q≤snand ixed,n nU0B
−1
nU

T
0
T
n→

G,Gis aq×qpositive deinite matrix, G2= O(1),U0and
Bnare deined in (B.1) in Appendix B and Assumption C.3,
respectively.

In practice, the covariance matrixφGneeds to be estimated.
Following the conventional technique (e.g., that of Fan and Li
2001),weestimatethevarianceusingthefollowingsandwich

formula:n nU0B
−1
n

n
i=1(ziz

T
iε
2
i)B

−1
nU

T
0
T
n, whereU0

is the orthogonal matrix that spans the null space ofDnull,
Dnullis the sub-matrix ofD, which satisiesDnullβn = 0,
Bn = X

T
signal (̌Xβn)Xsignal,Xsignal=(z1,...,zn)

T=X̌U0,

and (δ)=diagb(δ1),...b(δn)for anyδ∈R
n.

According toTheorems 3.1and3.2, our coeicient estimator
achieves the oracle property in that it identiies the true model
with probability tending to one and enjoys strong consistency
property.
Next, with regard to implementation, we introduce the fol-

lowing generalized local linear approximation (GLLA) algo-
rithm, which is a generalization of the LLA algorithm (Zou and
Li2008;Fan,Xue,andZou2014).

AlgorithmGeneralized local linear approximation (GLLA)

Step I. Initializeβ
(0)
n = β

init
n ,and

(0)
= ϑ

(0)
1,ϑ

(0)
2,...,

ϑ
(0)
K
T
,whereϑ

(0)
k = w

(0)
kdk,andw

(0)
k = ρλn(|d

T
kβ
(0)
n|)

for 1≤k≤K.

Step II. Form=1,2, …,repeatthefollowingtillconvergence.

1. Solveβ
(m)

n = arg maxβnln(βn)−λn
(m−1)

βn1,where
·1denotes the 1vector norm, such that w1=
n
i=1|wi|for anyw=(w1,...,wn)

T.

2. Update
(m)
= ϑ

(m)
1 ,ϑ

(m)
2 ,...,ϑ

(m)
K

T
,whereϑ

(m)
k =

w
(m)
k dk,andw

(m)
k =ρλn(|d

T
kβ
(m)

n |)for 1≤k≤K.

Assumption 2.2’. ρ(0+,λ)≥a1;ρ(t,λ)≥a1fort∈(0,a2λ);
ρ(t,λ)=0fort>aλwith constantsa>a2>0, anda1>0.

Remark 3.1. Assumption 2.2’ holds for the folded concave
penalty, such as SCAD and MCP.

Proposition 3.1gives the property of the GLLA algorithm.

Proposition 3.1. Under the assumptions of Theorem 3.1and

Assumption 2.2’, assume that the oracle estimatorβninThe-
orem 3.1is unique. In addition, assume that

max
sn+1≤j≤p

|θinitnj|≤a2λn, and  min
1≤k≤K1

|dTkβ
init
n |≥aλn,

(3.2)

fora2andadeined inAssumption 2.2’andθ
init

n = M−1β
init

n .
Then with probability tending to 1, the GLLA algorithm initial-

ized byβ
init
n inds the oracle estimatorβnater one iteration.

Remark 3.2.One potential choice of the initial value is the gen-
eralized lasso estimator, which uses1penalty. The algorithm

for solving generalized lasso problem is discussed in Tibshirani
and Taylor (2011) and Arnold and Tibshirani (2016). When
D=I, the error bound exists for standard lasso estimator under
proper designs; see (C1) and Corollary 3 in Fan, Xue, and Zou
(2014).

About the computation cost of the algorithm, in particular
the computation complexity with respect toLn,heuristically,the
generalized lasso needsO(max(K2n,Kn2))operations; see, for
example, Tibshirani and Taylor (2011). The total computation
costs of Steps I and II, therefore, areO(max(dLn,n)dLnn)and
O(max(dLn,n)dLnn), respectively. In practice, the maximum
iterations can be set asO(logn)and the algorithm converges
fast within a few iterations. The total computation cost of the
algorithm isO (logn)max(dLn,n)dLnn,whichispolynomial
inLn, implying that the algorithm is scalable to high dimensions.

3.2. Optimal Value Estimation and Inference

One important advantage of our DROVE approach is that it
allows for proper inference of the value associated with a deci-
sion rule, in particular, the optimal decision that achieves the
maximum value.
LetXbe the personal characteristic vector that belongs to the

testing population. We use a diferent notation,X,todistinguish
the testing population from the estimation sampleXand stress
thatX is independent ofY. Suppose that the value function
(2.1)holdsforX;thus,itfollowsthatE(R|X,A)= Qn(X,A).
Letπ∗n(·)denote the optimal decision, and letQ

∗
n(·)denote the

optimal Q-function associated withπ∗n(·). More formally,

π∗n(X):=min{A:Qn(X,A)= max
A(1)≤A≤A(Ln)

Qn(X,A)}, (3.3)

Q∗n(X):=ψ0
TX+max 0,(ψk

TX)k=2,...,Ln .  (3.4)

Suppose thatX ∼ F,andtheoptimalvalueisEQ∗n(X) =
Q∗n(X)dF(X). The expectation is taken over the distribution
of the testing populationXgiven the working modelQn. More
generally, for any given decision ruleπ(·):Rd→[0, 1]and

forX ∈Rd,weuseX̌πto denote a length-pvector

X̌π= (X)
T,(X)T·1{π(X)∈[A(2),A(3))},...,

(X)T·1{π(X)∈[A(Ln),A(Ln+1))}
T
.  (3.5)

Using the notation in (3.5), the optimal Q-function isQ∗n(X)=

βn
TX̌π∗n,andtheoptimalvalueis:EQ

∗
n(X)= Q

∗
n(X)dF(X)

=βn
T X̌π∗ndF(X)=βn

TE(̌Xπ∗n).
LetPN(·)denote the empirical mean measure for a sample of

sizeN:PN(ω)=
N
i=1ωi/Nfor anyω= (ωi)1≤i≤N.Givena

testing sample of sizeN,(Xi)1≤i≤N∼F,weestimatetheoptimal
value by

PNQ
∗
n(X)=

1

N

N

i=1

Q∗n(Xi)=β
T
n

1

N

N

i=1

X̌i,π∗n =β
T
nPN(̌Xπ∗n),

(3.6)
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where

π∗n(X):=min{A:Qn(X,A)= max
A(1)≤A≤A(Ln)

Qn(X,A)}, (3.7)

Q∗n(X):=ψ
T
0X+max 0,(ψ

T
kX)k=2,...,Ln .  (3.8)

Remark 3.3.To estimate and make inference about the optimal
value,weusethetestingsamplethatisdistinctfromthe Q-
function estimation sample. This approach is similar in spirit
to the sample-splitting method in machine learning literature
andisadvocatedby manyrecentstudiesontreatmentefect
evaluation, such as Chernozhukov et al. (2017), Wager and
Athey (2018), and Athey and Wager (2019). The sample-
splitting reduces bias and facilitates the valid inference of the
optimal value. A discussion about the results of optimal value
estimation using the estimation sample is in Appendix D of the
supplementary materials. On the other hand, because we are
mostly interested in predicting the decision-making efect on
a broad population that extends beyond the estimation sample
for which the decision-making efects are observable, it is also
practically reasonable to use the testing sample to evaluate the
efect of optimal decision-making.

Assumption 3.1. Assume

1.sn=o(n
δ1)andLn=o(n

δ2)for someδ1,δ2>0, and 2δ1+
δ2<1.

2.(Xj)1≤j≤Nare iid and independent ofY,EQ
∗
n(X)

2 < ∞,

n= O(N),andN = O(nM)for someM > 1. There exist
some constantsr0,r1andr2>0, for anyt>0,P(|χj|>t)≤

r0exp(−r1t
r2)for all 1≤j≤d,whereX =:(χ1,...,χd)

T.

For the statistical inference of the optimal value, we further
impose regularity condition; see Assumption C.4 in Appendix C
of the supplementary materials.
Theorem 3.3gives the asymptotic distribution of the esti-

mated optimal value.

Theorem 3.3. Under the assumptions of Theorem 3.1 and
Assumption 3.1,withprobabilitytendingto1asn,N→ ∞,
thePNQ

∗
n(X)deined in (3.6) satisies

(i)

PNQ
∗
n(X)−EQ

∗
n(X)=op(1).  (3.9)

(ii) If, in addition, 2δ1+ δ2 < 1/2, Assumptions C.3

and C.4 hold, limn→∞ nEX̌
T
π∗n
U0B

−1
nU

T
0EX̌π∗nφ = σ

2
1

and limn,N→∞ varQ
∗
n(X)n/N = σ

2
2for some constants

σ1>0,σ2≥0. Letσ
2
∗=σ

2
1+σ

2
2,then

√
nPNQ

∗
n(X)−EQ

∗
n(X)

D
−→N(0,σ2∗).  (3.10)

In practice, in order to applyTheorem 3.3to perform fea-
sible statistical inference, we need to estimate the variance. We
estimate the variance using the following sandwich formula:

σ2∗=nPNX̌
T
π∗n
U0B

−1
n

n

i=1

(ziz
T
iε
2
i)B

−1
nU

T
0PNX̌π∗n

+varQ∗n(X)n/N, (3.11)

wherePNX̌π∗nandvarQ
∗
n(X)are the sample mean ofX̌π∗nand

sample variance ofQ∗n(X),respectively,basedonthetesting
sample(Xj)1≤j≤N.

Remark 3.4. OurTheorems 3.1and3.3are established for the
continuous-action decision making in which the discretization
levelLn→ ∞ and hence require intrinsically diferent method-
ological design and novel mathematical treatment than existing
studies on the binary case (e.g., Shi, Song, and Lu2016). We
device a innovative DROVE approach, and obtain a new result
(3.1)inTheorem 3.1, which ensures that the adjacent treatment
levels can be identiied. Unlike Shi, Song, and Lu (2016), we
work under the assumptions for transformed design matri-
ces and transformed parameters (Assumptions C.1–C.3). More
essentially, we consider a more relaxed constraint on the general
penalty matrixD. We use a partial reparameterization technique
to show the statistical properties of DROVE; see Appendix B of
the supplementary materials for more details.

Remark 3.5.For continuous action, there exists no nonparamet-
ric/semiparametric approach that yields a

√
n-consistent esti-

mator of efect curve without imposing parametric assumptions;
see, for example, the discussion in Kennedy et al. (2017). In
this study, on the other hand, we focus on the high-dimensional
parametric model (2.1), in which the parameter space is sparse
in the general sense, hence, our approach recovers the true
sparse model consistently. In addition, we allow the discretiza-
tion levelLnto diverge slowly withn,suchthatLns

2
n= o(

√
n),

under which setting, inference of the optimal value is obtainable.

In addition to the optimal value, our approach also allows for
inference of the value diference between the optimal decision
andagivendecisionrule.Foragivendecisionrule,say,π(·):
Rd→[0, 1], the associated Q-function and the value ofπ(·)are
Qn(X,π)=ψ0

TX+ Ln
k=2ψk

TX·1{π(X)∈[A(k),A(k+1))},and

EQn(X,π) = Qn(X,π)dF(X)=βn
TE(̌Xπ).  (3.12)

The value diference between π∗n andπ isEQ
∗
n(X) −

EQn(X,π),whichisalsocalledtheregretofthepolicyπ;
see, for example, Athey and Wager (2019).
We estimate the value associated with π(·)usingPNQn(X,π),

that is,

PNQn(X,π)=
1

N

N

i=1

QnXi,π(Xi) =β
T
nPN(̌Xπ), (3.13)

andweestimatethevaluediferencebetweenπ∗nandπusing
PNQ

∗
n(X)−PNQn(X,π).
Proposition 3.2gives the asymptotic distribution of the esti-

mated value diferencePNQ
∗
n(X)−PNQn(X,π).

Proposition 3.2. Under the assumptions of Theorem 3.1and
Assumption 3.1,givenadecisionruleπ(·):Rd → [0, 1],
with probability tending to 1 asn,N → ∞,thePNQ

∗
nand

PNQn(X,π)deined in (3.6)and(3.13)satisfy
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(i)

PNQ
∗
n(X)−PNQn(X,π)− EQ

∗
n(X)−EQn(X,π) =op(1).

(ii) If, in addition, 2δ1+δ2< 1/2, Assumptions C.3 and C.4

hold, limn→∞ nE(̌Xπ∗n−X̌π)
TU0B

−1
nU

T
0E(̌Xπ∗n−X̌π)φ=

σ21,andlimn,N→∞ varQ
∗
n(X)−Qn(X,π) n/N=σ

2
2for

some constantsσ1> 0, andσ2≥ 0. Letσ
2
∗,π= σ

2
1+σ

2
2,

then
√
nPNQ

∗
n(X)−PNQn(X,π)− EQ

∗
n(X)−EQn(X,π)

D
−→N(0,σ2∗,π).

Similar to (3.11), we can esimateσ2∗,πusing the following
sandwich formula

σ2∗,π=nPN(̌Xπ∗n−X̌π)
TU0B

−1
n

n

i=1

(ziz
T
iε
2
i)B

−1
nU

T
0PN(̌Xπ∗n−X̌π)

+varQ∗n(X)−Qn(X,π)n/N,  (3.14)

wherePNX̌πandvarQ
∗
n(X)−Qn(X,π) are the sample mean

ofX̌πand sample variance ofQ
∗
n(X)−Qn(X,π),respectively.

4. Simulation Study

4.1. Simulation Setup

We generate data from the model Y = ψT0X+
Ln
k=2ψ

T
kX·

1{A=A(k)}+εand calibrate the parameters based on the empirical
data as described inSection 5. Speciically, the covariatesXis
a vector of length 9 and randomly drawn from the personal
characteristics that are used in the Q-learning estimation in the
empirical study, which includes three binary variables, two cat-
egorical variables, three continuous variables and one intercept
term.
We divide the continuous action interval [0, 1]into 11 dis-

crete levels, that is,Ln=11. The stock ratioAifor eachXiis
randomly assigned from{0, 0.1,...,1}with equal probability.
The choice ofLnis the same as that in the empirical studies.
Empirically, in order to balance the applicability of the method-
ologywiththeapproximationaccuracyoftheworking model,
thechoiceofLntakes both the theoretical rate and the common
practice into consideration. For example, in our personalized
asset allocation study using the HRS data, the training sample
size isn = 2000,n1/3≈ 13, and we chooseLn = 11. On
the other hand, it is a common practice for mutual funds to
use a 10% incrementation and make 0%, 10%, 20%, …, 100%
recommendations.1We i l lust rate t he cas e w hen Ln = 20 in
AppendixGofthesupplementarymaterials. Whenalargernis
available, nice numerical properties can be expected for a larger
range ofLn.
The Q-function parameters are learned from the empiri-

cal study and with hard thresholding (see Appendix F of the
supplementary materials for a full description). The number

1See:https://institutional.vanguard.com/assets/pdf/vrpa/InvestorQuestionn
aireAssetAllocationInsert.pdf.

of coeicients is thereforep=11×9=99. The noise,ε,is
generated fromN(0, 0.52). Wedesignthegeneralizedpenalty
matrix D = (DTsignal,D

T
null)

Taccording to (2.2). Theβn =

(ψT0,ψ
T
2,...,ψ

T
Ln
)Thas 55 zeros, and rank(Dnull)=76, thus,

the nonsparsity coeicient issn= 99−76= 23. The minimal
signal isgn=0.4.

4.2. Simulation Results

We estimate the model using the DROVE method. For com-
parison, we also evaluate the results using the standard lasso
(std-lasso) and standard scad2(std-scad). We also present the
results of the infeasible oracle estimator. The oracle solution
is obtained by performing a least squares regression of the
responseYoverXsignal,asdeinedin(C.2)inAppendixC.The

regressionyieldstheoracletransformedestimatorθn,andthe
oracle estimatorβnis obtained by the transformationβn =
Mθn. The tuning parameters are chosen by minimizing the
validation error.
We conduct 500 independent replications with the sample

sizesn=2000 andn=3000. We evaluate the coeicient esti-
mation accuracy of various methods by the 2and1errors, and
measure the parameter selection accuracy by the false positive
rate (FP/N, the number of all false positives divided by that of all
total negatives inβn), and false negative rate (FN/P, the number
of all false negatives divided by that of all total positives inβn).
The total negatives (N) and the total positives (P) inβnare 55
and 44, respectively. For counting the false positives and false
negatives, we set the threshold level to be 10−4. The results are
inTable 1.TheresultsshowthatourDROVEestimatorhasthe
lowest estimation error among all compared methods.
Next, we estimate the optimal value and construct its coni-

dence interval (CI). According toTheorem 3.3, the conidence
interval of the optimal value at a signiicance levelα>0
isPNQ

∗
n(X)±σ(PNQ

∗
n)×N

−1(1−0.5α),whereN(·)is the
cumulative distribution function of the standard normal distri-
bution,σ(PNQ

∗
n)=σ

∗
n/
√
n. The feasible variance estimator in

(3.11) is used. The estimation sample sizes aren=2000 and
3000, and the testing sample sizes areN = 5000 and 15,000.
The testing sample is randomly generated independently based
on empirical data of the personal characteristics.Table 2reports
the estimated optimal and empirical coverages of 90%, 95%,
and 99% CI from 500 replications. The results suggest that
the estimated optimal value is close to the actual one and the
estimated CIs show good accuracy. When the estimation sample
size increases from 2000 to 3000, the empirical coverage goes
closer to the nominal one.
Finally, we construct conidence intervals for the diference

between the optimal value and the value of a pre-speciied
decision ruleπ(·). We build conidence intervals according to
Proposition 3.2and use the feasible standard deviation esti-
mator in (3.14). We calculate the empirical coverage from 500
replications. The results are inTable 3. The results show that the

2Existing approaches for the decision-making problem under the high-
dimensional setting focus on binary problems, among which one of the
most comparable to ours is Shi, Song, and Lu (2016), who use the SCAD
estimator to it Q-function. The std-scad estimator we evaluate, therefore,
can be considered as an ad-hoc extension of Shi, Song, and Lu (2016)by
discretization to the continuous-action setting.

https://institutional.vanguard.com/assets/pdf/vrpa/InvestorQuestionnaireAssetAllocationInsert.pdf
https://institutional.vanguard.com/assets/pdf/vrpa/InvestorQuestionnaireAssetAllocationInsert.pdf
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Table 1.Coeicient estimation and parameter selection accuracy of various meth-
ods.

Error Oracle  DROVE  std-scad  std-lasso

n=2000

βn−βn2 1.683(0.322) 4.370(0.986) 4.844(0.788) 5.348(0.904)

βn−βn1 8.158(1.628) 24.054(7.083) 29.113(6.089) 37.195(6.034)
FP/N –  0.148(0.083) 0.242(0.109) 0.740(0.082)
FN/P –  0.135(0.070) 0.177(0.069) 0.073(0.046)

n=3000

βn−βn2 1.348(0.239) 3.221(0.862) 3.909(0.723) 4.344(0.699)

βn−βn1 6.558(1.225) 16.486(5.648) 23.033(5.555) 30.466(4.964)
FP/N –  0.095(0.076) 0.237(0.118) 0.772(0.074)
FN/P –  0.094(0.068) 0.124(0.062) 0.042(0.035)

NOTE: Coeicient estimation accuracy is measured by the 2and1errors, and
parameter selection accuracy is measured by the false positive rate (FP/N) and
false negative rate (FN/P). We report the mean and standard deviation (in paren-
theses) from 500 replications.

Table 2.Estimated optimal value and empirical coverage of conidence intervals
for the optimal value.

(n,N)  (2000,5000)  (2000,15,000)  (3000,5000)  (3000,15,000)

Estimates E(Q∗n)=0.667

PNQ
∗
n 0.665  0.663  0.664  0.667

σ(PNQ
∗
n) 0.024  0.023  0.020  0.019

Coverage
90% CI  0.838  0.828  0.874  0.864
95% CI  0.898  0.896  0.932  0.928
99% CI  0.958  0.952  0.988  0.990

NOTE: The estimation sample sizes aren = 2000 and 3000, and the testing
sample sizes areN =5000 and 15,000. The results are the empirical coverage
of 90%, 95% and 99% CI from 500 replications, together with the mean of the
estimated optimal values,PN(Q

∗
n), and the mean of the estimated standard

deviations,σ(PNQ
∗
n).

estimated value diference is close to the true one for diferent
estimation sample sizes and testing sample sizes. Moreover,
the estimated CIs exhibit good accuracy. When the estimation
sample size increases from 2000 to 3000, the empirical coverage
of the conidence interval goes closer to the nominal level.
More simulation examples under diferent simulation set-

tings with various nonsparsity degreesnand various choices
ofLnare in Appendix G of the supplementary materials. The
resultsshowrobustnessintheperformanceofourestimator
under various settings.
In summary, the simulation results show that our proposed

methodology gives rise to better model estimation accuracy
than the standard penalized regression when sparsity occurs
to the linear projection of the coeicients. Our approach also
allows for valid inferences of the optimal value and value difer-
ences using the feasible variance estimator, which performs well
in terms of empirical coverage.

5. Empirical Study

5.1. Individualized Asset Allocation Optimization

We study the asset allocation optimization problem under a
consumption-based utility framework. Speciically, we adopt
the additive utility with constant relative risk aversion (CRRA,
e.g., Hall1978). The utility has the formU(C1,C2,...,CT)=

Table 3.Estimated value diferences and the empirical coverage of conidence
intervals for the value diference between the optimal decision and pre-speciied
decision rules.

(n,N) (2000,5000) (2000,15,000) (3000,5000) (3000,15,000)

Estimates E(Q∗n)−E(Qn,π1)=1.037

PNQ
∗
n−PNQn,π1 1.034  1.030  1.039  1.040

σ(PNQ
∗
n−PNQn,π1) 0.032  0.030  0.026  0.025

Coverage
90% CI 0.830  0.816  0.856  0.844
95% CI 0.896  0.888  0.914  0.902
99% CI 0.958  0.954  0.978  0.978

Estimates E(Q∗n)−E(Qn,π2)=1.734

PNQ
∗
n−PNQn,π2 1.736  1.732  1.730  1.733

σ(PNQ
∗
n−PNQn,π2) 0.036  0.036  0.030  0.029

Coverage
90% CI 0.846  0.846  0.866  0.862
95% CI 0.902  0.908  0.928  0.920
99% CI 0.962  0.958  0.988  0.988

NOTE: The estimation sample sizes aren=2000 and 3000, and the testing sample
sizes areN=5000 and 15,000. The results are the empirical coverage of 90%, 95%
and 99% CI from 500 replications, together with the mean of the estimated value
diferencePNQ

∗
n−PNQn,πand the mean of the estimated standard deviation

σ(PNQ
∗
n−PNQn,π).

T
t=1γ

tu(Ct),whereCtis the consumption at timet,u(C)=
C1−ρ/(1−ρ),ρis the risk aversion parameter that relects the
sensitivity of utility to the randomness in the income, andγis
the discount rate (set as 0.96; see, e.g., Gourinchas and Parker
2002). The consumption evolves according to the net incomeIt
and wealthWtconstraintIt−Ct=Wt+1−Wt.Theobjective
is to maximize the expected utility by choosing the optimal
proportion of the total inancial asset invested in stocks, that is,
the stock ratio,A. The utility optimization problem spans the
preceding ive years (i.e.,T=5).
Formally, the optimal stock ratio solves the following opti-

mization problem3:π∗(X) = argmaxA∈[0,1]EU(C1,C2,...

C5|X,A),whereXis the personal characteristics. The asset
allocation decisionAdetermines the distribution of income and
consequently inluences the dynamics of wealth and consump-
tion. We consider randomness in income from not only the
inancial returns but also from other sources such as wages and
medical expenses, the distributions of which vary from individ-
ual to individual. Furthermore, the risk aversion parameterγ
also difers between individuals and relates to their personal
characteristics.

5.2. Data

We use the Health and Retirement Study (HRS) data from 1992
to 2014. HRS is a national-level longitudinal survey of more
than 22,000 U.S. residents over the age of 50. We include key

3In this exploratory study, we consider a simpliied situation where utilities
are only determined by the consumption within the next ive years. This
does not mean, however, that individuals do not care what happens after
ive years. In fact, in our model, consumption is considered optimal with
respect to wealth, in particular,C5depends onW5. An individual’s prefer-
ence for a highC5is typically consistent with a highW5, which means that
one does care about having enough savings for ive years later. In future
works where multi-stage decision-making is studied, this would become
even less an issue.
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variables on households inance (e.g., total inancial wealth,
value of stocks held and income) and individual characteris-
tics (e.g., age, marital status, education level, health condition
andworkingstatus)inouranalysis. Wealsoincorporatethe
Consumption and Activities Mail Survey (CAMS) data that
contain consumption information, which began in 2002, com-
plementing the HRS. The CAMS data cover approximately 6800
people, which is a subset of respondents covered in the HRS
data. The relevant variable in CAMS that we incorporate in
our analysis is the nondurable consumption. The raw HRS and
CAMS data are noisy and contain many missing observations.
In addition, the observed stock ratios are concentrated around
zero. Instead of using the raw data, we use pseudo observations
that are randomly generated from models of trajectory paths for
consumption and income. We also learn risk aversion parame-
ters by matching observed investment proiles with individual
characteristics. Details of the model-based random experiment
generation are in Appendix H of the supplementary materials.

5.3. Statistical Learning Implementation and Results

We conduct the analysis based on three samples: estimation sam-
ple,evaluation sample,andtesting sample. For the observations
that are covered by both CAMS and HRS, we split them into
an estimation sample and an evaluation sample. The estimation
of the Q-function is performed on theestimation sample,which
contains 2000 observations. The model itting is evaluated on
theevaluation sample, which includes 1000 observations. We
put all the 15,000+ observations that are not used for the model
estimation in thetesting sample, which includes those that are
not covered by CAMS. Thetesting sampleis used in evaluating
the value of strategies.

5.3.1. Q-function Estimation
We include the following covariates in the Q-function (2.1):
gender, education, unhealthiness, working status, marital status,
age, household wealth, income, and an intercept term, thus,
d=9. We follow the common practice in asset allocation appli-
cations and adopt the 0.1 incrementation in stock ratios. The
stock ratios are divided into 11 levels 0, 0.1,..., 1 (i.e.,Ln=11).
The total number of coeicients is thereforep=9×11=99.
All covariates are standardized to have a mean of 0 and standard
deviation of 0.1. For each individualiin the estimation sample,
we randomly assign a stock ratioAi(0, 0.1, …, 1) and perform
the model-based random experiments. We set the utility reward
variableYito be a Gaussianized score based on the rank of
the average utility achieved byAiwithin all stock ratio levels;
see Appendix H.3. We estimate the value function (2.1)using
these 2000 observations in the estimation sample. The details
of the personal characteristics included in the model and the
estimated model coeicients are in Appendix I of the supple-
mentary materials.
We then check the goodness of it of the model on the eval-

uation sample of size 1000. The evaluation sample is diferent
from the estimation sample but within the subset covered by
theCAMSthathasconsumptioninformation,andhencethe
utility scores are obtainable. The out-of-sampleR2is 31.4% (in-
sampleR2: 45.0%), suggesting a good it.

Table 4.Performance of various strategies.

Strategy PNQn,π PNQ
∗
n−PNQn,π 95% CI of (EQ∗n−EQn,π)

πobs 0.216  0.403  0.328  0.479
π0 0.303  0.316  0.227  0.406
π0.1 0.238  0.381  0.268  0.493
π0.2 0.244  0.375  0.273  0.477
π0.3 0.272  0.347  0.255  0.439
π0.4 0.267  0.352  0.250  0.454
π0.5 −0.382  1.001  0.857  1.145
π0.6 −0.334  0.953  0.816  1.091
π0.7 −0.362  0.981  0.841  1.121
π0.8 −0.374  0.993  0.850  1.137
π0.9 −1.089  1.708  1.546  1.870
π1.0 −1.079  1.698  1.541  1.855
π∗n 0.619 – – –

NOTE: This table gives the results of the value comparison among the estimated
optimal strategy, (π∗n), observed strategy, (πobs), and ixed strategies, (πj= j,
j=0, 0.1,..., 1). The values are the estimated value (i.e., the average estimated
utility reward) for various strategies,PNQn,π, the estimated value improvement

when using the optimal strategy over the benchmark strategies,PNQ
∗
n−PNQn,π,

and the 95% CIs of the value diferenceEQ∗n−EQn,π. The model estimation uses a
random estimation sample of 2000. The testing sample comprises the remaining
15,000+ observations in the HRS from distinct individuals.

5.3.2. Strategy Performance
We evaluate the performance of our estimated individualized
optimal asset allocation on the testing sample (N≥15, 000).
The testing sample contains the individuals in HRS who are
not included in the estimation sample. Because most obser-
vationsofthetestingsamplearenotcoveredbyCAMS,con-
sumption information is scarce. Nevertheless, because our inal
Q-function does not include the consumption variable, using
the estimated Q-function, we can evaluate the performance of
various strategies on the testing sample.
We compare the performance of our individualized optimal

asset allocation strategy4π∗nwith the following benchmark
strategies: (a) we assign the same ixed (0, 0.1, …, 1) stock
ratio to all individuals, a strategy denoted byπj= j,j=
0, 0.1, 0.2,..., 1; (b) we assign the originally observed stock
ratio, which is denoted byπobs.
For each strategy, we compute the estimated policy value

PNQn,π = N
i=1Qn(Xi,π(Xi))/N. We construct CIs for

E(Q∗n)−E(Qn(X,π))according toProposition 3.2.Theresults
are inTable 4.
The results inTable 4suggest that our individualized opti-

mal asset allocation decisions substantially improve over the
benchmark strategies in terms of policy values. Compared to
the observed stock ratios, the individualized strategy improves
the average utility reward from 0.216 to 0.619. It also yields an
average utility reward that is 0.316–1.708 greater, relative to the
ixed strategies. The 95% CIs of the value diferences are away
from zero, suggesting that the individualized optimal strategy
achieves a signiicantly higher value compared with the values
of the observed and ixed strategies. This result demonstrates
the importance of individualization in asset allocation.

4The proposed strategy is based on the DROVE estimator we develope. We
also evaluated the strategy based on standard SCAD estimator (std-scad)
used in Shi, Song, and Lu (2016) by direct discretization to the continuous-
action setting. Compared to the std-scad strategy, our DROVE approach
achieves a higher average value (0.619 vs. 0.597), and the diference
between the two is statistically signiicant.
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A low proportion of households participate in the equity
market; few of them hold stocks (e.g., Hong, Kubik, and Stein
2004;Campbell2006). We also ind a low participation in equi-
ties. Notably, when adopting the optimal strategy, stock market
participation increases from 38% to 63%; see Appendix J of the
supplementary materials for more details. These results show
that our optimal individualized strategy improves the inancial
well-being of the population and it entails a higher stock market
participation on average, which indicates a healthier and more
active stock market.

6. Conclusion and Discussion

We develop a high-dimensional statistical learning methodol-
ogy for continuous-action decision-making with an important
application in individualized asset allocation. We show that our
DROVE approach enjoys consistency in the model coeicients
estimation. Moreover, our approach achieves valid statistical
inference on the optimal value. Empirically, we apply the pro-
posed methodology to study the individualized asset allocation
problemusing HRSandCAMSdata. Underaconsumption-
based utility framework, our individualized optimal asset allo-
cation strategy substantially improves the inancial well-being
of the population. The outperformance of our individualized
optimal strategy over the ixed stock ratio strategies highlights
the beneit of individualization.
The statistical learning framework developed in this article

has broad implications. Methodologically, our approach can be
extended to the study of stochastic policies, which can have
advantages for problems with partially observed states (e.g.,
Singh, Jaakkola, and Jordan1994) and be of interest for applica-
tions such as mobile health under ininite horizon settings (e.g.,
Luckett et al.2019; Liao, Klasnja, and Murphy2021). Another
important direction is to extend our framework from the single
period to multiple-period decision-making. For multiple-stage
problems,onepotentialapproachwouldbeto modelthe Q-
function for each stage using the method developed in this
article and then perform a backward recursive procedure to
obtain the optimal dynamic decisions. About estimation and
inferenceoftheoptimalvalue,challengesariseinthemulti-stage
problem given that the estimation errors in the optimal rule and
theassociatedoptimalvalueinthelatterstagecarryovertothe
former stages. In terms of application, for example, not limited
to the setting exercised in this article, the framework can be
readily applied to achieving other wealth management objec-
tives, such as post-retirement saving adequacy. The framework
can also be extended to the study of multi-class asset allocation,
and to incorporate dynamic prediction models of mean and
volatility of inancial returns.

Supplementary Materials

The online supplementary materials contain the additional assumptions,
proofs of the main results in the article, and additional discussions on the
theoretical and numerical results.
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