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ON A FAMILY
OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS:
FROM FRACTIONAL LAPLACIAN TO NONLOCAL MONGE-AMPERE

Luis A. CAFFARELLI AND MARIA SORIA-CARRO

We introduce a new family of intermediate operators between the fractional Laplacian and the nonlocal
Monge—Ampere introduced by Caffarelli and Silvestre that are given by infimums of integrodifferential
operators. Using rearrangement techniques, we obtain representation formulas and give a connection to
optimal transport. Finally, we consider a global Poisson problem prescribing data at infinity, and prove
existence, uniqueness, and C'-!-regularity of solutions in the full space.

1. Introduction

Integro-differential equations arise in the study of stochastic processes with jumps, such as Lévy processes.
A classical elliptic integrodifferential operator is the fractional Laplacian

1
A’u(xg) =cps PV/ (u(xg+x) —u(xg))——=—dx, se(0,1),
Ry || +28

which can be understood as an infinitesimal generator of a stable Lévy process. These types of processes
are very well studied in probability, and their generators may be given by

Lgu(xo) = | (u(xo+x)—u(xo) —x - Vu(xo))K(x)dx,
R»

where the kernel K is a nonnegative function satisfying some integrability condition.
Recently, there has been significant interest in studying linear and nonlinear integrodifferential equations
from the analytical point of view. In particular, extremal operators like

Fu(xo) = Inf Lgu(xo) (1-1)

play a fundamental role in the regularity theory. See [Caffarelli and Silvestre 2009; 2011a; 2011b;
Ros-Oton and Serra 2016]. The above equation is an example of a fully nonlinear equation that appears in
optimal control problems and stochastic games [Krylov 1980; Nisio 1988]. The infimum in (1-1) is taken
over a family of admissible kernels K that depends on the applications. In fact, nonlocal Monge—Ampere
equations have been developed in the form (1-1) for some choice of K [Caffarelli and Charro 2015;
Caffarelli and Silvestre 2016; Guillen and Schwab 2012].
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The Monge—Ampere equation arises in several problems in analysis and geometry, such as the mass
transportation problem and the prescribed Gaussian curvature problem [De Philippis and Figalli 2014].
The classical equation prescribes the determinant of the Hessian of some convex function u:

det(Du) = f.

In the literature, there are different nonlocal versions of the Monge—Ampere operator that Guillen
and Schwab [2012], Caffarelli and Charro [2015], and Caffarelli and Silvestre [2016] have considered.
Maldonado and Stinga [2017] have also given a nonlocal linearized Monge—Ampere equation. These
definitions are motivated by the following property: if B is a positive definite symmetric matrix, then

ndet(B)/" = inf tr(ATBA), (1-2)
€

where
A={AeM,:A>0,det(A) =1}

and M,, is the set of n x n matrices. If a convex function u is C? at a point x, then, by the previous
identity with B = D?u(xo), we may write the Monge—Ampere operator as a concave envelope of linear
operators. It follows that

ndet(D%u(xp))"" = inf Aluo AJ(A " xp).
AeA

Caffarelli and Charro [2015] study a fractional version of det(D?u)!/", replacing the Laplacian by the
fractional Laplacian in the previous identity. More precisely,

Du(xg) = 225 A’[uo AJ(A™ " x0)
f u(xo +x) — u(xp) d

=c,s inf PV ATy X,

AcA

where s € (0, 1) and ¢, s & 1 —s as s — 1; see also [Guillen and Schwab 2012]. A different approach
based on geometric considerations was given by Caffarelli and Silvestre [2016]. In fact, the authors
consider kernels whose level sets are volume preserving transformations of the fractional Laplacian kernel.
Namely,

MA®u(xo) = cp.s Kigg1 . (u(xg+x) —ulxp) —x-Vu(xp)K(x)dx,
where the infimum is taken over the family
K={K:R'">Ry:{xeR": K(x) > r~""2)| = |B,| for all r > 0}. (1-3)
Notice that |A™ x| ™"~ ¢ K> for any A € A. Therefore,
MA*u(x9) < D*u(xo) < A*u(xp).

Moreover, both MA*u and D°u converge to det(Dzu)]/ " up to some constant, as s — 1.
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In this paper, we introduce a new family of operators of the form

inf / (u(xo+x) —u(xg) —x - Vu(xp))K(x)dx (1-4)
KEK;( n

for any integer 1 < k < n, which arises from imposing certain geometric conditions on the kernels.
Moreover, we will see that

Iy e Ky Ky K8 for 1 <k <n,

and thus, this family will be monotone decreasing, and bounded from above by the fractional Laplacian
and from below by the Caffarelli-Silvestre nonlocal Monge—Ampere.

The paper is organized as follows. In Section 2, we construct the family of admissible kernels K}
and give the precise definition of our operators for C!'!-functions. We introduce in Section 3 the basic
tools from the theory of rearrangements necessary for our goals. In Section 4, we study the infimum
in (1-4) and obtain a representation formula, provided some condition on the level sets is satisfied (see
Theorem 4.1). We also study the limit as s — 1 and give a connection to optimal transport. The Holder
continuity of F}u is proved in Section 5, following similar geometric techniques from [Caffarelli and
Silvestre 2016]. In Section 6, we consider a global Poisson problem prescribing data at infinity, and
introduce a new definition of our operators for functions that are merely continuous and convex. We
show existence of solutions via Perron’s method and C!'!-regularity in the full space by constructing
appropriate barriers. Finally, we discuss some future directions in Section 7.

2. Construction of kernels

Let us start with the construction of the family of admissible kernels. Notice that any kernel K in ),
defined in (1-3), will have the same distribution function as the kernel of the fractional Laplacian, since,
for any r > 0,

R, P |
xeR": |x|7" >r""" "} = B,.

Geometrically, this means that the level sets of K are deformations in any direction of R" of the level sets
of |x|™"~%, preserving the n-dimensional volume.

In view of this approach, a natural way of finding an intermediate family of operators between
the nonlocal Monge—Ampere and the fractional Laplacian is to consider kernels whose level sets are
deformations that preserve the k-dimensional Hausdorff measure ¥, with 1 <k < n, of the restrictions
of balls in R” to hyperplanes generated by {ei}i.‘: |-

We define the set of admissible kernels as follows.

Definition 2.1. We say that K € K if, for all z € R"* and all r > 0,

'Hk(B(rz_|Z|2)1/2) if |z| <,

2-1
0 if |z| > r, 2D

H{yeR K@y, 2)>r" )= {

where B(,2_,12)12 is the ball in RF of radius (r% — |z|*)!/2.
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{KE.'-: 2) > r_"_zs} (e1, e2) +ze3

Figure 1. Area-preserving deformation in R>.

In Figure 1 we illustrate condition (2-1) for k = 2 and n = 3. Note that, for k = n, we recover the
definition of C. Moreover, x| 7" e KC; for all k.

Proposition 2.2. Let 1 <k <n. Then Ki C K; < .

Proof. Let K € Kj. Fix any z € R"*~! and r > 0. Then

7ﬁ“ﬁy€RH43K@Jﬂ>f%4qﬁ=/ | KyeReH K (5,02 () Y

Rk+
=f(/ X{(w,t)ekaR:K(w,t,z)>r"2~‘}(w»t)dw) dt
R \JRK
=f7-lk({w eRF:K(w,t,2) >r " Ddr=L
R

If |z| > r, then for any ¢ € R, we have that (¢, z) € R"*_ with |(t, )| > r. Therefore, by (2-1), it follows
that I = 0. If |z| < r, then

2=z
I=/#Ww4mwmﬁ=m/ (r? =12 =z dr
R —(r2=[z)12
(r2—|z|%)!/? ¢ 2\ k/2
_ 2 20k/2
= wi\r-— |z 1—-|\———+— dt
K =12 /—(r2—|z|2>1/2( ((,,2_|Z|z)1/z) )
1 k/2 I/ZF lk-ﬁ-l
T T
— a)k(rz _ |Z|2)(/€+1)/2/ (l _0_2)](/2 do = 1 1 (2 ) (r2 _ |Z|2)(k+l)/2
-1 T(3k+1)T(5(+1)+1)

2 2 1)/2 1
= o (7 = T2 =1 (B pyin),

where w; = H!(B)) =7!/2/T'(1/24 1) and B(,2_ 212 is the ball of radius (r* — [z|) "/ in R O
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Definition 2.3. A function u : R" — R is said to be C!:! at the point x, and we write u € C!!(xo), if
there is a vector p € R", a radius p > 0, and a constant C > 0 such that

|u(xo +x) — u(xo) —x - p| < C|x|* forall x € B,.

We denote by [u]c11(y,) the minimum constant for which this property holds, among all admissible
vectors p and radii p.

Definition 2.4. Lets € (3, 1) and 1 <k <n. Forany u € CO(R") N C"!(xo), we define
Futo) =ns inf [ (043 = ux0) —x- Vula) K6 d.
KE]C; R~

where K} is the set of kernels satisfying (2-1) and ¢, ¢ is the constant in A®.
As an immediate consequence of Proposition 2.2, we obtain that the operators are ordered.

Corollary 2.5. Let s € (3, 1) and 1 <k < n. Then, for any u € CO(R") N C"!(xo),
MASM(XO) = .7:]“:14()60) < Asu(xo).
Moreover, {F} }Z;ll is monotone decreasing.

The regularity condition on u in Definition 2.4 allows us to compute F; u at the point x¢ in the classical
sense. To obtain a finite number, we need to impose two extra conditions:

(1) An integrability condition at infinity:

|u(x)]

_— . P
o (L oy 5 =% (F1)

(2) A convexity condition at xq:
u(x)=u(xg+x)—ulxg) —x-Vu(xg) >0 forall x € R". (P)
Proposition 2.6. If u € CO(R") N C"1(xq) and u satisfies (Py) and (P»), then
0 < Flu(xp) < oo.

Proof. Let p > 0 be as in Definition 2.3. Then

05f,§u(xo)§/ (u(xo +x) = u(Xo) = x - V(o)) 7y dx

[u]cia |x| u(x
5/ — BT gy + _ el )|+2 dx
B, |x|"** R1\B, (xo) |* —Xo|"***

X
dx + |Vu(xg)] al

+ [u(xo)|
Rn
< C(s, p)(|u(xo)| + Vu(xo)| + [M € (x))
1+IX0|+pf lu(x)]
+ n+2s
P re (14 [x])

| |n+2§ R'\B, |x|n+2s

). O

NI'—‘

X <00, SlIlCCSG(
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We point out that if u is not convex at xg, then the infimum could be —oo. We show this result in the
next proposition.

Proposition 2.7. Let u € CO(R") N CY1(xg). Assume that u satisfies (P)). If there exists X € R" with
¥ =(3,0) and y € R* such that

u(x) =u(xo+x)—u(xo) —x-Vu(xg) <0,
then Fju(xp) = —00.
Proof. Let K (x) = |x —%|™"~%. For any r > 0 and z € R* ¥, if |z| < r, then
H (v eRCK(, ) >r " 2D =1y e R : [y =3P + 12 < r?) = 1 (Bajpyn).

Also, the measure is clearly zero if |z| > r. Therefore, K € K;. It follows that

Fiu(xo) 5/ a(x)|x — x| ¥ dx

n

=/ ﬁ(x)lx—i|_”_zsdx+/ A |x =3 ¥ dx=1+1L
B, (%) R™\ B (x)

Since u € CO(R") N C'1(xy), we have that i is continuous. Hence, given that i (x) < O, it follows that
i(x) <O for all x € B,(x) for some ¢ > 0. Moreover, since K ¢ L!(B,(x)), we have that I = —oo.
Arguing similarly as in the proof of Proposition 2.6, we see that II < co. Therefore,

Fru(xg) = —00. O

Remark 2.8. The operators 7} are not rotation invariant. This is because, for simplicity, in the construction
of the family of admissible kernels K; we chose the first k vectors from the canonical basis of R". In
general, we may take any subset of k unitary vectors, T ={t; }f.‘zl, and replace the first condition on (2-1) by

H{y e (D) K(y+20) > r 2D = HE (B ) (2-2)

for all z € (r) and r > 0, where (r) denotes the span of {r,-}f.‘: , and (t)* the orthogonal subspace to (7).
Let SO(n) be the group of n x n rotation matrices. Since 7; = Ae; for some A € SO(n), it follows that
any kernel K, satisfying (2-2) can be written as K; = K o A, where K satisfies (2-1). Therefore, to make
the operators rotation invariant, one possibility is to take the infimum over all possible rotations. Namely,

inf inf/ H(x)K(Ax)dx.
AeSO(m) KeK§ Jpn

To focus on the main ideas, we will not explore this operator in this work.

3. Rearrangements and measure-preserving transformations

We introduce some definitions and preliminary results regarding rearrangements of nonnegative functions.
For more detailed information, see for instance [Baernstein 2019; Bennett and Sharpley 1988].
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Definition 3.1. Let f : R” — R be a nonnegative measurable function. We define the decreasing
rearrangement of f as the function f* defined on [0, co) and given by
@) =sup{A >0:|{x eR": f(x) > A}| > 1},

and the increasing rearrangement of f as the function f, defined on [0, co0) and given by
fe@) =inf{A >0:|[{x e R": f(x) <A} >1}.

We use the convention that inf & = oo.

Proposition 3.2. Let f, g : R" — R be nonnegative measurable functions. Then

| rogwas [ josmas [ rogoar

The upper bound is the classical Hardy—Littlewood inequality. For the proof, see [Bennett and Sharpley
1988, Theorem 2.2] or [Baernstein 2019, Corollary 2.16]. For the sake of completeness, we give the proof
of the lower bound.

Proof. For j > 1, let f; = f|p; and g; = g|p;, where B; denotes the ball of radius j centered at 0 in R".
By [Baernstein 2019, Corollary 2.18], it follows that

| Bl
/O () (g)*(0) dr < /B Fi(0)g; (x) dax.
Since f, g >0, we get !
/B fit)gj(x)dx < g f(x)gx)dx.

Note that, for any 7 € [0, | B;|], we have
A>0:{xeBj: filx) <A >t} C{A>0:[{x eR": f(x) <A} >1}.

Hence (f;)«(t) > fi(¢) and
|B)|

|Bj
fo ([« (g))* (@) dt = ; Je(0) (g (1) dt.

Moreover, g; /' g pointwise on R". Then by [Baernstein 2019, Proposition 1.39], we have (g;)* /' g*
pointwise on [0, c0) as j — oc. By the monotone convergence theorem, we get
) |Bj] o0
tim [ R0y wd= [ fogaar
Combining the previous estimates, we conclude that

/0 fe(g* @) dt < /Rn f(x)g(x)dx. 0

Definition 3.3. We say that a measurable function ¥ : R — R” is a measure-preserving transformation,
or measure-preserving, if, for any measurable set E in R™,

H (y(E)) =H"(E).
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Lemma 3.4. If ¢ : R — R™ is measure-preserving, then, for any measurable function f : R™ — R and

/ﬂwm=/ FOr () de.
£ yE)

An important result by Ryff [1970] provides a sufficient condition for which we can recover a function

any measurable set E in R™,

given its decreasing/increasing rearrangement, by means of a measure-preserving transformation.

Theorem 3.5 (Ryff’s theorem). Let f : R" — R be a nonnegative measurable function. If lim;_, o, f*(t)

equals zero, then there exists a measure-preserving transformation o : supp(f) — supp(f™) such that
f=fro0
almost everywhere on the support of f. Similarly, if lim,_, o, fi(t) = 00, then f = f.oo0.
We will call a measure-preserving transformation o satisfying Ryft’s theorem a Ryff’s map.

Remark 3.6. In general, o is not invertible. Furthermore, there may not exist a measure-preserving
transformation ¥ such that f* = f o .

As a consequence of Ryff’s theorem, we obtain a representation formula for the admissible kernels.
We write o = H*(B)).

Lemma 3.7. Let K € K. Fixz € R"* and use the notation K.(y) = K (y, z). Then
K;(t) — ((Cl)k_lt)z/k + |Z|2)—(n+25)/2.
In particular, there exists a measure-preserving transformation o : supp(K;) — (0, oo) such that
K(y,2) =K (0:(y)) forae. yesupp(Ky).
Proof. Fix z € R"™*. Then
.k k.
KX(t)=sup{A>0:H ({y e R": K(y,2) > A}) > 1}

n—2s

= sup{l < |Z|7 . Hk(B(A—Z/(n+2s)_‘Z|2)l/2) > t}

=sup{r < |z] "%t (AT O 222 5 1)

— Sup{)» < |Z|fn725 :)\472/(114»25‘) > (wk—lt)z/k + |Z|2} — ((wk—lt)Z/k + |Z|2)*(n+2S)/2‘
Moreover, lim; . K} () = 0. Therefore, the result follows from Theorem 3.5. [l

In view of Definition 3.1, we introduce the symmetric rearrangement of a function in R” with respect to
the first k variables as follows. Fix k € N with 1 <k < n. Given x € R", we write x = (y, z) with y € Rk
and z € R"*. Furthermore, for z fixed, we call f, the restriction of f to R*. Namely, f.(y) = f (v, 2).

Definition 3.8. Let f : R" — R be a nonnegative measurable function. We define the k-symmetric
decreasing rearrangement of f as the function f** : R" — [0, co] given by

IR0 = fr ),

and the k-symmetric increasing rearrangement as the function f; ; : R” — [0, oo] given by

Fer () = (f2)x(oxlylh).
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When k = n, we obtain the usual symmetric rearrangement.

Remark 3.9. (1) Notice that f** and f, ; are radially symmetric and monotone decreasing/increasing,
with respect to y. In the literature, this type of symmetrization is also known as the Steiner symmetrization
[Baernstein 2019, Chapter 6].

(2) By Lemma 3.7, we see that any kernel K € K; satisfies

K*k(x) = |x|™""% for x #0. (3-1)

4. Analysis of F

Our main goal of this section is to study the infimum in the definition of the operator
Fru(xg) =cps inf f u(x)K(x)dx,
Kek Jmn

where u(x) =u(xo+x)—u(xo)—x-Vu(xp). Throughout the section, we assume that u € CORMHNCH! (xp)
and that u satisfies properties (P;) and (P>), so that 0 < Fu(xp) < oo.
Analysis of the infimum. We will study the following cases:

Case 1. Forall A > 0 and z € R" %,
%k({y c RF: u(y,z) <A} < oo.

Case 2. There exists some Ao > 0 such that, for all z € R"*,

< oo for 0 <A < A,

k k.~
H'({yeR .u(y,Z)SA}){:OO for A > Ao.

Case 3. For all » > 0 and z € R"*,
H'{y e R* 1 ii(y, 2) <A}) = o0.

In Case 1, when all of the level sets of & have finite measure, we show that the infimum is attained at
some kernel whose level sets depend on the measure-preserving transformation that rearranges the level
sets of &. More precisely:

Theorem 4.1. Suppose that, for all . > 0 and z € R"7*,
HE{y e RF :di(y, 2) < A}) < o0.
Then, for any z € R" X, there exists a measure-preserving transformation o : R¢ — [0, 00) such that

/ u(y, z)
rrtk Sk (07 o () /K |22) (42972

Fru(xo) = cn,s dydz.

In particular, the infimum is attained.

Remark 4.2. Observe thatif iz( -, z) is constant in some set of positive measure, then the kernel where the
infimum is attained is not unique since the integral is invariant under any measure-preserving rearrangement
of K within this set; see [Ryff 1970].



252 LUIS A. CAFFARELLI AND MARIA SORIA-CARRO

Before we give the proof of Theorem 4.1, we need a lemma regarding the k-symmetric increasing
rearrangement of #. By Definition 3.8, this is given by the expression
iy (v, 2) =inf{A > 0: H (fw € R di(w, 2) < 1)) > ax|y|*).
Lemma 4.3. Fixz € R" % If H*({y e R* 1 ii(y, z) <A}) < 00 forall > > 0, then

lim i, (y,2) = 00.
|yl—o00

Proof. Assume there exists M > 0 independent of A such that
H ((w e R :di(w,z2) <A) <M forall A > 0. 1)
Then, for any y € R* with w|y|¥ > M, we have that
sk (y, 2) = 00,

since inf @ = oo. If (4-1) does not hold, then there must be an increasing sequence { M, },-o with M, — oo
as A — oo such that
H((w e RF: d(w, 2) <A}) = M,.

Then, for any M > 0, there exists A = A(M) > 0 such that M, > M for all A > A. Since M, is
monotone increasing, we can assume without loss of generality that M, < M. Otherwise, we take A to
be the minimum for which this property holds. Also, A(M) is monotone increasing, and A(M) — oo
as M — oo. In particular,

infifA >0: M, >M}>AM) —> o0 as M — 0.
Then, for any K > 0, there exists M > 0 such that
inf{A >0: M, >M}>K.
Therefore, for any y € RF with wy|y|* > M, we have

sk (v, 2) =inf{A > 0: M) > wy|y[*} > inf{A > 0: M, > M} > K.
‘We conclude that

lim i, (y, 2) = 00. [l
|y|—00

Proof of Theorem 4.1. Since u is convex at xo, we have that i (y, z) > 0. Moreover,
Fru(xo) = cn s Klglgi /Rnk /Rk i(y,2)K(y,z)dydz.
Fix z € R"7* and consider the functions f(y) = i(y, z) and g(y) = K(y, z). Since
Hi(ly eR iy, 2) <)) <00
for any A > 0, then by Lemma 4.3 we have

lim f,(t) = lim f,(x)= o0,
1—00 |y|—o0
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with fi ¢ (x) = 4k (v, 2) and fix(x) = Fur]y 0. By Ryff’s theorem (Theorem 3.5), there exists a
measure-preserving transformation o, : R¥ — [0, co) depending on z such that

u(y,z) = fulo(y)) (4-2)
for all y € suppii(-,z) € Rk,
Let K (y,2) = (g "o, ()Y 4 12|~ ®*+2972_ For any r > |z|, we have

Hly R K () > r ") =Hy € R : (0 o )Y 4 [2P) 702072 > pon2y)
=H'(y e R 1 00(3) < x(r? = 1212
=H (0710, 0 (r? = 12)%))) = 1! (0, a (r* — 121%)72))
= (r? — |21 = 1N (B2 ),
since oy, is measure-preserving (see Definition 3.3). Then K € K3, and thus

u(y, 2)
-F]fu(xO) <Cns / =
Rr—k JRE ((wk O-Z(y))2/k + |Z|2)(I’l+2s)/2

dydz.

To prove the reverse inequality, let K € K;. Applying Proposition 3.2, we see that

/Rk i(y, )K(y,2)dy = /OOO feDg* (1) dt = /Rk felo:()g" (02 (y)) dy = /Rk i(y, 28" (0:(y)) dy
by Lemma 3.4 and (4-2). Moreover, by the definition of rearrangements,
g"(0:(y) =sup{i > 0: K ({w € R : K(w, 2) > &) > o:(»)} = K5, 2),
with wg|¥|* = 0. (y). By (3-1), we get
g (0:(1)) = (5P + )™ = (@ oa () + 12702,
Hence integrating over all z € R"* and taking the infimum over all kernels K € K, we conclude that

u(y, z)
Fru(x) =cps / —
Rr—k JRE ((a)k gz(y))Z/k + |Z|2)(n+2s)/2

Remark 4.4. A natural question that arises from this result is whether there exists a measure-preserving

dydz. ([l

transformation ¢, : R¥ — R* such that

0. ()] = ("o, ().

In that case, we would have that the infimum is attained at a kernel K such that

K(y,2) = ¢y, ™",

where ¢ : R” — R" is measure-preserving with ¢ (y, z) = (¢, (¥), 2).
Recall that Ryff’s theorem gives a representation of a function f in terms of its increasing rearrange-
ment f,, that is, f = f, oo with o : R* - R measure-preserving. If this result were also true for the
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symmetric increasing rearrangement, given by fx(x) = fi (wi|x|%), then there would exist a measure-
preserving transformation ¢ : R¥ — R¥ such that f = fy o ¥. In particular,

F) = filp) = fulorlp)[) = fulo (x)).
Hence it seems reasonable that wy|@(x)|¥ = o (x). As far as we know, this is an open problem.

As an immediate consequence of Theorem 4.1, we obtain the following representation of the func-
tion F}u in terms of the k-symmetric increasing rearrangement of .

Corollary 4.5. Under the assumptions of Theorem 4.1, we have
Fru(xg) = Aty 1 (0).

Proof. Note that i, x(0) = 0 since #(0) = 0. Therefore, using the same notation as in the proof of
Theorem 4.1, we showed that

o0 o0
Fruxo) = cns / k f F0g" () di dz = wgens f f Fulonr)g* @ty dr dz
n— 0 R O

n—k

—ons / / Fularly g™ @iyl dy dz = o / / ik (3, DK™y, 2) dy dz
n—k Rk Rnfk Rk

—c / ﬂ*,k (y’ Z)
n,s R (|y|2+|Z|2)(n+2s)/2

From the previous result and the fact that the family of operators {]—"k}z;{ is monotone decreasing, we

dydz = Nui, 1 (0). O

see that the fractional Laplacian of the k-symmetric rearrangements are ordered at the origin.

Corollary 4.6. Suppose we are under the assumptions of Theorem 4.1. Then

Asﬁ*,kJrl (0) =< Asﬂ*,k (0)
Next we treat Case 2.

Theorem 4.7. Suppose that there exists some Lo > 0 such that, for all 7 € R"*,

<oo for 0 <A <A,

k k.~
H{yeR .u(y,z)s)»}){zoo for 3> ho.

Then there exists a kernel Ko € K with supp Ko(-,z) C{y € RF : (v, 2) < Ao} such that
o =ans [ [ i 0K 2 dy dz
n—. R'

In particular, the infimum is attained.

Proof. Fix z € R" %, For j > 1, define the set
Aj(m) = {y eRF:ii(y,2) < ho— %}

For simplicity, we drop the notation of z. We have that #* (A j) <00, Aj C Ajiq, and

oo
A= JAj=1{y eR :ii(y, 2) < ho).
j=1
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Observe that if K € K, then
Hk({y e Rk: K(y,2)>0}) = lin})Hk({y cRF: K(y,2) >r}) =oc.
r—

Hence we need to distinguish two subcases:

Case 2A. Assume that H¥(As) = 00. Let K € Ky and v; =y 4;. By Proposition 3.2,

/A ft(y,Z)K(y,z)dyszk vi(y,2)K(y,2)dy Z/O ()« (K™ (1) dt.

J

By Lemma 3.4, for any measure-preserving transformation o : R¥ — [0, 00), it follows that
oo
/ (W)«(OK*(t) dt = fk(vj)*(a(y))K*(G(y)) dy.
0 R

By Ryff’s theorem (Theorem 3.5), there exists o; : A; — [0, HK(A ;)] measure-preserving such that
v; = (vj)4 0 0j in A;. Therefore,

/ u(y,z2)K(y,z)dy > / i(y, 2)K*(0j(y)) dy. (4-3)
Aj Aj
We claim that 041(y) < 0;(y), forall y € A;. Indeed, since A; C A;,, we have

{vj(y) =v;41(y) forally € Aj,

vi(y) <vjt1(y) forallye Aj\A;.
In particular,

Wj+1)x(0j11(0) = (V))(0j(¥)) < (Vj+1)+(0j(y)) forall y € A;.
Since (vj1)« is monotone increasing, we must have
oj+1(y) <oj(y) forallyeA;.
Therefore, there exists 0 : Aso — [0, 00) measure-preserving such that
0o(y) = lim oj(y).
j—o00
Define the kernel K¢ as
Ko(y, 2) = (@ "o N2 + 127220, ().

Since H*(As) = 00, we have that Ky € IC;. Furthermore, we note that Ko(y, z) = K(0x0(y)) and
supp Ko(-,z) = As ={y e R* 1 ii(y,2) < Ag} for all y € As. Then by Fatou’s lemma, Lemma 3.7,
and (4-3), we get

/Rk u(y, 2)Ko(y,z)dy 2/ u(y, 2) Ky (o (y)) dy flijrgicgff

’ u(y, 2)Kg(oj(y)) dy

=liminf/ ﬂ(y,z)K*(Uj(y))dyif u(y, 2)K(y,z)dy
Aj R

J—> 00

for any K € K. Integrating over z and taking the infimum over all kernels K, we conclude the result.
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Case 2B. Assume that ¥ (As) < 00. Set A = {y € R* : ii(y, 2) = A¢}. Then

H (A) = o0, (4-4)
since {y € R¥ 1 ii(y, z) < Ao} = Ase U A. Fix & > 0 and define

Ve (¥, 2) = u(y, 2) X4, (¥) + max{io, (Ao + &) (¥, D} xa(y),

with ¢ (y, z) = 1 —e "F~1% Note that 0 < < 1, ¢ (v, z) — L as |(y, z)| — 0o, and ¢ (y, 2) & |y|* +|z|?
as [(y, )| = 0. Also, {v.}e~0 is a monotone increasing sequence and

lim ve (y, 2) = (3, 2 xa ) + max {2, lim (o +£)¢ (3, D}xa®y)
=u(y, 2) XA (¥) +max{io, 2o (¥, 2)}xa(y) = u(y, 2) xa,ua(y). (4-5)

For any j € N with j > 1/¢, consider the set

Bf(z) = {y eRF:v,.(y, 2) 5)»0—1-8—%}.

Then Bf C B, and B, =

i Bf ={y € R" : v:(y, 2) < Ao +¢}. Moreover, we have

j>1/e
HE(B) = HE (Aoo) +H ({ € Asmaxio, (o + 090 ) S 2o +e— 2 ). (4-6)
Choose R > 0 large enough (depending on €, j, Ag, and z) that
(o + 8)e_R2_|Z‘2 < %
Then (Ao + &) (y,2) > Ao+e—1/j > Ao for all y € B¢, and thus

Hk({y € AN BS : max{ro, (Ao + ) (v, 2)} < Ao+ & — %}) —0. 4-7)
By (4-6) and (4-7), we see that
HH(BS(2)) < H (Ase) + HF (AN Bg) < 0.
Furthermore, A C BZ_, and thus, by (4-4), we get
1A (BE) > HE(A) = cc.
In particular, v, satisfies the assumptions of Case 2A, so there exists K, € K} defined by
Ke(v.2) = (@ '0e )2 + 121P) 7292 e (), (4-8)

with o, : B, — [0, 0o) measure-preserving, depending on v,, such that

in / / 0 (v, DK (v, 2) dy dz = / / 0 (v, DKoy, 2) dy dz. 4-9)
Rr—k J Rk Rr—k J Rk

Kek;
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Finally, we need to pass to the limit. First, we prove that {o,}.~0 is monotone decreasing. Indeed, let
={yeRk: ve(y,z) = u(y, z)}. In particular, A, €V, C Ac UA. Also, V., C V,, for any ¢; < &5.
By Ryft’s theorem, recall that

ve] (y’ Z) = (Uel)*(O'gl (}’)) and vé‘z (y’ Z) = (USZ)*(UEZ (y))
Since vg, (¥, 2) = vg, (¥, z) forall y € V,, and v, (v, 2) < v, (y, z) forall y € R¥, we see that
(Usz)*(o'ez(y)) = (Usl)*(o'sl(y)) =< (vsz)*(asl(y)) forall y € Vsz-

Since (vg, )« 1s monotone increasing, we must have that o, (y) < o, (y) for all y € V,,. Hence there exists
00 : Bos — [0, 00) measure-preserving such that

oo(y) = elgr(l) o:(y),

where Bso = ﬂ8>0 B ={ye R u(y, z) <Xio} = A UA. In particular, the sequence of kernels {K.}.~¢
is monotone decreasing. Define

Ko(y,z) = lin(l)Ke(y,z)- (4-10)

E—>
By (4-8) and (4-10), we have
Ko(y.2) = (o 'oo)*> + 12172 x5 ().
Moreover, K¢ € K} since K, € K3, and, for any r > 0, it follows that
“(Do(r) = lim H* (D, (1)),

where D, (r) = {y e R* : K. (v, 2) > r~"29},
Finally, using (4-5), (4-9), (4-10), and the monotone convergence theorem, we get

/ / (. 2) Koy, 2) dy dz = / f lim (v (v, 2)Ke (v, 2)) dy dz
Rn—k Rr—k JRE e—0

e—>0

:lim/ /ve(y,Z)Ke(yaZ)dde
Rn—k Rk

= lim inf/ fvg(y,z)K(y,z)dydz
Rn— —k

e—>OK€KA

< inf / / 11m ve (y, z) K(y,z)dydz
KGIO Rk JRk €—0

= inf / / i(y, 2)(K(y, 2) xaccua(y)) dy dz
KEICS Rn— k

= inf/ fﬁ(y,z)K(y,z)dde-
Kek Jrn—k JRk

The last equality follows from the observation that, since
Kf={K ek} :suppK(-,z) C Ao UA} C kS,

the infimum over all kernels in K} is less than or equal to the infimum over I’Ei Moreover, the reverse
inequality holds trivially. U
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Finally, we deal with Case 3, that is, when all of the level sets of & have infinite measure. In particular,
notice that
Uy r(x) =0 forall x e R".

This is the only case where the infimum is not attained. Indeed, we prove in the following theorem that
the infimum is equal to zero.

Theorem 4.8. Suppose that, for all ». > 0 and z € R"7*,
H ({y e RF iy, 2) <)) = o0.
Then Fu(xo) = 0.

Proof. From (P,), we have that Fu(xo) > 0. To prove the reverse inequality, it is enough to find a
sequence of kernels {K;}.~o C K} such that

e—0

liminf/ / i(y,2)Ke(y,z)dydz =0. (4-11)
Rn—k Rk

Fix ¢ > 0 and z € R"~*. For any j > 0, we define the set
Ui(z) ={y e R¥ iy, z) < 82710421y
Note that U; 1 € U;. Also, by assumption, with A = 82_7(”2‘)6_'1‘2, we have that
H*(Uj) =00 forall j > 0.
We will construct K € K by describing first where to locate each level set of the form
A=A ={yeR":0<K(y.,2) <1},
Aj=Aj@) ={y e R 27 < Koy, 2) < 2VFDOF0) - for j > 0.
Recall that K € K if, for all r > 0, we have
Hily R 1K (3, 2) > r™ ) =1y € R Iy [2?) 702072 > pm 200y,
In view of this definition, we define the sets
B_i=B_1() ={y eR:0 < (IyP + [z~ "2 < 1),
B; = B;j(2) = {y € R : 2707 < (|y|> 4 [z?) " +2)/2 < 20Dy for j > 0.

Note that
{H’%Al) =HK(B_y) = o0,

HFE(A;) =HK(B;) < oo forall j > 0.
More precisely, for j > 0, if |z] < 2-0U+D <277 then
H(A)) =H(Bo2i_ o pyn) =M (B-2gen_ipyn) = ok 275 = |22 = @20 — 2 Y2 <oy 27Y.
If 27U+D < |z| <27/, then
k/2

HE(A)) = HE B2 ppyr) = o277 = 122 < an(3)7279.
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If |z] > 27/ > 27U+D then
H*(A;) =0.

Therefore, Hk(A i) =< 275 where ¢ > 0 only depends on k. It follows that

o o0 [e.¢]
Hk<U Aj) =Y k) < c22—f’< < 00. (4-12)
j=0 j=0

J=0

For any i > 0, let D; be the collection of all dyadic closed cubes of the form
M2, (m 4+ 1271 = [m2™", (m+ 127 x - - - x [m27%, (m + 1)27'].

Note that if Q € D;, then [(Q) =27, where [(Q) denotes the side length of the cube Q. For any j > 0,
since U; is an open set, by a standard covering argument, we have that there exists a family of dyadic
cubes F; such that

ui=J o

0e7;
satisfying the following properties:

(1) For any Q € Fj, there exists some i > 0 such that Q € D;.

(2) Int(Q) NInt(Q) Int(Q) = @ for any Q, O € F; with Q # Q.
(3) If x € Q € F;, then Q is the maximal dyadic cube contained in U; that contains x.
Analogously, for the sets B; with j > —1, there exists a family of dyadic cubes ]t"; satisfying properties
(1)=(3) such that
m(B) = | J 0.
Q€F;
Note that -7?1 ﬂj‘:j_H =g since BN Bj1| = 2.
We will construct the sets A; by properly translating the dyadic cubes partitioning the sets B; into U;.
In particular, we will prove that
Ao = To(Bo) C Uy,
i—1 .
Aj=T;(B)) CU\UJ/_y Ai forall j>1,
A_y=T_1(B_y) CUp\ U2y Ai,
for some translation mappings 7 : ]?J — Fj to be determined.
We start with the case j = 0. For any i > 0, write

m; =HY(FoND;) and n; =H(FoND;),

where H(E) is equal to the cardinal of the set E. Note that m;, n; € ZT U {o0}.
We will recursively place By into Uy. First, fix i = 0. If mg > ng, then, for any é € fo N Dy, there
exists some 7 € R¥ and some Q € Fy N Dy such that Q = é + 7. Then define

To: FoNDy— FoNDoy, To(0)= 0. (4-13)
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Moreover, we can define T to be one-to-one since mg > ng, and we can always choose a different Q for
each é . Note that there are pg cubes in Fy N Dy with py = my — ng that have not been used. Hence for
all of these cubes, divide each side in half, so that each cube gives rise to 2¥ cubes with side length 27!,
Call this collection of new cubes Q = {Ql}lzipf C D and add them to the family o N D;. Namely, we
replace Fo ND; by (FoNDy)U Q.

If my < ng, then take gg cubes in FoN Dy with qo = ng — mg and divide each side in half. Call this

collection of new cubes O = {Ql}lsz C D;. Then, we replace fo by fo, where

FoNDy = (Fo\ Q)N Dy,
FonDy = (FoU d)NDy,
FoND; = FoND; foralli>?2.

If ng = H° (j—'\ N Dy), then mo = ng. Hence, by the same argument as in the previous case, we find Ty as
in (4-13). For i > 1, we can repeat the same process until we run out of cubes from Fo (or the modified
family). We know the process will end since H*(By) < HF(Up). When this happens, we will have
constructed a one-to-one mapping 7 : ]?0 — Fo, since fo = U?io .on ND; and Fy = U?io FoND;. Then
define

Ag = Ty(By) C Uy.

Iterating this process, we find a sequence of translation mappings { Tj}f.io with T : fl — Fjand a
sequence of disjoint sets {A; }f.io such that

j—1
Aj=T;(B) c U\ | Ai.
i=0

The case j = —1 is somewhat special since HY(A_1) = HX(B_1) = 0o. We will see that

o0
A =T (B_1)C UO\UAi~
i—0

This is possible because Hk(Uo \ U, A[) = oo using (4-12). Indeed, we can write

[e.¢]
[y eR 10 < Koy, 2) < 1) = [ JQ27UD0) < K (y,2) <2772},
j=0
Now write
Cj — {2—(j+1)(n+25) < (|y|2 + |Z|2)—(n+25)/2 < z—j(n+2S)} for j > 0.

Then B_; = U;io C; with Hk(Cj) < oo for all j > 0. Hence, instead of partitioning all of B_; into
dyadic cubes, we partition each of its disjoint components C;. Arguing as before, we place them into
Uo \ Ui2y Ai recursively, according to the following scheme:

T%(Co) C U\ U2 A,

T7(Ch) c U\ (U AU Gi) for j= 1,



ON A FAMILY OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS FROM A’ TO MA* 261
where T_j | 1s defined as before. At the end of this process, we find a translation map 7 defined by
T_1(Q) = Tll (Q) for Q € C;. Therefore, we define

A1 =T_1(B-y).

Lastly, let y e R = A_ U (U?o:o Aj). In particular, there exists some j > —1 such that y € A;.
Furthermore, recall that A; = T;(B;), where T; is a one-to-one and onto translation map. Hence there
exists a unique w € B; such that y = T;(w) = w + 7 for some 7 € R¥. Let T, : R* — R be given by
T,(y) = w. Note that T, is measure-preserving. Then we define the kernel

Ke(y,2) = (IT.(y) ] + |2/~ "29/2,
We have

/Rkﬂ(y,Z)Ka(y,z)dy=/A ft(y,z)Ka(y,z)dy+Z/A u(y, 2)Ke(y, z)dy =I1+1L
—1 i—0 j

For I, we use that i(y, z) < e ¥, since A_; C Up. Then by Lemmas 3.7 and 3.4,

—17? L2 o
ISS@ |z f Kg(y,Z) dy:8€ |z / |O_Z(y)| n—2s dy
{0<K:(y,2)<1} {0<|o-z(y)|ﬂ1—2s§1}

= ge I’ / [ dy = Cee™F,
{lyl=1}

where C > 0 depends only on n and s. For II, we use that u(y, z) < 82_j(”+25)e_‘Z|2, since A; C U; and
K:(y,z) <2UFTD0+29 in A, by definition. Then

o0 0
< ge—\zlz Z2—j(n+2s)2(j+1)(n+2s)7_[k(Aj) < Cge—|z|22n+2s Zz—kj < Cge—mz’
Jj=0 Jj=0

where C > 0 depends only on n, s, and k.
Integrating over z, we see that

/ / u(y, Z)Ke(y,Z)ddeSCef e_lzlzdz§58.
Rr—k J Rk Rr—k
Letting ¢ — 0, we conclude (4-11). U

Limitas s — 1. Let u € C*(R"). We define MAu as the Monge—Ampere operator acting on u with
respect to the first k£ variables, that is,

MAu(x) = k(det((u;; (x)1<i j<)) "%,

with D%u(x) = (uij(x))1<i,j<n. We define A,_iu as the Laplacian of u with respect to the last n — k

variables, that is,
n

Apu(x) = ) uii(x).

i=k+1
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Then under some special conditions,

lirnl Fru(x) = MAgu(x) + Ay_gu(x). (4-14)
S—>

In particular, the operators in the family {7} }Z;} can be understood as nonlocal analogs of concave second
order elliptic operators, which are decomposed into a Monge—Ampére operator restricted to R and a
Laplacian restricted to R" %,

Indeed, by Corollary 4.5, we have Fu(x) = A4 ;(0). Since the k-symmetric rearrangement does
not depend on s and A* — A as s — 1, passing to the limit we see that

lim F{u(x) = Aiis 1 (0).
s—

Suppose that @i ¢ (y, z) = (¢, ' (), z), where @, : R¥ — R is an invertible measure-preserving transfor-
mation with ¢,(0) =0 and

ol =02 ().
Recall that o, is given in Theorem 4.1 (see also Remark 4.4). In this case,
it 1(0) = Ayii (9] (), 2) + Acii (9] (), Dy, 1=0.0)- (4-15)
For the first term, we use

MAu(x) = inf A(ioy)(0),
Yev

where W = {y : R¥* — R measure-preserving such that ¥ (0) = 0}, and the fact that the infimum is
attained when & o ¥ is a radially symmetric increasing function [Caffarelli and Silvestre 2016]. Hence

Ayt (97 () Dly.0=0,0) = MARu(x). (4-16)
For the second term, write ¢(y, z) = (9. '(y), z) and compute
A (ii 0 $)(0) = tr(D;$(0)" D7ii(¢(0)) D-$(0)) + V:ii (¢ (0))" - A.(0).
Recall that ¢ (0) = 0 and i(y, z) = u(x + (y, 2)) — u(x) — Vyu(x) -y — Vou(x) - z. Then
V.i($(0) =0, DZi(¢(0)) = Du(x), and D.¢(0)= (0, L)
where I,,_; denotes the identity matrix in M,,_;. Therefore,
AL (@ (), Dliy,=0,0) = Az 0 $)(0) = tr(D7u(x)) = Ap_gu(x). (4-17)
Combining (4-15)—(4-17) we conclude (4-14).

Connection to optimal transport. In Corollary 4.5 we obtained a representation of the function 7} u in
terms of the k-symmetric increasing rearrangement. Using this representation, we find an equivalent
expression of F}u that can be understood from the viewpoint of optimal transport.
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Theorem 4.9. Suppose we are under the assumptions of Theorem 4.1. Then, for any 7 € R"*, 7 #£0,
there exists an invertible map ¢, : R — RK such that

i(e; ' (). 2)
e — 2 dy dz. 4-18
() = Cns Rnk/w (Y2 + [zP)e+2972 4% -

Moreover, if o, : RK — [0, 00) is the Ryff’s map given in Theorem 4.1, then ¢, is measure-preserving if

and only if
ol =0.(y) forae yeR-. (4-19)

The key tool to prove Theorem 4.9 is Brenier—McCann’s theorem, a very well-known result in the
theory of optimal transport [Brenier 1991; McCann 1995]. We state it here in the form that we will use it.

Theorem 4.10. Let f, g € L' (RY). Assume that

Il ey = gl mty-

Then there exists a convex function ¥ : R¥ — R whose gradient V' pushes forward f dy to g dy. Namely,
for any measurable function h in R,

/R () dy = /R VYD F()dy. (4-20)

Moreover, Vi : R¥ — Rk is invertible and unique.
In the literature, Vi is known as the (optimal) transport map.

Proof of Theorem 4.9. Fix z € R" ™, 7 #0, and consider f., g. € L'(R¥) given by
L) =P+ 12722 and  g.(v) = (o 'o, ) F + 12~ +272,
where o : RF — [0, o0) is given in Theorem 4.1. Note that
1Al = / (o o))+ 1272 dy
R

o
— kCl)k/ (r2 + |Z|2)—(l’l+23)/2rk—l dr
0
B /k<|y|2+ 2H ™2 dy = ligl s
R
since o is measure-preserving. By Theorem 4.10, there exists a convex function v, : R — R (depending

on z) whose gradient Vi, pushes forward f, dy to g, dy. Moreover, Vi, is invertible and unique. Write
¢, = (V)L Using (4-20) with h(y) = u(y, z), we see that

i(y, z) (e (), 2)
/ ST ot iy rn P =f R ESTTAE -2
RE ((wp "0z (¥) K+ |z]2)n+=s re ([y1* +1z19)

Integrating over z € R"~%, we obtain (4-18).
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It remains to show that ¢, is measure-preserving if and only if (4-19) holds. Indeed, for any measurable
set E C R¥, we have

H (9 H(E)) = /

(|y|2+|zl2)(n+25)/2
dy = /
) ¢

“1ey (Iy1? + 2|2 +29/2
_/ (@ (@ ") + [z]2) 2972
¢ (E) (1y2 4 |z|>) (@ +29)/2
_ (l0: (]2 + |z|>) H+29)/2
- /E (o (Y)Y K + |22 (2972

dy

’

where the last equality follows from (4-21) with h(y) = (|- (y)|> + |z]>)"+29/2x £ (). Therefore,
1 (o7 (E) = HM(E)

if and only if wi|@.(y)|F = 0. (y) for a.e. y € RE. O

5. Regularity of Fju
Given xo € R”, we define the sections
Dy u(t) ={x e R" 1 u(x) —u(xpg) — (x — xo) - Vu(xg) <t} fort>0.
Our main regularity result is the following.
Theorem 5.1. Let s € (%, 1) and 1 <k <n. Letu € Cl’l([R{”) be convex. Fix xo € R" and ry, € > 0.
Suppose that A \ = SUPycp, (xp) diam(D,u(e)) < oo and M = sup, . Byy (x0) Fiu(x) < co. Then we have
Fiu € C™1=5(B,(xo)) with r < min{ro/4, A, £/(8A)} and
[P o By = Coluleni g
for some constant Cy > 0 depending only on n, k, s, €, A, and M.
This theorem will be a consequence of the next proposition.
Proposition 5.2. Fix xo € R" and ¢ > 0. Suppose that A = diam(Dy,u(e)) < oo and [u]cii gy < 1. Then,
for any x| € B.(xg) withr <e&/(4A), we have
Fou(n) = Fouro) = CA' vt —xol' ™ + 22 — x| Fu(xo)
for some C > 0 depending only on n, k, and s.
First, we prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we may assume that [u]c11 ey < 1. Otherwise, we
consider u/[u]c11@ny. Let r < min{ro/4, A, ¢/(8A)}. It is enough to show that

[‘Fli]co,l—.v(M) =< CO (5-1)

for some constant Cy > 0 depending only on n, k, s, €, A, and M.
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Let x1, x2 € B, (xp). Then x; € By, (x1) C By, (xp), since 4r < ryp. Moreover, diam(Dy, u(g)) < A < co.
Hence, applying Proposition 5.2 to u and B,,(x;) in place of B,(xg), we get

Fu(x) — Fu(x) < CA' o — x|~ + %Am — x1|Fu(x) < Colxy —x1['™,
where Co = CA'™ +4A" M /(€2%). Since x; and x, are arbitrary, we conclude (5-1). O

Before we prove Proposition 5.2, we need several preliminary results.

Lemma 5.3. If f is monotone increasing, then

/00 fow@)dr = /OO/OO w(r)drdt,
0 0 Jur()

with pup(t) = |{r > 0: f(r) <t}|.

Proof. By Fubini’s theorem, we have

// a)(r)drdt:/ w(r) dtdr.
0 Jusr 0 {r>ur(®)}

Since f is monotone increasing, r >  ¢(¢) if and only if # < f(r). Therefore,

£
/ dt =/ dt = f(r). O
{r>ps @) 0

Proposition 5.4. Let x € R". Under the assumptions of Corollary 4.5,

o 1 peu(t, z)V*
F = w dzdt,
ku(x) Cn,s‘/‘o /Rn—k |Z|n—k+23 < |Z| Z

where pu(t, z) = a)k_IHk({y eRF: i, (y,2) <t})) and

o] Vk_]

W(o) = kax /

p

(1+ r2)(n+2s)/2 dr. 5-2)

Proof. By Corollary 4.5, we have that

1 ~* )
S (x) = Aty (0) = g / ( (3, 2) dy) dz

ok 12172 \ S (27T 2+ D)02972

1 00 I"k_l
= Cn.s /Rn—k |Z|n—k+2s (kwk /O v(lzlr, 2) (1”2 + 1)(n+23)/2 dl") dz,

where v(r, z) = iy (v, 2) for |[y| =r.
Next we apply Lemma 5.3 to f(r) =v(|z|r,z) and w(r) = kagr*=1(r? 4+ 1)~*29/2 Note that since v
is the k-symmetric increasing rearrangement of i, we have

1 ;L 1
wr(t) = ml{r >0:v(rz) <t} = wll‘T’Hk({y eRF:ii(y, 2) <thVk = muxu(t,z)l/k.
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Therefore,

oo rk—l oo oo rk—l
k |7, 7)) ————————5dr = k ———dr ) dt
a)kfo U(|Z|r Z) (}’2+ 1)(n+2s)/2 r fO < Wk //:Lxu(t,z)'/k/ZI (I”2+ 1)(n+2s)/2 7’>

00 1/k
:/ W(/»/Lxu(t,Z) )dt,
0 |z]

where W is given in (5-2). By Fubini’s theorem, we conclude that

F = w dzdt.
ku(X) Cn,s /0 ‘/l%n—k |Z|n—k+2s ( |Z| Z

O

Lemma 5.5. Suppose we are under the assumptions of Proposition 5.2. Let x| € B,(xg) and d = |x1 — xg|.

The following hold:
(@) If t € (2Ad, €], then Dy u(t —2Ad) C Dy u(t).
(b) If t € (¢, 00), then Dy u(t —2Adt/e) C Dy, u(t).
Proof. First we prove (a). Fix t € (2Ad, ¢], and let x € Dy ,u(t —2Ad). Then
u(x) —u(xg) — (x —xp) - Vu(xg) <t —2Ad.
Using (5-3), convexity, and [u]c11 ey < 1, we see that
u(x) —u(xy) — (x —x1) - Vau(xy) = u(x) — u(xo) — (x —xo) - Vu(xo)

— (u(x1) —u(xo) — (x1 — x0) - Vu(x))

+ (x = x1) - (Vu(xo) — Vu(x))
<t—2Ad+|x —x|d.

Moreover, x € Dy u(e), since t < ¢, and thus,

lx —x1] < |x — xo + [xo —x1] = A+d <2A.

Therefore, x € Dy, u(t).

(5-3)

Next we prove (b). Fix ¢ € (e, 00), and let x € D, ,u(t —2Adt/e). By the previous computation, we

have that
ux) —ulxy) —(x —x1)-Vu(xy) <t —2Adt/e + (Jx — xo| + A)d.

(5-4)

To control |x — xg|, the distance from x to xp, we need to estimate the diameter of D, u(t). We take
v € Dy, u(t)\ Dy,u(e) and let z be in the intersection of d Dy u(e) and the line segment joining xo and y.

Then there is some A > 1 such that y — xo = A(z — x¢). By convexity of u,

u(z) < ’\/\;IM(XOH%u(y)-

Therefore,

re = A(u(z) —u(xo) — (2 — x0) - Vu(xp))

< (A= Du(xo) +u(y) — Au(xo) — (y — xo) - Vu(xo) = u(y) —u(xo) — (y — xo0) - Vu(xo) <1,
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so A <t/e. By convexity, we have that D, u(t) C xo 4 (/) (Dy,u(g) — xo). It follows that

diam Dy ju(t) < L diam Dy,u(e) = ﬂ'
& 3

Hence |x — xg| < At/e, and, by (5-4), we get

uu)—u@o—wx—xo-va>sz—%ﬁﬁ+(é£+A)isu
£ £

which means that x € Dy, u(?). [l

We are ready to give the proof of Proposition 5.2.

Proof of Proposition 5.2. Let x| € B,(xg) with r <¢e/(4A), and write d = |xg — x1|. We will estimate
Fiu(xy) using Proposition 5.4:

T = wl— dzdt.
ku(xl) Cn,s‘/O An—k |Z|n—k+23 < H Z

In view of Lemma 5.5, we separate the above integral into terms I 4 II + III by dividing the integral with

respect to ¢ into three parts as follows:
I: te€(0,2Ad], II: teAd,e], II: te (g, 00).
Let us start with 1. Since u € CV1(R") with [ulcriey < 1, we have
gt 2) = (= 12>,

Hence, using that W (p) is monotone decreasing, we get

1/k 1/2
W(Mxlu(t,z) >§W((L2—1) )
|z |z +
Therefore,

()= [ (1))
w dz < —— W — -1 dz
/Rnk |Z|n—k+2s < |Z| (2] <11/2} |Z|n—k+2s |Z|2

1
W (0 ——dz=1L+ 1.
+ ( ) (1z]=11/2) |Z|n—k+2s z 1+1h

Note that W(0) = C(n, k, s) < oo. Then

n—K— — 44— S
LS /,1/2 k25 P dp~17".

For I;, we make the change of variables w = z/¢'/2. We see that

7 / 1 W 1 | 1/2 (b g 1o v 1 1 1/2 .
- — ws — - _ _ '
1 {lw|<1} t(n_k+zs)/2|w|n_k+25 |w|2 5 Jo p1+2s pz P

Note that if 0 < p < %, then
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1 1/2 1 00 rk=1 aa
w — —1 <Wl— | = — dr <o s
(G=1) )= 5) = oy s

12
—s n—k+2s s — =S
L St /O pwbp dp+1~ W(O)/ 1+25dp~t ;

Hence

Therefore,

since n — k > 0. We conclude that

20d 1/k 20d
1 u(t,
1=c,,,sf / — W(“’” ¢, 2) )dzdtﬁ/ S dt
0 Jpo-k |z|nTREE |z] 0

~ QAd)' ™ = 2A) " x; — xo'0.

Next we estimate the integral for r € (2Ad, ¢]. To this end, we use Lemma 5.5 (a) to get
Dyyu(t —2Ad) C Dy u(r).
In particular, for any z € R" ¥ fixed, we have
(yeRFtiig (v, 2) <1 —2Ad} C{y e R iy, (y,2) <1}

Hence pu,,(t —2Ad, z) < juy, (t, z), which yields

u(t, z 1/k
/ f n— k-i-ZSVV(Mx1 ( ) )d dt
2Ad Jre—+ 2] |z]
e—2Ad 1/k
Mxou(t, )
< dz dt.
C’”/ /R . |z|" K25 ( 2l ‘

Finally, we estimate the integral for 7 € [g, 00). By Lemma 5.5 (b),

2Adt
- )c Dau(0).

Dyyu (t -

Hence wyu(t —2Adt/e, z) < pyu(t, z), and

o 1 Mxlu(t,z)l/")
IM=c %4 dzdt
/ /R |z|n—kt2s ( |z]
o0 _ 1/k
5/‘ /‘ 1 'W<,u,x()u(t 2Adt/e, 7) )dzdt
e JRn-k |z ThE2 |z

| % | 1. )k
:—/ / — W(“)‘O”( 2 )dzdt.
1 =2Ad/e Je ana Jrot |2+ |zl
Note that

[t (2, )% e
M4+10 < dzdt = —— Fu(xo).
+H= 1—2Ad/8/ /R o |z|" 425 ( 2| cdt = g ko)
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Therefore, we conclude that

F,ﬁu(xl)—fliu(xo)§CA]_S|x1—xo|]_S+< l)f,iu(xo)

)

e —2Ad
1—s 1—s A X

<CA 7lx;p—xol 7+ ?|x1 — xo| Fru(xo),

sinced <r <¢/(4A), and thus, e —2Ad > /2. ]

6. A global Poisson problem

We consider the following Poisson problem in the full space:
Fiu=u—g in R", 1)
(u—@)(x)—> 0 as|x| — oo,

where ¢ : R" — R is nonnegative, smooth, and strictly convex. Furthermore, we ask that ¢ behaves
asymptotically at infinity as a cone ¢, that is,

|x1|i—r>noo(¢ —¢)(x) =0. (6-2)

Similar problems have been studied for nonlocal Monge—Ampere operators [Caffarelli and Charro 2015;
Caffarelli and Silvestre 2016].
We will prove the following theorem.

Theorem 6.1. There exists a unique solution u to (6-1) such that u € CH1(R") with

[M]Cl.l(Rn) < [(p]cl.l(Rn).

To define the notion of a solution, we introduce a natural pointwise definition of F}u for functions u
that are merely continuous.

Definition 6.2. Let u € CO(R").

(a) We say that a linear function /(y) =y - p+ b, with p € R"” and b € R, is a supporting plane of u at a
point x if [(x) = u(x) and I[(y) < u(y) for all y € R".

(b) We define the subdifferential of u at a point x as the set du(x) of all vectors p € R” such that
[(y) =y - p+bisasupporting plane of u at x for some b € R.

Definition 6.3. Let u € C°(R") be a convex function. For xy € R”, we define

Fpu(xg) =cps sup inf (u(xog+x) —u(xg) —x-p)K(x)dx.
pedu(x) KEKy Jrn

Remark 6.4. Note that if u € C11(xp), then du(x¢) = {Vu(xo)}, and the previous definition coincides
with Definition 2.4.

The following properties of F;u will be useful for our purposes. The proof is analogous to the one in
[Caffarelli and Silvestre 2016], so we omit it here.
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Lemma 6.5. Let u, v e C°(R") be convex functions. The following hold:
(a) (homogeneity) For any A > 0,
Fi(Au) = AFu.
(b) (monotonicity) Assume that u(xg) = v(xg) and u(x) > v(x) forall x € R". Then
Fru(xg) = Fv(xo).
(¢) (concavity) For any x € R",
F(3u+v)x) = H(Fux) + Fow)).
(d) (lower semicontinuity) Assume that u € C"1(R"). Then
Fiu(xo) < liminf Fju(x).
X—> X0
Definition 6.6. Let u € C°(R") be a convex function. We say that u is a subsolution to Fu=u—g
in R"* if
Fru(xg) > u(xo) —@(xo) forall xog € R".
Similarly, u is a supersolution if
Fru(xo) <u(xo) —¢(xo) forall xg € R".
We say that u is a solution if it is both a subsolution and a supersolution.
Lemma 6.7. If u and v are subsolutions, then max{u, v} is a subsolution.
Proof. Let w = max{u, v}. Then w is continuous and convex. Fix xo € R". Without loss of generality, we
may assume that u(xg) > v(xo). Then w(xg) = u(xg) and w(x) > u(x) for any x € R”. By monotonicity
(see Lemma 6.5), we have
Frw(xo) = Fru(xo) > u(xo) — ¢(xo) = w(xo) — @(xo).
Hence w is a subsolution. (Il

We will show existence and uniqueness of solutions to (6-1) using Perron’s method. The key ingredients
are the comparison principle and the existence of a subsolution (lower barrier) and a supersolution (upper
barrier). We state this in the following proposition. We omit the proof since it is similar to that in
[Caffarelli and Silvestre 2016].

Proposition 6.8. Consider the equation Fu =u — ¢ in R". The following hold.

(a) (comparison principle) Let u and v be a subsolution and supersolution, respectively. Assume that
u <vinR"\ Q for some bounded domain Q C R". Then u < v in R".

(b) (lower barrier) The function ¢ is a subsolution.

(c) (upper barrier) The function ¢ + w is a supersolution, where w = (I — A*) "' A%@. In particular,
w(x) < C(1+|x)'=% for some C > 0.
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An immediate consequence of the comparison principle is the uniqueness of solutions.
Lemma 6.9 (uniqueness). There exists at most one solution to (6-1).

Proof. Suppose by means of contradiction that there exist two functions u, v € C°(R"), with u # v,
satisfying (6-1). Then |u(x) — v(x)| — 0 as |x| — oco. Hence, for any & > 0, there exists a compact set
Q¢ € R", depending on ¢, such that

v(x) —e <u(x) <v(x)+e forall x e R"\ Q,.
Moreover, for any xo € R", the function v + ¢ satisfies
Fr(v+e)(xo) = v(xo) — @(x0) < (v(x0) + &) — @(x0).

Therefore, v is a supersolution and, by the comparison principle, it follows that # < v+ ¢ in R". Similarly,
we see that v — ¢ is a subsolution and u > v — ¢ in R”. Hence

le — v Lown) <&,
and letting ¢ — 0, we get u = v in R", which is a contradiction. U
To prove existence of a solution, we define

u(x) =supv(x), (6-3)
veS

where S is the set of admissible subsolutions given by
S ={ve " (R"): v asubsolution, ¢ <v < ¢+w, and [v]cor gy < [@]corgn)}-

Note that S # & since ¢ € S, and the supremum is finite since v < ¢ + w for any v € S. Moreover, u is
convex and Lipschitz with

[u]cor ey < [@lcor(mn)-

From ¢ <u < ¢ + w and the upper bound for w in Proposition 6.8, it follows that
0<@—@)@) =w) < CA+x)'™> -0

as |x| = oo, since 1 —2s < 0.
Proposition 6.10. The function u given in (6-3) is C11(R") with

[ilcnr ey < [@1er -
Proof. We will show that, for any xo, x; € R”",

0 < u(xo+x1) — u(xo — x1) — 2u(xo) < [@leri x>

Indeed, the lower bound follows from convexity of #. Hence we only need to prove the upper bound.
Write M = [(ﬂ]cl.l(Rn). Then

@(xo +x1) — @(x0 — x1) — M|x1|* < 20(x0). (6-4)



272 LUIS A. CAFFARELLI AND MARIA SORIA-CARRO

Take any v € S and fix x; € R". Define
9(x0) = 5(v(x0 +x1) +v(x0 —x1) = Mx1[*)  for xo € R".

We claim that 9 is a subsolution to Fu = u — ¢ in R". Indeed, since F} is homogeneous of degree 1,
concave, and translation-invariant (see Lemma 6.5), we have

Fid(xo) = Fi (3v(x0 +x1) + 5v(x0 — x1))
> %]-',fv(xo +x1)+ %}',fv(xo —Xx1)
> 3(v(xo+x1) — @(x0 +x1) + v(xo — x1) — @(x0 — X))
= S (wxo+x1) — v(xo —x1) — M|x1]?) — §(@(x0 +x1) + ¢ (x0 — x1) — M|x1 )
> H(x0) — @(x0).

Moreover, using that v < ¢ + w, we get
D(x0) < 3(p(xo+x1) +(xo — x1) — Mlx1 %) + 3 (w(xo + x1) + w(xo — x1)).
By (6-4) and the upper bound of w in Proposition 6.8 (c), we see that
9(x0) = p(x0) < 5C(1+ |0+ 211" >) + 3C(A + o —x1| ™) = 0

as |xg| — oo with x; fixed, since 1 —2s < 0. Then, for all ¢ > 0, there is some compact set €2, depending
on ¢ and x;, such that
(x0) —& < @(xg) forall xo € R"\ Q.

Consider 9, = max{v—¢, ¢}. Then v, is a subsolution, since the maximum of subsolutions is a subsolution
(see Lemma 6.7). Also, U, = ¢ < ¢ +w in R" \ €., and ¢ + w is a supersolution by Proposition 6.8 (c).
Applying the comparison principle, we get ¢ < v, < @+ w. Moreover, [0¢]co.1 gy < [@]co.1 @n. Therefore,
0s €8.

Since u(xp) = sup, g v(xp), it follows that u(xg) > 0. (xo) > 0(xg) — €. Letting ¢ — 0, we conclude
that, for any v € S and xg, x; € R",

u(xo) = 5 (v(xo +x1) + v(xo — x1) — Mx1]%). (6-5)

Finally, by definition of supremum, for any § > 0 and xgp, x; € R", there exist vy, v, € S such that
u(xg+x1) —8 < vi(xp+x1) and u(xg —x1) — 8 < va(x9 — x1). Let v = max{vy, v}. Then using (6-5)
for this v, we get

w(x0) = 3 (u(xo +x1) =8 +ulxo —x1) =8 — Mlxi|*).

Letting § — 0, we conclude that
u(xo +x1) —u(xo = x1) = 2u(x0) < [@lctin bl O

To complete the proof of Theorem 6.1, it remains to see that u is a solution. Hence, we need to show
that u is both a subsolution and a supersolution. We will prove these results in the next two propositions.
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Lemma 6.11. For any xo € R" and ¢ > 0, the set

Dyyu(e) = {x € R" : u(x) —u(xo) — (x — xo) - Vu(xo) < &}
is compact.
Proof. Let xo € R" and ¢ > 0. Without loss of generality, we may assume that xo = 0. Let [ be the

supporting plane of u at O, that is, /(x) = u(0) +x - Vu(0). Clearly, Dy, u(¢) is closed. Hence we only
need to show that it is bounded. Recall that

o (x) <@(x) <u(x) forallxeR", (6-6)
where ¢ is a cone. Note that the strict inequality in (6-6) follows from the strict convexity of ¢. Moreover,
by (6-1) and (6-2) we have

lim (u—¢)(x)=0.
|x]— 00

Therefore, Dy, u(e) C {¢p <!+ ¢e}. We claim that
‘xl‘igloo@ — D (x) = oo. (6-7)
If this condition holds, then, for all M > 0, there exists R > 0 such that
¢(x)—I1(x)> M forall |[x| > R.

Choosing M = ¢, we have {¢ <[+¢} C By for some R depending on e. Hence the set D, u(¢) is bounded.
To prove the claim, we distinguish two cases. If u(0) = 0, then u attains an absolute minimum at 0, so
Vu(0) = 0. In particular, /(x) = 0 for all x € R", and thus (6-7) is clearly satisfied. Hence it remains to
show the claim when
u(0) > 0.

We will prove it by contradiction. If (6-7) is not true, then there exists a sequence of points {x; }j?’il CcR"

such that |x;| — oo as j — oo and

lim (¢ —1)(x;) < o0.
j—00

Using that ¢ is continuous and homogeneous of degree 1, and letting j — oo, we get

ey L) =¢(ﬁ) — =L Vu(0) > ¢(e) = Du(0) =0,

|x; 1 |x; |x; 1

where x;/|x;| — e, up to a subsequence. Therefore, ¢ (e) = D,u(0). For any A > 0, we have
l(Ae) =u0)+ re- Vu(0) = u(0) + Ao (e) = u(0) + ¢ (re).
Since [ is a supporting plane of u, we know that u(x) > [(x) for all x € R", and thus,
u(re) = Il(re) = p(he) +u(0).
Letting 1. — oo, we see that
0= Alim (u—¢)(re) > u(0) >0,
—00

which is a contradiction. |
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Proposition 6.12 (u is a subsolution). The function u given in (6-3) satisfies
Fiu(xo) > u(xo) — @(xo) forall xg e R".

Proof. By Proposition 6.10, we know that u € C!(R"). Without loss of generality, we may assume that
[ulciimny = 1. Otherwise, consider u/[u]c11 gn).
Let xo € R". Then the quadratic polynomial

2
P(x) =u(xo) + Vu(xo) - (x — x0) + |x — xo|
touches u from above at xg. Moreover, we may assume that P touches u strictly from above at xq. If not,

we replace P by P + ¢|x — xo|> with & > 0 small.
Fix § > 0. Then there exists & > 0, with 4 — 0 as § — 0, such that

P(x)—u(x)>h>0 forall x € R"\ Bs(xp).

Since u(x) = sup,.s v(x) and v € S is uniformly continuous, there is a monotone sequence {v; }]?'i , CS
such that v; — u uniformly in compact subsets of R". In particular, there exists jo > 1, depending on /£,
such that, for all j > jy,

u(x) —h <v;(x) forall x € Bs(xo). (6-8)

Write v = v; for some j > jo. It follows that

P—v>h in R" \ Bs(xo),
{P—v <P—u+h in Bs(xgp).
Let d = infge (P — v). Then d = P(x;) — v(x;) for some x; € By, (xg) with 0 <d < h, and
P(x1) —d =v(x1),
{P(x) —d>v(x) forall x e R".
Hence P —d is a quadratic polynomial that touches v from above at x;. In particular, since v is convex,
v has a unique supporting plane / at x;, so dv(x;) = {VI}.

Let T > 0 be such that [/ + t is the supporting plane of u at some point x,. Note that x, approaches xg
as h goes to 0, and thus, there exists some » = r(h) > 0 such that r — 0 as & — 0 and x; € B, (xgp).
Furthermore, since /(x1) +d = v(x;) +d = P(x1) > u(xy), then t <d < h (see Figure 2).

Fix ¢ > 0. By Lemma 6.11, we have that D,,u(¢) is bounded, so A = diam D, u(g) < co. Choose §
sufficiently small that » < ¢/(4A). Then by Proposition 5.2,

Fu(x) < Futo) + CA v —xol' = + L2 Bugo) o — vl < Futo) +C0), - (69)

where C(r) — 0 as r — 0. Next we will show that
Fivx) — Ct'™ < Fiu(xy) (6-10)

for some constant C > 0 depending only on 7, k, and s. Since dv(x;) = {VI} we have v € C'!(xy), and
using Proposition 5.4 we get

> 1 o v(t, )V
Fulx)=c // W( ! dzdt,
L A S 2]
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Figure 2. Geometry involved in the proof of Proposition 6.12.

where p,v(t, z) = w,;l’}{k({y e Rk : Uy (y,z) <t}) and W is the monotone decreasing function given
in (5-2). Observe that since v < u, the supporting plane of v at x; is /, and the supporting plane of u at x;
is [ + . Then, for any ¢ > 0, it follows that

Dopu(t)={u—(+7)<t}S{v—-I=<t+7}=Dyv(+1).
In particular, py,u(t, z) < px,v(t+1,2) forany z € R"—*. Therefore,

W (px,u(t, 2)) = W(nyv(t+1,2)),

o0 1 /’LX v(taz)l/k
SHIRE o Y UL P
(lx2) 2 . o Jrok |zfrhEE |z]

=Fv(x) —c // W( : dzdt
v = ens 0 Jri-k |z|n—H+2s |z

> Flu(x)) —Ct'™s,

which yields

where the last inequality follows from the fact that u, v(t,z) > C(t — |z|2)ﬁ/2 and W is monotone
decreasing.

Combining (6-9) and (6-10), using that v is a subsolution, and using (6-8), we get
Fiu(xo) +C(r) = Fox) = Ct' ™ = v(x) —p1) = Ct' ™ > ux) —h —g(x) = Cz' ™.

Letting § — O, it follows that » — 0, C(r) — 0, t — 0, and x; — xo. By continuity of # and ¢, we
conclude the result. |
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Proposition 6.13 (u is a supersolution). The function u given in (6-3) satisfies
Fru(xo) <u(xo) —@(xo) forall xoeR".
Proof. Assume the statement is false. Then there exists some xg € R" such that
Fiu(xo) > u(xo) — ¢(xo).

Without loss of generality, we may assume that u(xp) = 0 and Vu(xg) = 0. Otherwise, consider
v(x) =u(x) —u(xg) — (x —x0) - Vu(xg). Then there exists some § > 0 such that

Fiu(xo) = —¢(x0) +36. (6-11)

Fix ¢ > 0 and let u® (x) = max{u(x), ¢}. We will show that, for & sufficiently small, #° is an admissible
subsolution, and thus reach a contradiction with u being the largest subsolution. Indeed, ©#® is convex and
u® € COL(R") with [u® lcorwny < [@lcoa (). Moreover, note that u®(x) = u(x) for x large. Hence, once
we show that u® is a subsolution, it will follow from the comparison principle that ¢ < u® < ¢ 4+ w.

If x € {us = u}, then u.(x) = u(x) and u, > u in R*. By monotonicity (Lemma 6.5),

Fruf(x) > Flux) > ulx) —px) =u’(x) —p(x),

since u is a subsolution, by Proposition 6.12.
If x € {u® > u}, then u®(x) = ¢ and du®(x) = {0}. In particular,

Fiu® (x) = Fiu’ (xo). (6-12)

Moreover, for any ¢t > 0, we have D, u®(t) = {u® —e <t} ={u <t +¢e} = Dy,u(t + ¢). Therefore, in
view of Proposition 5.4, we get

¢ 1 Wt (2, 7)1/ K -
FguS(XO)Zf]fM(XO)_/(;/%nk |Z|n—k+2sW( all ] dzdt Z]—',fu(xo)—Cel 5, (6-13)

since u € CHH(R™) and juu(t, 2) > (t — |z|)%>.
Combining (6-11)—(6-13), we see that
Suf (x) = Fiuf (xo) > Fiu(xg) — Ce' ™ > —p(x0) +8 — Ce'™*
=1 () = p(x) + (@(x) = p(x0) +8 = Ce' ™ —¢),
since u®(x) = ¢. We need the term inside the parenthesis to be nonnegative. Hence it remains to control
@(x) — @(xp). Since ¢ is smooth,
lp(x) — @(x0)| = [@]co.r @ lx — xol.

We distinguish two cases. If {u = 0} = {x¢}, then |x — x9| < d. — 0 as ¢ — 0. Hence, choosing ¢
sufficiently small, we see that

P(x) —@(x0) +8 — Ce' ™ —& > 8 — [plcoignyds — Ce' ™ — e > 0.

Therefore, u® € S, which contradicts u®(xp) > u(xp) = sup,s v(x0) > u®(xp).
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Suppose now that {# = 0} contains more than one point. By compactness of {# = 0} and continuity
of ¢, there exists some x| € {# = 0} where ¢ attains its maximum. Then

Fru(xr) = Fpu(xo) = u(xo) —¢(xo) +8 = u(x1) — ¢(x1) +34.

Moreover, by convexity of {u = 0} (since u > ¢ > 0) and ¢, we must have that x; € d{u = 0}. Hence there
exists {x; }f.iz C {u > 0} such that x; — x; and u is strictly convex at x;. Namely, there is a supporting
plane that touches u only at x;.

By continuity of u, there exists some jj > 2 such that

u(xy) > u(x;) — }18 for all j > jo.
By continuity of ¢, there exists some j; > 2 such that
p(x1) < @(x;)+ 18 forall j > ji.
By lower semicontinuity of }u, up to a subsequence, there exists some j, > 2 such that
Fiu(xj)) > Fiu(x)) — 38 forall j > j.
Let J > max{jo, ji, j2}. Then
Fruleg) > Fux) — 38 = u(x) — o) + 38 > ulxy) —¢(x) + 18,
and we can repeat the previous argument, replacing xo by x;. We conclude that

Fru(xo) < u(xg) —¢(xo) forall xo € R". O

7. Future directions

As mentioned in the introduction, the main idea to define a nonlocal analog to the Monge—Ampere
operator is to write it as a concave envelope of linear operators. More precisely,

ndet(D*u(x)"/" = inf tr(MD*u(x)),
MeM

where M ={M € 8" : M > 0, det(M) = 1} and S” is the set of n x n symmetric matrices. Note
that this identity is equivalent to the one given in (1-2) taking M = AAT and B = D?u(x), since
tr(ATBA) = tr(AATB). In fact, this extremal property does not only hold for n det(B)'/" with B € S"
and B > 0. If A = (A, ..., A,), where A; are the eigenvalues of B, then the function f defined on
F={AeR*:x; >0forall i=1,...,n}and given by

n

1/n
JO) = ”(1—[ )»i) =ndet(B)'/"

i=1
is differentiable, concave, and homogeneous of degree 1. In general, if f satisfies these conditions in an
open convex set I' in R", then

fO)=mf{f(W)+ Vi - (r—w}=infVfu)- i,
nel nel
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where the second identity follows by Euler’s theorem. Therefore,
A)= inf w(MB),
fQ) = inf , r(M B)

where My ={M € S":A(M) e VF()}, V() ={Vf(n) : n €T}, and A(M) are the eigenvalues
of M.

For instance, the k-Hessian functions introduced by Caffarelli, Nirenberg, and Spruck in [Caffarelli et al.
1985] satisfy these conditions and, in fact, fractional analogs have been recently studied by Wu [2019]. It
would be interesting to explore fractional analogs to a wider class of fully nonlinear concave operators,
like the ones mentioned above.

We remark that the 1-Hessian is equal to the Laplacian, and the n-Hessian is equal to the Monge—
Ampere operator. Moreover, for 1 < k < n, we obtain an intermediate discrete family between these
operators. In view of this observation, a natural question of finding a continuous family connecting the
Laplacian with the Monge—Ampere operator arises. Here we suggest possible families that smoothly
connect these two operators and pass through the k-Hessians, in some sense. Indeed, let o € (0, 1]" and
write |o| = o) + - - - +a,. For A € R}, we consider the functions

1/lal
an
Ja) = (Z Aoty "\om)) :

oeS
where S is the set of all cyclic permutations of {1, ..., n}. Observe that, forany 1 <k <n,ifa =), ;¢
with |Z| = k, then f,, is precisely the k-Hessian function. Consider any smooth simple curve y : [0, 1] —
(0, 171" such that
(1) y(0) =e¢; for some 1 <i <n,
(2) y(t) =) icq, € With |Zx| =k and 0 < tx < 41 < 1 forall 1 <k <n, and
@) yH=d,.... .

Then the family { fi }oeim(y) 1S as we described. In particular, fractional analogs of these functions would
give a continuous family from the fractional Laplacian to the nonlocal Monge—Ampere. We will study
this problem in a forthcoming paper.
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