
ANALYSIS & PDE

msp

Volume 17 No. 1 2024

LUIS A. CAFFARELLI AND MARÍA SORIA-CARRO

ON A FAMILY
OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS:

FROM FRACTIONAL LAPLACIAN TO NONLOCAL
MONGE–AMPÈRE



ANALYSIS AND PDE
Vol. 17 (2024), No. 1, pp. 243–279

DOI: 10.2140/apde.2024.17.243 msp

ON A FAMILY
OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS:

FROM FRACTIONAL LAPLACIAN TO NONLOCAL MONGE–AMPÈRE

LUIS A. CAFFARELLI AND MARÍA SORIA-CARRO

We introduce a new family of intermediate operators between the fractional Laplacian and the nonlocal
Monge–Ampère introduced by Caffarelli and Silvestre that are given by infimums of integrodifferential
operators. Using rearrangement techniques, we obtain representation formulas and give a connection to
optimal transport. Finally, we consider a global Poisson problem prescribing data at infinity, and prove
existence, uniqueness, and C1,1-regularity of solutions in the full space.

1. Introduction

Integro-differential equations arise in the study of stochastic processes with jumps, such as Lévy processes.
A classical elliptic integrodifferential operator is the fractional Laplacian

1su(x0)= cn,s PV
∫

Rn

(u(x0 + x)− u(x0))
1

|x |n+2s
dx, s ∈ (0, 1),

which can be understood as an infinitesimal generator of a stable Lévy process. These types of processes
are very well studied in probability, and their generators may be given by

L K u(x0)=
∫

Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx,

where the kernel K is a nonnegative function satisfying some integrability condition.
Recently, there has been significant interest in studying linear and nonlinear integrodifferential equations

from the analytical point of view. In particular, extremal operators like

Fu(x0)= inf
K∈K

L K u(x0) (1-1)

play a fundamental role in the regularity theory. See [Caffarelli and Silvestre 2009; 2011a; 2011b;
Ros-Oton and Serra 2016]. The above equation is an example of a fully nonlinear equation that appears in
optimal control problems and stochastic games [Krylov 1980; Nisio 1988]. The infimum in (1-1) is taken
over a family of admissible kernels K that depends on the applications. In fact, nonlocal Monge–Ampère
equations have been developed in the form (1-1) for some choice of K [Caffarelli and Charro 2015;
Caffarelli and Silvestre 2016; Guillen and Schwab 2012].
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The Monge–Ampère equation arises in several problems in analysis and geometry, such as the mass
transportation problem and the prescribed Gaussian curvature problem [De Philippis and Figalli 2014].
The classical equation prescribes the determinant of the Hessian of some convex function u:

det(D2u)= f.

In the literature, there are different nonlocal versions of the Monge–Ampère operator that Guillen
and Schwab [2012], Caffarelli and Charro [2015], and Caffarelli and Silvestre [2016] have considered.
Maldonado and Stinga [2017] have also given a nonlocal linearized Monge–Ampère equation. These
definitions are motivated by the following property: if B is a positive definite symmetric matrix, then

n det(B)1/n = inf
A∈A

tr(AT B A), (1-2)

where

A = {A ∈ Mn : A > 0, det(A)= 1}

and Mn is the set of n × n matrices. If a convex function u is C2 at a point x0, then, by the previous
identity with B = D2u(x0), we may write the Monge–Ampère operator as a concave envelope of linear
operators. It follows that

n det(D2u(x0))
1/n = inf

A∈A
1[u ◦ A](A−1x0).

Caffarelli and Charro [2015] study a fractional version of det(D2u)1/n , replacing the Laplacian by the
fractional Laplacian in the previous identity. More precisely,

D
su(x0)= inf

A∈A
1s[u ◦ A](A−1x0)

= cn,s inf
A∈A

PV
∫

Rn

u(x0 + x)− u(x0)

|A−1x |n+2s
dx,

where s ∈ (0, 1) and cn,s ≈ 1 − s as s → 1; see also [Guillen and Schwab 2012]. A different approach
based on geometric considerations was given by Caffarelli and Silvestre [2016]. In fact, the authors
consider kernels whose level sets are volume preserving transformations of the fractional Laplacian kernel.
Namely,

MAsu(x0)= cn,s inf
K∈Ks

n

∫

Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx,

where the infimum is taken over the family

K
s
n = {K : R

n → R+ : |{x ∈ R
n : K (x) > r−n−2s}| = |Br | for all r > 0}. (1-3)

Notice that |A−1x |−n−2s ∈ Ks
n for any A ∈ A. Therefore,

MAsu(x0)f D
su(x0)f1su(x0).

Moreover, both MAsu and Dsu converge to det(D2u)1/n , up to some constant, as s → 1.



ON A FAMILY OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS FROM 1s TO MAs 245

In this paper, we introduce a new family of operators of the form

inf
K∈Ks

k

∫

Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx (1-4)

for any integer 1 f k < n, which arises from imposing certain geometric conditions on the kernels.
Moreover, we will see that

|y|−n−2s ∈ K
s
1 ¢ K

s
k ¢ K

s
n for 1< k < n,

and thus, this family will be monotone decreasing, and bounded from above by the fractional Laplacian
and from below by the Caffarelli–Silvestre nonlocal Monge–Ampère.

The paper is organized as follows. In Section 2, we construct the family of admissible kernels Ks
k

and give the precise definition of our operators for C1,1-functions. We introduce in Section 3 the basic
tools from the theory of rearrangements necessary for our goals. In Section 4, we study the infimum
in (1-4) and obtain a representation formula, provided some condition on the level sets is satisfied (see
Theorem 4.1). We also study the limit as s → 1 and give a connection to optimal transport. The Hölder
continuity of F s

k u is proved in Section 5, following similar geometric techniques from [Caffarelli and
Silvestre 2016]. In Section 6, we consider a global Poisson problem prescribing data at infinity, and
introduce a new definition of our operators for functions that are merely continuous and convex. We
show existence of solutions via Perron’s method and C1,1-regularity in the full space by constructing
appropriate barriers. Finally, we discuss some future directions in Section 7.

2. Construction of kernels

Let us start with the construction of the family of admissible kernels. Notice that any kernel K in Ks
n ,

defined in (1-3), will have the same distribution function as the kernel of the fractional Laplacian, since,
for any r > 0,

{x ∈ R
n : |x |−n−2s > r−n−2s} = Br .

Geometrically, this means that the level sets of K are deformations in any direction of R
n of the level sets

of |x |−n−2s , preserving the n-dimensional volume.
In view of this approach, a natural way of finding an intermediate family of operators between

the nonlocal Monge–Ampère and the fractional Laplacian is to consider kernels whose level sets are
deformations that preserve the k-dimensional Hausdorff measure Hk , with 1 f k < n, of the restrictions
of balls in R

n to hyperplanes generated by {ei }k
i=1.

We define the set of admissible kernels as follows.

Definition 2.1. We say that K ∈ Ks
k if, for all z ∈ R

n−k and all r > 0,

H
k({y ∈ R

k : K (y, z) > r−n−2s})=
{
Hk(B(r2−|z|2)1/2) if |z|< r,

0 if |z| g r,
(2-1)

where B(r2−|z|2)1/2 is the ball in R
k of radius (r2 − |z|2)1/2.
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{K ( · , z) > r−n−2s} ïe1, e2ð + ze3

Br ¢ R
3

Figure 1. Area-preserving deformation in R
3.

In Figure 1 we illustrate condition (2-1) for k = 2 and n = 3. Note that, for k = n, we recover the
definition of Ks

n . Moreover, |x |−n−2s ∈ Ks
k for all k.

Proposition 2.2. Let 1 f k < n. Then Ks
k ¢ Ks

k+1 ¦ Ks
n .

Proof. Let K ∈ Ks
k . Fix any z ∈ R

n−k−1 and r > 0. Then

H
k+1({y ∈ R

k+1 : K (y, z) > r−n−2s})=
∫

Rk+1
Ç{y∈Rk+1:K (y,z)>r−n−2s}(y) dy

=
∫

R

(∫

Rk

Ç{(w,t)∈Rk×R:K (w,t,z)>r−n−2s}(w, t) dw

)
dt

=
∫

R

H
k({w ∈ R

k : K (w, t, z) > r−n−2s}) dt ≡ I.

If |z| g r , then for any t ∈ R, we have that (t, z) ∈ R
n−k , with |(t, z)|> r . Therefore, by (2-1), it follows

that I = 0. If |z|< r , then

I =
∫

R

H
k(B(r2−t2−|z|2)1/2) dt = Ék

∫ (r2−|z|2)1/2

−(r2−|z|2)1/2
(r2 − t2 − |z|2)k/2 dt

= Ék(r
2 − |z|2)k/2

∫ (r2−|z|2)1/2

−(r2−|z|2)1/2

(
1 −

(
t

(r2 − |z|2)1/2
)2 )k/2

dt

= Ék(r
2 − |z|2)(k+1)/2

∫ 1

−1
(1 − Ã 2)k/2 dÃ = Ã k/2

0
( 1

2 k + 1
)
Ã1/20

(1
2 k + 1

)

0
( 1

2(k + 1)+ 1
)(r2 − |z|2)(k+1)/2

= Ék+1(r
2 − |z|2)(k+1)/2 = H

k+1(B(r2−|z|2)1/2),

where Él = Hl(B1)= Ã l/2/0(l/2 + 1) and B(r2−|z|2)1/2 is the ball of radius (r2 − |z|2)1/2 in R
k+1. □
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Definition 2.3. A function u : R
n → R is said to be C1,1 at the point x0, and we write u ∈ C1,1(x0), if

there is a vector p ∈ R
n , a radius Ä > 0, and a constant C > 0 such that

|u(x0 + x)− u(x0)− x · p| f C |x |2 for all x ∈ BÄ .

We denote by [u]C1,1(x0)
the minimum constant for which this property holds, among all admissible

vectors p and radii Ä.

Definition 2.4. Let s ∈
( 1

2 , 1
)

and 1 f k < n. For any u ∈ C0(Rn)∩ C1,1(x0), we define

F
s
k u(x0)= cn,s inf

K∈Ks
k

∫

Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K (x) dx,

where Ks
k is the set of kernels satisfying (2-1) and cn,s is the constant in 1s .

As an immediate consequence of Proposition 2.2, we obtain that the operators are ordered.

Corollary 2.5. Let s ∈
( 1

2 , 1
)

and 1 f k < n. Then, for any u ∈ C0(Rn)∩ C1,1(x0),

MAsu(x0)f F
s
k u(x0)f1su(x0).

Moreover, {F s
k }n−1

k=1 is monotone decreasing.

The regularity condition on u in Definition 2.4 allows us to compute F s
k u at the point x0 in the classical

sense. To obtain a finite number, we need to impose two extra conditions:

(1) An integrability condition at infinity:
∫

Rn

|u(x)|
(1 + |x |)n+2s

dx <∞. (P1)

(2) A convexity condition at x0:

ũ(x)≡ u(x0 + x)− u(x0)− x · ∇u(x0)g 0 for all x ∈ R
n. (P2)

Proposition 2.6. If u ∈ C0(Rn)∩ C1,1(x0) and u satisfies (P1) and (P2), then

0 f F
s
k u(x0) <∞.

Proof. Let Ä > 0 be as in Definition 2.3. Then

0 f F
s
k u(x0)f

∫

Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))
1

|x |n+2s
dx

f
∫

BÄ

[u]C1,1(x0)
|x |2

|x |n+2s
dx +

∫

Rn\BÄ(x0)

|u(x)|
|x − x0|n+2s

dx

+ |u(x0)|
∫

Rn\BÄ

1

|x |n+2s
dx + |∇u(x0)|

∫

Rn\BÄ

|x |
|x |n+2s

dx

f C(s, Ä)(|u(x0)| + |∇u(x0)| + [u]C1,1(x0)
)

+ 1 + |x0| + Ä
Ä

∫

Rn

|u(x)|
(1 + |x |)n+2s

dx <∞, since s ∈
(1

2 , 1
)
. □
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We point out that if u is not convex at x0, then the infimum could be −∞. We show this result in the
next proposition.

Proposition 2.7. Let u ∈ C0(Rn)∩ C1,1(x0). Assume that u satisfies (P1). If there exists x̄ ∈ R
n with

x̄ = (ȳ, 0) and ȳ ∈ R
k such that

ũ(x̄)= u(x0 + x̄)− u(x0)− x̄ · ∇u(x0) < 0,

then F s
k u(x0)= −∞.

Proof. Let K (x)= |x − x̄ |−n−2s . For any r > 0 and z ∈ R
n−k , if |z|< r , then

H
k({y ∈ R

k : K (y, z) > r−n−2s})= H
k({y ∈ R

k : |y − ȳ|2 + |z|2 < r2})= H
k(B(r2−|z|2)1/2).

Also, the measure is clearly zero if |z| g r . Therefore, K ∈ Ks
k . It follows that

F
s
k u(x0)f

∫

Rn

ũ(x)|x − x̄ |−n−2s dx

=
∫

Bε(x̄)

ũ(x)|x − x̄ |−n−2s dx +
∫

Rn\Bε(x̄)

ũ(x)|x − x̄ |−n−2s dx ≡ I + II.

Since u ∈ C0(Rn)∩ C1,1(x0), we have that ũ is continuous. Hence, given that ũ(x̄) < 0, it follows that
ũ(x) < 0 for all x ∈ Bε(x̄) for some ε > 0. Moreover, since K /∈ L1(Bε(x̄)), we have that I = −∞.
Arguing similarly as in the proof of Proposition 2.6, we see that II<∞. Therefore,

F
s
k u(x0)= −∞. □

Remark 2.8. The operators F s
k are not rotation invariant. This is because, for simplicity, in the construction

of the family of admissible kernels Ks
k we chose the first k vectors from the canonical basis of R

n . In
general, we may take any subset of k unitary vectors, Ä ={Äi }k

i=1, and replace the first condition on (2-1) by

H
k({y ∈ ïÄ ð§ : K (y + zÄ) > r−n−2s})= H

k(B(r2−|z|2)1/2) (2-2)

for all z ∈ ïÄ ð and r > 0, where ïÄ ð denotes the span of {Äi }k
i=1 and ïÄ ð§ the orthogonal subspace to ïÄ ð.

Let SO(n) be the group of n × n rotation matrices. Since Äi = Aei for some A ∈ SO(n), it follows that
any kernel KÄ satisfying (2-2) can be written as KÄ = K ◦ A, where K satisfies (2-1). Therefore, to make
the operators rotation invariant, one possibility is to take the infimum over all possible rotations. Namely,

inf
A∈SO(n)

inf
K∈Ks

k

∫

Rn

ũ(x)K (Ax) dx .

To focus on the main ideas, we will not explore this operator in this work.

3. Rearrangements and measure-preserving transformations

We introduce some definitions and preliminary results regarding rearrangements of nonnegative functions.
For more detailed information, see for instance [Baernstein 2019; Bennett and Sharpley 1988].
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Definition 3.1. Let f : R
n → R be a nonnegative measurable function. We define the decreasing

rearrangement of f as the function f ∗ defined on [0,∞) and given by

f ∗(t)= sup{¼ > 0 : |{x ∈ R
n : f (x) > ¼}|> t},

and the increasing rearrangement of f as the function f∗ defined on [0,∞) and given by

f∗(t)= inf{¼ > 0 : |{x ∈ R
n : f (x)f ¼}|> t}.

We use the convention that inf∅ = ∞.

Proposition 3.2. Let f, g : R
n → R be nonnegative measurable functions. Then

∫ ∞

0
f∗(t)g

∗(t) dt f
∫

Rn

f (x)g(x) dx f
∫ ∞

0
f ∗(t)g∗(t) dt.

The upper bound is the classical Hardy–Littlewood inequality. For the proof, see [Bennett and Sharpley
1988, Theorem 2.2] or [Baernstein 2019, Corollary 2.16]. For the sake of completeness, we give the proof
of the lower bound.

Proof. For j g 1, let f j = f |Bj
and g j = g|Bj

, where Bj denotes the ball of radius j centered at 0 in R
n .

By [Baernstein 2019, Corollary 2.18], it follows that
∫ |Bj |

0
( f j )∗(t)(g j )

∗(t) dt f
∫

Bj

f j (x)g j (x) dx .

Since f, g g 0, we get ∫

Bj

f j (x)g j (x) dx f
∫

Rn

f (x)g(x) dx .

Note that, for any t ∈ [0, |Bj |], we have

{¼ > 0 : |{x ∈ Bj : f j (x)f ¼}|> t} ¢ {¼ > 0 : |{x ∈ R
n : f (x)f ¼}|> t}.

Hence ( f j )∗(t)g f∗(t) and
∫ |Bj |

0
( f j )∗(t)(g j )

∗(t) dt g
∫ |Bj |

0
f∗(t)(g j )

∗(t) dt.

Moreover, g j · g pointwise on R
n . Then by [Baernstein 2019, Proposition 1.39], we have (g j )

∗ · g∗

pointwise on [0,∞) as j → ∞. By the monotone convergence theorem, we get

lim
j→∞

∫ |Bj |

0
f∗(t)(g j )

∗(t) dt =
∫ ∞

0
f∗(t)g

∗(t) dt.

Combining the previous estimates, we conclude that
∫ ∞

0
f∗(t)g

∗(t) dt f
∫

Rn

f (x)g(x) dx . □

Definition 3.3. We say that a measurable function È : R
l → R

m is a measure-preserving transformation,
or measure-preserving, if, for any measurable set E in R

m ,

H
l(È−1(E))= H

m(E).
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Lemma 3.4. If È : R
l → R

m is measure-preserving, then, for any measurable function f : R
m → R and

any measurable set E in R
m , ∫

E

f (y) dy =
∫

È−1(E)

f (È(z)) dz.

An important result by Ryff [1970] provides a sufficient condition for which we can recover a function
given its decreasing/increasing rearrangement, by means of a measure-preserving transformation.

Theorem 3.5 (Ryff’s theorem). Let f : R
n → R be a nonnegative measurable function. If limt→∞ f ∗(t)

equals zero, then there exists a measure-preserving transformation Ã : supp( f )→ supp( f ∗) such that

f = f ∗ ◦ Ã

almost everywhere on the support of f . Similarly, if limt→∞ f∗(t)= ∞, then f = f∗ ◦ Ã .

We will call a measure-preserving transformation Ã satisfying Ryff’s theorem a Ryff’s map.

Remark 3.6. In general, Ã is not invertible. Furthermore, there may not exist a measure-preserving
transformation È such that f ∗ = f ◦È .

As a consequence of Ryff’s theorem, we obtain a representation formula for the admissible kernels.
We write Ék = Hk(B1).

Lemma 3.7. Let K ∈ Ks
k . Fix z ∈ R

n−k and use the notation Kz(y)= K (y, z). Then

K ∗
z (t)= ((É−1

k t)2/k + |z|2)−(n+2s)/2.

In particular, there exists a measure-preserving transformation Ãz : supp(Kz)→ (0,∞) such that

K (y, z)= K ∗
z (Ãz(y)) for a.e. y ∈ supp(Kz).

Proof. Fix z ∈ R
n−k . Then

K ∗
z (t)= sup{¼ > 0 : Hk({y ∈ R

k : K (y, z) > ¼}) > t}
= sup{¼ < |z|−n−2s : Hk(B(¼−2/(n+2s)−|z|2)1/2) > t}
= sup{¼ < |z|−n−2s : Ék(¼

−2/(n+2s) − |z|2)k/2 > t}
= sup{¼ < |z|−n−2s : ¼−2/(n+2s) > (É−1

k t)2/k + |z|2} = ((É−1
k t)2/k + |z|2)−(n+2s)/2.

Moreover, limt→∞ K ∗
z (t)= 0. Therefore, the result follows from Theorem 3.5. □

In view of Definition 3.1, we introduce the symmetric rearrangement of a function in R
n with respect to

the first k variables as follows. Fix k ∈ N with 1 f k < n. Given x ∈ R
n , we write x = (y, z) with y ∈ R

k

and z ∈ R
n−k . Furthermore, for z fixed, we call fz the restriction of f to R

k . Namely, fz(y)= f (y, z).

Definition 3.8. Let f : R
n → R be a nonnegative measurable function. We define the k-symmetric

decreasing rearrangement of f as the function f ∗,k : R
n → [0,∞] given by

f ∗,k(x)= f ∗
z (Ék |y|k),

and the k-symmetric increasing rearrangement as the function f∗,k : R
n → [0,∞] given by

f∗,k(x)= ( fz)∗(Ék |y|k).
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When k = n, we obtain the usual symmetric rearrangement.

Remark 3.9. (1) Notice that f ∗,k and f∗,k are radially symmetric and monotone decreasing/increasing,
with respect to y. In the literature, this type of symmetrization is also known as the Steiner symmetrization
[Baernstein 2019, Chapter 6].

(2) By Lemma 3.7, we see that any kernel K ∈ Ks
k satisfies

K ∗,k(x)= |x |−n−2s for x ̸= 0. (3-1)

4. Analysis of F s
k

Our main goal of this section is to study the infimum in the definition of the operator

F
s
k u(x0)= cn,s inf

K∈Ks
k

∫

Rn

ũ(x)K (x) dx,

where ũ(x)=u(x0+x)−u(x0)−x ·∇u(x0). Throughout the section, we assume that u ∈C0(Rn)∩C1,1(x0)

and that u satisfies properties (P1) and (P2), so that 0 f F s
k u(x0) <∞.

Analysis of the infimum. We will study the following cases:

Case 1. For all ¼ > 0 and z ∈ R
n−k ,

H
k({y ∈ R

k : ũ(y, z)f ¼}) <∞.

Case 2. There exists some ¼0 > 0 such that, for all z ∈ R
n−k ,

H
k({y ∈ R

k : ũ(y, z)f ¼})
{
<∞ for 0< ¼ < ¼0,

= ∞ for ¼g ¼0.

Case 3. For all ¼ > 0 and z ∈ R
n−k ,

H
k({y ∈ R

k : ũ(y, z)f ¼})= ∞.

In Case 1, when all of the level sets of ũ have finite measure, we show that the infimum is attained at
some kernel whose level sets depend on the measure-preserving transformation that rearranges the level
sets of ũ. More precisely:

Theorem 4.1. Suppose that, for all ¼ > 0 and z ∈ R
n−k ,

H
k({y ∈ R

k : ũ(y, z)f ¼}) <∞.

Then, for any z ∈ R
n−k , there exists a measure-preserving transformation Ãz : R

k → [0,∞) such that

F
s
k u(x0)= cn,s

∫

Rn−k

∫

Rk

ũ(y, z)

((É−1
k Ãz(y))2/k + |z|2)(n+2s)/2

dy dz.

In particular, the infimum is attained.

Remark 4.2. Observe that if ũ( · , z) is constant in some set of positive measure, then the kernel where the
infimum is attained is not unique since the integral is invariant under any measure-preserving rearrangement
of K within this set; see [Ryff 1970].
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Before we give the proof of Theorem 4.1, we need a lemma regarding the k-symmetric increasing
rearrangement of ũ. By Definition 3.8, this is given by the expression

ũ∗,k(y, z)= inf{¼ > 0 : Hk({w ∈ R
k : ũ(w, z)f ¼}) > Ék |y|k}.

Lemma 4.3. Fix z ∈ R
n−k . If Hk({y ∈ R

k : ũ(y, z)f ¼}) <∞ for all ¼ > 0, then

lim
|y|→∞

ũ∗,k(y, z)= ∞.

Proof. Assume there exists M > 0 independent of ¼ such that

H
k({w ∈ R

k : ũ(w, z)f ¼})f M for all ¼ > 0. (4-1)

Then, for any y ∈ R
k with Ék |y|k > M , we have that

ũ∗,k(y, z)= ∞,

since inf∅=∞. If (4-1) does not hold, then there must be an increasing sequence {M¼}¼>0 with M¼→∞
as ¼→ ∞ such that

H
k({w ∈ R

k : ũ(w, z)f ¼})= M¼.

Then, for any M > 0, there exists 3 = 3(M) > 0 such that M¼ > M for all ¼ > 3. Since M¼ is
monotone increasing, we can assume without loss of generality that M3 f M . Otherwise, we take 3 to
be the minimum for which this property holds. Also, 3(M) is monotone increasing, and 3(M)→ ∞
as M → ∞. In particular,

inf{¼ > 0 : M¼ > M} g3(M)→ ∞ as M → ∞.

Then, for any K > 0, there exists M > 0 such that

inf{¼ > 0 : M¼ > M} g K .

Therefore, for any y ∈ R
k with Ék |y|k > M , we have

ũ∗,k(y, z)= inf{¼ > 0 : M¼ > Ék |y|k} g inf{¼ > 0 : M¼ > M} g K .

We conclude that

lim
|y|→∞

ũ∗,k(y, z)= ∞. □

Proof of Theorem 4.1. Since u is convex at x0, we have that ũ(y, z)g 0. Moreover,

F
s
k u(x0)= cn,s inf

K∈Ks
k

∫

Rn−k

∫

Rk

ũ(y, z)K (y, z) dy dz.

Fix z ∈ R
n−k and consider the functions f (y)= ũ(y, z) and g(y)= K (y, z). Since

H
k({y ∈ R

k : ũ(y, z)f ¼}) <∞

for any ¼ > 0, then by Lemma 4.3 we have

lim
t→∞

f∗(t)= lim
|y|→∞

f∗,k(x)= ∞,
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with f∗,k(x) = ũ∗,k(y, z) and f∗,k(x) = f∗(Ék |y|k). By Ryff’s theorem (Theorem 3.5), there exists a
measure-preserving transformation Ãz : R

k → [0,∞) depending on z such that

ũ(y, z)= f∗(Ãz(y)) (4-2)

for all y ∈ supp ũ( · , z)¦ R
k .

Let K (y, z)= ((É−1
k Ãz(y))

2/k + |z|2)−(n+2s)/2. For any r > |z|, we have

H
k({y ∈ R

k : K (y, z) > r−n−2s})= H
k({y ∈ R

k : ((É−1
k Ãz(y))

2/k + |z|2)−(n+2s)/2 > r−n−2s})

= H
k({y ∈ R

k : Ãz(y) < Ék(r
2 − |z|2)k/2})

= H
k(Ã−1

z ((0, Ék(r
2 − |z|2)k/2)))= H

1((0, Ék(r
2 − |z|2)k/2))

= Ék(r
2 − |z|2)k/2 = H

k(B(r2−|z|2)k/2),

since Ãk is measure-preserving (see Definition 3.3). Then K ∈ Ks
k , and thus

F
s
k u(x0)f cn,s

∫

Rn−k

∫

Rk

ũ(y, z)

((É−1
k Ãz(y))2/k + |z|2)(n+2s)/2

dy dz.

To prove the reverse inequality, let K ∈ Ks
k . Applying Proposition 3.2, we see that

∫

Rk

ũ(y, z)K (y, z) dy g
∫ ∞

0
f∗(t)g

∗(t) dt =
∫

Rk

f∗(Ãz(y))g
∗(Ãz(y)) dy =

∫

Rk

ũ(y, z)g∗(Ãz(y)) dy

by Lemma 3.4 and (4-2). Moreover, by the definition of rearrangements,

g∗(Ãz(y))= sup{¼ > 0 : Hk({w ∈ R
k : K (w, z) > ¼}) > Ãz(y)} = K ∗,k(ỹ, z),

with Ék |ỹ|k = Ãz(y). By (3-1), we get

g∗(Ãz(y))= (|ỹ|2 + |z|2)−(n+2s)/2 = ((É−1
k Ãz(y))

2/k + |z|2)−(n+2s)/2.

Hence integrating over all z ∈ R
n−k and taking the infimum over all kernels K ∈ Ks

k , we conclude that

F
s
k u(x)= cn,s

∫

Rn−k

∫

Rk

ũ(y, z)

((É−1
k Ãz(y))2/k + |z|2)(n+2s)/2

dy dz. □

Remark 4.4. A natural question that arises from this result is whether there exists a measure-preserving
transformation ϕz : R

k → R
k such that

|ϕz(y)| = (É−1
k Ãz(y))

1/k .

In that case, we would have that the infimum is attained at a kernel K such that

K (y, z)= |Æ(y, z)|−n−2s,

where Æ : R
n → R

n is measure-preserving with Æ(y, z)= (ϕz(y), z).
Recall that Ryff’s theorem gives a representation of a function f in terms of its increasing rearrange-

ment f∗, that is, f = f∗ ◦ Ã with Ã : R
k → R measure-preserving. If this result were also true for the
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symmetric increasing rearrangement, given by f#(x) = f∗(Ék |x |k), then there would exist a measure-
preserving transformation ϕ : R

k → R
k such that f = f# ◦È . In particular,

f (x)= f#(ϕ(x))= f∗(Ék |ϕ(x)|k)= f∗(Ã (x)).

Hence it seems reasonable that Ék |ϕ(x)|k = Ã(x). As far as we know, this is an open problem.

As an immediate consequence of Theorem 4.1, we obtain the following representation of the func-
tion F s

k u in terms of the k-symmetric increasing rearrangement of ũ.

Corollary 4.5. Under the assumptions of Theorem 4.1, we have

F
s
k u(x0)=1s ũ∗,k(0).

Proof. Note that ũ∗,k(0) = 0 since ũ(0) = 0. Therefore, using the same notation as in the proof of
Theorem 4.1, we showed that

F
s
k u(x0)= cn,s

∫

Rn−k

∫ ∞

0
f∗(t)g

∗(t) dt dz = Ékcn,s

∫

Rn−k

∫ ∞

0
f∗(Ékr k)g∗(Ékr k)r k−1 dr dz

= cn,s

∫

Rn−k

∫

Rk

f∗(Ék |y|k)g∗(Ék |y|k) dy dz = cn,s

∫

Rn−k

∫

Rk

ũ∗,k(y, z)K ∗,k(y, z) dy dz

= cn,s

∫

Rn−k

∫

Rk

ũ∗,k(y, z)

(|y|2 + |z|2)(n+2s)/2
dy dz =1s ũ∗,k(0). □

From the previous result and the fact that the family of operators {Fk}n−1
k=1 is monotone decreasing, we

see that the fractional Laplacian of the k-symmetric rearrangements are ordered at the origin.

Corollary 4.6. Suppose we are under the assumptions of Theorem 4.1. Then

1s ũ∗,k+1(0)f1s ũ∗,k(0).

Next we treat Case 2.

Theorem 4.7. Suppose that there exists some ¼0 > 0 such that, for all z ∈ R
n−k ,

H
k({y ∈ R

k : ũ(y, z)f ¼})
{
<∞ for 0< ¼ < ¼0,

= ∞ for ¼g ¼0.

Then there exists a kernel K0 ∈ Ks
k with supp K0( · , z)¦ {y ∈ R

k : ũ(y, z)f ¼0} such that

F
s
k u(x0)= cn,s

∫

Rn−k

∫

Rk

ũ(y, z)K0(y, z) dy dz.

In particular, the infimum is attained.

Proof. Fix z ∈ R
n−k . For j g 1, define the set

Aj (z)=
{

y ∈ R
k : ũ(y, z)f ¼0 − 1

j

}
.

For simplicity, we drop the notation of z. We have that Hk(Aj ) <∞, Aj ¦ Aj+1, and

A∞ =
∞⋃

j=1

Aj = {y ∈ R
k : ũ(y, z) < ¼0}.
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Observe that if K ∈ Ks
k , then

H
k({y ∈ R

k : K (y, z) > 0})= lim
r→0

H
k({y ∈ R

k : K (y, z) > r})= ∞.

Hence we need to distinguish two subcases:

Case 2A. Assume that Hk(A∞)= ∞. Let K ∈ Ks
k and vj = ũÇAj

. By Proposition 3.2,
∫

Aj

ũ(y, z)K (y, z) dy =
∫

Rk

vj (y, z)K (y, z) dy g
∫ ∞

0
(vj )∗(t)K

∗(t) dt.

By Lemma 3.4, for any measure-preserving transformation Ã : R
k → [0,∞), it follows that

∫ ∞

0
(vj )∗(t)K

∗(t) dt =
∫

Rk

(vj )∗(Ã (y))K
∗(Ã (y)) dy.

By Ryff’s theorem (Theorem 3.5), there exists Ãj : Aj → [0,Hk(Aj )] measure-preserving such that
vj = (vj )∗ ◦ Ãj in Aj . Therefore,

∫

Aj

ũ(y, z)K (y, z) dy g
∫

Aj

ũ(y, z)K ∗(Ãj (y)) dy. (4-3)

We claim that Ãj+1(y)f Ãj (y), for all y ∈ Aj . Indeed, since Aj ¦ Aj+1, we have
{
vj (y)= vj+1(y) for all y ∈ Aj ,

vj (y)f vj+1(y) for all y ∈ Aj+1 \ Aj .

In particular,

(vj+1)∗(Ãj+1(y))= (vj )∗(Ãj (y))f (vj+1)∗(Ãj (y)) for all y ∈ Aj .

Since (vj+1)∗ is monotone increasing, we must have

Ãj+1(y)f Ãj (y) for all y ∈ Aj .

Therefore, there exists Ã∞ : A∞ → [0,∞) measure-preserving such that

Ã∞(y)= lim
j→∞

Ãj (y).

Define the kernel K0 as

K0(y, z)= ((É−1
k Ã∞(y))

k/2 + |z|2)−(n+2s)/2ÇA∞(y).

Since Hk(A∞) = ∞, we have that K0 ∈ Ks
k . Furthermore, we note that K0(y, z) = K ∗

0 (Ã∞(y)) and
supp K0( · , z) = A∞ = {y ∈ R

k : ũ(y, z) f ¼0} for all y ∈ A∞. Then by Fatou’s lemma, Lemma 3.7,
and (4-3), we get

∫

Rk

ũ(y, z)K0(y, z) dy =
∫

A∞
ũ(y, z)K ∗

0 (Ã∞(y)) dy f lim inf
j→∞

∫

Aj

ũ(y, z)K ∗
0 (Ãj (y)) dy

= lim inf
j→∞

∫

Aj

ũ(y, z)K ∗(Ãj (y)) dy f
∫

Rk

ũ(y, z)K (y, z) dy

for any K ∈ Ks
k . Integrating over z and taking the infimum over all kernels K , we conclude the result.
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Case 2B. Assume that Hk(A∞) <∞. Set A = {y ∈ R
k : ũ(y, z)= ¼0}. Then

H
k(A)= ∞, (4-4)

since {y ∈ R
k : ũ(y, z)f ¼0} = A∞ ∪ A. Fix ε > 0 and define

vε(y, z)= ũ(y, z)ÇA∞(y)+ max{¼0, (¼0 + ε)Æ(y, z)}ÇA(y),

with Æ(y, z)= 1−e−|y|2−|z|2 . Note that 0<Æf 1, Æ(y, z)→ 1 as |(y, z)| → ∞, and Æ(y, z)≈ |y|2 +|z|2
as |(y, z)| → 0. Also, {vε}ε>0 is a monotone increasing sequence and

lim
ε→0

vε(y, z)= ũ(y, z)ÇA∞(y)+ max
{
¼0, lim

ε→0
(¼0 + ε)Æ(y, z)

}
ÇA(y)

= ũ(y, z)ÇA∞(y)+ max{¼0, ¼0Æ(y, z)}ÇA(y)= ũ(y, z)ÇA∞∪A(y). (4-5)

For any j ∈ N with j > 1/ε, consider the set

Bεj (z)=
{

y ∈ R
k : vε(y, z)f ¼0 + ε− 1

j

}
.

Then Bεj ¦ Bεj+1 and Bε∞ =
⋃

j>1/ε Bεj = {y ∈ R
k : vε(y, z) < ¼0 + ε}. Moreover, we have

H
k(Bεj )f H

k(A∞)+H
k
({

y ∈ A : max{¼0, (¼0 + ε)Æ(y, z)} f ¼0 + ε− 1
j

})
. (4-6)

Choose R > 0 large enough (depending on ε, j , ¼0, and z) that

(¼0 + ε)e−R2−|z|2 < 1
j
.

Then (¼0 + ε)Æ(y, z) > ¼0 + ε− 1/j > ¼0 for all y ∈ Bc
R , and thus

H
k
({

y ∈ A ∩ Bc
R : max{¼0, (¼0 + ε)Æ(y, z)} f ¼0 + ε− 1

j

})
= 0. (4-7)

By (4-6) and (4-7), we see that

H
k(Bεj (z))f H

k(A∞)+H
k(A ∩ BR) <∞.

Furthermore, A ¦ Bε∞, and thus, by (4-4), we get

H
k(Bε∞)g H

k(A)= ∞.

In particular, vε satisfies the assumptions of Case 2A, so there exists Kε ∈ Ks
k defined by

Kε(y, z)= ((É−1
k Ãε(y))

k/2 + |z|2)−(n+2s)/2ÇBε∞(y), (4-8)

with Ãε : Bε∞ → [0,∞) measure-preserving, depending on vε, such that

inf
K∈Ks

k

∫

Rn−k

∫

Rk

vε(y, z)K (y, z) dy dz =
∫

Rn−k

∫

Rk

vε(y, z)Kε(y, z) dy dz. (4-9)
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Finally, we need to pass to the limit. First, we prove that {Ãε}ε>0 is monotone decreasing. Indeed, let
Vε = {y ∈ R

k : vε(y, z) = ũ(y, z)}. In particular, A∞ ¦ Vε ¦ A∞ ∪ A. Also, Vε2 ¦ Vε1 for any ε1 f ε2.
By Ryff’s theorem, recall that

vε1(y, z)= (vε1)∗(Ãε1(y)) and vε2(y, z)= (vε2)∗(Ãε2(y)).

Since vε2(y, z)= vε1(y, z) for all y ∈ Vε2 and vε1(y, z)f vε2(y, z) for all y ∈ R
k , we see that

(vε2)∗(Ãε2(y))= (vε1)∗(Ãε1(y))f (vε2)∗(Ãε1(y)) for all y ∈ Vε2 .

Since (vε2)∗ is monotone increasing, we must have that Ãε2(y)f Ãε1(y) for all y ∈ Vε2 . Hence there exists
Ã0 : B∞ → [0,∞) measure-preserving such that

Ã0(y)= lim
ε→0

Ãε(y),

where B∞ =
⋂
ε>0 Bε∞ = {y ∈ R

k : ũ(y, z)f ¼0} = A∞∪ A. In particular, the sequence of kernels {Kε}ε>0

is monotone decreasing. Define
K0(y, z)= lim

ε→0
Kε(y, z). (4-10)

By (4-8) and (4-10), we have

K0(y, z)= ((É−1
k Ã0(y))

k/2 + |z|2)−(n+2s)/2ÇB∞(y).

Moreover, K0 ∈ Ks
k since Kε ∈ Ks

k , and, for any r > 0, it follows that

k(D0(r))= lim
ε→0

H
k(Dε(r)),

where Dε(r)= {y ∈ R
k : Kε(y, z) > r−(n+2s)}.

Finally, using (4-5), (4-9), (4-10), and the monotone convergence theorem, we get
∫

Rn−k

∫

Rk

ũ(y, z)K0(y, z) dy dz =
∫

Rn−k

∫

Rk

lim
ε→0

(vε(y, z)Kε(y, z)) dy dz

= lim
ε→0

∫

Rn−k

∫

Rk

vε(y, z)Kε(y, z) dy dz

= lim
ε→0

inf
K∈Ks

k

∫

Rn−k

∫

Rk

vε(y, z)K (y, z) dy dz

f inf
K∈Ks

k

∫

Rn−k

∫

Rk

(
lim
ε→0

vε(y, z)
)
K (y, z) dy dz

= inf
K∈Ks

k

∫

Rn−k

∫

Rk

ũ(y, z)(K (y, z)ÇA∞∪A(y)) dy dz

= inf
K∈Ks

k

∫

Rn−k

∫

Rk

ũ(y, z)K (y, z) dy dz.

The last equality follows from the observation that, since

K̃
s
k = {K ∈ K

s
k : supp K ( · , z)¦ A∞ ∪ A} ¦ K

s
k,

the infimum over all kernels in Ks
k is less than or equal to the infimum over K̃s

k . Moreover, the reverse
inequality holds trivially. □
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Finally, we deal with Case 3, that is, when all of the level sets of ũ have infinite measure. In particular,
notice that

ũ∗,k(x)= 0 for all x ∈ R
n.

This is the only case where the infimum is not attained. Indeed, we prove in the following theorem that
the infimum is equal to zero.

Theorem 4.8. Suppose that, for all ¼ > 0 and z ∈ R
n−k ,

H
k({y ∈ R

k : ũ(y, z)f ¼})= ∞.

Then F s
k u(x0)= 0.

Proof. From (P2), we have that F s
k u(x0) g 0. To prove the reverse inequality, it is enough to find a

sequence of kernels {Kε}ε>0 ¢ Ks
k such that

lim inf
ε→0

∫

Rn−k

∫

Rk

ũ(y, z)Kε(y, z) dy dz = 0. (4-11)

Fix ε > 0 and z ∈ R
n−k . For any j g 0, we define the set

Uj (z)= {y ∈ R
k : ũ(y, z) < ε2− j (n+2s)e−|z|2}.

Note that Uj+1 ¦ Uj . Also, by assumption, with ¼= ε2− j (1+2s)e−|z|2 , we have that

H
k(Uj )= ∞ for all j g 0.

We will construct Kε ∈ Ks
k by describing first where to locate each level set of the form

A−1 ≡ A−1(z)= {y ∈ R
k : 0< Kε(y, z)f 1},

Aj ≡ Aj (z)= {y ∈ R
k : 2 j (n+2s) < Kε(y, z)f 2( j+1)(n+2s)} for j g 0.

Recall that K ∈ Ks
k if, for all r > 0, we have

H
k({y ∈ R

k : K (y, z) > r−(n+2s)})= H
k({y ∈ R

k : (|y|2 + |z|2)−(n+2s)/2 > r−(n+2s)}).

In view of this definition, we define the sets

B−1 ≡ B−1(z)= {y ∈ R
k : 0< (|y|2 + |z|2)−(n+2s)/2 f 1},

Bj ≡ Bj (z)= {y ∈ R
k : 2 j (n+2s) < (|y|2 + |z|2)−(n+2s)/2 f 2( j+1)(n+2s)} for j g 0.

Note that {
Hk(A−1)= Hk(B−1)= ∞,

Hk(Aj )= Hk(Bj ) <∞ for all j g 0.

More precisely, for j g 0, if |z|< 2−( j+1) < 2− j , then

H
k(Aj )=H

k(B(2−2 j −|z|2)1/2)−H
k(B(2−2( j+1)−|z|2)1/2)=Ék(2

−2 j−|z|2)k/2−Ék(2
−2( j+1)−|z|2)k/2 fÉk2−k j .

If 2−( j+1) f |z|< 2− j , then

H
k(Aj )= H

k(B(2−2 j −|z|2)1/2)= Ék(2
−2 j − |z|2)k/2 f Ék

(3
4

)k/2
2−k j .
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If |z| g 2− j > 2−( j+1), then

H
k(Aj )= 0.

Therefore, Hk(Aj )f c2−k j , where c > 0 only depends on k. It follows that

H
k

( ∞⋃

j=0

Aj

)
=

∞∑

j=0

H
k(Aj )f c

∞∑

j=0

2− jk <∞. (4-12)

For any i g 0, let Di be the collection of all dyadic closed cubes of the form

[m2−i , (m + 1)2−i ]k = [m2−i , (m + 1)2−i ] × · · · × [m2−i , (m + 1)2−i ].

Note that if Q ∈ Di , then l(Q)= 2−i , where l(Q) denotes the side length of the cube Q. For any j g 0,
since Uj is an open set, by a standard covering argument, we have that there exists a family of dyadic
cubes Fj such that

Uj =
⋃

Q∈Fj

Q

satisfying the following properties:

(1) For any Q ∈ Fj , there exists some i g 0 such that Q ∈ Di .

(2) Int(Q)∩ Int(Q̃) Int(Q̃)= ∅ for any Q, Q̃ ∈ Fj with Q ̸= Q̃.

(3) If x ∈ Q ∈ Fj , then Q is the maximal dyadic cube contained in Uj that contains x .

Analogously, for the sets Bj with j g −1, there exists a family of dyadic cubes F̃j satisfying properties
(1)–(3) such that

Int(Bj )=
⋃

Q∈F̃j

Q.

Note that F̃j ∩ F̃j+1 = ∅ since Bj ∩ Bj+1 = ∅.
We will construct the sets Aj by properly translating the dyadic cubes partitioning the sets Bj into Uj .

In particular, we will prove that




A0 = T0(B0)¢ U0,

Aj = Tj (Bj )¢ Uj \
⋃ j−1

i=0 Ai for all j g 1,

A−1 = T−1(B−1)¢ U0 \
⋃∞

i=0 Ai ,

for some translation mappings Tj : F̃j → Fj to be determined.
We start with the case j = 0. For any i g 0, write

mi = H
0(F0 ∩Di ) and ni = H

0(F̃0 ∩Di ),

where H0(E) is equal to the cardinal of the set E . Note that mi , ni ∈ Z
+ ∪ {∞}.

We will recursively place B0 into U0. First, fix i = 0. If m0 g n0, then, for any Q̃ ∈ F̃0 ∩D0, there
exists some Ä ∈ R

k and some Q ∈ F0 ∩D0 such that Q = Q̃ + Ä . Then define

T0 : F̃0 ∩D0 → F0 ∩D0, T0(Q̃)= Q. (4-13)
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Moreover, we can define T0 to be one-to-one since m0 g n0, and we can always choose a different Q for
each Q̃. Note that there are p0 cubes in F0 ∩ D0 with p0 = m0 − n0 that have not been used. Hence for
all of these cubes, divide each side in half, so that each cube gives rise to 2k cubes with side length 2−1.
Call this collection of new cubes Q = {Ql}2kp0

l=1 ¢ D1 and add them to the family F0 ∩D1. Namely, we
replace F0 ∩D1 by (F0 ∩D1)∪Q.

If m0 < n0, then take q0 cubes in F̃0 ∩D0 with q0 = n0 − m0 and divide each side in half. Call this
collection of new cubes Q̃ = {Q̃l}2kq0

l=1 ¢ D1. Then, we replace F̃0 by F̂0, where

F̂0 ∩D0 = (F̃0 \ Q̃)∩D0,

F̂0 ∩D1 = (F̃0 ∪ Q̃)∩D1,

F̂0 ∩Di = F̃0 ∩Di for all i g 2.

If n̂0 = H0(F̂∩D0), then m0 = n̂0. Hence, by the same argument as in the previous case, we find T0 as
in (4-13). For i g 1, we can repeat the same process until we run out of cubes from F̃0 (or the modified
family). We know the process will end since Hk(B0) < Hk(U0). When this happens, we will have
constructed a one-to-one mapping T0 : F̃0 →F0, since F̃0 =

⋃∞
i=0 F̃0 ∩Di and F0 =

⋃∞
i=0 F0 ∩Di . Then

define

A0 = T0(B0)¢ U0.

Iterating this process, we find a sequence of translation mappings {Tj }∞j=0 with Tj : F̃j → Fj and a
sequence of disjoint sets {Aj }∞j=0 such that

Aj = Tj (Bj )¢ Uj \
j−1⋃

i=0

Ai .

The case j = −1 is somewhat special since Hk(A−1)= Hk(B−1)= ∞. We will see that

A−1 = T−1(B−1)¢ U0 \
∞⋃

i=0

Ai .

This is possible because Hk
(
U0 \

⋃∞
i=0 Ai

)
= ∞ using (4-12). Indeed, we can write

{y ∈ R
k : 0< Kε(y, z)f 1} =

∞⋃

j=0

{2−( j+1)(n+2s) < Kε(y, z)f 2− j (n+2s)}.

Now write

C j = {2−( j+1)(n+2s) < (|y|2 + |z|2)−(n+2s)/2 f 2− j (n+2s)} for j g 0.

Then B−1 =
⋃∞

j=0 C j with Hk(C j ) < ∞ for all j g 0. Hence, instead of partitioning all of B−1 into
dyadic cubes, we partition each of its disjoint components C j . Arguing as before, we place them into
U0 \

⋃∞
i=0 Ai recursively, according to the following scheme:

{
T 0

−1(C0)¢ U0 \
⋃∞

i=0 Ai ,

T
j

−1(C j )¢ U0 \
(⋃∞

i=0 Ai ∪
⋃ j−1

i=0 Ci

)
for j g 1,
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where T
j

−1 is defined as before. At the end of this process, we find a translation map T−1 defined by

T−1(Q)= T
j

−1(Q) for Q ∈ C j . Therefore, we define

A−1 = T−1(B−1).

Lastly, let y ∈ R
k = A−1 ∪

(⋃∞
j=0 Aj

)
. In particular, there exists some j g −1 such that y ∈ Aj .

Furthermore, recall that Aj = Tj (Bj ), where Tj is a one-to-one and onto translation map. Hence there
exists a unique w ∈ Bj such that y = Tj (w) = w+ Ä for some Ä ∈ R

k . Let Tz : R
k → R

k be given by
Tz(y)= w. Note that Tz is measure-preserving. Then we define the kernel

Kε(y, z)= (|Tz(y)|2 + |z|2)−(n+2s)/2.

We have
∫

Rk

ũ(y, z)Kε(y, z) dy =
∫

A−1

ũ(y, z)Kε(y, z) dy +
∞∑

j=0

∫

Aj

ũ(y, z)Kε(y, z) dy ≡ I + II.

For I, we use that ũ(y, z)f εe−|z|2 , since A−1 ¢ U0. Then by Lemmas 3.7 and 3.4,

I f εe−|z|2
∫

{0<Kε(y,z)f1}
Kε(y, z) dy = εe−|z|2

∫

{0<|Ãz(y)|−n−2sf1}
|Ãz(y)|−n−2s dy

= εe−|z|2
∫

{|y|g1}
|y|−n−2s dy = Cεe−|z|2,

where C > 0 depends only on n and s. For II, we use that ũ(y, z)f ε2− j (n+2s)e−|z|2 , since Aj ¢ Uj and
Kε(y, z)f 2( j+1)(n+2s) in Aj , by definition. Then

II f εe−|z|2
∞∑

j=0

2− j (n+2s)2( j+1)(n+2s)
H

k(Aj )f cεe−|z|22n+2s

∞∑

j=0

2−k j f Cεe−|z|2,

where C > 0 depends only on n, s, and k.
Integrating over z, we see that

∫

Rn−k

∫

Rk

ũ(y, z)Kε(y, z) dy dz f Cε

∫

Rn−k

e−|z|2 dz f C̃ε.

Letting ε→ 0, we conclude (4-11). □

Limit as s → 1. Let u ∈ C2(Rn). We define MAku as the Monge–Ampère operator acting on u with
respect to the first k variables, that is,

MAku(x)= k(det((ui j (x))1fi, jfk))
1/k,

with D2u(x) = (ui j (x))1fi, jfn . We define 1n−ku as the Laplacian of u with respect to the last n − k

variables, that is,

1n−ku(x)=
n∑

i=k+1

ui i (x).
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Then under some special conditions,

lim
s→1

F
s
k u(x)= MAku(x)+1n−ku(x). (4-14)

In particular, the operators in the family {F s
k }n−1

k=1 can be understood as nonlocal analogs of concave second
order elliptic operators, which are decomposed into a Monge–Ampère operator restricted to R

k and a
Laplacian restricted to R

n−k .
Indeed, by Corollary 4.5, we have F s

k u(x)=1s ũ∗,k(0). Since the k-symmetric rearrangement does
not depend on s and 1s →1 as s → 1, passing to the limit we see that

lim
s→1

F
s
k u(x)=1ũ∗,k(0).

Suppose that ũ∗,k(y, z)= ũ(ϕ−1
z (y), z), where ϕz : R

k → R
k is an invertible measure-preserving transfor-

mation with ϕz(0)= 0 and

Ék |ϕz(y)|1/k = Ãz(y).

Recall that Ãz is given in Theorem 4.1 (see also Remark 4.4). In this case,

1ũ∗,k(0)=1y ũ(ϕ−1
z (y), z)+1z ũ(ϕ−1

z (y), z)|(y,z)=(0,0). (4-15)

For the first term, we use

MAku(x)= inf
È∈9

1(ũ ◦È)(0),

where 9 = {È : R
k → R

k measure-preserving such that È(0) = 0}, and the fact that the infimum is
attained when ũ ◦È is a radially symmetric increasing function [Caffarelli and Silvestre 2016]. Hence

1y ũ(ϕ−1
z (y), z)|(y,z)=(0,0) = MAku(x). (4-16)

For the second term, write Æ(y, z)= (ϕ−1
z (y), z) and compute

1z(ũ ◦Æ)(0)= tr(DzÆ(0)
T D2

z ũ(Æ(0))DzÆ(0))+ ∇z ũ(Æ(0))T ·1zÆ(0).

Recall that Æ(0)= 0 and ũ(y, z)= u(x + (y, z))− u(x)− ∇yu(x) · y − ∇zu(x) · z. Then

∇z ũ(Æ(0))= 0, D2
z ũ(Æ(0))= D2

z u(x), and DzÆ(0)= (0, In−k),

where In−k denotes the identity matrix in Mn−k . Therefore,

1z ũ(ϕ−1
z (y), z)|(y,z)=(0,0) =1z(ũ ◦Æ)(0)= tr(D2

z u(x))=1n−ku(x). (4-17)

Combining (4-15)–(4-17) we conclude (4-14).

Connection to optimal transport. In Corollary 4.5 we obtained a representation of the function F s
k u in

terms of the k-symmetric increasing rearrangement. Using this representation, we find an equivalent
expression of F s

k u that can be understood from the viewpoint of optimal transport.
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Theorem 4.9. Suppose we are under the assumptions of Theorem 4.1. Then, for any z ∈ R
n−k , z ̸= 0,

there exists an invertible map ϕz : R
k → R

k such that

F
s
k u(x)= cn,s

∫

Rn−k

∫

Rk

ũ(ϕ−1
z (y), z)

(|y|2 + |z|2)(n+2s)/2
dy dz. (4-18)

Moreover, if Ãz : R
k → [0,∞) is the Ryff’s map given in Theorem 4.1, then ϕz is measure-preserving if

and only if

Ék |ϕz(y)|k = Ãz(y) for a.e. y ∈ R
k . (4-19)

The key tool to prove Theorem 4.9 is Brenier–McCann’s theorem, a very well-known result in the
theory of optimal transport [Brenier 1991; McCann 1995]. We state it here in the form that we will use it.

Theorem 4.10. Let f, g ∈ L1(Rk). Assume that

∥ f ∥L1(Rk) = ∥g∥L1(Rk).

Then there exists a convex function È : R
k → R whose gradient ∇È pushes forward f dy to g dy. Namely,

for any measurable function h in R
k ,

∫

Rk

h(y)g(y) dy =
∫

Rk

h(∇È(y)) f (y) dy. (4-20)

Moreover, ∇È : R
k → R

k is invertible and unique.

In the literature, ∇È is known as the (optimal) transport map.

Proof of Theorem 4.9. Fix z ∈ R
n−k , z ̸= 0, and consider fz, gz ∈ L1(Rk) given by

fz(y)= (|y|2 + |z|2)−(n+2s)/2 and gz(y)= ((É−1
k Ãz(y))

2/k + |z|2)−(n+2s)/2,

where Ãz : R
k → [0,∞) is given in Theorem 4.1. Note that

∥ f ∥L1(Rk) =
∫

Rk

((É−1
k Ãz(y))

2/k + |z|2)−(n+2s)/2 dy

= kÉk

∫ ∞

0
(r2 + |z|2)−(n+2s)/2r k−1 dr

=
∫

Rk

(|y|2 + |z|2)−(n+2s)/2 dy = ∥g∥L1(Rk),

since Ãz is measure-preserving. By Theorem 4.10, there exists a convex function Èz : R
k → R (depending

on z) whose gradient ∇Èz pushes forward fz dy to gz dy. Moreover, ∇Èz is invertible and unique. Write
ϕz = (∇Èz)

−1. Using (4-20) with h(y)= ũ(y, z), we see that
∫

Rk

ũ(y, z)

((É−1
k Ãz(y))2/k + |z|2)(n+2s)/2

dy =
∫

Rk

ũ(ϕ−1
z (y), z)

(|y|2 + |z|2)(n+2s)/2
dy. (4-21)

Integrating over z ∈ R
n−k , we obtain (4-18).
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It remains to show that ϕz is measure-preserving if and only if (4-19) holds. Indeed, for any measurable
set E ¢ R

k , we have

H
k(ϕ−1

z (E))=
∫

ϕ−1
z (E)

dy =
∫

ϕ−1
z (E)

(|y|2 + |z|2)(n+2s)/2

(|y|2 + |z|2)(n+2s)/2
dy

=
∫

ϕ−1
z (E)

(|ϕz(ϕ
−1
z (y))|2 + |z|2)(n+2s)/2

(|y|2 + |z|2)(n+2s)/2
dy

=
∫

E

(|ϕz(y)|2 + |z|2)(n+2s)/2

((É−1
k Ãz(y))2/k + |z|2)(n+2s)/2

dy,

where the last equality follows from (4-21) with h(y)= (|ϕz(y)|2 + |z|2)(n+2s)/2ÇE(y). Therefore,

H
k(ϕ−1

z (E))= H
k(E)

if and only if Ék |ϕz(y)|k = Ãz(y) for a.e. y ∈ R
k . □

5. Regularity of F s
k
u

Given x0 ∈ R
n , we define the sections

Dx0u(t)= {x ∈ R
n : u(x)− u(x0)− (x − x0) · ∇u(x0)f t} for t > 0.

Our main regularity result is the following.

Theorem 5.1. Let s ∈
(1

2 , 1
)

and 1 f k < n. Let u ∈ C1,1(Rn) be convex. Fix x0 ∈ R
n and r0, ε > 0.

Suppose that 3 = supx∈Br0 (x0)
diam(Dx u(ε)) < ∞ and M = supx∈Br0 (x0)

F s
k u(x) < ∞. Then we have

F s
k u ∈ C0,1−s(Br (x0)) with r <min{r0/4,3, ε/(83)} and

[F s
k ]C0,1−s(Br (x0))

f C0[u]C1,1(Rn)

for some constant C0 > 0 depending only on n, k, s, ε, 3, and M.

This theorem will be a consequence of the next proposition.

Proposition 5.2. Fix x0 ∈ R
n and ε > 0. Suppose that3= diam(Dx0u(ε)) <∞ and [u]C1,1(Rn) f 1. Then,

for any x1 ∈ Br (x0) with r f ε/(43), we have

F
s
k u(x1)−F

s
k u(x0)f C31−s |x1 − x0|1−s + 43

ε
|x1 − x0|F s

k u(x0)

for some C > 0 depending only on n, k, and s.

First, we prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we may assume that [u]C1,1(Rn) f 1. Otherwise, we
consider u/[u]C1,1(Rn). Let r <min{r0/4,3, ε/(83)}. It is enough to show that

[F s
k ]C0,1−s(Br (x0))

f C0 (5-1)

for some constant C0 > 0 depending only on n, k, s, ε, 3, and M .
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Let x1, x2 ∈ Br (x0). Then x2 ∈ B2r (x1)¢ Br0(x0), since 4r < r0. Moreover, diam(Dx1u(ε))f3<∞.
Hence, applying Proposition 5.2 to u and B2r (x1) in place of Br (x0), we get

F
s
k u(x2)−F

s
k u(x1)f C31−s |x2 − x1|1−s + 43

ε
|x2 − x1|F s

k u(x1)f C0|x2 − x1|1−s,

where C0 = C31−s + 431+s M/(ε2s). Since x1 and x2 are arbitrary, we conclude (5-1). □

Before we prove Proposition 5.2, we need several preliminary results.

Lemma 5.3. If f is monotone increasing, then

∫ ∞

0
f (r)É(r) dr =

∫ ∞

0

∫ ∞

µ f (t)

É(r) dr dt,

with µ f (t)= |{r > 0 : f (r)f t}|.

Proof. By Fubini’s theorem, we have
∫ ∞

0

∫ ∞

µ f (t)

É(r) dr dt =
∫ ∞

0
É(r)

∫

{r>µ f (t)}
dt dr.

Since f is monotone increasing, r > µ f (t) if and only if t < f (r). Therefore,

∫

{r>µ f (t)}
dt =

∫ f (r)

0
dt = f (r). □

Proposition 5.4. Let x ∈ R
n . Under the assumptions of Corollary 4.5,

F
s
k u(x)= cn,s

∫ ∞

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx u(t, z)1/k

|z|

)
dz dt,

where µx u(t, z)= É−1
k Hk({y ∈ R

k : ũx(y, z)f t}) and

W (Ä)= kÉk

∫ ∞

Ä

r k−1

(1 + r2)(n+2s)/2
dr. (5-2)

Proof. By Corollary 4.5, we have that

F
s
k u(x)=1s ũ∗,k(0)= cn,s

∫

Rn−k

1

|z|n+2s

(∫

Rk

ũ∗,k(y, z)

(||z|−1 y|2 + 1)(n+2s)/2
dy

)
dz

= cn,s

∫

Rn−k

1

|z|n−k+2s

(
kÉk

∫ ∞

0
v(|z|r, z)

r k−1

(r2 + 1)(n+2s)/2
dr

)
dz,

where v(r, z)= ũ∗,k(y, z) for |y| = r .
Next we apply Lemma 5.3 to f (r)= v(|z|r, z) and É(r)= kÉkr k−1(r2 +1)−(n+2s)/2. Note that since v

is the k-symmetric increasing rearrangement of ũ, we have

µ f (t)= 1

|z| |{r > 0 : v(r, z) < t}| = É−1/k
k

|z| H
k({y ∈ R

k : ũ(y, z) < t})1/k = 1

|z|µx u(t, z)1/k .
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Therefore,

kÉk

∫ ∞

0
v(|z|r, z)

r k−1

(r2 + 1)(n+2s)/2
dr =

∫ ∞

0

(
kÉk

∫ ∞

µx u(t,z)1/k/|z|

r k−1

(r2 + 1)(n+2s)/2
dr

)
dt

=
∫ ∞

0
W

(
µx u(t, z)1/k

|z|

)
dt,

where W is given in (5-2). By Fubini’s theorem, we conclude that

F
s
k u(x)= cn,s

∫ ∞

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx u(t, z)1/k

|z|

)
dz dt. □

Lemma 5.5. Suppose we are under the assumptions of Proposition 5.2. Let x1 ∈ Br (x0) and d = |x1 − x0|.
The following hold:

(a) If t ∈ (23d, ε], then Dx0u(t − 23d)¢ Dx1u(t).

(b) If t ∈ (ε,∞), then Dx0u(t − 23dt/ε)¢ Dx1u(t).

Proof. First we prove (a). Fix t ∈ (23d, ε], and let x ∈ Dx0u(t − 23d). Then

u(x)− u(x0)− (x − x0) · ∇u(x0)f t − 23d. (5-3)

Using (5-3), convexity, and [u]C1,1(Rn) f 1, we see that

u(x)− u(x1)− (x − x1) · ∇u(x1)= u(x)− u(x0)− (x − x0) · ∇u(x0)

− (u(x1)− u(x0)− (x1 − x0) · ∇u(x0))

+ (x − x1) · (∇u(x0)− ∇u(x1))

f t − 23d + |x − x1|d.

Moreover, x ∈ Dx0u(ε), since t f ε, and thus,

|x − x1| f |x − x0| + |x0 − x1| f3+ d f 23.

Therefore, x ∈ Dx1u(t).
Next we prove (b). Fix t ∈ (ε,∞), and let x ∈ Dx0u(t − 23dt/ε). By the previous computation, we

have that

u(x)− u(x1)− (x − x1) · ∇u(x1)f t − 23dt/ε+ (|x − x0| +3)d. (5-4)

To control |x − x0|, the distance from x to x0, we need to estimate the diameter of Dx0u(t). We take
y ∈ Dx0u(t) \ Dx0u(ε) and let z be in the intersection of ∂Dx0u(ε) and the line segment joining x0 and y.
Then there is some ¼ > 1 such that y − x0 = ¼(z − x0). By convexity of u,

u(z)f ¼−1
¼

u(x0)+ 1
¼

u(y).

Therefore,

¼ε = ¼(u(z)− u(x0)− (z − x0) · ∇u(x0))

f (¼− 1)u(x0)+ u(y)− ¼u(x0)− (y − x0) · ∇u(x0)= u(y)− u(x0)− (y − x0) · ∇u(x0)f t,
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so ¼f t/ε. By convexity, we have that Dx0u(t)¢ x0 + (t/ε)(Dx0u(ε)− x0). It follows that

diam Dx0u(t)f t

ε
diam Dx0u(ε)= 3t

ε
.

Hence |x − x0| f3t/ε, and, by (5-4), we get

u(x)− u(x1)− (x − x1) · ∇u(x1)f t − 23dt

ε
+

(
3t

ε
+3

)
d f t,

which means that x ∈ Dx1u(t). □

We are ready to give the proof of Proposition 5.2.

Proof of Proposition 5.2. Let x1 ∈ Br (x0) with r f ε/(43), and write d = |x0 − x1|. We will estimate
F s

k u(x1) using Proposition 5.4:

F
s
k u(x1)= cn,s

∫ ∞

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx1u(t, z)1/k

|z|

)
dz dt.

In view of Lemma 5.5, we separate the above integral into terms I + II + III by dividing the integral with
respect to t into three parts as follows:

I : t ∈ (0, 23d], II : t ∈ (23d, ε], III : t ∈ (ε,∞).

Let us start with I. Since u ∈ C1,1(Rn) with [u]C1,1(Rn) f 1, we have

µx1u(t, z)g (t − |z|2)k/2+ .

Hence, using that W (Ä) is monotone decreasing, we get

W

(
µx1u(t, z)1/k

|z|

)
f W

((
t

|z|2 − 1

)1/2

+

)
.

Therefore,
∫

Rn−k

1

|z|n−k+2s
W

(
µx1u(t, z)1/k

|z|

)
dz f

∫

{|z|<t1/2}

1

|z|n−k+2s
W

((
t

|z|2 − 1

)1/2 )
dz

+ W (0)
∫

{|z|>t1/2}

1

|z|n−k+2s
dz ≡ I1 + I2.

Note that W (0)= C(n, k, s) <∞. Then

I2 ≲

∫ ∞

t1/2

1

Än−k+2s
Än−k−1 dÄ ≂ t−s .

For I1, we make the change of variables w = z/t1/2. We see that

I1 =
∫

{|w|<1}

1

t (n−k+2s)/2|w|n−k+2s
W

((
1

|w|2 − 1

)1/2 )
t (n−k)/2 dw ≂

1

t s

∫ 1

0

1

Ä1+2s
W

((
1

Ä2
− 1

)1/2 )
dÄ.

Note that if 0< Ä f 1
2 , then (

1

Ä2
− 1

)1/2

g 1√
2Ä
.
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Hence

W

((
1

Ä2
− 1

)1/2 )
f W

(
1√
2Ä

)
=

∫ ∞

1/(
√

2Ä)

r k−1

(1 + r2)(n+2s)/2
dr ≲ Än−k+2s .

Therefore,

I1 ≲ t−s

∫ 1/2

0

1

Ä1+2s
Än−k+2s dÄ+ t−s W (0)

∫ 1

1/2

1

Ä1+2s
dÄ ≂ t−s,

since n − k > 0. We conclude that

I = cn,s

∫ 23d

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx1u(t, z)1/k

|z|

)
dz dt ≲

∫ 23d

0
t−s dt

≂ (23d)1−s = (23)1−s |x1 − x0|1−s .

Next we estimate the integral for t ∈ (23d, ε]. To this end, we use Lemma 5.5 (a) to get

Dx0u(t − 23d)¢ Dx1u(t).

In particular, for any z ∈ R
n−k fixed, we have

{y ∈ R
k : ũx0(y, z)f t − 23d} ¢ {y ∈ R

k : ũx1(y, z)f t}.

Hence µx0(t − 23d, z)f µx1(t, z), which yields

II = cn,s

∫ ε

23d

∫

Rn−k

1

|z|n−k+2s
W

(
µx1u(t, z)1/k

|z|

)
dz dt

f cn,s

∫ ε−23d

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx0u(t, z)1/k

|z|

)
dz dt.

Finally, we estimate the integral for t ∈ [ε,∞). By Lemma 5.5 (b),

Dx0u
(
t − 23dt

ε

)
¢ Dx1u(t).

Hence µx0u(t − 23dt/ε, z)f µx1u(t, z), and

III = cn,s

∫ ∞

ε

∫

Rn−k

1

|z|n−k+2s
W

(
µx1u(t, z)1/k

|z|

)
dz dt

≲

∫ ∞

ε

∫

Rn−k

1

|z|n−k+2s
W

(
µx0u(t − 23dt/ε, z)1/k

|z|

)
dz dt

= 1

1 − 23d/ε

∫ ∞

ε−23d

∫

Rn−k

1

|z|n−k+2s
W

(
µx0u(t, z)1/k

|z|

)
dz dt.

Note that

II + III f cn,s

1 − 23d/ε

∫ ∞

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx0u(t, z)1/k

|z|

)
dz dt = ε

ε− 23d
F

s
k u(x0).
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Therefore, we conclude that

F
s
k u(x1)−F

s
k u(x0)f C31−s |x1 − x0|1−s +

(
ε

ε− 23d
− 1

)
F

s
k u(x0)

f C31−s |x1 − x0|1−s + 43

ε
|x1 − x0|F s

k u(x0),

since d < r f ε/(43), and thus, ε− 23d g ε/2. □

6. A global Poisson problem

We consider the following Poisson problem in the full space:
{
F s

k u = u −ϕ in R
n,

(u −ϕ)(x)→ 0 as |x | → ∞,
(6-1)

where ϕ : R
n → R is nonnegative, smooth, and strictly convex. Furthermore, we ask that ϕ behaves

asymptotically at infinity as a cone Æ, that is,

lim
|x |→∞

(ϕ−Æ)(x)= 0. (6-2)

Similar problems have been studied for nonlocal Monge–Ampère operators [Caffarelli and Charro 2015;
Caffarelli and Silvestre 2016].

We will prove the following theorem.

Theorem 6.1. There exists a unique solution u to (6-1) such that u ∈ C1,1(Rn) with

[u]C1,1(Rn) f [ϕ]C1,1(Rn).

To define the notion of a solution, we introduce a natural pointwise definition of F s
k u for functions u

that are merely continuous.

Definition 6.2. Let u ∈ C0(Rn).

(a) We say that a linear function l(y)= y · p + b, with p ∈ R
n and b ∈ R, is a supporting plane of u at a

point x if l(x)= u(x) and l(y)f u(y) for all y ∈ R
n .

(b) We define the subdifferential of u at a point x as the set ∂u(x) of all vectors p ∈ R
n such that

l(y)= y · p + b is a supporting plane of u at x for some b ∈ R.

Definition 6.3. Let u ∈ C0(Rn) be a convex function. For x0 ∈ R
n , we define

F
s
k u(x0)= cn,s sup

p∈∂u(x0)

inf
K∈Ks

k

∫

Rn

(u(x0 + x)− u(x0)− x · p)K (x) dx .

Remark 6.4. Note that if u ∈ C1,1(x0), then ∂u(x0)= {∇u(x0)}, and the previous definition coincides
with Definition 2.4.

The following properties of F s
k u will be useful for our purposes. The proof is analogous to the one in

[Caffarelli and Silvestre 2016], so we omit it here.
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Lemma 6.5. Let u, v ∈ C0(Rn) be convex functions. The following hold:

(a) (homogeneity) For any ¼ > 0,

F
s
k (¼u)= ¼F s

k u.

(b) (monotonicity) Assume that u(x0)= v(x0) and u(x)g v(x) for all x ∈ R
n . Then

F
s
k u(x0)g F

s
kv(x0).

(c) (concavity) For any x ∈ R
n ,

F
s
k

( 1
2(u + v)

)
(x)g 1

2(F
s
k u(x)+F

s
kv(x)).

(d) (lower semicontinuity) Assume that u ∈ C1,1(Rn). Then

F
s
k u(x0)f lim inf

x→x0
F

s
k u(x).

Definition 6.6. Let u ∈ C0(Rn) be a convex function. We say that u is a subsolution to F s
k u = u − ϕ

in R
n if

F
s
k u(x0)g u(x0)−ϕ(x0) for all x0 ∈ R

n.

Similarly, u is a supersolution if

F
s
k u(x0)f u(x0)−ϕ(x0) for all x0 ∈ R

n.

We say that u is a solution if it is both a subsolution and a supersolution.

Lemma 6.7. If u and v are subsolutions, then max{u, v} is a subsolution.

Proof. Let w= max{u, v}. Then w is continuous and convex. Fix x0 ∈ R
n . Without loss of generality, we

may assume that u(x0)g v(x0). Then w(x0)= u(x0) and w(x)g u(x) for any x ∈ R
n . By monotonicity

(see Lemma 6.5), we have

F
s
kw(x0)g F

s
k u(x0)g u(x0)−ϕ(x0)= w(x0)−ϕ(x0).

Hence w is a subsolution. □

We will show existence and uniqueness of solutions to (6-1) using Perron’s method. The key ingredients
are the comparison principle and the existence of a subsolution (lower barrier) and a supersolution (upper
barrier). We state this in the following proposition. We omit the proof since it is similar to that in
[Caffarelli and Silvestre 2016].

Proposition 6.8. Consider the equation F s
k u = u −ϕ in R

n . The following hold:

(a) (comparison principle) Let u and v be a subsolution and supersolution, respectively. Assume that

u f v in R
n \� for some bounded domain �¢ R

n . Then u f v in R
n .

(b) (lower barrier) The function ϕ is a subsolution.

(c) (upper barrier) The function ϕ+w is a supersolution, where w = (I −1s)−11sϕ. In particular,
w(x)f C(1 + |x |)1−2s for some C > 0.
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An immediate consequence of the comparison principle is the uniqueness of solutions.

Lemma 6.9 (uniqueness). There exists at most one solution to (6-1).

Proof. Suppose by means of contradiction that there exist two functions u, v ∈ C0(Rn), with u ̸= v,
satisfying (6-1). Then |u(x)− v(x)| → 0 as |x | → ∞. Hence, for any ε > 0, there exists a compact set
�ε ∈ R

n , depending on ε, such that

v(x)− ε f u(x)f v(x)+ ε for all x ∈ R
n \�ε.

Moreover, for any x0 ∈ R
n , the function v+ ε satisfies

F
s
k (v+ ε)(x0)= v(x0)−ϕ(x0) < (v(x0)+ ε)−ϕ(x0).

Therefore, v is a supersolution and, by the comparison principle, it follows that u f v+ε in R
n . Similarly,

we see that v− ε is a subsolution and u g v− ε in R
n . Hence

∥u − v∥L∞(Rn) f ε,

and letting ε→ 0, we get u = v in R
n , which is a contradiction. □

To prove existence of a solution, we define

u(x)= sup
v∈S

v(x), (6-3)

where S is the set of admissible subsolutions given by

S = {v ∈ C0,1(Rn) : v a subsolution, ϕ f v f ϕ+w, and [v]C0,1(Rn) f [ϕ]C0,1(Rn)}.

Note that S ̸= ∅ since ϕ ∈ S, and the supremum is finite since v f ϕ+w for any v ∈ S. Moreover, u is
convex and Lipschitz with

[u]C0,1(Rn) f [ϕ]C0,1(Rn).

From ϕ f u f ϕ+w and the upper bound for w in Proposition 6.8, it follows that

0 f (u −ϕ)(x)f w(x)f C(1 + |x |)1−2s → 0

as |x | → ∞, since 1 − 2s < 0.

Proposition 6.10. The function u given in (6-3) is C1,1(Rn) with

[u]C1,1(Rn) f [ϕ]C1,1(Rn).

Proof. We will show that, for any x0, x1 ∈ R
n ,

0 f u(x0 + x1)− u(x0 − x1)− 2u(x0)f [ϕ]C1,1(Rn)|x1|2.

Indeed, the lower bound follows from convexity of u. Hence we only need to prove the upper bound.
Write M = [ϕ]C1,1(Rn). Then

ϕ(x0 + x1)−ϕ(x0 − x1)− M |x1|2 f 2ϕ(x0). (6-4)



272 LUIS A. CAFFARELLI AND MARÍA SORIA-CARRO

Take any v ∈ S and fix x1 ∈ R
n . Define

v̂(x0)= 1
2(v(x0 + x1)+ v(x0 − x1)− M |x1|2) for x0 ∈ R

n.

We claim that v̂ is a subsolution to F s
k u = u − ϕ in R

n . Indeed, since F s
k is homogeneous of degree 1,

concave, and translation-invariant (see Lemma 6.5), we have

F
s
k v̂(x0)= F

s
k

(1
2v(x0 + x1)+ 1

2v(x0 − x1)
)

g 1
2F

s
kv(x0 + x1)+ 1

2F
s
kv(x0 − x1)

g 1
2(v(x0 + x1)−ϕ(x0 + x1)+ v(x0 − x1)−ϕ(x0 − x1))

= 1
2(v(x0 + x1)− v(x0 − x1)− M |x1|2)− 1

2(ϕ(x0 + x1)+ϕ(x0 − x1)− M |x1|2)
g v̂(x0)−ϕ(x0).

Moreover, using that v f ϕ+w, we get

v̂(x0)f 1
2(ϕ(x0 + x1)+ϕ(x0 − x1)− M |x1|2)+ 1

2(w(x0 + x1)+w(x0 − x1)).

By (6-4) and the upper bound of w in Proposition 6.8 (c), we see that

v̂(x0)−ϕ(x0)f 1
2C(1 + |x0 + x1|1−2s)+ 1

2C(1 + |x0 − x1|1−2s)→ 0

as |x0| → ∞ with x1 fixed, since 1−2s < 0. Then, for all ε > 0, there is some compact set �ε, depending
on ε and x1, such that

v̂(x0)− ε f ϕ(x0) for all x0 ∈ R
n \�ε.

Consider v̂ε=max{v̂−ε, ϕ}. Then v̂ε is a subsolution, since the maximum of subsolutions is a subsolution
(see Lemma 6.7). Also, v̂ε = ϕ f ϕ+w in R

n \�ε, and ϕ+w is a supersolution by Proposition 6.8 (c).
Applying the comparison principle, we get ϕf v̂ε fϕ+w. Moreover, [v̂ε]C0,1(Rn)f[ϕ]C0,1(Rn). Therefore,
v̂ε ∈ S.

Since u(x0)= supv∈S v(x0), it follows that u(x0) g v̂ε(x0) g v̂(x0)− ε. Letting ε→ 0, we conclude
that, for any v ∈ S and x0, x1 ∈ R

n ,

u(x0)g 1
2(v(x0 + x1)+ v(x0 − x1)− M |x1|2). (6-5)

Finally, by definition of supremum, for any ¶ > 0 and x0, x1 ∈ R
n , there exist v1, v2 ∈ S such that

u(x0 + x1)− ¶ < v1(x0 + x1) and u(x0 − x1)− ¶ < v2(x0 − x1). Let v = max{v1, v2}. Then using (6-5)
for this v, we get

u(x0)g 1
2(u(x0 + x1)− ¶+ u(x0 − x1)− ¶− M |x1|2).

Letting ¶ → 0, we conclude that

u(x0 + x1)− u(x0 − x1)− 2u(x0)f [ϕ]C1,1(Rn)|x1|2. □

To complete the proof of Theorem 6.1, it remains to see that u is a solution. Hence, we need to show
that u is both a subsolution and a supersolution. We will prove these results in the next two propositions.
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Lemma 6.11. For any x0 ∈ R
n and ε > 0, the set

Dx0u(ε)= {x ∈ R
n : u(x)− u(x0)− (x − x0) · ∇u(x0)f ε}

is compact.

Proof. Let x0 ∈ R
n and ε > 0. Without loss of generality, we may assume that x0 = 0. Let l be the

supporting plane of u at 0, that is, l(x)= u(0)+ x · ∇u(0). Clearly, Dx0u(ε) is closed. Hence we only
need to show that it is bounded. Recall that

Æ(x) < ϕ(x)f u(x) for all x ∈ R
n, (6-6)

where Æ is a cone. Note that the strict inequality in (6-6) follows from the strict convexity of ϕ. Moreover,
by (6-1) and (6-2) we have

lim
|x |→∞

(u −Æ)(x)= 0.

Therefore, Dx0u(ε)¢ {Æ < l + ε}. We claim that

lim
|x |→∞

(Æ− l)(x)= ∞. (6-7)

If this condition holds, then, for all M > 0, there exists R > 0 such that

Æ(x)− l(x) > M for all |x |> R.

Choosing M = ε, we have {Æ < l+ε}¢ BR for some R depending on ε. Hence the set Dx0u(ε) is bounded.
To prove the claim, we distinguish two cases. If u(0)= 0, then u attains an absolute minimum at 0, so

∇u(0)= 0. In particular, l(x)= 0 for all x ∈ R
n , and thus (6-7) is clearly satisfied. Hence it remains to

show the claim when

u(0) > 0.

We will prove it by contradiction. If (6-7) is not true, then there exists a sequence of points {x j }∞j=1 ¢ R
n

such that |x j | → ∞ as j → ∞ and

lim
j→∞

(Æ− l)(x j ) <∞.

Using that Æ is continuous and homogeneous of degree 1, and letting j → ∞, we get

Æ(x j )

|x j |
− l(x j )

|x j |
= Æ

(
x j

|x j |

)
− u(0)

|x j |
− x j

|x j |
· ∇u(0)→ Æ(e)− Deu(0)= 0,

where x j/|x j | → e, up to a subsequence. Therefore, Æ(e)= Deu(0). For any ¼ > 0, we have

l(¼e)= u(0)+ ¼e · ∇u(0)= u(0)+ ¼Æ(e)= u(0)+Æ(¼e).

Since l is a supporting plane of u, we know that u(x)g l(x) for all x ∈ R
n , and thus,

u(¼e)g l(¼e)= Æ(¼e)+ u(0).

Letting ¼→ ∞, we see that

0 = lim
¼→∞

(u −Æ)(¼e)g u(0) > 0,

which is a contradiction. □
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Proposition 6.12 (u is a subsolution). The function u given in (6-3) satisfies

F
s
k u(x0)g u(x0)−ϕ(x0) for all x0 ∈ R

n.

Proof. By Proposition 6.10, we know that u ∈ C1,1(Rn). Without loss of generality, we may assume that
[u]C1,1(Rn) = 1. Otherwise, consider u/[u]C1,1(Rn).

Let x0 ∈ R
n . Then the quadratic polynomial

P(x)= u(x0)+ ∇u(x0) · (x − x0)+ |x − x0|2

touches u from above at x0. Moreover, we may assume that P touches u strictly from above at x0. If not,
we replace P by P + ε|x − x0|2 with ε > 0 small.

Fix ¶ > 0. Then there exists h > 0, with h → 0 as ¶ → 0, such that

P(x)− u(x)g h > 0 for all x ∈ R
n \ B¶(x0).

Since u(x)= supv∈S v(x) and v ∈ S is uniformly continuous, there is a monotone sequence {vj }∞j=1 ¢ S

such that vj → u uniformly in compact subsets of R
n . In particular, there exists j0 g 1, depending on h,

such that, for all j > j0,
u(x)− h < vj (x) for all x ∈ B¶(x0). (6-8)

Write v = vj for some j > j0. It follows that
{

P − v g h in R
n \ B¶(x0),

P − v < P − u + h in B¶(x0).

Let d = infRn (P − v). Then d = P(x1)− v(x1) for some x1 ∈ Bh(x0) with 0 f d < h, and
{

P(x1)− d = v(x1),

P(x)− d g v(x) for all x ∈ R
n.

Hence P − d is a quadratic polynomial that touches v from above at x1. In particular, since v is convex,
v has a unique supporting plane l at x1, so ∂v(x1)= {∇l}.

Let Ä g 0 be such that l + Ä is the supporting plane of u at some point x2. Note that x2 approaches x0

as h goes to 0, and thus, there exists some r = r(h) > 0 such that r → 0 as h → 0 and x2 ∈ Br (x0).
Furthermore, since l(x1)+ d = v(x1)+ d = P(x1)g u(x1), then Ä f d < h (see Figure 2).

Fix ε > 0. By Lemma 6.11, we have that Dx0u(ε) is bounded, so 3= diam Dx0u(ε) <∞. Choose ¶
sufficiently small that r < ε/(43). Then by Proposition 5.2,

F
s
k u(x2)f F

s
k u(x0)+ C31−s |x2 − x0|1−s + 43

ε
F

s
k u(x0)|x2 − x0| f F

s
k u(x0)+ C(r), (6-9)

where C(r)→ 0 as r → 0. Next we will show that

F
s
kv(x1)− CÄ 1−s f F

s
k u(x2) (6-10)

for some constant C > 0 depending only on n, k, and s. Since ∂v(x1)= {∇l} we have v ∈ C1,1(x1), and
using Proposition 5.4 we get

F
s
kv(x1)= cn,s

∫ ∞

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx1v(t, z)1/k

|z|

)
dz dt,
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u

v

P

P − d

l

l + Ä

R
n

x0

x1

x2
Br (x0)

Figure 2. Geometry involved in the proof of Proposition 6.12.

where µxv(t, z) = É−1
k Hk({y ∈ R

k : ṽx(y, z) f t}) and W is the monotone decreasing function given
in (5-2). Observe that since v f u, the supporting plane of v at x1 is l, and the supporting plane of u at x2

is l + Ä . Then, for any t > 0, it follows that

Dx2u(t)= {u − (l + Ä)f t} ¦ {v− l f t + Ä } = Dx1v(t + Ä).

In particular, µx2u(t, z)f µx1v(t + Ä, z) for any z ∈ R
n−k . Therefore,

W (µx2u(t, z))g W (µx1v(t + Ä, z)),

which yields

F
s
k u(x2)g cn,s

∫ ∞

Ä

∫

Rn−k

1

|z|n−k+2s
W

(
µx1v(t, z)1/k

|z|

)
dz dt

= F
s
kv(x1)− cn,s

∫ Ä

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx1v(t, z)1/k

|z|

)
dz dt

g F
s
kv(x1)− CÄ 1−s,

where the last inequality follows from the fact that µx1v(t, z) g C(t − |z|2)k/2+ and W is monotone
decreasing.

Combining (6-9) and (6-10), using that v is a subsolution, and using (6-8), we get

F
s
k u(x0)+ C(r)g F

s
kv(x1)− CÄ 1−s g v(x1)−ϕ(x1)− CÄ 1−s > u(x1)− h −ϕ(x1)− CÄ 1−s .

Letting ¶ → 0, it follows that h → 0, C(r)→ 0, Ä → 0, and x1 → x0. By continuity of u and ϕ, we
conclude the result. □
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Proposition 6.13 (u is a supersolution). The function u given in (6-3) satisfies

F
s
k u(x0)f u(x0)−ϕ(x0) for all x0 ∈ R

n.

Proof. Assume the statement is false. Then there exists some x0 ∈ R
n such that

F
s
k u(x0) > u(x0)−ϕ(x0).

Without loss of generality, we may assume that u(x0) = 0 and ∇u(x0) = 0. Otherwise, consider
v(x)= u(x)− u(x0)− (x − x0) · ∇u(x0). Then there exists some ¶ > 0 such that

F
s
k u(x0)g −ϕ(x0)+ ¶. (6-11)

Fix ε > 0 and let uε(x)= max{u(x), ε}. We will show that, for ε sufficiently small, uε is an admissible
subsolution, and thus reach a contradiction with u being the largest subsolution. Indeed, uε is convex and
uε ∈ C0,1(Rn) with [uε]C0,1(Rn) f [ϕ]C0,1(Rn). Moreover, note that uε(x)= u(x) for x large. Hence, once
we show that uε is a subsolution, it will follow from the comparison principle that ϕ f uε f ϕ+w.

If x ∈ {uε = u}, then uε(x)= u(x) and uε g u in R
n . By monotonicity (Lemma 6.5),

F
s
k uε(x)g F

s
k u(x)g u(x)−ϕ(x)= uε(x)−ϕ(x),

since u is a subsolution, by Proposition 6.12.
If x ∈ {uε > u}, then uε(x)= ε and ∂uε(x)= {0}. In particular,

F
s
k uε(x)= F

s
k uε(x0). (6-12)

Moreover, for any t > 0, we have Dx0uε(t) = {uε − ε f t} = {u f t + ε} = Dx0u(t + ε). Therefore, in
view of Proposition 5.4, we get

F
s
k uε(x0)= F

s
k u(x0)−

∫ ε

0

∫

Rn−k

1

|z|n−k+2s
W

(
µx0u(t, z)1/k

|z|

)
dz dt g F

s
k u(x0)− Cε1−s, (6-13)

since u ∈ C1,1(Rn) and µx0u(t, z)g (t − |z|2)k/2+ .
Combining (6-11)–(6-13), we see that

F
s
k uε(x)= F

s
k uε(x0)g F

s
k u(x0)− Cε1−s g −ϕ(x0)+ ¶− Cε1−s

= uε(x)−ϕ(x)+ (ϕ(x)−ϕ(x0)+ ¶− Cε1−s − ε),
since uε(x)= ε. We need the term inside the parenthesis to be nonnegative. Hence it remains to control
ϕ(x)−ϕ(x0). Since ϕ is smooth,

|ϕ(x)−ϕ(x0)| f [ϕ]C0,1(Rn)|x − x0|.

We distinguish two cases. If {u = 0} = {x0}, then |x − x0| f dε → 0 as ε → 0. Hence, choosing ε
sufficiently small, we see that

ϕ(x)−ϕ(x0)+ ¶− Cε1−s − ε g ¶− [ϕ]C0,1(Rn)dε − Cε1−s − ε g 0.

Therefore, uε ∈ S, which contradicts uε(x0) > u(x0)= supv∈S v(x0)g uε(x0).
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Suppose now that {u = 0} contains more than one point. By compactness of {u = 0} and continuity
of ϕ, there exists some x1 ∈ {u = 0} where ϕ attains its maximum. Then

F
s
k u(x1)= F

s
k u(x0)g u(x0)−ϕ(x0)+ ¶ g u(x1)−ϕ(x1)+ ¶.

Moreover, by convexity of {u = 0} (since u g ϕ g 0) and ϕ, we must have that x1 ∈ ∂{u = 0}. Hence there
exists {x j }∞j=2 ¢ {u > 0} such that x j → x1 and u is strictly convex at x j . Namely, there is a supporting
plane that touches u only at x j .

By continuity of u, there exists some j0 g 2 such that

u(x1) > u(x j )− 1
4¶ for all j > j0.

By continuity of ϕ, there exists some j1 g 2 such that

ϕ(x1) < ϕ(x j )+ 1
4¶ for all j > j1.

By lower semicontinuity of F s
k u, up to a subsequence, there exists some j2 g 2 such that

F
s
k u(x j ) > F

s
k u(x1)− 1

4¶ for all j > j2.

Let J >max{ j0, j1, j2}. Then

F
s
k u(x J ) > F

s
k u(x1)− 1

4¶ g u(x1)−ϕ(x1)+ 3
4¶ > u(x J )−ϕ(x J )+ 1

4¶,

and we can repeat the previous argument, replacing x0 by x J . We conclude that

F
s
k u(x0)f u(x0)−ϕ(x0) for all x0 ∈ R

n. □

7. Future directions

As mentioned in the introduction, the main idea to define a nonlocal analog to the Monge–Ampère
operator is to write it as a concave envelope of linear operators. More precisely,

n det(D2u(x))1/n = inf
M∈M

tr(M D2u(x)),

where M = {M ∈ Sn : M > 0, det(M) = 1} and Sn is the set of n × n symmetric matrices. Note
that this identity is equivalent to the one given in (1-2) taking M = AAT and B = D2u(x), since
tr(AT B A)= tr(AAT B). In fact, this extremal property does not only hold for n det(B)1/n with B ∈ Sn

and B > 0. If ¼ = (¼1, . . . , ¼n), where ¼i are the eigenvalues of B, then the function f defined on
0 = {¼ ∈ R

n : ¼i > 0 for all i = 1, . . . , n} and given by

f (¼)= n

( n∏

i=1

¼i

)1/n

= n det(B)1/n

is differentiable, concave, and homogeneous of degree 1. In general, if f satisfies these conditions in an
open convex set 0 in R

n , then

f (¼)= inf
µ∈0

{ f (µ)+ ∇ f (µ) · (¼−µ)} = inf
µ∈0

∇ f (µ) · ¼,
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where the second identity follows by Euler’s theorem. Therefore,

f (¼)= inf
M∈M f

tr(M B),

where M f = {M ∈ Sn : ¼(M) ∈ ∇ f (0)}, ∇ f (0) = {∇ f (µ) : µ ∈ 0}, and ¼(M) are the eigenvalues
of M .

For instance, the k-Hessian functions introduced by Caffarelli, Nirenberg, and Spruck in [Caffarelli et al.
1985] satisfy these conditions and, in fact, fractional analogs have been recently studied by Wu [2019]. It
would be interesting to explore fractional analogs to a wider class of fully nonlinear concave operators,
like the ones mentioned above.

We remark that the 1-Hessian is equal to the Laplacian, and the n-Hessian is equal to the Monge–
Ampère operator. Moreover, for 1 < k < n, we obtain an intermediate discrete family between these
operators. In view of this observation, a natural question of finding a continuous family connecting the
Laplacian with the Monge–Ampère operator arises. Here we suggest possible families that smoothly
connect these two operators and pass through the k-Hessians, in some sense. Indeed, let ³ ∈ (0, 1]n and
write |³| = ³1 + · · · +³n . For ¼ ∈ R

n
+, we consider the functions

f³(¼)=
(∑

Ã∈S

¼
³1
Ã(1) · · · ¼

³n

Ã(n)

)1/|³|
,

where S is the set of all cyclic permutations of {1, . . . , n}. Observe that, for any 1 f k f n, if ³=
∑

i∈I ei

with |I| = k, then f³ is precisely the k-Hessian function. Consider any smooth simple curve µ : [0, 1] →
(0, 1]n such that

(1) µ (0)= ei for some 1 f i f n,

(2) µ (tk)=
∑

i∈Ik
ei with |Ik | = k and 0< tk < tk+1 < 1 for all 1< k < n, and

(3) µ (1)= (1, . . . , 1).

Then the family { f³}³∈Im(µ ) is as we described. In particular, fractional analogs of these functions would
give a continuous family from the fractional Laplacian to the nonlocal Monge–Ampère. We will study
this problem in a forthcoming paper.
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