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ABSTRACT

We consider reinforcement learning (RL) methods in offline domains without additional online data collec-
tion, such as mobile health applications. Most of existing policy optimization algorithms in the computer
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science literature are developed in online settings where data are easy to collect or simulate. Their general-

izations to mobile health applications with a pre-collected offline dataset remain are less explored. The aim of
this article is to develop a novel advantage learning framework in order to efficiently use pre-collected data
for policy optimization. The proposed method takes an optimal Q-estimator computed by any existing state-
of-the-art RL algorithms as input, and outputs a new policy whose value is guaranteed to converge at a faster
rate than the policy derived based on the initial Q-estimator. Extensive numerical experiments are conducted
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to back up our theoretical findings. A Python implementation of our proposed method is available at https://
github.com/leyuanheart/SEAL. Supplementary materials for this article are available online..

1. Introduction

Reinforcement learning (RL, see Sutton and Barto 2018, for an
overview) is concerned with how intelligence agents learn and
take actions in an unknown environment in order to maximize
the cumulative reward that it receives. It has been arguably
one of the most vibrant research frontiers in machine learn-
ing over the last few years. According to Google Scholar, over
40K scientific articles have been published in 2020 with the
phrase “reinforcement learning” Over 100 papers on RL were
accepted for presentation at ICML 2021, a premier conference
in the machine learning area, accounting for more than 10% of
the accepted papers in total. RL algorithms have been applied
in a wide variety of real applications, including games (Silver
et al. 2016), robotics (Kormushev, Calinon, and Caldwell 2013),
healthcare (Komorowski et al. 2018), bidding (Jin et al. 2018),
ridesharing (Xu et al. 2018) and automated driving (de Haan,
Jayaraman, and Levine 2019), to name a few.

This article is partly motivated by developing statistical learn-
ing methodologies in offline RL domains such as mobile health
(mHealth). mHealth technologies have recently emerged due to
the use of mobile phones, tablets computers or wearable devices.
They play an important role in precision medicine as they offer a
means to monitor a patient’s health status and deliver interven-
tions in real-time. They also collect rich longitudinal data for
optimal treatment decision making. One motivating example
being considered in this article uses the OhioTIDM Dataset
(Marling and Bunescu 2018). It contains 8 weeks of data for 6
patients with type 1 diabetes, an autoimmune disease wherein

the pancreas produces insufficient levels of insulin. For those
patients, their continuous glucose monitoring blood glucose
levels, insulin doses being injected, self-reported times of meals
and exercises are continually measured. Their outcomes have
the potential to be improved by treatment policies tailored to
the continually evolving health status of each patient (Luckett
et al. 2020; Shi et al. 2020c¢).

Despite the popularity of developing various RL algorithms
in the computer science literature, statistics as a field, has only
recently begun to engage with RL both in depth and in breadth.
Most works in the literature focused on developing data-driven
methodologies for precision medicine with only a few treat-
ment stages (see e.g., Murphy 2003; Robins 2004; Chakraborty,
Murphy, and Strecher 2010; Qian and Murphy 2011; Zhang
et al. 2013; Zhao et al. 2015; Wallace and Moodie 2015; Song
et al. 2015; Luedtke and van der Laan 2016; Zhu et al. 2017;
Shi et al. 2018b; Wang et al. 2018; Zhang et al. 2018; Qi et al.
2020; Nie, Brunskill, and Wager 2020). These methods require
a large number of patients in the observed data to be consistent.
They are not applicable to mHealth applications with only a
few patients, which is the case in the OhioT1DM dataset. Nor
are they applicable to many other sequential decision mak-
ing problems where the number of decision stages is allowed
to diverge to infinity, such as games or robotics. Recently, a
few algorithms have been proposed in the statistics literature
for policy optimization in mHealth applications (Ertefaie and
Strawderman 2018; Luckett et al. 2020; Hu et al. 2020; Liao, Qi,
and Murphy 2020; Zhou, Zhu, and Qu 2021).
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Among all existing methods in infinite horizons, Q-learning
(Watkins and Dayan 1992) is arguably one of the most pop-
ular model-free RL algorithms. It derives the optimal policy
by learning an optimal Q-function, without explicitly modeling
the system dynamics. Variants of Q-learning include gradient
Q-learning (Maei et al. 2010; Ertefaie and Strawderman 2018),
fitted Q-iteration (Riedmiller 2005), deep Q-network (DQN,
Mnih et al. 2015), double DQN (Van Hasselt, Guez, and Silver
2016) and quantile DQN (Dabney et al. 2018), among others. All
these Q-learning type algorithms are primarily motivated by the
application of developing artificial intelligence in online video
games, so their generalization to offline applications with a pre-
collected dataset remains unknown.

Different from online settings (e.g., video games) where data
are easy to collect or simulate, the number of observations in
many offline applications (e.g., healthcare) is limited. Take the
OhioT1DM dataset as an example, only a few thousands obser-
vations are available (Shi et al. 2020b). With such limited data, it
is critical to develop RL algorithms that are statistically efficient.
Instead of proposing a specific algorithm for policy optimiza-
tion, our work undertakes the ambitious task of devising an
“efficiency enhancement” method that is generally applicable
to any Q-learning type algorithms to improve their statistical
efficiency. The input of our method is an optimal Q-estimator
computed by existing state-of-the-art RL algorithms and the
output is a new policy whose value converges at a faster rate than
the policy derived based on the initial Q-estimator.

The proposed method is motivated by a line of research on
developing A-learning type algorithms! to learn an optimal
dynamic treatment regime (DTR) to implement precision
medicine (see e.g., Murphy 2003; Robins 2004; Lu, Zhang,
and Zeng 2013). These methods directly model the difference
between two conditional mean functions (known as the
contrast function). They are semi-parametrically efficient and
outperform Q-learning 2 (see e.g., Chakraborty, Murphy, and
Strecher 2010; Qian and Murphy 2011) in cases where the
Q-function is misspecified (Shi et al. 2018a). In addition, A-
learning has the so-called doubly robustness property, that is,
the estimated optimal DTR is consistent when either the model
for the conditional mean function or the treatment assignment
mechanism is correctly specified.

The contributions of our article are summarized as follows.
Methodologically, we propose a statistically efficient advantage
learning procedure to estimate the optimal policy in offline
infinite horizon settings. Our proposal integrates existing policy
optimization and policy evaluation algorithms in RL. Specifi-
cally, we start with applying existing Q-learning type algorithms
to compute an initial estimator for the optimal Q-function.
Based on these Q-estimators, we leverage ideas from the off-
policy evaluation literature (OPE, see e.g., Jiang and Li 2016;
Thomas and Brunskill 2016; Liu et al. 2018; Kallus and Uehara

'Similar algorithms are developed in the causal inference literature for het-
erogeneous treatment effects estimation (see e.g., Tian et al. 2014; Nie and
Wager 2017; Kennedy 2020; Li, Wang, and Tu 2021b).

2Q-learning here is different from those Q-learning type algorithms in RL,
due to different data structures and model setups. It relies on a backward
induction algorithm to identify the optimal DTR in finite horizon settings
with only a few treatment stages. In contrast, Q-learning type algorithms
in RL usually rely on a Markov assumption to derive the optimal policy in
infinite horizons.
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2019, 2020; Shi et al. 2021) to construct pseudo outcomes that
are asymptotically unbiased to the optimal contrast function
(see Section 2.2 for the detailed definition). With these pseudo
outcomes as the prediction target, we can directly apply existing
state-of-the-art supervised learning algorithms to derive the
optimal policy. The use of OPE effectively alleviates the bias
of the estimated contrast function resulting from the potential
model misspecification of the optimal Q-function, which in
turn improves the statistical efficiency over Q-learning. In that
sense, our proposal shares similar spirits with the A-learning
type methods to learn DTRs in finite horizons.

Theoretically, we show our estimated contrast function con-
verges at a faster rate than the Q-function computed by existing
state-of-the-art Q-learning type algorithms (Theorem 2). This
in turn implies that our estimated policy achieves a larger value
function (Theorem 3). All the error bounds derived in this
article converge to zero when either the number of trajectories
N or the number of decision stages per trajectory T to approach
infinity. This guarantees the consistency of our method when
applied to a wide range of real-world problems, ranging from the
OhioT1DM Dataset that contains eight weeks’ data for 6 patients
to the 2018 Intern Health Study with over 1000 subjects (see e.g.,
NeCamp et al. 2020). It is also applicable to data generated from
online video games where both N and T are allowed to grow to
infinity.

Empirically, we show that our procedure outperforms exist-
ing learning algorithms using both synthetic datasets and a real
dataset from the mobile health application. We remark that
most papers in the existing literature use synthetic datasets to
evaluate the performance of different RL algorithms. Results
in our article offer a useful evaluation tool for assessing these
algorithms in real applications.

The rest of this article is organized as follows. In Section 2,
we introduce some basic concepts in RL, describe the data
generating process and formulate the problem. In Section 3, we
demonstrate the advantage of A-learning over Q-learning by
comparing their rate of convergence. The proposed algorithm is
formally presented in Section 4. In Section 5, we study the sta-
tistical properties of our algorithm, proving that our estimated
policy achieves a faster rate of convergence than existing Q-
learning type algorithms. In Section 6, we investigate the finite
sample performance of the proposed algorithm using Monte
Carlo simulations. In Section 7, we use the OhioT1DM Dataset
to further demonstrate the empirical advantage of the proposed
algorithm over other baseline algorithms. Proofs of our major
theorems are presented in Appendix B of the supplementary
materials.

2. Preliminaries

We first formulate the policy optimization problem in infinite
horizon settings. We next briefly review Q-learning.

2.1. Problem Formulation

RL is concerned with solving sequential decision making prob-
lems in an unknown environment. The observed data can be
summarized into a sequence of state-action-reward triplets over
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time. At each time t > 0, the decision maker observes some
features from the environment, summarized into a state vector
St € S where the state space S is assumed to be a subset
of RY. The decision maker then selects an action A, from the
action space A. The environment responds by providing the
decision maker with an immediate reward R; € R and moving
to the next state S;11. In this paper, we focus on the setting
where A is discrete. Extensions to the continuous action space
are discussed in Appendices A.1 and A.2 of the supplemen-
tary article. The state space S can be either continuous or
discrete.

A policy defines the agent’s way of behaving. A history-
dependent policy 7 is a sequence of decision rules {m;};>o where
each 7; is a function that maps the observed data history to a
probability distribution function on the action space at time t.
When these decision rules are time-homogeneous (i.e., 71, =
my =--- =1 = ---)and depend on the past data history only
through the current state vector, the resulting policy is referred
to as a stationary policy. Following 7, the discounted cumulative
reward that the decision maker receives is referred to as the value
function,

+00
V() =Y y'ET(RilSo = 9),
t=0

where the expectation E” is taken by assuming that actions are
assigned according to 7 and 0 < y < 1 is a discounted factor
that balances the long-term and short-term rewards. The objec-
tive of policy optimization is to identify an optimal policy 7 °P
that maximizes the value, that is, 7°P* = arg max, EV7™(Sp).

We model the data generating process by a Markov deci-
sion process (MDP, Puterman 1994). Specifically, we impose
the following Markov assumption (MA) and conditional mean
independence assumption (CMIA).

(MA) There exists some function g such that for any t+ > 0,
S € S, we have

Pr(Si41 € SISj, Ajs Ri}o<j<t) = /:gq(S;At, St)ds.

(CMIA) There exists some reward function r such that for any
t > 0, we have

E(R|St, At {Sj, Aj RiYo<j<t) = 1(Ar Sp).

We make a few remarks. First, MA requires the future
state to be conditional independent of the past data history
given the current state-action pair. The function g corresponds
to the Markov transition density function that characterizes
the state transitions. This assumption is testable from the
observed data (see e.g., Shi et al. 2020b). Second, under
MA, CMIA is automatically satisfied when R; is a determin-
istic function of Sy, A;, and Sey;. The latter assumption is
commonly imposed in the literature (Ertefaie and Strawder-
man 2018; Luckett et al. 2020). CMIA is weaker than this
assumption.

Second, these two assumptions lay the foundations of the
existing state-of-the-art RL algorithms (e.g., DQN). Specifically,
they guarantee the existence of an optimal stationary policy
that is no worse than any history-dependent policies (see e.g.,
Puterman 1994). It allows us to restrict our attentions to the class

of stationary policies. For any such policy 7, we use 7 (e[s) to
denote the probability mass function that the decision maker
will follow to select actions given that the environment is in the
state s.

The observed data consist of N trajectories. Specifically, let
{(Sit> Aits Rit> Siry1)}o<t<T be the data collected from the ith
trajectory where T is the termination time. We assume these tra-
jectories are independent copies of {(S;, A, R¢)}s>0. Our objec-
tive is to learn 77 °P* based on this offline dataset.

2.2. Q-learning

For a given policy 7, we define the state-action value function
(better known as the Q-function) under 7 as

Q" (as) =) y'E"(R|Ag = a,S = 9).

t>0

It represents the average cumulative reward that the decision
maker will receive if they select the action a initially and follow
m afterwards. In addition, notice that

Q" (a,s) = E(RolAo = a,Sy = )

+y !Z VIET (Rep1]Ag = a,Sp = s)}

t>0

=r(a,s)+y {Z y'E7[E™ (Re41/A1, S,

=0
Ag=a,5 = S)|A0,So]}

=r(a,s) + yE"{Q" (A1, S1)|Ag = 4,5 = s}
=r(a,s) + )// Zn(a/|s/)Q(a’,s’)q(s/;a,s)ds’, (1)

where the third equation follows from CMIA and the definition
of Q" and the last equation follows from MA. The above equa-
tion is referred to as the Bellman equation for Q”.

Define optimal Q-function Q% as Q°'(a,s) = max,
Q" (a, s) for any state-action pair (a,s). Under MA and CMIA,
it can be shown that 7 °P' satisfies

7% (als) = 1{a = argmax,Q**'(d’,5)}, Va,s, )

where I{-} denotes the indicator function. In addition, we have
opt

Q°Pt = Q"™ Similar to (1), one can show that QP! satisfies the

following Bellman optimality equation,

Q% (a,s) =r(a,s) +y / max QP'(s',a)q(s’; a,5)ds', (3)
s @
or equivalently,
QP (A4 S) = E R+ y max QP (@, Sirn)lAn 81| . (@)

Equations (2) and (4) form the basis for all Q-learning type algo-
rithms. Specifically, these algorithms first estimate the optimal
Q-function by solving (4) and then derive the estimated optimal
policy based on (2). Take the fitted Q-iteration algorithm as
an example. It iteratively updates the optimal Q-function using
supervised learning. At each iteration, the input includes (A;, S¢)



that serves as the “predictors” gnd R; + y max, a(a, Si+1) that
serves as the “response” where Q denotes the current estimate of
the optimal Q-function.

Finally, we introduce the contrast function. For a given 7,
define the contrast function associated with 7 as t7 (a,s) =
Q" (a,s) — Q" (ap,s)* for some ag € A. In practice, the con-
trol arm agp could be set to the action that occurs the most
in the data. This is because the baseline Q-function Q7 (ay, s)
needs to be accurately estimated in order to consistently esti-
mate the contrast function. Hence, it is natural to consider the
most frequently selected arm, which has the largest number of
observations to learn the baseline Q-function. Let 7°Pt(g,s) =
7 (a,s) be the optimal contrast function. Similar to (2), we
obtain that

7% (als) = I{a = argmax t°P'(d’, 5)},
a/
for any a and s. Consequently, to estimate the optimal policy,
it suffices to estimate T°P'. This observation motivates the pro-
posed advantage learning method.

3. Q- versus A-learning

This section is organized as follows. We first introduce the
minimax-optimal statistical convergence rate in supervised
learning, which serves as an evaluation metric to compare
various supervised learning algorithms. We next demonstrate
the advantage of A-learning over Q-learning by comparing the
worst-case convergence rates of the estimated optimal contrast
and Q-functions. Finally, we discuss the challenge of developing
statistically efficient A-learning algorithms.

3.1. Minimax Optimal Statistical Convergence Rate

Consider a supervised learning setup where we have given iid
random vectors {(X;,Y;) : 1 < i < n}. Our objective is to
predict the value of the response Y from the value of the feature
X € S. The aim is to construct a best predictor to approximate
the conditional mean function m(X) = E(Y|X). For any such
predictor m, its prediction accuracy is measured by the root
mean square error,

VEImR(X) — m(X)[2. (5)

Suppose m belongs to the class of p-smooth (also known
as Holder smooth with exponent p) functions. When p is an
integer, this condition essentially requires m to have bounded
derivatives up to the pth order. Formally speaking, for a J-tuple
o = (a,...,07) " of nonnegative integers and a given function
honS, let D* denote the differential operator:

allelh (o)

DYh(s) = ——&-.
© dsy! - s

Here, s; denotes the jth element of s. For any p > 0,let [p| denote
the largest integer that is smaller than p. The class of p-smooth

3Here, we define the contrast function as the difference between two Q-
functions. Alternatively, one may define ™ to be the advantage function,
that is, the difference between Q™ and V.
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functions is defined as follows:

A(p,c) = {h: sup sup [D¥h(s)|

lelli<lp] seS

IDh(s1) — D*h(sy)|
— sl

<¢ sup sup

lalli=Llp] s1.52€8 [Is1
S17£S2

for some constant ¢ > 0. When 0 < p < 1, we have [p| = 0.1t
is equivalent to require h to satisfy sup o, [h(s1) — h(s2)|/lls1 —
52||12) < c¢. The notion of p-smoothness is thus reduced to the
Holder continuity.
Stone (1982) showed that the optimal minimax rate of con-
vergence for m is given by
P/ Qp+d) , (6)

where d denotes the dimension of S. In other words, for any
data-dependent predictor 7, there exists some p-smooth func-
tion m such that (5) decays at a rate of (6). This rate can-
not be improved unless imposing certain parametric model
assumptions on m. Notice that (6) increases with the smooth-
ness parameter p. In other words, the smoother the underlying
regression function, the faster worst-case rate of convergence a
supervised learner could achieve.

Finally, we remark that we focus on the class of Holder
smooth functions throughout this paper. Alternatively, one may
consider the Sobolev space. Discussion of Sobolev and Holder
spaces can be found in Giné and Nickl (2021).

3.2. Modelling Contrast or Q-function?

We assume the state space S is continuous and both the tran-
sition function g(s’;a,e) and reward function r(a, ) belong
to the class of p-smooth functions on S for some p > 0.
The p-smoothness assumption is likely to hold in many mobile
health applications and we delegate the related discussions in
Appendix A.3., supplementary materials. Under this condition,
the optimal Q-function is p-smooth as well (see sec. 4, Fan et al.
2020). Fan et al. (2020) proved that the Q-function computed by
DQN achieves a rate of (NT)?/@*9 up to some logarithmic
factors. As they commented, this rate achieves the minimax-
optimal statistical convergence rate in (6) within the class of p-
smooth functions and cannot be further improved.

Since the optimal contrast function corresponds to the differ-
ence between two optimal Q-functions, T°P! is at least at smooth
as Q°Pt. On the other hand, there are cases where TP is strictly
“smoother” than Q°P!, leading to a possibly faster worst-case rate
of convergence according to the minimax-optimal rate formula.
We consider two examples to elaborate.

Example 1 (Independent Transitions). Consider the setting
where the state transitions are independent, that is, g(s'; a,s) =
q(s') is independent of (a,s). Then Q°(a,s) = r(a,s) + C for
some constant C > 0 that is independent of s and a. Suppose
the reward function has the following decomposition

r(a,s) =r"(a,s) + ro(s),
for some p-smooth baseline reward function ry and p*-smooth

function r* with p* > p. It follows that Q°P!(g, e) is p-smooth
whereas t°'(a, o) = r*(a, ) — r*(ag, ®) is p*-smooth.
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Example 2 (Dependent Transitions). Suppose q has the following
decomposition

q(s'5a,9) = ¢° (s’ a,8) + qo(s; 9), (7)

where g*(s'; , a) has derivatives up to the p*th order whereas
qo(s’; @) has derivatives up to the pth order with p < p*.
By changing the order of integration and differentiation with
respect to s, we can show that the second term on the right-
hand-side (RHS) of (3) is p-smooth. Suppose r(a, o) has deriva-
tives of all orders. Tt follows from (3) that Q°* is p-smooth.

On the contrary, by (3) and (7), we have that

" (a,s) = r(a,s) — r(ag,s)
—i—y/maxQOpt(a’,s/)q*(s’;a,s)ds’.
s a

Using similar arguments, we can show that the last term on the
RHS is p*-smooth. This in turn implies that t°" is p*-smooth
as well.

To conclude this section, we remark that the minimax rate
for the contrast function has been recently established in single-
stage decision making (Kennedy, Balakrishnan, and Wasserman
2022). In infinite horizon settings with tabular models, sev-
eral papers have investigated the minimax-optimality of the Q-
learning estimator (see e.g., Wainwright 2019; Li et al. 2020,
2021a). In settings with continuous state space, a recent proposal
of Chen and Qi (2022) derived a minimax lower bound for
the Q-function estimator under a fixed target policy and found
that the rate matches those for nonparametric regression (Stone
1982). We expect that similar arguments can be applied to
formally obtain the minimax lower bounds for the estimated
optimal Q- or contrast function.

3.3. The Challenge

So far we have shown that the worse-case convergence rate of
the estimated optimal contrast function is faster than that of the
estimated optimal Q-function. However, it remains challenging
to devise an advantage learning algorithm that achieves such
a rate of convergence. To elaborate, let us revisit the Bellman
optimality equation in (4). By the definition of the optimal
contrast function, it follows that

7°P'(4,,8) =E {Rt + ¥ max t°P'(a, Syy1)
a
+y Q% (ag, St1)| Ar, st} — Q%'(ay, $)). (8)

The presence of the nuisance function Q°P!(ay, ) in the above
equation poses a serious challenge to efficient estimation of T°P'.
A simple solution is to apply Q-learning type algorithms to learn

I(A; = ao)

the nuisance function, plug in this estimator in (8) and update
79! using for example, fitted Q-iteration. However, such an
approach would yield a sub-optimal solution. This is because
the estimation error of the initial Q-estimator would directly
affect that of the estimated contrast function. As a result, the
estimated contrast would have the same convergence rate as the
Q-estimator.

4, Statistically Efficient A-Learning

We first present the motivation of our algorithm. We next for-
mally introduce our proposal.

4.1. A Thought Experiment

To illustrate the idea, in this section, let us consider a simplified
model where the discounted factor y = 0 and the transitions
are independent (see Example 1). In that case, we are interested
in learning an optimal myopic policy the maximizes the short-
term reward on average, which is essentially a single-stage deci-
sion making problem. By definition, the Q-function Q" and the
contrast T are independent of the policy 7. Equation (8) can
be rewritten as

T(At, St) = E(R¢|At, St) — Q(ao, St) 9

where Q(ag,s) = E(R¢|A; = ag, St = s).

A-learning algorithms developed in the statistics literature
can be employed to learn the contract function in this setting.
They are motivated by the following identity,

> EHI(A; = a) — Pr(A; = alS))}
aFag

{Rt — 7(A1, §1) — Q(ao, S)}Si] = 0. (10)

Unlike Equation (9), the above equation is doubly-robust. It
holds when either the propensity score Pr(A; = el|S;) or
the Q-function Q(ay, ®) is correctly specified. This motives the
following two-step procedure. In the first step, we first estimate
the propensity score and the Q-function from the observed data.
In the second step, we plug in these estimates in (10) to estimate
the contrast function. Such a two-step method guarantees the
estimated contrast to be robust to the potential model misspec-
ification of the Q-function.

When linear sieves are used to approximate 7, that is,
7(a,s) = ¢(a,s)' By for some basis function ¢, an estimating
equation for By can be constructed based on (10). A Dantzig
selector-type regularization can be applied when the number of
basis functions is large Shi et al. (2018a). To employ more flexible
machine learning methods, we can consider the following least-
square objective function,

Z[{ e }{R»t—Q<A<ts»t>}+Q<a i) — Qa, i)
~ L Pr(4i = alSy)  Pr(Ais=aolS) ) " o o o

iy
a7ag

Y (S AitsRia)

—2(a, s,-,,)]z.




Here, ¥ (Sit, Air, Rit,a) serves as a pseudo outcome for
7(a, Siy). It is derived based on augmented inverse probability
weighting (AIPW, see e.g., Bang and Robins 2005). One can
similarly show that E{y(Sis, Ait, Rit,a)|Si¢} is unbiased to
7(a, Siy) when either the propensity score or the Q-function
is correctly specified. A by-product of the doubly-robustness
property is that when both nuisance functions are estimated
from the data, the bias of the pseudo outcome will converge at a
faster rate than these estimated nuisance functions. This in turn
allows the resulting estimated contrast to converge at a faster
rate than the Q-function. See for example, Section 5 for details.

Although the above solution is developed in single-stage
decision making, the same principle can be applied to general
sequential decision making problems in infinite horizons, as we
detail in the next section.

4.2. The Complete Algorithm

Our proposal involves two key components. First, we apply
existing off-policy evaluation methods to construct pseudo out-
comes for the optimal contrast function. This effectively reduces
the bias of the initial Q-estimators, as we show in Theorem 1
that the bias of our pseudo outcomes decays at a much faster
rate than initial Q-estimators. It in turn ensures that the esti-
mated contrast is robust to the model misspecification of the Q-
function, improving its rate of convergence. Second, we learn
7°P! by directly minimizing the least square loss between the
pseudo outcomes and the estimated contrast. This allows us
to borrow the strength of supervised learning to improve the
statistical efficiency for RL. We call this set of method SEAL—
short for statistically efficient advantage learning.

Our proposal consists of five steps, including data splitting,
policy optimization, estimation of the density ratio, construc-
tion of pseudo outcomes, and supervised learning. We next
discuss each step in detail.

4.2.1. Step 1. Data Splitting

We randomly divide the indices of all trajectories {1, . . ., N} into
L subsets U%_ 7, with equal size, for some fixed integer L > 0.
Let Z; be the complement of Z,. Data splitting allows us to use
one part of the data (Zj) to train RL models and the remaining
part (Z;) to construct the pseudo outcomes. We could aggregate
the estimate over different ¢ to get full efficiency. This allows the
bias of the constructed pseudo outcomes to decay to zero under
minimal conditions on the estimated RL models. We remark
that data splitting has been commonly used in the statistics and
machine learning literature (see e.g., Chernozhukov et al. 2018;
Romano and DiCiccio 2019; Kallus and Uehara 2019).

4.2.2. Step 2. Policy Optimization

For¢ = 1,...,L, we apply existing state-of-the-art Q-learning
type algorithms to the data subset in Zj to compute an initial Q-
estimator Q) for Q°P'. Several algorithms can be applied here,
as we elaborate below.

Example 3 (DQN). The deep Q-network algorithm is a Q-
learning type method that uses a neural network Q-function
approximator and several tricks to mitigate instability. It was
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developed in online settings and shown to yield superior
performance to previously known methods for playing Atari
2600 games. To handle offline data, at each time step, we sample
a minibatch of transitions {(Sis, Ais Rip Sit+1)}Gnem and
update the parameter 0 of the Q-network by the gradient of

Y {Ri+maxy Qo (@ Sie+1) — Qo(Ain Sin)), (1)
(i,HyeM

where Qg+ is the target network whose parameter 6* is updated
every Ttarget Steps by letting 6* = 6. In Mnih et al. (2015), Tiarget
is set to 10,000. As Ttarget grows to infinity, performing Target
stochastic gradient steps is equivalent to solve

N T-1
argming ) > (Ris + maxy Qo (@ Sis1) — Qo (Aie, Sio)).
i=1 t=0
In that sense, DQN shares similar spirits with the fitted Q-
iteration algorithm (Fan et al. 2020).

Example 4 (Double DQN). The double DQN algorithm is very
similar to DQN. It is developed to alleviate the overestimation
bias of the learned Q-function. DQN is likely to overestimate the
Q-function under certain conditions, due to the biased resulting
from the maximization step max, Qp=(a, Sj++1) in (11). See for
example, Sutton and Barto (2018) for a detailed explanation of
the maximization bias. To reduce this bias, it replaces the target
R;t + max, y Qp+(a, Sit+1) by

Rt + vy Qp+(argmax,Qp(a, Sijt+1)> Sip+1)-

In other words, it decomposes the maximization operation into
action selection and state-action value evaluation, uses the Q-
network for action selection and the target network for value
evaluation. It was shown in Van Hasselt, Guez, and Silver (2016)
that such a trick leads to much better performance on several
games empirically.

Example 5 (Quantile DQN). The quantile DQN algorithm can
be viewed as a distributional version of DQN with quantile
regression. Instead of directly learning Q°P', the expected return
given the initial state-action pair, it learns quantiles of the return
based on the distributional analogue of Bellman’s optimality
equation (4) and averages the learned quantiles to estimate Q°P".
Please refer to Dabney et al. (2018) for details.

Given the Q-estimator a“), we denote the derived optimal
policy (see Equation (2)) by 70 fort=1,...,L.

4.2.3. Step 3. Estimation of the Density Ratio

The purpose of this step is to learn a density ratio estima-
tor based on each data subset. These estimators are further
employed in the subsequent step to construct the pseudo out-
comes for the optimal contrast function.

We first define the density ratio. For a given policy 7, let
p7 (e, ]a, s) denote the conditional probability density function
of (A4, St) given the initial state-action pair (a, s) assuming that
the decision maker follows 7 at time 1,2,...,t. We define the
y-discounted average visitation density as follows,

ph(eslas) =1 =)D vy 'p] (e, 0]a,5).

t>1
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Let poo (@, ®) denote the density function of the limiting distribu-
tion of the stochastic process {(A;, S¢) }1>0. We define the density
ratio as

py(a,s'la,s)

Poo(d,s)

" (d,5 |a,s) =

for any s, a,s',a’. Such a density ratio plays an important role in
breaking the curse of horizon in off-policy evaluation* (Liu et al.
2018).

In this step, we learn the density ratio o™ based on each
data subset in Zj, for £ = 1,...,IL, where 7 is the initial
optimal policy computed in Step 2. Several methods can be used
here, for example, Liu et al. (2018), Uehara, Huang, and Jiang
(2019), and Kallus and Uehara (2019). In our implementation,
we adopt the proposal in Liu et al. (2018) to construct a mini-

. . 7O ~(¢
max loss function to estimate w™ . We use ") to denote
the corresponding estimator. Additional details are given in
Appendix C, supplementary materials to save space.

4.2.4. Step 4. Construction of Pseudo Outcomes
For¢ =1,...,L, consider a pair of indices (i, t) with i € Z,0 <
t < T. In this step, we focus on constructing a pseudo outcome
Qi for Q°PY(a, S;y) for any a € A, based on the Q- and density
ratio estimators computed in Steps 2 and 3. The corresponding
pseudo outcome for T (a, S; ;) is given by Tjr s = Qita— Qitap-
To motivate our method, notice that by the Bellman equa-
tion,

opt
Q%P (a, Sip) = 1(a Sip) + YE(VT " (Sivr1)|Aie = a,Sig),

it suffices to construct pseudo outcomes for r(a,S;;) and
E{V”OPt(Si,t+1)|Ai,t = a,S;t}. Pseudo outcomes for r(a, Siy)
can be derived based on augmented inverse propensity-score
weighting, as in Section 4.1,

I(Aiy = a)

M= (R —7Y ,Si))s
Pr(Ai,t=a|Si,t){ it — T (a z,t)}

Tita =7(a,Siz) +

where 79 denotes some estimator for the reward function r
computed using the data subset in Zj. As we have commented,
the use of AIPW ensures the unbiasedness of the pseudo out-
come, regardless of whether 7©) is consistent to r or not.

As for E{(v*"(a, SittDIAir = a,Sis}, since Pt is
unknown, we consider approximating it by

=€)
v©(a,8;1) = E(V™ " (Sit+1)ISi0 Aiy = a}, (12)

using the estimated optimal policy 7.

Suppose for now, the Markov transition density function ¢
is known. Then v®(S;;,a) can be estimated using the exist-
ing policy evaluation methods. Here, we consider the doubly
reinforcement learning method proposed by Kallus and Uehara
(2019),

~ 1
/ max Q" (d',s)q(ss 0, S,)ds + —— Siee (13)
s a -

“Notice that our defined density ratio is slightly different from those in the
existing OPE literature in that it involves an initial state-action pair.

where 7;;, is an augmentation term, defined as

1

|I£|T——1 Z a(Z)(Ai/,t’,Sz’/,t’|a,Si,t)

i'eT,

(@t #(t)
(R +y max Q¥ (@, Syp41) — Q¥ (Avyr, Sy}
a

The second term Ryy + y maxy Q04 Sry4+1) — QW
(Ayy,Syy) denotes the Bellman residual constructed based
on the initial Q-estimator. When the initial Q-estimator is
consistent, it follows from the Bellman optimality equation that
the mean of 1;,, is asymptotically zero. The purpose of adding
Nita in (13) is to offer additional protection against potential
model misspecification of the initial Q-estimator. Specifically, it
ensures that (13) is unbiased to v(©)(S;;, @) when either 6(5) or
@Y is consistent (see e.g., Kallus and Uehara 2019). In addition,
when the estimated ratio is consistent, it allows the bias of (13)
to decay to zero at a rate faster than Q. See Theorem 1 for a
formal statement.

However, the pseudo outcome outlined in (13) suffers from
two major limitations. The first one is that the transition
density g is in general unknown in practice. The second one
is that the calculation of 7;¢, requires O(NT) number of flops,
which is computationally intensive to implement on large
datasets.

Let 7© be some estimator for v(® (see Equation (12)) com-
puted using {Oi,t}0§t<Ti,ieI,§- To address the first limitation, we
again use augmented inverse probability weighting and replace
the first term in (13) by

]I(Ai,t =a)
Pr(Ai; = alSiy)
{max Q¥ (a, Sir41) — 9O (4, Sip)}.
a/

Vita = 79 (a, Sit) +

Similar to 7;;,, one can easily verify that Vj;, is unbiased
to v(a, Sit) regardless of whether 9@ is consistent or not. To
address the second limitation, we randomly sample a minibatch
M, from the set {(7,t) @ty # (G,t),i € Z40 <
t' < T} to approximate 1;, by 7; 4, constructed based on the
observations in M only. Specifically, we define %; 4 by

1
[ Ml

Z 5® (Ayy,Syyla,Sit)
@,¥)eMiy;

{Riy +y max Q¥ (@, Sy v 11) — QU (Aiy, Sie)),
a

When | e | denotes the cardinality of a set. When | M| is much
smaller than NT, it largely facilitates the computation.
Combining both parts yields the following,

’;:i,t,a + y’{;i,t,a + )/(1 - V)ilﬁi,t,a
=79(a,8:) + 9 (@, Sip)
I(Aiy = a)

Pr(A;; = alsi,t)

Y ~
79,8 =99, S} + m”/i,m-

{Riy +max Q" (d, Si141)
a

=(0)

Notice that r(a, Siy) + yv®@Si) = Q° (a, Sit) can be
estimated by Q¥ (a,S;;). Putting all the pieces together, we



obtain the following pseudo outcome for ai,m, defined by

~ I(Ai; = a) ~
(£) S: bt R (O S:
Q" (a,Siyp) + Pr(Ay = aISi,t){ ity HLE}XQ (@, Sit+1)
~ % -
—Q A Sin} + ——Tita
1-v)

As we have discussed, the pseudo outcome for the optimal
contrast is obtained by Tir s = Qira — Qitao-

We again make some remarks. First, we employ cross-fitting
to construct Tj;,. That is, Q© and ®® are computed by obser-
vations that are independent of (S;y, A, Rit, Sit+1). This helps
avoid overfitting which can easily result from the estimation of
the Q-function and density ratio. Second, to simplify the pre-
sentation, we assume the propensity score is known. In practice,
it can be estimated from the observed data and our theoretical
results will be the same when the estimated propensity score
satisfies certain rate of convergence.

4.2.5. Supervised Learning

In the final step, we factorize the contrast function 7P by some
models T € 7 and estimate the model parameter by minimizing
the following objective function,

N T-1

T =argmin, Z Z Z (Tita — (@, Si))>

i=1 t=0 aaq

(14)

The corresponding estimated optimal policy is given by I{a =
argmax;7(a*,s)} for any a and s.
To solve (14), it is equivalent to solve

N T-1

argmin, .- Y Y {Tira — 7(a, S0,

i=1 t=0

(15)

for each a # ap. Many methods are available to solve (15),
as it is essentially a nonparametric regression problem. In our
implementation, we set 7, to the class of deep neural networks
(DNNs), so as to capture the complex dependence between
the reward and the state-action pair. The input of the network
is a d-dimensional vector, corresponding to the state (colored
in blue in Figure 1). The hidden units (colored in green) are
grouped in a sequence of L, layers. Each unit in the hidden

Figure 1. lllustration of a two-layer, fully connected DNN. The state is two-
dimensional.
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layer is determined as a nonlinear transformation of a linear
combination of the nodes from the previous layer. We use W,
to denote the total number of parameters. These parameters are
updated by the Adam algorithm (Kingma and Ba 2015).

5. Theoretical Findings

We first summarize our theoretical findings. In Theorem 1,
we provide a finite sample bias analysis of the pseudo out-
come, proving its bias decays at a faster rate than the initial Q-
estimator. In Theorem 2, we show our estimator for the optimal
contrast achieves a faster rate of the convergence than the Q-
estimator. In Theorem 3, we show the resulting optimal policy
achieves a larger value than those computed by Q-learning
type algorithms. Finally, we discuss a potential limitation of the
proposed method. All the error bounds derived in this paper
converge to zero when either N or T diverges to infinity. As
commented in the introduction, this ensure our method is valid
when applied to a wide range of real problems.

5.1. Finite Sample Bias Analysis

In this section, we focus on deriving an error bound on the bias
E(QitalSit) — Q°P'(Sit, a) as a function of the total number of
observations NT. We introduce the following conditions.

(A1) The state space S is compact. There exists some constant
a > 0 such that

AdseS:maxQP(a,s) — Pl s) < e
a

max
a’' e A—arg max,Q°P'(a,s)

= 0(e%), (16)

where A denotes the Lebesgue measure and the big-O term in
(16) is uniform in 0 < & < § for some sufficiently small § > 0.
By convention, maX,/c o —arg max, Q" (a,s) Q°PY(d,s) = —ooif the
set A — arg max,Q°P'(a, s) is empty.

(A2) Q°PY(a, -) is p-smooth and t°P'(a, -) is p*-smooth for some
p* < pandanya.

(A3) There exists some constant 0 < ¢y < 1 such that the
followings hold for any a and ¢, with probability approach-
ing 1,

E(a5)~po0 Q) (@, 5) — QP4(a, )|> = O{(NT) "2/ @+,

—~ =()
E (0,5)poc, (@) ~poc |0 (@5 |a,s) — 0" (@5 |a,5) |
= O{(NT)™}.

(A4) The process {(S;, As, Ry)}i=0 is stationary and exponen-
tially -mixing (see e.g., Bradley 2005, for detailed definitions).

(A5) The probability density function p is uniformly bounded
away from zero.

In (A1), we require the state space to be continuous. When it
is discrete, we can replace the Lebesgue measure with the count-
ing measure. Our theories are equally applicable. we refer to the
quantity max, Q°P'(a, s) —max ¢ A—arg max, Q! (a,s) Q%Y (d/, s) as
the “margin” of the optimal Q-function. It measures the differ-
ence in value between 7°P' and the policy that assigns the best
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suboptimal treatment(s) at the first decision point and follows
7°P! subsequently. Such a margin-type condition is commonly
used to bound the excess misclassification error (Tsybakov 2004;
Audibert and Tsybakov 2007) and the regret of estimated opti-
mal treatment regime (Qian and Murphy 2011; Luedtke and
van der Laan 2016; Shi, Lu, and Song 2020a). Here, we impose

Condition (A1) to bound the difference between Qﬁm (Sit>a)
and Q°PY(S;;, a). This condition is mild. To elaborate, we con-
sider a simple scenario where A = {0,1} and a9 = 0. It follows
that the margin equals |7°P'(1,s)| if 7°P'(1,s) is nonzero and
+oo0 otherwise. (16) is thus equivalent to the following,

MseS:0 < |1, 5)| < &} = O(%) (17)

The above condition can be satisfied in a wide range of settings.
We consider three examples to illustrate.

Example 6. Suppose t°P'(1,s) = 0 for any s. Then (17) is
automatically satisfied. In this example, the two actions have the
same effects. Any policy would achieve the same value.

Example 7. Suppose inf; |t°P'(1,s)| > 0. Then (17) is automati-
cally satisfied for any sufficiently small ¢ > 0. When the optimal
contrast function is continuous, it requires (1, s) to be always
positive or negative as a function of s. As such, the optimal policy
is nondynamic and will assign the same action at each time.

Example 8. Consider the case where the state is one-
dimensional. Suppose

sV if s > 0;
0, otherwise,

%P1, 5) = {

wehave A{s € S: 0 < |[TPY(1,5)| < e} =A{s€S:0 <s <
g%} = . (17) is thus satisfied.

In (A2), we assume the optimal contrast function is strictly
“smoother” than the optimal Q-function. As we have discussed,
this assumption holds under several cases. See Examples 1 and
2 in Section 3.2 for details.

In the first part of (A3), we assume the squared pre-
diction loss of the estimated Q-function achieves a rate
of (NT)~2P/2pP+d)  As we have commented, this condition
automatically holds when deep-Q network is used to fit the
initial Q-estimator. The second part of (A3) is mild as the
constant ¢y could be arbitrarily small. Suppose some parametric
model (e.g., linear) is imposed to learn »©. When the model
is correctly specified, then we have cp = 1. When kernels are
used for function approximation, the rate ¢y can be established
in a similar manner as in Theorem 5.4 of Liao, Qi, and Murphy
(2020).

(A4) requires the S-mixing coeflicients of the process
{(St, A, Ry)}i=0 to decay to zero at an exponential rate. These
coeflicients characterize the temporal dependence of the obser-
vations and are equal to zero when the data are independent.
The smaller the coefficients, the weaker the dependence. When
the propensity score is stationary over time, {(S, As, Re)}i=0
forms a time-homogeneous Markov chain. (A4) is automatically
satisfied when the Markov chain is geometrically ergodic (see
Theorem 3.7 of Bradley 2005). Geometric ergodicity is less
restrictive than those imposed in the existing reinforcement

learning literature that requires observations to be independent
(seee.g., Degris, White, and Sutton 2012) or to follow a uniform-
ergodic Markov chain (see e.g., Zou, Xu, and Liang 2019). We
also remark that the stationarity assumption in (A1) is assumed
only to simplify the technical proof. Our theoretical results are
equally applicable even without this condition (see e.g., the
proof of Lemma 3 of Shi et al. 2020c).

(A5) is very similar to the positivity assumption imposed in
single-stage decision making. These assumptions enable us to
derive the following theorem.

Theorem 1. Assume (A1)-(A5) hold. 6(2)’ ®® and the rewards
are uniformly bounded. Then there exists some constant ¢ >
p/(2p + d) such that for any a € A,

1 ~ _
NT ; E[E(Qit,alSit) — Q%' (Si @)| = O{(NT) ™).

Theorem 1 states that the conditional bias of ai,,,a decays at
a rate of (NT)™¢ on average. In comparison, under (A3), the
squared prediction loss of the initial Q-estimator decays at a
rate of (NT)~2/@P*+4) _Suppose the square bias and variance of
/Q\([) are of the same order. Then we expect E{a(z)(a, Sie)|Sit)
to approach Q°P'(S;;, a) at a rate of (NT)"P/@+d) Gince ¢ >
p/(2p + d), biases of our pseudo outcomes are much smaller
than the initial Q-estimators.

5.2. Efficiency Enhancement

In this section, we establish the convergence rates of the esti-
mated contrast function and the derived optimal policy. With-
out loss of generality, we assume the state space S = [0, 1]%. We
write a, =< b, for two sequences {a,}, and {b,}, if there exists
some universal constant ¢ > 1 such that c"'a, < b, < ca, for
all n.

Theorem 2. Assume the conditions in Theorem 1 hold. Then
there exists DNN class {7;}, with L, =< log(NT) and W, x
(NT)¢ log(NT) for some C > d/(2p + d) and any a # ao such
that with probability approaching 1,

Eop [T(@s) — 7% (a,5)|* = O{(NT) ™},

for some constant 2p/(2p + d) < ¢ < 2p*/(2p* + d), where
the expectation is taken with respect to the stationary state
distribution.

Theorem 2 formally shows that our estimated contrast func-
tion converges at a faster rate than the Q-function computed
by Q-learning type-estimators, leading to the desired efficiency
enhancement property. To illustrate why the estimated con-
trast converges faster, suppose we have access to some unbi-
ased pseudo outcome for t(a, S;;). Then under (A2), the esti-
mated contrast function would converge at a minimax optimal
rate of (NT)P*/@P"+d) which is much faster than that of the
Q-estimator. In practice, we do not have access to unbiased
pseudo outcomes. As such, the rate would depend on the bias of
the pseudo outcome Q;; 4 — Qiyr,q,- Nonetheless, the efficiency
enhancement property holds as long as the bias decays faster
than the convergence rate of the Q-estimator. The latter asser-
tion is confirmed in Theorem 1.



We next show this in turn leads to an improvement in the
value. More specifically, for any policy 7, define the integrated
value function V() = fS V7 (s)vo(s)ds where vy denotes the
density function of Sp. Let 7 denote the derived policies based
on the estimated contrast function 7.

Theorem 3. Assume the conditions in Theorem 1 hold and vy is
uniformly bounded from above. Then

V(@) —EV(@T) = O{(NT)" /),
where g = (2 4+ 2a) /(o + 2) > 1 and « is defined in (A1).

Let a denotes a Q-learning type estimator that satisfies
E(as~px Q@ 5) = Q%(a,9)* = O{(NT) /), (18)

and 72 be the derived policy based on Q. Similar to Theorem 3,
we can show that EV(7Q) converges at a rate of aop/(2p + d).
Based on the fact that ¢; > 2p/(2p + d), it is clear that the
value of our estimated policy converges to the optimal value at
a faster rate than those of policies computed by Q-learning type
algorithms.

The convergence rates in Theorems 2 and 3 relies crucially
on the exponent « in the margin condition (A1) and the conver-
gence rate of the estimated density ratio in (A3), thatis, (NT) ~%.
The following corollary shows that under certain conditions on
« and ¢y, the exponent ¢; in both theorems achieve a maximum
value of 2p*/(2p* + d).

Corollary 1. Suppose the conditions in Theorems 2 and 3 hold.
Suppose ¢y > 2p*/(2p* +d) — 2p/(2p + d) and ¢ > 2[2 —
(p*/@p* + d)}/{p/(2p + d)}17' — 2. Then with proper choice
of the DNN class {7,}4, we have for any a # a¢ that

Eop. [T(@5) — T%(a,5)> = O{(NT) 2"/ +d)y,

with probability approaching 1, and that V(7 °P') — EV(77) =
O{(NT)~0P"/2p"+d)y

Notice that we do not require the optimal policy to be unique
in order to establish the regret bound of the estimated optimal
policy. This is because our proposal is value-based which derives
the optimal policy using the estimated advantage function. The
advantage function is well-defined despite that the optimal pol-
icy might not be unique, and the regret bound decays to zero
as long as the estimated advantage function is consistent. To
elaborate, let us revisit Example 8. By definition, when the
state is nonpositive, both actions are optimal. The uniqueness
assumption is thus violated. Nonetheless, the regret is zero since
choosing either action is optimal.

Finally, we remark that although the proposed contrast func-
tion estimator converges at a faster rate than Q-learning type
estimators, these rates are asymptotic. A potential limitation of
the proposed method is that our estimated contrast function
might have larger variance than Q-learning type estimators
in finite samples, due to the use of importance sampling in
constructing the pseudo outcomes. This reflects a bias-variance
tradeoff. The proposed A-learning method might suffer from a
larger variance whereas Q-learning type methods might suffer
from a larger bias. This observation is consistent with the find-
ings in the literature on learning DTRs (see e.g., Schulte et al.
2014).
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6. Simulations

We evaluate the performance of our method using two syn-
thetic datasets generated by the Open AI Gym environment (see
https://gym.openai.com/) in this section. We consider the fol-
lowing Q-learning type baseline methods: (a) DQN; (b) double
DQN (DDQN); (c) quantile DQN (QR-DQN). See Examples 3-
5 for detailed discussion of these algorithms. As we have com-
mented in Section 4, our policy optimization procedure at Step
2 is generally applicable to any Q-learning type algorithms. To
validate this claim, for each of these Q-learning type methods
in (a)-(c), we couple it with sample splitting to compute the
initial Q-estimator in Step 2 based on each half of the data,
and apply our proposal in Steps 3-5 to learn an optimal policy.
This yields three estimated optimal policies. We denote them
by (d) SEAL-DQN, (e) SEAL-DDQN and (f) SEAL-QR-DQN,
respectively. Then we contrast them with the corresponding Q-
learning type algorithms in (a)-(c) fitted based on the entire
offline data. In addition to these baseline methods, we also
consider three recently developed offline policy optimization
methods in the computer science literature, including (g) batch-
constrained deep Q-learning (BCQ, Fujimoto, Meger, and Pre-
cup 2019), (h) random ensemble mixture (REM, Agarwal, Schu-
urmans, and Norouzi 2020) and (i) bootstrapping error accu-
mulation reduction (BEAR, Kumar et al. 2019). We compare
them with the proposed procedure based on QR-DQN, which
yields the best performance among (d)-(f).

6.1. LunarLander-v2

We conduct experiments in an OpenAl Gym environment,
LunarLander-v2. Detailed description about this environment
can be found at LunarLander-v2. To generate the data, we train
a QR-DQN agent 500K time steps, with learning rate 0.0005.
The estimated policy after 500K time steps is near optimal and
solves the environment (e.g., achieves a score of 200 on average).
The state-of-the-art optimal average reward is over 250°. We
then terminate the training process, store all the generated
trajectories encountered during the online training process and
use them as the offline data. The behavior policy corresponds
to the e-greedy policy used to train the online QR-DQN agent
with € = 0.1. The offline dataset consists of 1089 trajectories.
Each trajectory lasts for 459 time steps on average. The average
immediate reward equals 118.

The training data consist of 200 trajectories randomly sam-
pled out of the 1089 trajectories. For each of the estimated
optimal policy learned based on (a)-(i), we evaluate its value
by computing the mean reward of 100 trajectories generated in
the environment under this policy. We repeat the entire data
generating process, the training and evaluation procedures 10
times with different random seeds. We also vary the number of
training steps for the initial Q-estimator and apply the proposed
method to each of the estimated Q-functions. For fair compar-
ison, we use the same number of training steps (i.e., 20K, 30K,
40K, or 50K) to train the baseline policy.

Shttps://medium.datadriveninvestor.com/training-the-lunar-lander-agent-
with-deep-q-learning-and-its-variants-2f7ba63e822c
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LunarLander-v2
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Figure 2. Synthetic data analysis results for LunarLander-v2. Horizontal axis represents the number of training steps used to train the initial Q-estimator based on half
the data as well as the baseline method based on the entire dataset. Vertical axis represents the average reward of 100 evaluations. The error bar corresponds to the 95%
confidence interval for the value, constructed based on 10 replications. The first three panels compare one baseline Q-learning algorithm (DQN, DDQN, QR-DQN) with our
method that uses such a baseline to compute the initial Q-estimator. The last panel compares our algorithm based on QR-DQN against REM, BCQ, and BEAR.
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Figure 3. Synthetic data analysis results for Qbert-ram-v0. Same legend as Figure 2.

Reported in Figure 2 are the values of the estimated policies
computed by (a)-(i) as well as the associated 95% confidence
intervals, with different number of training steps. We summa-
rize our findings as follows: (i) The proposed procedure achieves
a larger value compared to the baseline methods in most cases;
(ii) Our improvement is significant in many cases, as suggested
by the error bar; (iii) All the methods get improved as the
number of training steps increases.

6.2. Qbert-ram-vo

We next conduct experiments in another environment, Qbert-
ram-v0. The best 100-episode average reward for Qbert-ram-
v0 is 586.00 £ 12.16. We similarly train a Quantile DQN agent
to generate 1373 trajectories. Each trajectory lasts for 364 time
steps on average. The average return per trajectory equals 278.
We similarly compare our procedures (d)-(f) with the baseline
methods (a)-(c) and (g)-(i). Results are depicted in Figure 3.
Opverall, findings are very similar to those in Section 6.1. We
notice that the performances of some deep Q-learning methods
drop when the number of training step increases and can-
not even improve after a few more iterations. We discuss this
in detail in Appendix A.4, supplementary materials to save
space.

Finally, it can very computationally expensive to implement
deep RL algorithms in LunarLander-v2 and Qbert-ram-v0. For
instance, in our implementation, it took a few hours to run one
simulation. As such, our simulation results are aggregated over
10 runs only. We also remark that beginning with DQN, 5 or less
runs are common in the existing RL literature, as it is often com-
putationally prohibitive to evaluate more runs (Agarwal et al.
2021); see also the numerical studies in Mnih et al. (2015), Silver
etal. (2016), Kumar et al. (2019), and Agarwal, Schuurmans, and
Norouzi (2020).
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7. The OhioT1DM Dataset

In this section, we use the OhioT1DM Dataset (Marling and
Bunescu 2018) to illustrate the usefulness of our new method
in mobile health applications. The data contains continuous
measurements for six patients with type 1 diabetes over eight
weeks. The objective is to learn an optimal policy that maps
patients’ time-varying covariates into the amount of insulin
injected at each time to maximize patients’ health status.

In our experiment, we divide each day of follow-up into 1 hr
intervals and a treatment decision is made every hour. We con-
sider three important time-varying state variables, including the
average blood glucose level G; during the 1 hr interval (¢t — 1, t],
the carbohydrate estimate for the meal C; during (¢ — 1, ¢] and
Ex; which measures exercise intensity during (¢t — 1, ¢t]. At time
t, we define the action A; by discretizing the amount of insulin
In; injected. The reward R; is chosen according to the Index
of Glycemic Control (Rodbard 2009) that is a deterministic
function Gy41. Detailed definitions of A; and R; are given in
Appendix C, supplementary materials. We will receive a low
reward if the patient’s average blood glucoses level is outside the
range [80, 140]. Let X; = (G, Cy, Ex;). We define the state S; by
concatenating measurements over the last four decision points,
that is, S§; = (XtT_3,At_3, ..., Xy T. This ensures the Markov
assumption is satisfied (Shi et al. 2020b). The number of decision
points for each patient in the OhioT1DM dataset ranges from
1119 to 1288. Transitions across different days are treated as
independent trajectories. This yields 279 trajectories in total.

We use cross-validation to evaluate the performance of dif-
ferent algorithms. Specifically, we apply each of the method in
(a)-(i) to the training dataset to learn an optimal policy. Then
we apply the fitted Q-evaluation (FQE, Le, Voloshin, and Yue
2019) algorithm to the testing dataset to evaluate the values of
these policies. FQE is very similar to FQI. It iteratively update
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Figure 4. Real data analysis results. Same legend as Figure 2.

the state-action value using supervised learning algorithms. See
Algorithm 1 in Appendix C, supplementary materials for details.
In our implementation, we set the function approximator F to
a class of DNN and apply deep learning to update the value.
These estimated values are further aggregated over different
training/testing combinations. Finally, we repeat this procedure
10 times with different random seeds to further aggregated the
values. Results are reported in Figure 4. Our method performs
significantly better than other baseline methods in most cases.

Supplementary Materials

The supplementary materials contain discussions of the p-smoothness
assumption and the pessimistic principle, extensions of our proposal to the
continuous action space, technical proofs and some additional implemen-
tation details.
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