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On the Well-Posedness and Stability of
Cubic and Quintic Nonlinear Schrodinger
Systems on T3

Thomas Chen® and Amie Bowles Urban

Abstract. In this paper, we study cubic and quintic nonlinear Schrodinger
systems on three-dimensional tori, with initial data in an adapted Hilbert
space H3, and all of our results hold on rational and irrational rectangular,
flat tori. In the cubic and quintic case, we prove local well-posedness for
both focusing and defocusing systems. We show that local solutions of
the defocusing cubic system with initial data in H i can be extended for
all time. Additionally, we prove that global well-posedness holds in the
quintic system, focusing or defocusing, for initial data with sufficiently
small H i norm. Finally, we use the energy-Casimir method to prove the
existence and uniqueness, and nonlinear stability of a class of stationary
states of the defocusing cubic and quintic nonlinear Schrédinger systems.

1. Introduction

In this work, we study properties of nonlinear Schrodinger systems on flat
three-dimensional tori. Our results build on several lines of existing research:
The study of nonlinear Schrédinger systems (NLSS) on R?, the study of non-
linear Schrodinger equations (NLS) on flat tori [3,5,8,21], and the use of the
energy-Casimir method to investigate certain stationary states of interacting
quantum systems.

The systems we consider may be used to model the dynamics of a system
of fermions confined to a box with periodic boundary conditions. In particular,
if we consider a dilute gas of fermions subject only to the pairwise interaction
potential w, the one particle density operator of the system, -y, solves the
Landau-von Neumann equation with Hartree-type interaction:

0y = [-A+wx*p,7]
¥t =0)="0
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where p is the total particle density given by p(¢,x) = (¢, z, x). This equation
for v can be derived from the Schrédinger evolution equation for the wavefunc-
tion of the fermionic system through a combined mean-field and semiclassical
limit, in which the expected particle number, Tr v, remains finite. See [11] and
[12] for details.

If we take w to be a positive or negative delta function in the Hartree
system above and allow either two-particle or three-particle interactions, we
obtain the system

(1.1)
Y(t=0)=
The exponent « € {1, 2} indicates («+ 1)-body interactions, and the choice of
sign on p® determines if the system is defocusing (+) or focusing (—).

The one particle density operator  for a system of fermions is a positive,
trace-class, self-adjoint operator on L?(T?3). Therefore, for each t, its integral
kernel (¢, z,y) has a spectral decomposition over L?(T3). In particular, the
initial data yo(x,y) may be expressed as:

~¥(0,z,y) = Z)\ uj0(x);0(y) (1.2)

jEN

{ iy = [~A £ p, 1]

where {u;jo}jen is an orthonormal basis of L?(T?), and A\ := {\,;}jen € ¢
with 0 < A; <1forall j €N

Due to the commutator structure of (1.1), v and ¢A F iop® form a Lax
pair; hence, the flow of v is isospectral, and {\;},en is constant in time. The
evolution of +y is therefore given by the evolution of the functions u := {u;};en,
and we may write

o0
vtz y) = Z)‘juj(ux)uij(t’y)? (1.3)

j=1
where the set {u;};en remains orthonormal as long as the solution 7 exists.
The particle density is given by p(t,2) = pyu),» = ¥(t,z,x) so that in terms

of the basis {u;};en,
2) = Ajluy(t, )
Jj=1

The Landau—von Neumann equations for v(¢) in equation (1.1) then have the
form

i0y(t,m,y) = Z/\g (i0ru;) (t, @) (8, y) — u; (8, 2) (1)) (t, y))

1

<.
Il

p”18

Aj [((*A + 0p™)uy) (2w (t,y) — u; (b, 2) (A + op*)u;)(E,y)

<.
Il
—
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in the spectral decomposition (1.3). This is equivalent to the infinite nonlinear
Schrodinger system (NLSS) for u(t) = {u;(t)}jen,
i0ru; = —Auj + op®uy, jeN (1.4)
’U,j(O,SC) = Ujvo(fli), xr € TS, '
with a € {1,2} and o € {—1,1}. The initial data {u;o} for the NLSS and the
sequence {)\;} are determined by the initial data v(0) in the Cauchy problem
(1.2).

In this paper, we extend previous results of Markowich, Rein, and Wolan-
ski, [20], and of Abou Salem, Chen, and Vougalter, [1], proving the existence
and nonlinear stability of a class of stationary states of Schrodinger—Poisson
systems via the energy-Casimir method. This approach is based on the fact
that the sequence A = {\;} is conserved under the NLSS flow and uses it to
construct an energy-Casimir functional H, labeled by a Casimir class function
f, see Definition 11.1. H¢ then is a conserved quantity of the NLSS flow for
any such f. The stability of stationary solutions of the NLSS is proven by use
of Hy in a similar way as Lyapunov functions are used for the corresponding
problem in classical Hamiltonian dynamics. In particular, the stationary states
arise as minimizers of energy-Casimir functionals, which are conserved quanti-
ties of the system. To be more precise, let (ug, Ay, po) label a stationary state
of the defocusing NLSS with 0 = 1 and « € {1,2}, and let (u(t), ) account
for another solution on the time interval [0,7") with T < oo, and initial datum
(u(0),A) (see Theorem 12.3 for the precise formulation), then

1
T—HH@(”’A - pOH(zi_-ll—l('H‘IS) < \Hf(g(O),A) - Hf(@07io)|7

for all t € [0, 7).

In both [1] and [20], classical solutions to the system were considered;
hence, higher regularity was required than that controlled by the conserved
energy. The nonlinear stability is obtained from a uniform in time upper bound
on the squared distance (measured in some Sobolev norm) between py and p,
where pg is the particle density for a stationary state, and p is the particle
density of another solution of the system.

The energy-Casimir method employed in [1] and [20] requires that the
system is posed on a bounded spatial domain, that the flow of the system
is isospectral, and that the potential function of the Hamiltonian is related
to the probability density function. As the last two properties hold for the
NLSS, it is natural to consider whether the NLSS possesses such stationary
states. For this purpose, we pose the system on a bounded spatial domain, or
more specifically, on T3. In particular, we relax the criteria on the regularity
of stationary states, using only mild solutions in the energy space, for which
we establish well-posedness.

Systems similar to (1.1) have been previously studied on R?, and well-
posedness results have been obtained under various assumptions on vg. In par-
ticular, Hong, Kwon, and Yoon [16] established the well-posedness theory and
blow-up criteria for (1.1) with o = 1 on R3 for q satisfying Tr|v/—Avyov/—A| <
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oo. In [9], Chen, Hong, and Pavlovié¢ proved the global well-posedness of the
defocusing system with a@ = 1 on R? and R3? in the case v, is not trace class,
provided it has finite operator norm and is a suitable perturbation of a refer-
ence state.

In the present work, we will employ methods and results from the study
of well-posedness for NLS on T?. Following a series of fundamental works by
Bourgain starting in 1993, [2], this topic has attracted extensive research ac-
tivity. Crucial advances include the development of Strichartz estimates on the
torus and their extensions to irrational square tori, due to works by Bourgain
[4], Bourgain and Demeter [6], and Guo, Oh, and Wang [14], among many oth-
ers; Killip and Vigan proved the full range of Strichartz estimates on rational
and irrational rectangular tori in [18]. We refer to those works for references.

Our analysis of the quintic NLSS is closely related to that of the H'-
critical quintic NLS on T3. Of specific importance for our work is the approach
developed by Herr, Tataru, and Tzvetkov via X* and Y* function spaces,
used in [15] to prove local and global well-posedness for the quintic NLS with
small initial data in H'(T?). Killip and Vigan extended these results in [18],
proving local well-posedness of the H'-critical NLS on rational and irrational
rectangular tori in 3 and 4 dimensions for arbitrary initial data in H*. In [17],
Tonescu and Pausader obtained global well-posedness of the defocusing quintic
NLS on the square torus for arbitrary initial data in H!(T?3). We show local
well-posedness on T? for the cubic NLSS with initial data in Hy with s > %
and for the quintic NLSS with initial data in H}. Furthermore, we prove that
solutions to the defocusing cubic NLSS can be extended globally in time, as
can solutions to the quintic NLSS with sufficiently small initial data.

We now outline our results and the organization of this paper. In Sects. 3
to 5, we prove local well-posedness of the cubic NLSS, (1.1) with « = 1, on a
flat rational or irrational 3-torus for initial data in HY, for s > % In Sects. 6
to 9, we prove the local well-posedness in H} for the quintic NLSS, (1.1) with
o = 2, using the X® and Y'® spaces as in [15] and [18]. In Sects. 10 to 14, we de-
fine a class of stationary states for the NLSS on T? corresponding to a Casimir
function f, treating both the cubic and quintic systems. Assuming their ex-
istence, we first prove the nonlinear stability of these stationary states using
an energy-Casimir functional. We then use a dual formulation and tools from
convex analysis to prove the existence and uniqueness of the stationary states
and show that they are indeed minimizers of the energy-Casimir functional
determined by f.

2. Preliminaries

The rectangular, flat 3-torus can be realized as R3/(L1Z x LoZ x L3Z) with

Ly,Ly, L3 € (0,00). The torus is irrational if at least one of the ratios f is
J

irrational, otherwise we say it is rational.
For notational convenience, we use the coordinates for the standard torus
T3 := R3/Z3 and incorporate the geometry of the torus into the Riemannian
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metric, using the corresponding Laplace—Beltrami operator
0? 0? 0?

A=0—+0-— +05—

' 02 * ? 02 * S 0a2’

We then define the Schrédinger propagator e* by

where 0; = Lj_2.

et f(§) = exp (—2mitQ(&)) £(€)
for & = (&1,&2,&3) € Z3, where Q(€) = 0,62 4+ 0262 40362, By making a change
of variables in time, we may assume 6; € (0, 1], for each j € {1, 2, 3}.
Next, we define the Littlewood—Paley frequency projections used in Chap-
ters 2 and 3. Let ¢ be smooth, radial, cutoff on R with supp(¢) C (—2,2) such
that ¢(z) =1 for x € [—1,1]. For a dyadic integer N, define the projections

For Cy C R3 an arbitrary cube of side length N, the sharp Fourier projection
onto Cy is given by:
Pey f(§) = 1ey (§) f(E)-

We close this chapter with the following overview of the notational con-
ventions we use in this work.

e We write X <Y to represent X < CY where C' is some constant that is
permitted to depend only on the spatial dimension d.

e Unless otherwise indicated, the domain of a spatial integral is understood
to be T3, i.e.,

/f(w)dx = [ f(z)dz
T3

e An underlined variable denotes a sequence in the corresponding variable,

e.g., v:={v;}jen.
e For any set X, with elements that are real-valued, X’y denotes the subset

o We adopt the following condensed notation for frequency projections:
fN = PNf and fCN = PCNf

e We use the mixed space-time norms defined by

T % P
£t )l e Lao,r)xT3) = (/0 < - |f(t, )| dx) dt)
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e Given a Banach space X’ and a real-valued sequence A\ € K}H let X denote
the space of sequences u = {u; }3)0:1 C X equipped with the norm

1

2

o0
lallaes := | D Aillw 1%
j=1

3. Well-Posedness of the Cubic NLS on T3

The cubic nonlinear Schrodinger system is given by:

10iu; = —Au; + opuy, jeN
5 (3.1)
u;(0,2) = ujo(x), x e T°,

where 0 € {—1,1}, A € £}, and p(t,z) = > \j|u;(¢,z)|%. The mass and energy,

My(u) =Y Aullukl| ey = lulls (3-2)
- 3

1 1
BAW = 5 Y MV uslacon + 07 [ o (33)
k

are conserved quantities along solutions of the system. This chapter is dedi-
cated to the proof of the following theorem:

Theorem 3.1 (Local and global well-posedness of the cubic NLSS). Let A €
K}H and suppose u, € H;(T3) for s > % There exists a time T depending
on |lug|| g (r3) such that the system (5.1) is locally well-posed for t € [0,T).
Moreoverrif Uy € H}\(']I‘:S), the solution to the defocusing system is global in

time.

Our goal is to use the contraction mapping principle to show that the
Duhamel formula corresponding to (3.1) has a fixed point. In order to bound
the terms of the Duhamel formula in the desired function space, we will de-
compose factors of the nonlinear function |uy|*u; frequency cubes, apply the
appropriate Strichartz estimates on each frequency cube, and find an upper
bound for the sum over all such decompositions. Thus, the primary tools we
use are the following Strichartz estimates on T?, due to Killip and Visan:

Theorem 3.2 [18]. For d > 1, 0y,...04 € (0,1], 1 < N € 2%, and p > @.
Then,
i d_d+2
le**Pen flize oyxrey S N277% || fllz2ea) (3.4)
where A 1= 91531 4+ edagd
As we only consider problems posed on T2, we note that the above in-
equality with d = 3 reads

7 3_5
le tAPSNfHLf)m([O,l]X’JI“) SN2 || fllze (e

10
for p > 3.



Vol. 25 (2024) On the Well-Posedness and Stability of Cubic 1663

Remark 3.1. Due to the invariance of €2 f(x) under Galilean transformations,
if Cy is a cube of side length N in R? and p > %, we have

. 3_5
||6”APcNf||L§1,([o,1]x1r3) S N277 | fllL2 sy

The Bourgain space X®’ := X%’(R x T3) is the completion of
C> (R; H*® (T3)) under the norm
—itA

Jul|xs0 ==l U(ta$>||Hf(R;Hg(T3))

2

3 / dr(r + Q) () [a(r. &) dr |

£ez3

where Q(&) := 01£3 + 02£2 + 05£2. For 0 < T < 1, define the restriction space
X5 = X*([0,T] x T3) with the norm

lullze = inf {Jlwl|xe, with w|jo 7 =u}

Remark 3.2. We will make use of the following embedding properties of the
Xsb spaces:

(1) For s; < s9 and by < by, X52:b2 < X51:01,
(2) Forb> 3, X0V — C,L2.
(3) X03 — LAL2.

Property (1) is a direct consequence of the definition of the X*® norm and
monotonicity. Property (2) follows from the observation that (7 + Q(£))~° €
LZ(R) for b > L. Property (3) can be shown by the Sobolev embedding
Hi(R) — L*(R) applied to the L{L2 norm of e®U(t,z) for U(t,z) =
e~ Az, t).

4. Nonlinear Estimates for the Cubic NLSS

The following proposition, due to Ginibre, gives an upper bound for X}’b
norm of the nonlinear term of the Duhamel formula; thus, it motivates the
development of the nonlinear estimates in this section. We refer the interested
reader to [7] and [13] for the proof of the proposition.

Proposition 4.1. Suppose 0 < T < 1. For (b,V') € R? satisfying 0 <b' < 3 <b
and b+ b <1,

—h_Hn
STV F oy

t
/ eiA(tft')F(t/) dt

0 Hx;”

The next lemma is the crucial nonlinear estimate for local well-posedness
of the cubic NLSS in H*(T?) for s > %, which we will prove in this section.
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Lemma 4.2. Let s > %. There exists C > 0 and (b,b') € R?* with + < b <
1 < b satisfying b+ b < 1, such that for every triple (™, u® u®)Y with
ul?) € X5 (R x T3) for j =1,2,3,

3
Hu(l)u(mu(g)||X8v*b'(]R><']l‘3) <C H w9 e @) (4.1)
j=1

We begin by establishing bilinear Strichartz estimates for frequency-
localized functions on T?, then derive bilinear estimates in the X *-spaces. We
follow arguments similar to [7] with some improvements due to the Strichartz
estimates stated in Theorem 3.4.

Proposition 4.3 (Bilinear Strichartz Estimates). Suppose u; and ug € L?(T?),
have spectra in [—Ny, N1]® and [—No, No]3, respectively. Then,

. . . 1
||€”AU1€“AU2||L§Lg([o,1]x1r3) < min(Ny, No)2 HU1HL2(1I3)||U2||L2(T3)

Proof. As the time domain ¢t € [0,1] and spatial domain x € T? are fixed,
we suppress the domain of the L¥ and L2 norms throughout the proof. By
symmetry, suppose N1 < Ny. Decompose R? into a disjoint collection of cubes
{C;}, each of side length Ny, and observe that u; (Pe,u2) has spectrum localized
in a fixed dilate of C;. Thus, we may use almost orthogonality to conclude

1

2

e Sune sl < | 3 lle™ S ure™ (Peyua)iz
i

By Holder’s inequality, the right-hand side is bounded above by

2

e ullpera [ D N6 (Peyua)Fspa

J
Applying Strichartz estimates to the above upper bound, we conclude
%
) , 1 1
le* A ure™ us| pare S Nyt uallez | D NP [|1Pe;uall7
J

1
S NElual[rz fluz| e

The next proposition allows us to move between the previous bilinear
Strichartz estimates and bilinear estimates in Bourgain X ** spaces. The result
is contained in [7], but the proof is included here for completeness.

Proposition 4.4. The following two statements are equivalent:

(1) For uy and uy € L*(T?), with spectra in [—Ny, N1]* and [—Na, NoJ?,
respectively,

e ure™ us| L2 p2 (0,1)xre) S min(N1, Na)* [Jun || 2 (v luz | 2 (re)



Vol. 25 (2024) On the Well-Posedness and Stability of Cubic 1665
(2) For any b> % and any vi,vs € XP(R x T3) with spectra in [—Ny, N]3
and [—Na, No|3, respectively,
||U1U2||L2L2(Rx1r3) < min(Ny, Na)* HU1||XUvb(]R><’J1‘3)||U2||X0»5(R><’J1‘3)

Proof. We show statement (1) implies statement (2) under the assumption
that both v; and ve are supported on the time interval (0,1). The general
case easily follows using a partition of unity argument. By symmetry, suppose
N; < Ns. For k € {1,2}, define V}, := e~ "y, so that we may write

VE = 6itAVk.
Use F; to denote the Fourier transform in the time variable and observe

(v1v2)(t) = (2m) 72 / / eTTOMA F Vi (1) A FiVa (o) drdo.

Let us simplify the notation, and write L7L2 := LZL2([0, 1]xT?). By statement
(1) of the proposition, we have the estimate

lv1val|p2re < (27)° / / A F Vi (7)e A FyVa(0)| 12 2 drdo

SN[ [ IARO e Vo) iz drdo. (42

Motivated by the observation that for b > %, (7)~% € L2(R), we use Holder’s
inequality and proceed as follows:

Nl

[ 1 e i< ([~ oIRGB ar )

= ColVi(®)ll mp L2 (19
= Cyllvrllxor @xre)- (4.3)

Together, (4.2) and (4.3) imply statement (2) when vy (t), v2(t) are supported
on the time interval (0,1). The general case follows from a standard partition
of unity argument.

To see the reverse implication, suppose uy € L?(T?) has spectral support
[~ Nk, Ni])? for k = 1,2, and define U (t) := e*®uy. Let () € C°(R) be
supported in the interval (0,1), so that vx(t) := ¥(t)U(t) € X*(R). The
equivalences

o102l 222 mxrsy = NULU2l L2 12 (0,1 x2) = [l€™ A ure™™ ual| 1212 ((0.1)x2)
and

itA

okl xo@xrsy = e 2 (#)e Skl o 12 ey = Copllurll 2 (1)

are all that is needed to see that statement (2) implies statement (1).

In the next proposition, we establish a range of bilinear estimates using
the Bourgain spaces.
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Proposition 4.5. For any s > %, there is some i <l < % such that for any
v1,v2 € XOP(R x T3), with spectral support on [—Nyi, N1]> and [—Na, NoJ?,
respectively, the following estimate holds:

||U1”2||L$L3(Rx1r3) S min(Ny, No)*[Jvr || xou [[v1 ]| xor

Proof. Let vy and vy have the required spectral support, and suppose N1 < No.
From the previous lemma and the bilinear Strichartz estimate, for any ¢y > 0,
if v1,v9 € X®2F<0 then

. 1
||U1W2||L$L3(Rx1r3) < min(Ny, No)2 ||’U1||XO,%+50 |U2HX0,%+50~ (4.4)

Using Holder’s inequality, Bernstein’s inequality, and the inclusion X 0.3
L}L2, we derive a second estimate as follows:

lvivellL2 2 ®xrs) < lv1llLarse @xrs) V2]l Lar2 mxs)
S Nillvillperz wxrsy lv2ll Lo p2 mxs)

S Nillvall o.g llozl (4.5)

1
XO‘Z7

for any s > %
Interpolating the bounds (4.4) and (4.5) gives the desired result.

We may now prove Lemma 4.2, our key multilinear estimate, using a du-
ality argument combined with a frequency decomposition of the () functions.

Proof of Lemma 4.2. Let (b,b') satisfy the hypotheses, with values to be de-
termined later. By duality, we prove the equivalent estimate:
for any u(® € XY (R x T3),

3
[ i dadt | < O e T Oy (40
T3 s

By density, we may assume u)) € C§°(R x T3) for j = 0,1,2,3, and we will
decompose each of these functions into dyadic cubes in Fourier space.

To this end, we adopt the notation N; to mean the family of dyadic
numbers {2}, cn, and the summation ZNJ f(N;) indicates to sum over
all possible values of N;. Summing over the collection N of all such dyadic
decompositions,

N = {(No,N1,Na,N3) | N; € 2" for j =0,1,2,3},

we observe

‘ //ﬂ‘3 (04,0, (2)4,3) dxdt’ Z ‘ / /JrS O)ug\} U, uN) dzdt (4.7)

The integral on the right-hand side is zero unless the two highest frequencies
are comparable. Using symmetry, we reduce the sum to two cases.

Case 1: Define N7 := {Ng ~ N7 > N5 > N3} NN, and suppose s’ sat-
isfies % < s’ < 5. We use Holder’s inequality, Proposition 4.5, and Bernstein’s
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inequality to show that for some - < b < 5

//T uQuDuPu? dadt

0 2 1 3
< Nl e 2 Il w2 2

3
< STNS N [T 1o
N1 j7=0

N1

NS s'—sars’'—s 0
5; NN NG ol =0 Hllu”?nxs‘b/ (4.8)
1

Noting that s’ — s < 0, and summing over N3 < Ny using Cauchy—Schwarz,
we bound the expression (4.8) above by

Ol | o 16 o > Nl o 1§ o (4.9)
No~N,

We use Cauchy—Schwarz again to sum on Ny ~ Nj in (4.9), concluding
Z ‘ / / U O)ug\})uﬁ ug\,) dxdt
T3

3
i G [P ) G2 (4.10)

Case 2: Define Ny := {Ng < Ny ~ Ny > N3} NN As in the previous
case, for s satisfying é < s’ < s, Proposition 4.5 guarantees the existence of
b with ¥ < ¥ < 3 such that

0) (1) 3
Z ’ //’]1‘3 ugvgugvluNzusvz dxdt

0 1 2
<3 Qa2 Il w2 2

3
< ZN@ N3 H ) 0.

< Z Nst 6 _6” ”X s,b/ H ||’LL HXs,b’7 (411)

where we have used Holder’s inequality for the first line and Bernstein’s in-
equality for the last. We find upper bounds for the last expression above by
first summing on Ny and N3, then on N; ~ Ns, using Cauchy—Schwarz each
time:
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N a 2
Ol e 0 e 37 e i e e e
Ni~Ny = 2
1 2
SO Ny e D ) e Tufl e
Ni~Ns
3 .
) A R | N PO (4.12)
j=1

Together, (4.10) and (4.12) conclude the proof of our lemma. O

5. Well-Posedness of the Cubic NLSS

We now use a contraction argument on the Duhamel formula for the cubic
NLSS to show local well-posedness for initial data in H5(T?) for s > 1. In the
defocusing cubic NLSS with initial data in Hj(T?), the local well-posedness
combines with the conservation laws to extend the solution for all time.

Proof of Theorem 3.1. We begin with the Duhamel formula for the j-th equa-
tion of the cubic NLSS

t
B w)(t) = “Suny —i [ B0 pu(¢)ar
0

where ug; = u;(t = 0,2), u = {u;}52, and p = >,y Ar|ug|?. Define the
map ®(u) = {®;(u)}32;. Fix s so that s > 1. and let ' = V/(s) be the

value guaranteed by Proposition 4.5. Choose b = b(s) > % so that b’ +b < 1.

Suppose [[ug || 5 (r3) < 7 for some 7 to be chosen later. We will show that ® is
a contraction on the ball

Bi={ue X4 nCH3(0,T) % T | lull s <20}

for some T < 1.
By Proposition 4.1 and Lemma 4.2, we have

t
1950 < leSunl o + [ [ 2puse)ar

s,b
X7

< Mol e sy + OT 70D " Nellfun g | o
k

/
< Jluo il oy + CT =0 Aellukl o sl e
k

_h_h
< ol (o) + T e il

From the last inequality above, we square both sides, multiply by A;, sum on
j, then take the square root to find

2@z, < V2luollargcrsy + CT 7 ull}

s,b -
XT'A
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For u € B
”(I)(@) Hx;bA < \/577 + CTl—b—b 173

and the right side is bounded above by 27 for T small enough depending on
C and 7.
For the contraction argument on B, we first observe that

R | (A R A e
k
2
< ijAknuan;,bnuj — 5z

+ D Akllu = vl o (||Uk||X;vb + Hvkllxgb> 10511 200
k
< Nulliss llug = o5l gz

= ol (lll g + el Yoslge— G1)

where we have used Cauchy—Schwarz twice. We combine the above argument
with Ginibre’s estimate, then square, multiply by A;, sum on j, then take the
square root to find

’ 2
@) — @)z, ST = vl (lullz + lolxz0 )
For small enough 7' depending on s, |[ugl|r(rs), and the implicit constant,

. . . b . . .
® is a contraction on B in the X} norm, and we obtain a unique solution

to the Cauchy problem on [0,7). Continuous dependence on initial data is
obtained using a similar argument, and we conclude the cubic NLSS is locally
well-posed in H3(T?) for s > 3.

Now consider the defocusing cubic NLSS with initial data u, € H; (T?).
Recall, the conserved energy is B

1 1
Br=5 30 [ [Vl dr ot gl
By Holder’s inequality and Sobolev embedding, we have
[pllL2(rsy < Z)\k||uk||2L4(1r3) S ZAkHUkH%G(TS) S ||@H?1i(1r3)v
k k

so that
()77 sy < M ((t)) + 2B (u(t)) = M (uo) + 2E(u)

< Oz rs) + Clltolly -

1
Q(O)“%Ii('ﬂ*) + EHP(O)Hig(Tf‘)

Thus, for some T < T, depending on the constant in the above upper bound,
we may repeat the local well-posedness argument on intervals of length 7"
indefinitely. O
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6. Well-Posedness of the Quintic NLSS on T3

The quintic nonlinear Schrédinger system is given by

{ i0pu; = —Au; + op?u;, J€EeN

6.1
u;i(0,2) = ujo(x), x €T3, (6.1)

where 0 € {—1,1}, A € ¢4, and p(t,z) = > Aj|u;(t, z)|?. The system has the
conserved quantities of mass and energy, given by

M) = 3 AluelBages) = luly (6.2)
k
Fa(w) = & S Ml Vil Zar) + o= [ pPd (6.3)
a2u) ‘= B - k (93 L2(T3) 0'6 TBP Z. .

In this chapter, we prove the following theorem:

Theorem 6.1 (Local and global well-posedness of the quintic NLSS). Let A €
é},_, and suppose ug € H}\(’]I‘d) There exists a time T depending on u, such
that the system (6.1) is locally well-posed for t € [0,T). Moreover, there exists
n >0 such that if || ug|| g1 (ray < 1, then the solution is global in time.

As in the case of the quintic NLS equation, the time of existence depends
on the function itself, and global well-posedness holds for initial data with
sufficiently small H} norm.

We will use some of the same tools as were used in the cubic case,
namely establishing multilinear estimates using frequency decompositions and
the Strichartz estimate (3.2). However, following [15] and [18], we will use the
function spaces X* and Y* in our analysis, similar to the X*? spaces, as they
are well-suited the study of the energy-critical system.

7. Relevant Function Spaces and Their Properties

The definitions of the X* and Y*® spaces are based on underlying UP and
VP spaces. We present an overview of this construction and state some of
the properties of these function spaces that we require for our analysis. For a
thorough treatment of these spaces, we refer the interested reader to [15].

We construct the X® and Y* on finite time intervals, and as in the pre-
vious chapter, our norms will be restriction norms on the given time interval.
Let H be a separable Hilbert space over C, and [0, 7] a finite time interval. Let
7 be the set of partitions of the interval [0, 7], that is, {t;}}, € 7 whenever
0=ty <ty <..<ty <T for some finite M. For functions u : [0,T) — H,
we define u(T') := 0 at the endpoint of the interval.

Definition 7.1. A UP-atom, 1 < p < oo is a function a : [0,T) — H of the form

M
a = Z X[tj_l,t]‘)(bjfl
j=1
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where M < oo, {tj}j]\io € J and the sequence {¢;} C H satisfies

ZjM:O l¢;|I5 = 1. Define UP([0,T); H) to be the space of all functions that
may be represented in the form

oo
w= pray
k=1

where {u;} € £1(C) and {ay} are UP-atoms. UP is a Banach space with the
norm

Hu||Up([0,T);H) ;= inf {Z |/Lk| ’u = Zpkak with {/Lk} € Zl((C) and UP-atoms ak}

Definition 7.2. The space VP([0,T); H), 1 < p < oo, is the space of all func-
tions v : [0,7) — H such that

1/p
[vllve(o,r)my == sup (j{:lth —v(tk- 1ﬂbq> < 0.

{tv}€T

Define V2. to be the closed subspace of V? consisting of right-continuous func-
tions v(t) such that v(0) = 0. V2 is a Banach space under the above norm.

Definition 7.3. For s € R, we define the spaces X*([0,7)) and Y*([0,T))
as the spaces of all functions u : [0,7) — H*(T%) such that for every & €
74, eME y(8)(€) is in U%([0,T);C) and V,2(]0,T); C), respectively, with finite
norms

1/2

lullxsory == | D €)* e u(t)(©)]7-
¢ezd
1/2

> (&) e B ut) ()]s

ez

||U||Ys([o,T)) :

Remark 7.1. We record the following properties of X® and Y*:

(1) We have the continuous embeddings X* — Y* and X* — C,H?

(2) The X*® and Y® spaces scale like L{° H? and have the same Fourier-based
properties, including Bernstein inequalities and square summability.

(3) Proposition 2.11 in [15] gives

t
’/ ei(t—t’)AF(t/)dt/

0
(4) For p > 19 the Strichartz estimate 3.2 gives

S IFN L as o,y (19))
X=([0,1))

HPkNUHU’[OprG)<JV2 7[le ™A Penulluno,rysce (o)

< NT;HPSNUHYO([O,T» (7.1)
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8. Nonlinear Estimates

We begin this section by stating the following proposition from [15], which
allows us to estimate the nonlinear term of the Duhamel formula using a dual
formulation.

Proposition 8.1. Let s > 0 and T > 0. If F(t,x) € LIH:([0,T) x T?), then
Jy AR dt' € X5([0,T)), and

t ’
/ ez(t—t )AF(t/) dt/
0

We will use this dual formulation, combined with a frequency decompo-
sition argument similar to the argument in Chapter 2 to prove the following
lemma:

/T Pt 2)o(t,7) ded| .

IN

sup
xs([0,7))  veY5([0,T)),[[v]ly —s =1

Lemma 8.2. For )\ € E}F and a fized value of T satisfying 0 < T < 1, there is
a constant C' > 0 (which does not depend on T') such that for any quintuple
u(J) E Xl([o’ T))7 .j = 17 et 57

t 5 >
/ =08 [ TTu(s) | ds < CIT I x o.y)- (8.1)
0 j=1 X1([0,T]) =t
In particular,
t
/ =92 p2(5)ds < CHﬁHﬁ(i([O,T])HujHXl([O,T])' (8:2)
0 X1([o,17) B

Proof. Fix N > 1, and note P<y/[p?u;] € L*([0,7]; H'(T?)). By duality, we
have from [15]

t
| [ o2 pentztustoa
0

X1([0,77)

/ /Tg, Pen[pPuy(t, )]0 (t, x)dadt| .

T
< Zx\k)\l / /3 |uk|2|ul|2ujv dadt
o o Jr

Observe that our problem reduces to finding an upper bound for the double in-
tegral on the right-hand side for fixed k and I. To that end, for i € {1,2,3,4,5},
let () be one of the collection {uy, g, u, U, u;} so that the list is exhausted
as ¢ varies from 1 to 5. We write each factor as a sum of dyadic frequency
projections, that is,

/ / g ) Jug |Pujo dedt

<

H Hy 1([o, T)*l

Letting v := P<y9,

p*ujv dzdt (8.3)

T

VN, uN uﬁzuﬁzuwu(s) dadt
3

=21},

T¢
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where N = {N; € 2%, for i € {0,1,2,3,4,5}}.

Note that the integral on the right-hand side above is only nonzero when
the two largest frequencies are comparable. By this fact and symmetry, we
may break A into two cases where the two largest frequencies are Ny ~ Nj
and N5 ~ Nj. In the analysis of each case, we adopt the abbreviated notations
Illp == -2z, o.z1.72)5 Iy == [Illy+((0,77), and we use a similar abbreviation
for the X* norm.

Case 1: N1 = {Nyg ~ N5 > N; > Ny > N3 > N,} N N. Subdivide Z? into
cubes C,, of size Ny, and write C,, ~ C, if the set C,, + C, overlaps the
Fourier support of P<sy,. Note that here are a bounded number of C,, ~ C,

for a given C,. Using Holder’s inequality, Strichartz estimates, and Bernstein’s
inequalities, we have

S

5 1 2 3 4
<SS 1P, vwollall Pe, u§) lalluly) Ll lallufy) lloo )l

VN, u(s)ug\l,lug\?zug\?;z W dzdt (8.4)

Nl CrnNCn
4
3/4 A+1/4 773/2 A73/2 5 7
<SS NANYANY AN | Pe,, onlvo | Pe, uly) o [ 1S llvo
N1 Cop~Ch, )
NoN. 1/2N1/2 4 .
DY N7y IFen ol P, uf [Ty (85)
Ny Cocy, N5V =1

We apply the Cauchy-Schwarz inequality and then sum on Ny for Ny < Nj.
We then repeat this process for N3 < Ny to see that (8.5) is controlled by

[y ( Do 3 IPevmylly-t[1Pe,ufy |y1>

No~N5 Cp~Cy,

No\V*
| (R) e

N1>Ns

Using Cauchy—Schwarz to find an upper bound for each of the sums, we first
sum on the set No < N; < Nj, then on the set C,, ~ C,, and finally on the
set N5 ~ Ny. We find that the previous expression is bounded above by

4
Clfolly -1 lfuglly: T TIla@ly1,

i=1

for some constant C' > 0. The embedding X' < Y! proves that

Z / / vNouNuﬁiuﬁiuﬁéuN)\dmdt<0||v||y1H||u<f>uX1 (8.6)

j=1
The 1mphc1t constant arises from the use of the Strichartz estimates, Bernstein
inequalities, and the embedding X' < Y'!, thus is independent of 7.
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Case 2: Ny := {Ng < N5 ~ N1 > Ny > N3 > Ny} NN In this case, it
is not necessary to subivide into cubes. From Hélder’s inequality, Strichartz
estimates, and Bernstein’s inequality, we find

S/

1 3 4
S o lalluf lalluly) lalluS lalluS) ooy llso

UN, uﬁzug\l,luggz)u(g)u(@ dadt (8.7)

4
1 3 7
< ST (NoNsNiN2)® (N3Na)? [[o, lyollu§) lyo [ 1y llyo
No =

2

4

N ‘W 5) (i)

< E : || UN, [y - IHU( v TT e v (8.8)
Na NQN; ’ - '

o

Using Cauchy—Schwarz for each sum, we sum in the order Ny < N3, N3 < Ny,
Ny < Np, and Ny < Nj. Thus, there is a constant C' > 0 such that (8.8) is
bounded above by

N 5 1
Cllvlly - [[u® [y [[u® [y [[u® [y Y =2 ||u< 1y [[uly) |y
N5~ Ny
4
< Nolly =1 [u® fly: [T Iu® flys.
=1

Finally, we again use the embedding X° — Y® to conclude

S/

where the implicit constant C' > 0 arises in the same way as in Case 1. To-
gether, the bounds (8.6) and (8.9) yield

5 5
/ / IT«v )dxdt < Clolly— [T IIulx1 (8.10)
T3 j=1

Jj=1

o, uﬁfuﬁiﬁu&?ﬁumuﬁ?\dxdt<0||v||y1H||u 1. (89)
j=1

Recalling that v = P<y® where [[3]ly-1 = 1, and letting N — oo, we infer
that the asserted bound (8.1) holds.

Recalling that «®, ¢ = 1,...,5, enumerates the collection
{ur, Uk, w,ug, u; }, we have

T
/0 /11‘3 g ? [ug|*u; dzdt

Multiplying the above inequality by Ax); and summing on k,[, we obtain

T
/ / p?u; dzdt
0o J18

< Cllugllxr flunlie el (8:11)
X1

< Cllally sl x
X1 N




Vol. 25 (2024) On the Well-Posedness and Stability of Cubic 1675

where C' > 0 does not depend on time. This proves (8.2).

9. Proof of Main Result for the Quintic Case

Proof of Theorem 6.1. We first show local well-posedness for small initial data.
The Duhamel formula for the j-th equation in the quintic NLS system is given
by:

t
B(0)(t) = "o, —io [ Oy (¢)d
0

Define the map ®(u) := {®;(u)}72,. Suppose ||ug|/g1(1sy < n for some small
7 to be chosen later. We will show that ® is a contraction on the ball

By = {H € X;3([0,1)) N CyH([0,1] x T?) ‘ llell x o,y < 277}

under the Xi([O, 1]) norm. As we proceed, each X' and Xi norm will be over
the interval [0, 1] and each H' and H) norm will be over T?.
By Lemma 8.2, we have

195 ()l < lluo, Iz + Cllaell ey llugll 1
square each side, multiply by A;, sum on j, and take the square root to find
18(w)llxg < V2o llig + Cllulley (0.1)

For u € By, we have || ®(u)||x; < V21+C(2n)°. The right-hand side is bounded
by 2n if n is sufficiently small, thus ® maps the ball By to itself.

Next we show that ® is a contraction on Bi. Let u,v € By and consider
|®(u — )| x1. We use arguments similar to those leading to equation (5.1) in
the cubic case, to show

3
19 (u—v)llxr < (lllxg +lollxg) lu—vllxg g ol lu—vsllxe (9-2)

We then square the above estimate, multiply by A;, and take the square root
to find

4
18— v)llxy < Clu—vllxy (lullxg +llelxy)

Thus, for u,v € By, we have

4
[@(u —v)llx; < Cllu—vlx; (4n)

- 1
> §||@ - Q”Xi

for n sufficiently small. By the contraction mapping principle, we obtain a
solution w on the time interval [0, 1].

The global well-posedness for the case of small initial data is obtained
from the conserved mass and energy for the energy-critical NLS system:

1 1
M) = ullzz sy E@) = 5;(&‘ /TSIWJ‘\de) +og /T p*da
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In the defocusing case, 0 = 1, we may expand py and apply the Sobolev
embedding H' — LS, to find

()% < M(u(t)) + 26 w(t) = M) + 26 o)
< g3 + 3 Clloll g

For |luyllg; sufficiently small, we may ensure |[u(t)|[z; < n throughout its
time of existence. We may continue iterating the previous local well-posedness
arguments indefinitely to obtain global well-posedness.

For global in time solutions in the focusing case, 0 = —1, we again use
the conservation of mass and energy, combined with a continuity argument as
follows. First, we observe

lu(t) 3y = M(w(0)) + 26 () + 3 oD% (9.3)

Expand p(t) and again use Sobolev embedding to obtain the inequality that
we will use for the continuity argument:

1 1
Hy(t)”%[i < ”%Hi’i + gC”HOH?qi + §C||@(f)\\§& (9.4)

Define f(x) = o — (1/3)Ca2? so that we have f(”ﬂ(t)”?{;) < ”HOH%Ii +

(1/3)C’Hg0||§iqi on the time interval [0,1]. On the interval I := [0, C~1/2], the

¥ 1/2

function f(x) increases from 0 to a maximum value of (2/3)C~1/# and satisfies

f(z) > (2/3)x for all x € I.
Set ng = min{(2/3)C~1/2,(2/3)n?}, and consider initial data satisfying

1
||E0H?qi + §C||Eo||?1i <.

We then have f(||y(t)\|§{i) < (2/3)C~'/2. The continuity of lw(®)][ gy in ¢

implies H@(t)H%{; € I for t € [0,1], so that

3 3
||Q(’5)H§{i < §f(||ﬂ(t)||§{i) < 577(2) <

for all ¢ € [0,1]. Therefore, we may iterate the local well-posedness argument
to obtain global well-posedness for sufficiently small initial data.

We now turn to the task of showing local well-posedness for large initial
data. Let [lugl/p(rsy < A for some 0 < A < co. Let § = 6(A) > 0 (to be
chosen later) and N = N(u,,d) > 1 such that |1 P> Nl 2 (13) < 0.

For some T = T(u,), the mapping ®(u) is a contraction on the ball

By i= {u € XA([0,1)NCH (10,7) x T°) |llull xy0.z) < 24, [ Ponvullxyjor <25}

under the Xi-norm. In what follows, norms in time will be taken over the

interval [0,7T") and norms in space are on the domain T3. We use C' to denote
any positive constant which does not depend on 7.
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To prove that ® maps B to itself, we write

dyr(u) = —0 /t ei(t—t’)Ap2H(t/) (9.5)
for its nonlinear part and observe thato
P> n®(w)llxy < \/§||P>NU0||X1 + \/§||P>N(I)NL<@)HXi
<V + V2 oWy (9:6)
Clearly, @y (u) is quintic in u = P<yu + P> nu, and we decompose it into
Onp(u) = DY) (P<nu, Poyu) + OF) (P<nu, Psyu) (9.7)

where (I)Sv 1, is at least quadratic in Ps yu, and @SV)L is at least quartic in P<yu.

Then, (8.1) and the argument used to obtain (8.2) imply that
1
|05, (Pentt, Pova)x3 < Clulfyy |Ponullig
< CL A3, (9.8)

To bound @S\Z,)L, we use the notation

[SIS)
Q=

lull g = / s Dl ) |- (9.9)

Then, applying Holder, we get
19 (Pnu, Ponu)llxt
= ClllgnLt“Hi”PSNyHLfL? + ClN”@”Lg%gHPSNUHile; (9.10)

where the first term on the r.h.s. bounds the expression obtained from the
derivative in the definition of X )1\ acting on Ps yu, and the second term from

it acting on P<yu. Using ||P<Nu||L4Loo < HP<NU||L4L1 < CTN2||u||LwH1, to-
gether with ||P<N“||L4L12 < C’T||P§NQH4 < CTN||uHLwH1, and Sobolev

L;"’HE
embedding, this is bounded by

195, (P<nu, Ponw)l xi < CTN?|Jull TN24%.  (9.11)

To show that ® is a contraction on Bs, let v € Bs,. Then, similarly as
above, one shows that

19N, (Pnts, Ponu) — B (Penv, Pono)|xy < Crdnllu—vflxy. (9.12)
Moreover, one obtains
19, (P<nt, Pont) — ®F) (Penu, Pont)lxy < CITN2AY|u — v xy- (9.13)

Then, letting 0 < T' < {55-k=45, and choosing 1 > 0 sufficiently small, it
follows that ® maps B, into itself and is a strict contraction.

While contraction mapping theorem gives a unique solution u in Bs, we
must  show  that uniqueness  holds in  the larger  space
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X ([0,T)NCLH} ([0,T] x T?) . Suppose that v € X ([0, T])NCLH} ([0,T] x T?)
is a solution to the equation with v(0) = Ug- There exists some N’ > 1 such
that |[v][x1(o,r)) < 20. If N' > N, define a new ball Bj that contains both u
and v and apply the contraction mapping argument to see that u = v on a
(possibly smaller) time interval [0, T']. By repeating this argument, we achieve
uniqueness in the larger space. O

10. Stationary States of the NLSS on T3

We now turn to the existence and nonlinear stability of stationary states of
cubic and quintic NLS systems on three-dimensional flat tori. As in the previ-
ous chapters, the results hold for rectangular, rational and irrational tori. In
this chapter, we restrict ourselves to consider only the defocusing systems

{ 10:u; = —Auj + p“u;, JjeEN

10.1
u;(0,2) = ujo(x), x € T3, ( )

where p =37,y Ajlus|? for a given A € £}, and o € {1,2}.
Stationary states {v;};en are solutions to (10.1) of the form

v;(t, @) = e~ "ituy o (x)

where p; € R is the energy level of u;o(z). As stated in the introductory
chapter, the stationary states we find are minimizers of an energy-Casimir
functional, which is the sum of the conserved energy and another function
conserved by the flow of (10.1).

In this chapter, we begin by defining Casimir-class functions and the sta-
tionary state equations corresponding to a Casimir-class function f, and then
develop the definition and properties of the energy-Casimir functional H; de-
termined by f. Next, assuming the existence and uniqueness of the desired
stationary states, we bound a nonlinear function of the distance between a
stationary state and another solution to (10.1) using the energy-Casimir func-
tional. Finally, to prove the existence and uniqueness of the stationary states,
we use the saddle point principle to find a dual functional to Hy, for any
Casimir-class f, and use convexity theory to show that the dual functional
has a unique maximizer. This maximizer corresponds to a stationary state of
(10.1) which minimizes H;.

11. Stationary States and Energy-Casimir Functionals

Define the state space for the NLSS as
S = {(u, A) | u={ur}ren C H'(T?) a complete orthonormal system in L*(T?),

A={Ar}ren € ¢! with A > 0, and Z )\kHukHip(Ts) < OO}

k=1
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In the previous chapters, we have shown that the defocusing cubic NLSS is
globally well-posed in ., and for some 7 > 0, the defocusing quintic NLSS is
globally well-posed for initial data (uy,A) € % provided [y g1 < 7.

Definition 11.1. A function f : R — R is said to be of Casimir class % if it
has the following properties:

(i) f is continuous, and there is so € (0,00] such that f(s) > 0 for s < s
and f(s) =0 for s > sq.
(ii) f is strictly decreasing on (—o0, sg] with lims_, o f(s) = oo.
(ili) there exist constants e > 0 and C' > 0 such that

f(s)<CA+5) 29 for s5>0

An example of f € € with sy = oo is given by the Boltzmann distribution
f(s) =e P for g > 0.

The stationary states that we seek are (ug, ;) € .7 corresponding to a
quadruple (ug, Ag, 11, po) with p, = {pok}tren C R, and po € LeFY(T3), such
that for some f € €,

(—A + p§)uo .k = poxuor forall ke N

po = Z)\o,k|uo,k|2 (11.1)
k=1

Mok = f(pox) for all k e N

where a = 1 or 2 throughout. The equation Ao, = f(uo ) demonstrates the
role of the function f € ¥ : a stationary state wugj with energy po . has
occupation probability Agx = f(po,x).- We see that if so is finite for f € €,
the NLSS is constrained to a finite number of occupied states. Thus, we set
so = oo for the remainder of this chapter.

The next proposition ensures that for any solution of the stationary state
equations, (ug, ) is in the required state space and po has the integrability
required for the solution to have finite energy.

Proposition 11.1. Suppose the quadruple (@O,AO,HO, po) satisfies the stationary

state equations (11.1) with f € €, and uy = {uo r}7>, a complete orthonormal
basis of L*(T?). Then py € L*TH(T3), and (ug, \y) € 7.

Proof. First observe that the nonnegativity of f immediately gives the non-
negativity of Mg for all k, which implies pg is nonnegative, thus pg is also
nonnegative for all k. From the first equation in (11.1), we find

Z )\o,k/ [[Vuo,k® + o luok|*] dz = Z Ao,k 1o,k
k=1 k=1

The stationary state equations satisfied by pg and Ag . show that the previous
equation may be rewritten in the form

o0

> (Ao,k / Vuo,k|2dﬂ?> + [otar =3 fosmos  (12)
k=1

k=1
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We claim that the sum on the right-hand side of (11.2) is finite. Since
fee,
Flpor)nok < C(1+ por) 47
for each k € N. Let {u_a x} denote the complete set of eigenvalues of —A
on T3, and observe that the nonnegativity of po implies por > p—a . The

estimate of Li and Yau [19] gives p_a > Ck?/3, where the constant C' depends
only on the domain T2. Thus, for each k € N,

Flpor)por <CA+p_np) 2?7 <Ok
which proves our claim that the sum converges.
As the right side of (11.2) is finite, ;= Ao,k [ |Vuox|? dz is finite, and

po € LTH(T3). By the Poincaré inequality, > o, Aok [ |uox|? dz must also
be finite, and we conclude (ug, Ay) € 7.

Remark 11.1. In the cubic case, a = 1, we have p € L?(T3), and p serves as the
potential function in the cubic NLSS. However, in the quintic case, a = 2, the
potential function is p?. We have shown that p € L3(T?), thus p? € L3/?(T?).
In order to generalize our arguments to apply to both the cubic and quintic

atl
NLSS, we will use potentials V € L, (T?), which include the functions p®.

We now develop the energy-Casimir functional associated with a given
Casimir-class function f. For f € ¥, define

F(s):= /00 f(o)do, seR.

F is a nonnegative, continuously differentiable, decreasing function, strictly
convex on its support. Furthermore, we have the bound

F(s) < C(1+5)7%279 for s > 0. (11.3)
The Legendre transform of F is given by
F*(\) =sup (As — F(s)) XeR. (11.4)
seR

Since F is differentiable with F' = —f, F* is differentiable, and (F*)" =
(—f)~!. In particular, the supremum in (11.4) is attained at s = f=(=)\),
and the Legendre transform of F' is given by:

F*(=\) = A\ — F(p). (11.5)

where ;1 = f~1()\). Moreover, the Legendre transform is an involution, F** =
F.

We recall that the energy of a solution u to the defocusing NLSS (10.1)
determined by A is defined as

1 1 N
Bx(u) =5 D Al V|72 sy + NatD /Ts pH da
K

and is conserved by the flow of the system.
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Definition 11.2. Let (u,\) € . For a fixed f € ¥, we define the energy-
Casimir functional determined by f as

Hp(w,A) =Y F* (=) + 2B (u) (11.6)

k
1
—Z (F* (=) +>\k/ \Vug|? da) + —— ) a+1dx (11.7)

Since A and E)(u) are constant in time, H; is also a conserved quantity of
the defocusing NLSS. We will prove the stability of stationary solutions of the
NLSS employing Hy in a similar way as Lyapunov functions are used for the
corresponding problem in classical Hamiltonian dynamics. This approach is
often referred to as the energy-Casimir method.

We remark that the convergence of ), F*(—A\;) follows from

ST (M) =) ek — > Flu) (11.8)
p % %

where A\, = f(ur); see (11.5) and (12.4), below. The convergence of >, it
is proven in Proposition 11.1 and that of ), F'(x) in Lemma 11.2.

We conclude this section with some useful properties of f and F' for

fe@.

Lemma 11.2. Let f € €.
(i) For every B > 1, there exists C' = C () € R such that

F(s)>—-pBs+C, s<0
(i) If V € L e (T3) then both f(—A + V) and F(—A+ V) are trace class.

Proof. Part (i) of the lemma follows directly from the properties of F(s). In
particular, as F(s) strictly convex on its support, its graph lies above any of
its tangent lines. Since F(s) is decreasing, with lim,_, ., F(s) = oo, for any
[ > 1, there is some s < 0 such that the tangent line to F' at s has slope —f.

To prove part (ii) of the lemma, let {uy}52, be the complete set of
eigenvalues of —A +V, and let {1_a 1}, be the complete set of eigenvalues
of —A on L*(T?). As V is nonnegative, we have py ; > fi—a g > Ck3 for each
k € N. As F(s) decreases faster than (1 + s)~%/2 for s > 0, we find

oo

TrF(-A+ V)= Fluvi) ZFM Ak

i 1 +k3 —ie,
k=1

The last series is convergent; thus, F'(—A + V) is trace class. As f(s) is non-
negative and decreases at a rate faster than F(s), f(—A 4+ V) is also trace
class.

ko
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e
Il
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Lemma 11.3. For ¢ € H'(T?) with ||| p2rs) = 1, and V € L'* (T%),
F({(¢,(=A+V)¢)) < (¢, F(-=A+V)o)
with equality if ¢ is an eigenstate of —A + V.

Proof. Using the spectral theorem, let P, be the family of orthogonal projec-
tions onto the eigenspaces of —A + V| and write

—A+V:/ ~dP,
0

For any ¢ satisfying the hypotheses, the spectral measure of —A + V with
respect to ¢ is given by
(¢, dPyp) =: dv(v),

which is indeed a probability measure. Since F is convex, we apply Jensen’s
inequality to conclude

F ( Ia vdV(V)) < [ Fejanty

which is equivalent to the inequality in the lemma.
If ¢ is an eigenstate of —A + V, with eigenvalue vy, then dv(7) is a Dirac
measure at 7p, and each side of the above inequality is F'(7p).

Corollary 11.4. For ¢ € H'(T?) with ||| 2qs =1, V € L+ (T%), and fized
but arbitrary o € R
with equality if ¢ is an eigenstate of —A + V.

Proof. Note that f,(s) :== f(s+0) € € for f(s) € €, since we may take the
cutoff sy as large as we wish. The corollary follows by applying the previous
lemma to F,(s) = F(s+ o).

12. Nonlinear Stability of Stationary States

For a given f € %, we define the functional U;(u, A, V), as follows, where
at1l
(u,\) € .7, and V € L.~ (T?), with a = 1 (cubic) or a = 2 (quintic).
Up(u, A V) = [F*(f)\k) +)\k/(|Vuk|2 +V [ug)?) dx} (12.1)
k=1

Remark 12.1. Note that if (u, ) is a solution of the NLSS (1.4) with corre-

sponding density function p € Lﬁf“(']lﬁ)7
Uy A p®) =Y {F*(—Ak)—k)\k/Wuk\Qdm] +/p°‘+1 dz
k=1

«
A+ —— atly 12.2
Hy(u,\) + perl 4 T (12.2)
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Lemma 12.1. Let V € L e ('IF‘S), with « = 1 or a = 2. For any (u,\) € &,
and any f € €,

Up(u, A V) > —Tr[F(—A + V)], (12.3)

with equality if (u,A) = (uy, Ay ), where uy, = {uyk} is an orthonormal se-
quence of eigenfunctions of —A + V with eigenvalues By = {v.i}, satisfying
A = fluv) for all k € N.

Proof. Set
;%:wva+vmw:/ﬂvWF+wmmdm

By the inequality F*(—=\) + A > —F(u) for A, € R, and Lemma 11.3, we
have

> {F*(_)\k) + A / (IVurl? + Vug]?) dfﬁ] > —ZF(@%, (A + V)up))

k=1

Y

—Z ug, F A+V)u;€>

— TF(-A+ V)

Now suppose uy, = {uy,} is the orthonormal sequence of eigenfunctions
of —A+V with eigenvalues By = {1v,k}, so that py i = (uy g, (—A+V)uy k).

Tr[F(=A+ V)] ZFNVk

By definition, Ay = f(uvk) = —F'(uv.k), for each k € N. By the conjugate
relationship pv i = (F*)' (=Avk), so that F*(=Avk) = —Avpve — F(pvie)-
Summing on k gives

oo

- i Fluvar) =Y [F*(=Avik) + Aviesvie] (12.4)
k=1

k=1

which is precisely the statement of equality in (12.3).

Corollary 12.2. Let V € L X (']I‘3), with « =1 or a = 2. For any 0 € R, any
(u, A) € .7, andanyfe%

Uy V)+0 ) N> —Te[F(-A+V +0)), (12.5)
k=1
with equality if (u,A) = (uy,Ay), where uy, = {uyi} is an orthonormal

sequence of eigenfunctions of —A + V with eigenvalues By = {pvi}, with
Avig = f(pv +0) for all k € N.

Proof. We use the same argument of previous lemma, replacing py, with pp +o
throughout.
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Theorem 12.3 (Nonlinear Stability of Stationary States). Let (yo,go,ﬁo,po)
be a stationary state of the defocusing NLSS (10.1) with o € {1,2}. Suppose
(ug, Ag) € 7, and No i, = f(pox) for some f € € and all k € N. Let Hy be the
energy-Casimir functional determined by f. If (u(t),A) is another solution of
the defocusing NLSS on the time interval [0,T) with initial datum (u(0), ) €
&, then
1
o — ol < [ @(0),2) ~ Hylug M)l £ 201

for allt €[0,T).

Proof. Cubic Case. Let (uy, Ay, Ky po) be a stationary state of the cubic NLSS
with f € ¥ satisfying f(pox) = Aok, for all k& € N. Suppose (u,)) is a
solution of equation (10.1) for o = 1, with initial datum (u(0),\) € ., and
let p € L3 (T?) be the particle density corresponding to (u, ). We have

1 1
=lo—pol3 =5 [ (0 —2ppo + pg)da
2

2

S 1
= Hy(w D) = 3 [F 20+ 0 [ (Tl + polun?) da] + 5 [ g do

k=1

1
< Hg(u,A) + Te[F(—=A+ po)] + 5//)(2) dz (12.6)
1
=y )~ Uyl doupn) + 5 [ s
= Hy(w(0),2) = Hy (o, Ao), (12.7)
where we have used Lemma 12.1 to establish (12.6) and (12.7). O

Quintic Case. Let (QO,AO,HO,pO) be a stationary state of the quintic
NLSS with f € % satisfying f(pox) = Aok, for all k& € N. Suppose (u, )
is a solution of (10.1) for @« = 2 on time interval [0,7T) with initial datum
(u(0),)) € ., and let p € L3 (T?) be the particle density corresponding to
(u, A).

First, note that since p, pg > 0 on T3, we have

/Ip—po\?’dxS/(p—po)2(p+po)dx=/(p3—p2po—pp3+p8)dx (12.8)

By the geometric-arithmetic means inequality,

1
pap = polpop) < 500(0(2) +p?),

from which we obtain
—P?po < =2p5p + .- (12.9)
Using estimates (12.8) and (12.9), we find

/\p—polsdxS/(p3—3p3p+2pﬁ)d$ (12.10)
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Proceeding as we did in the proof of the cubic case:
1 3 1 3 2 3
ng_p0HL3(T3) < 3 (p° = 3pop + 2p;) da

= 2
=Hs(u,A) =Y [F* (=) +Ak/(wuk|2+p3|uk\2)dx} +§/pgd3:

k=1
2
2
< Hp(w,A) + Te[F(=A + pf)] + g/pﬁ dz (12.11)
2 2 3
:Hf(M;A) _qlf(gO)AO,pO)—i_g pod.’l’f
=Hy(u(0),2) — Hy(ug, Ao), (12.12)

where we have used Lemma 12.1 to establish (12.11) and (12.12). O

13. Deriving the Dual Functional

We now turn to the problem of existence of stationary states satisfying (11.1).
For each f € €, we define a dual functional to H¢(u, A). First, for fixed f € €
and fixed A > 0, we use the saddle point principle to define:

o0

G(w A V,0)=Y {F*(—Ak)+Ak/(|ka|2+Vuk|2)dx}

k=1
A — A
o+ 1 2::1 i
where u = {uy} is an orthonormal basis of L*(T3), A = {\;} € ¢, and

Ve L . . The variable o € R plays the role of a Lagrange multiplier.

The following lemma illustrates the relationship between the functional
¢ and the energy-Casimir functional.

Lemma 13.1. For any u, A\, o, we have

, (13.1)

Supg(ga A) Va U) = Hf(@a A) +o
v k=1

and the supremum occurs when V = (350, Ae|ux|?)”
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Proof. For arbitrary (u,\) € ., let pux = Y5 Ax|ux|?. Suppose o = 1. We
may write ¢ (u, \, V, o) equivalently as

o0

1 1
G (u,\,V,0) = Z {F*()\k) + )\k/|Vuk|2d:c] + 5 /piédx ~3 /piédx

k=1
i/\k —A

k=1

k=1

1
—|—/Vp%3dx—§/V2dx+U

1
= Hp(w ) = 5llpua = VIBagrs) +0

Clearly, 4 (u, A, V,0) has a maximum for V' = p,, », and we have the desired
supremurm.

Now, consider the case a = 2. This time, we write ¥(u, \,V, o) in the
equivalent form

s 1 1
GwAV,0) =Y [F*(—m o [ |wk2dx} by [hade—g [ohade
k=1 3 o 3 o
> A—A
k=1

1 & ]
:Hf(%g)—5/(piA—3p%AV+2V3/2)dx+U ZAk—A .
Lk=1

2 .
+/Vp%gdxf§/v3/2dx+a

Since V € Lip, it has a nonnegative square root. Let p := 'V € Li, so that

1 & _
9w\ p?,0) = Hy(w, ) - 5 / (Piir = 30%pua +20%)da+0 | 3 A — A
Lk=1

i/\k—A :
k=1

As py,» and p are nonnegative, we have — [(pyx +2p)(pur — p)>dz < 0 with

1
= Hy () = 5 [ (us +20)(pur 9o 0

equality precisely when VV = p = Pu,x, Which proves the lemma in the case
a=2.

Let us now derive a useful representation of the dual function defined by
®(V,0) :=inf, ) 9 (u, A, Vo). First, note that 4 can be written in the form

k=1

G, \,V,0) = U (u, A, V) — ai 1 /V“j;lderU

By Lemma 12.1, we have the lower bound

Y AV,0) > ~T[F(-A+V +0)] ~oh - /v”%ldx
«

with equality if (u, A) = (uy, Ay), where wy, is the complete set of eigenstates
of —A + V with corresponding eigenvalues My such that A\yi = f(pve + o)
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for all k£ € N. Therefore, we have the following expression for ®

a+1
P = — a —Tr|F(=A — ogA.
(V,o) a+1/V de —Tr[F(-A+V +40)] -0

14. Existence and Uniqueness of Stationary States

Theorem 14.1. The functional ®(V,0), determined by a given A > 0 and
f € €, is continuous, strictly concave, bounded from above, and —®(V, o)
is coercive. Thus, ®(V,0) has a unique mazimizer (Vo,00). This mazimizer
uniquely determines a stationary state (ug, Ao, f1y, po) as follows: ug = {uo,k}
is the set of orthonormal eigenstates of —A + Vi with corresponding eigenval-
ues py = {poxk}, Aok = f(rok +00) for k € N satisfies Yore iAok = A, and
Vo = pf, where po == Y11 Ao,k|uokl?-

Proof. For notational convenience, let ¢ := O“T'H7 so that ¢ = 2 corresponds to
the cubic NLSS, while ¢ = % corresponds to the quintic NLSS. For fixed but
arbitrary f € ¢ and A > 0, ® : L9 (T?) x R — R is given by

(V,0) :—é/qux—Tr[F(—A—i—V—&—U)] —oA.

d s strictly concave. We begin by proving that Tr [F(—A +V+ a)} is
convex. To this end, suppose (V},0;) € LI(T3) x R for j = 1,2, and consider
the expression

F (¢, [r(~A+Vit+o)+ (1 =71)(-A+Va+02)Y)),

where ¢ € H*(T?) with [|[¢)|[2(rs) = 1, and 0 < r < 1 By Lemma 11.3 and
convexity of I, we have

F((0,r(=A+Vi+o1)+ (1 —7)(-A+ V3 +02)Y))
<r(P, F(=A+Vi+01)¢) + (1= 7) (¢, F(—=A + Vo + 02)0)
Now, let {1} be the complete set of eigenstates of
r(—A+Vi+o1)+ (1 —7)(—A+ Vo +o09).

Using the definition of trace and the previous inequality, we have

ZF (W, r(~A+Vi+01) + (1 = 7)(=A + V2 + 02)]v%))
< rz (U, F(—=A + Vi + 01)tby)

(1—r) Z Vi F(—A + Vo + 02) ). (14.1)
=1

Thus, Tr[F(—=A +V +0)] is convex.
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As the remaining two terms f% f Vadz—oA are clearly concave in (V, o),
we conclude ®(V, o) is concave. To show that ®(V, o) is strictly concave, sup-
pose equality holds in the concavity statement for ®(V, o). This reduces to the

equality of the expressions
Tr[F(r(-A+Vi4+o1)+ (1 —7)(-A+Va+02))]
—rTr[F(=A+Vi+01)] — (1 = r)Tr[F(—A + Va + 03)] (14.2)

and
L fyraesa-n [viee- [ensa-nwmas). a1

By convexity of Tr[F(—A +V + ¢)], the expression (14.2) is nonpositive. On
the other hand, by the convexity of qu dz for ¢ = 2 and for ¢ = %, the
expression (14.3) is nonnegative. For equality to hold, both expressions must
equal zero.

As [ Vdz is indeed strictly convex on the domain V' € LY for ¢ = 2 and
q = %, setting (14.3) equal zero yields Vi = Va. Next we set the expression
(14.2) equal to zero, which is equivalent to the case of equality in (14.1). In
this case, the strict convexity of F' implies that for all k& € N,

(Y, F(=A + Vi + 01)Yr) = (g, F(=A + Va + 02) k)

Thus, the operators —A + V4 + o1 and —A + V5 + 09 have the same
set of eigenvectors {1} with the same eigenvalues. We combine this with the
previous requirement that V3 = V5 to see that we must have 01 = 05, which
proves the strict concavity of ®(V, o).

D is bounded from above, and —® is coercive. Note that since A > 0, we
must distinguish the cases ¢ > 0 and o < 0. First, suppose ¢ is nonnegative.
As F' is a positive, decreasing function, we immediately find

1
P(V.0) <~V [y — oA <0 (14.4)

Now consider the case 0 < 0. Let py,; be the ground state energy of
—A + V. Again using positivity of F, we obtain the upper bound

1
(V,0) < _6”VH%G(’H‘3) — F(uva +o0)—oA (14.5)
By definition,
pvai=int [ [Vl + VigPds

where the infimum is taken over all ¢» € H'(T?) satisfying [|¢||z2(rs) = 1.
Choose ¢ = (vol T3)7% in the above integral. We have

Ky, S/\VwIQ—FV\w\de:/Vdex

< WV llzasy 1921 Lo (rsy = CollV | Laczs),
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where ¢’ is the Holder conjugate of ¢, and C; := (vol ’]I‘S) % For o satisfying
o < =Ci||V|lra < —pv,1, part (i) of Lemma 11.2 guarantees that for any
B > 1 there is some constant Cy such that —F(puy,1 +0) < S(pv1 +0) — Ca.
Choosing > max{A, 1} yields

1
(V,0) - 5||VHqu(T3) — F(pvy +o0) — oA
1
< _6||VH%(1(’]1‘3) +ﬁMV,1 + (ﬁ — A)O’ —Cy
1
< _6”‘/”%/1(11“3) +ﬁ01||V||L2 + (ﬁ — A)U — (O

By the last inequality above and elementary calculus, there exists a positive
constant C3 such that

1
o(V,0) < —?qHVH%q(Tg) +C3+ (B—A)o—Cy (14.6)

on the interval ¢ < —C1||V||ra. The inequalities (14.4) and (14.6) together
show that ®(V, o) is bounded above and that —®(V, o) is coercive.

® is continuous. The continuity of @ is clear for all but the trace term.
As it is convex, Proposition 2.5 in Chapter 1 of [10] implies the trace term
is continuous on its support, provided it is proper and bounded above by a
constant on some open set. The trace term is proper as F' is nonnegative
and trace class, and the local upper bound follows from the fact that F' is
decreasing. Indeed, for any fixed oy € R, Tr [F (A +V + 0)} is bounded
above by Tr[F(—A + 0¢)] < oo on the interval ¢ > oy.

® has a unique maximizer, corresponding to a stationary state. By stan-
dard convexity theory, ® has a unique maximum, occurring at some (Vp, o9).
Let wy = {uox} denote the complete set of orthonormal eigenfunctions of
—A+Vp, with corresponding eigenvalues p, = {0, }, and let Ao x = f(po,k +
00). As 0 is a critical point for ®(Vj,0) and F' = —f, we find

d®(Vp, o)

0:
ds

= Tr[f(—A + Vo + 0'0)] —A

g=0(0

[ee] o0
=Y fluok+00) = A= Xop—A
-1 k=1
Thus, >, Ao,x = A, as claimed.

As Vj is the maximizer of ®(V, 09), it satisfies the Euler-Lagrange equa-
tion

oo
V& Y flpok + 00)luoi]* = 0.
k=1

2

1
Note that since ¢ — 1 = é, the equation above gives V™ = Y77 | Ao k|uok|? =
po. This concludes the proof for the existence and uniqueness of stationary

states.
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Proposition 14.2. Let the hypotheses of Theorem 14.1 be satisfied. Suppose
(QO,AO,HO,;}O) 18 the unique stationary state corresponding to the maximizer
(Vo,00) of the functional ® determined by f and A. Then ®(Vy,00)
= H s (ug, Ag)-

Proof. At (Vy,00), we have Vo = p§, and >_,—; Ao = A. Using Corollary 12.2
and Remark (12.1), we find

«
W) = TP 5+ o) - od — = [

a
=v Ao, pY — 0gA — —— atlq
(g, Ay, pg + 00) — 00 a1 )P0 9

o = « o
= \I/f(ﬂ07A0ap0) + oo (ZA]C —A) — ot /po-‘rldﬂf

k=1

= Hs(ug, Ao)-

Remark 14.1. We note that the stationary states (u, Aos Ky po) for the quintic
NLSS are shown to exist without necessary restriction on [[ug|| g1 (rs), but that
we have only proven global existence of solutions to the quintic NLSS in the
case |[ug| g1 sy < 7, for some 1 > 0. It may be the case that there exists a
choice of f € € that corresponds to a stationary state with large initial data,
which would be an improvement to our results from Chapter 3. However, recall
from the introduction that Ionescu and Pausader established the existence and
uniqueness of global in time solutions to the defocusing quintic NLS on the
square, rational 3-torus, for all H! initial data. It is our hope that future
research will establish analogous results for the quintic NLS system, so that
the nonlinear stability statement in the quintic case of Theorem 12.3 will hold
for all time.
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