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On the Well-Posedness and Stability of
Cubic and Quintic Nonlinear Schrödinger
Systems on T

3

Thomas Chen and Amie Bowles Urban

Abstract. In this paper, we study cubic and quintic nonlinear Schrödinger
systems on three-dimensional tori, with initial data in an adapted Hilbert
space Hs

λ, and all of our results hold on rational and irrational rectangular,
flat tori. In the cubic and quintic case, we prove local well-posedness for
both focusing and defocusing systems. We show that local solutions of
the defocusing cubic system with initial data in H1

λ can be extended for
all time. Additionally, we prove that global well-posedness holds in the
quintic system, focusing or defocusing, for initial data with sufficiently
small H1

λ norm. Finally, we use the energy-Casimir method to prove the
existence and uniqueness, and nonlinear stability of a class of stationary
states of the defocusing cubic and quintic nonlinear Schrödinger systems.

1. Introduction

In this work, we study properties of nonlinear Schrödinger systems on flat
three-dimensional tori. Our results build on several lines of existing research:
The study of nonlinear Schrödinger systems (NLSS) on R

d, the study of non-
linear Schrödinger equations (NLS) on flat tori [3,5,8,21], and the use of the
energy-Casimir method to investigate certain stationary states of interacting
quantum systems.

The systems we consider may be used to model the dynamics of a system
of fermions confined to a box with periodic boundary conditions. In particular,
if we consider a dilute gas of fermions subject only to the pairwise interaction
potential w, the one particle density operator of the system, γ, solves the
Landau–von Neumann equation with Hartree-type interaction:{

i∂tγ = [−Δ + w ∗ ρ, γ]
γ(t = 0) = γ0
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where ρ is the total particle density given by ρ(t, x) = γ(t, x, x). This equation
for γ can be derived from the Schrödinger evolution equation for the wavefunc-
tion of the fermionic system through a combined mean-field and semiclassical
limit, in which the expected particle number, Tr γ, remains finite. See [11] and
[12] for details.

If we take w to be a positive or negative delta function in the Hartree
system above and allow either two-particle or three-particle interactions, we
obtain the system {

i∂tγ = [−Δ ± ρα, γ]
γ(t = 0) = γ0

(1.1)

The exponent α ∈ {1, 2} indicates (α+1)-body interactions, and the choice of
sign on ρα determines if the system is defocusing (+) or focusing (−).

The one particle density operator γ for a system of fermions is a positive,
trace-class, self-adjoint operator on L2(T3). Therefore, for each t, its integral
kernel γ(t, x, y) has a spectral decomposition over L2(T3). In particular, the
initial data γ0(x, y) may be expressed as:

γ(0, x, y) =
∑
j∈N

λjuj,0(x)uj,0(y) (1.2)

where {uj,0}j∈N is an orthonormal basis of L2(T3), and λ := {λj}j∈N ∈ �1

with 0 ≤ λj ≤ 1 for all j ∈ N.
Due to the commutator structure of (1.1), γ and iΔ ∓ iσρα form a Lax

pair; hence, the flow of γ is isospectral, and {λj}j∈N is constant in time. The
evolution of γ is therefore given by the evolution of the functions u := {uj}j∈N,
and we may write

γ(t, x, y) =
∞∑

j=1

λjuj(t, x)uj(t, y), (1.3)

where the set {uj}j∈N remains orthonormal as long as the solution γ exists.
The particle density is given by ρ(t, x) ≡ ρu(t),λ = γ(t, x, x) so that in terms
of the basis {uj}j∈N,

ρ(t, x) =
∞∑

j=1

λj |uj(t, x)|2.

The Landau–von Neumann equations for γ(t) in equation (1.1) then have the
form

i∂γ(t, x, y) =
∞∑

j=1

λj((i∂tuj)(t, x)uj(t, y) − uj(t, x)((i∂tuj)(t, y))

=

∞∑
j=1

λj

[
((−Δ + σρα)uj)(t, x)uj(t, y) − uj(t, x)((−Δ + σρα)uj)(t, y)

]
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in the spectral decomposition (1.3). This is equivalent to the infinite nonlinear
Schrödinger system (NLSS) for u(t) = {uj(t)}j∈N,{

i∂tuj = −Δuj + σραuj , j ∈ N

uj(0, x) = uj,0(x), x ∈ T
3,

(1.4)

with α ∈ {1, 2} and σ ∈ {−1, 1}. The initial data {uj,0} for the NLSS and the
sequence {λj} are determined by the initial data γ(0) in the Cauchy problem
(1.2).

In this paper, we extend previous results of Markowich, Rein, and Wolan-
ski, [20], and of Abou Salem, Chen, and Vougalter, [1], proving the existence
and nonlinear stability of a class of stationary states of Schrödinger–Poisson
systems via the energy-Casimir method. This approach is based on the fact
that the sequence λ = {λj} is conserved under the NLSS flow and uses it to
construct an energy-Casimir functional Hf , labeled by a Casimir class function
f , see Definition 11.1. Hf then is a conserved quantity of the NLSS flow for
any such f . The stability of stationary solutions of the NLSS is proven by use
of Hf in a similar way as Lyapunov functions are used for the corresponding
problem in classical Hamiltonian dynamics. In particular, the stationary states
arise as minimizers of energy-Casimir functionals, which are conserved quanti-
ties of the system. To be more precise, let (u0, λ0, ρ0) label a stationary state
of the defocusing NLSS with σ = 1 and α ∈ {1, 2}, and let (u(t), λ) account
for another solution on the time interval [0, T ) with T ≤ ∞, and initial datum
(u(0), λ) (see Theorem 12.3 for the precise formulation), then

1
α + 1

‖ρu(t),λ − ρ0‖α+1
Lα+1(T3) ≤ |Hf (u(0), λ) − Hf (u0, λ0)|,

for all t ∈ [0, T ).
In both [1] and [20], classical solutions to the system were considered;

hence, higher regularity was required than that controlled by the conserved
energy. The nonlinear stability is obtained from a uniform in time upper bound
on the squared distance (measured in some Sobolev norm) between ρ0 and ρ,
where ρ0 is the particle density for a stationary state, and ρ is the particle
density of another solution of the system.

The energy-Casimir method employed in [1] and [20] requires that the
system is posed on a bounded spatial domain, that the flow of the system
is isospectral, and that the potential function of the Hamiltonian is related
to the probability density function. As the last two properties hold for the
NLSS, it is natural to consider whether the NLSS possesses such stationary
states. For this purpose, we pose the system on a bounded spatial domain, or
more specifically, on T

3. In particular, we relax the criteria on the regularity
of stationary states, using only mild solutions in the energy space, for which
we establish well-posedness.

Systems similar to (1.1) have been previously studied on R
d, and well-

posedness results have been obtained under various assumptions on γ0. In par-
ticular, Hong, Kwon, and Yoon [16] established the well-posedness theory and
blow-up criteria for (1.1) with α = 1 on R

3 for γ0 satisfying Tr|√−Δγ0

√−Δ| <
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∞. In [9], Chen, Hong, and Pavlović proved the global well-posedness of the
defocusing system with α = 1 on R

2 and R
3 in the case γ0 is not trace class,

provided it has finite operator norm and is a suitable perturbation of a refer-
ence state.

In the present work, we will employ methods and results from the study
of well-posedness for NLS on T

d. Following a series of fundamental works by
Bourgain starting in 1993, [2], this topic has attracted extensive research ac-
tivity. Crucial advances include the development of Strichartz estimates on the
torus and their extensions to irrational square tori, due to works by Bourgain
[4], Bourgain and Demeter [6], and Guo, Oh, and Wang [14], among many oth-
ers; Killip and Vişan proved the full range of Strichartz estimates on rational
and irrational rectangular tori in [18]. We refer to those works for references.

Our analysis of the quintic NLSS is closely related to that of the H1-
critical quintic NLS on T

3. Of specific importance for our work is the approach
developed by Herr, Tataru, and Tzvetkov via Xs and Y s function spaces,
used in [15] to prove local and global well-posedness for the quintic NLS with
small initial data in H1(T3). Killip and Vişan extended these results in [18],
proving local well-posedness of the H1-critical NLS on rational and irrational
rectangular tori in 3 and 4 dimensions for arbitrary initial data in H1. In [17],
Ionescu and Pausader obtained global well-posedness of the defocusing quintic
NLS on the square torus for arbitrary initial data in H1(T3). We show local
well-posedness on T

3 for the cubic NLSS with initial data in Hs
λ with s > 1

2

and for the quintic NLSS with initial data in H1
λ. Furthermore, we prove that

solutions to the defocusing cubic NLSS can be extended globally in time, as
can solutions to the quintic NLSS with sufficiently small initial data.

We now outline our results and the organization of this paper. In Sects. 3
to 5, we prove local well-posedness of the cubic NLSS, (1.1) with α = 1, on a
flat rational or irrational 3-torus for initial data in Hs

λ, for s > 1
2 . In Sects. 6

to 9, we prove the local well-posedness in H1
λ for the quintic NLSS, (1.1) with

α = 2, using the Xs and Y s spaces as in [15] and [18]. In Sects. 10 to 14, we de-
fine a class of stationary states for the NLSS on T

3 corresponding to a Casimir
function f, treating both the cubic and quintic systems. Assuming their ex-
istence, we first prove the nonlinear stability of these stationary states using
an energy-Casimir functional. We then use a dual formulation and tools from
convex analysis to prove the existence and uniqueness of the stationary states
and show that they are indeed minimizers of the energy-Casimir functional
determined by f.

2. Preliminaries

The rectangular, flat 3-torus can be realized as R
3/(L1Z × L2Z × L3Z) with

L1, L2, L3 ∈ (0,∞). The torus is irrational if at least one of the ratios Li

Lj
is

irrational, otherwise we say it is rational.
For notational convenience, we use the coordinates for the standard torus

T
3 := R

3/Z
3 and incorporate the geometry of the torus into the Riemannian
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metric, using the corresponding Laplace–Beltrami operator

Δ = θ1
∂2

∂x2
1

+ θ2
∂2

∂x2
2

+ θ3
∂2

∂x2
3

, where θj = L−2
j .

We then define the Schrödinger propagator eitΔ by

êitΔf(ξ) = exp (−2πitQ(ξ)) f̂(ξ)

for ξ = (ξ1, ξ2, ξ3) ∈ Z
3, where Q(ξ) := θ1ξ

2
1 +θ2ξ

2
2 +θ3ξ

2
3 . By making a change

of variables in time, we may assume θj ∈ (0, 1], for each j ∈ {1, 2, 3}.
Next, we define the Littlewood–Paley frequency projections used in Chap-

ters 2 and 3. Let φ be smooth, radial, cutoff on R with supp(φ) ⊂ (−2, 2) such
that φ(x) = 1 for x ∈ [−1, 1]. For a dyadic integer N, define the projections

P̂1f(ξ) := f̂(ξ)
3∏

j=1

φ(ξj)

P̂≤Nf(ξ) := f̂(ξ)
3∏

j=1

φ( ξj

N )

P̂Nf(ξ) := f̂(ξ)
3∏

j=1

(
φ( ξj

N ) − φ( 2ξj

N )
)

.

For CN ⊂ R
3 an arbitrary cube of side length N, the sharp Fourier projection

onto CN is given by:
P̂CN

f(ξ) = 1CN
(ξ)f̂(ξ).

We close this chapter with the following overview of the notational con-
ventions we use in this work.

• We write X � Y to represent X ≤ CY where C is some constant that is
permitted to depend only on the spatial dimension d.

• Unless otherwise indicated, the domain of a spatial integral is understood
to be T

3, i.e., ∫
f(x) dx :=

∫
T3

f(x) dx

• An underlined variable denotes a sequence in the corresponding variable,
e.g., v := {vj}j∈N.

• For any set X , with elements that are real-valued, X+ denotes the subset

X+ := {f ∈ X⏐⏐f ≥ 0}
• We adopt the following condensed notation for frequency projections:

fN := PNf and fCN
:= PCN

f

• We use the mixed space-time norms defined by

‖f(t, x)‖Lp
t Lq

x([0,T )×T3) :=

(∫ T

0

(∫
T3

|f(t, x)|q dx

) p
q

dt

) 1
p
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• Given a Banach space X and a real-valued sequence λ ∈ �1+, let Xλ denote
the space of sequences u = {uj}∞

j=1 ⊂ X equipped with the norm

‖u‖Xλ
:=

⎛
⎝ ∞∑

j=1

λj‖uj‖2
X

⎞
⎠

1
2

.

3. Well-Posedness of the Cubic NLS on T
3

The cubic nonlinear Schrödinger system is given by:{
i∂tuj = −Δuj + σρuj , j ∈ N

uj(0, x) = uj,0(x), x ∈ T
3,

(3.1)

where σ ∈ {−1, 1}, λ ∈ �1+, and ρ(t, x) =
∑

λj |uj(t, x)|2. The mass and energy,

Mλ(u) :=
∑

k

λk‖uk‖2
L2(T3) = ‖u‖2

L2
λ

(3.2)

Eλ(u) :=
1
2

∑
k

λk‖∇uk‖2
L2(T3) + σ

1
4

∫
T3

ρ2 dx (3.3)

are conserved quantities along solutions of the system. This chapter is dedi-
cated to the proof of the following theorem:

Theorem 3.1 (Local and global well-posedness of the cubic NLSS). Let λ ∈
�1+, and suppose u0 ∈ Hs

λ(T3) for s > 1
2 . There exists a time T depending

on ‖u0‖Hs
λ(T3) such that the system (3.1) is locally well-posed for t ∈ [0, T ).

Moreover, if u0 ∈ H1
λ(T3), the solution to the defocusing system is global in

time.

Our goal is to use the contraction mapping principle to show that the
Duhamel formula corresponding to (3.1) has a fixed point. In order to bound
the terms of the Duhamel formula in the desired function space, we will de-
compose factors of the nonlinear function |uk|2uj frequency cubes, apply the
appropriate Strichartz estimates on each frequency cube, and find an upper
bound for the sum over all such decompositions. Thus, the primary tools we
use are the following Strichartz estimates on T

d, due to Killip and Vişan:

Theorem 3.2 [18]. For d ≥ 1, θ1, ...θd ∈ (0, 1], 1 ≤ N ∈ 2Z, and p > 2(d+2)
d .

Then,
‖eitΔP≤Nf‖Lp

t,x([0,1]×Td) � N
d
2 − d+2

p ‖f‖L2(Td) (3.4)

where Δ := θ1∂
2
x1

+ ... + θd∂
2
xd

As we only consider problems posed on T
3, we note that the above in-

equality with d = 3 reads

‖eitΔP≤Nf‖Lp
t,x([0,1]×T3) � N

3
2− 5

p ‖f‖L2(T3)

for p > 10
3 .
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Remark 3.1. Due to the invariance of eitΔf(x) under Galilean transformations,
if CN is a cube of side length N in R

3 and p > 10
3 , we have

‖eitΔPCN
f‖Lp

t,x([0,1]×T3) � N
3
2− 5

p ‖f‖L2(T3)

The Bourgain space Xs,b := Xs,b(R × T
3) is the completion of

C∞(
R;Hs(T3)

)
under the norm

‖u‖Xs,b : = ‖e−itΔu(t, x)‖Hb
t (R;Hs

x(T3))

=

⎛
⎝∑

ξ∈Z3

∫
R

dτ〈τ + Q(ξ)〉2b〈ξ〉2s|û(τ, ξ)|2 dτ

⎞
⎠

1
2

,

where Q(ξ) := θ1ξ
2
1 + θ2ξ

2
2 + θ3ξ

2
3 . For 0 < T ≤ 1, define the restriction space

Xs,b
T := Xs,b([0, T ] × T

3) with the norm

‖u‖Xs,b
T

= inf
w∈Xs,b

{‖w‖Xs,b , with w|[0,T ] = u
}

Remark 3.2. We will make use of the following embedding properties of the
Xs,b spaces:

(1) For s1 ≤ s2 and b1 ≤ b2, Xs2,b2 ↪→ Xs1,b1 .
(2) For b > 1

2 , X0,b ↪→ CtL
2
x.

(3) X0, 14 ↪→ L4
t L

2
x.

Property (1) is a direct consequence of the definition of the Xs,b norm and
monotonicity. Property (2) follows from the observation that 〈τ + Q(ξ)〉−b ∈
L2

τ (R) for b > 1
2 . Property (3) can be shown by the Sobolev embedding

H
1
4 (R) ↪→ L4(R) applied to the L4

t L
2
x norm of eitΔU(t, x) for U(t, x) =

e−itΔu(x, t).

4. Nonlinear Estimates for the Cubic NLSS

The following proposition, due to Ginibre, gives an upper bound for Xs,b
T

norm of the nonlinear term of the Duhamel formula; thus, it motivates the
development of the nonlinear estimates in this section. We refer the interested
reader to [7] and [13] for the proof of the proposition.

Proposition 4.1. Suppose 0 < T ≤ 1. For (b, b′) ∈ R
2 satisfying 0 < b′ < 1

2 < b
and b + b′ < 1, ∥∥∥∥

∫ t

0

eiΔ(t−t′)F (t′) dt
∥∥∥∥

Xs,b
T

� T 1−b−b′‖F‖
Xs,−b′

T

The next lemma is the crucial nonlinear estimate for local well-posedness
of the cubic NLSS in Hs(T3) for s > 1

2 , which we will prove in this section.
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Lemma 4.2. Let s > 1
2 . There exists C > 0 and (b, b′) ∈ R

2 with 1
4 < b′ <

1
2 < b satisfying b + b′ < 1, such that for every triple (u(1), u(2), u(3)) with
u(j) ∈ Xs,b(R × T

3) for j = 1, 2, 3,

‖u(1)u(2)u(3)‖Xs,−b′ (R×T3) ≤ C

3∏
j=1

‖u(j)‖Xs,b(R×T3) (4.1)

We begin by establishing bilinear Strichartz estimates for frequency-
localized functions on T

3, then derive bilinear estimates in the Xs,b-spaces. We
follow arguments similar to [7] with some improvements due to the Strichartz
estimates stated in Theorem 3.4.

Proposition 4.3 (Bilinear Strichartz Estimates). Suppose u1 and u2 ∈ L2(T3),
have spectra in [−N1, N1]3 and [−N2, N2]3, respectively. Then,

‖eitΔu1e
itΔu2‖L2

t L2
x([0,1]×T3) � min(N1, N2)

1
2 ‖u1‖L2(T3)‖u2‖L2(T3)

Proof. As the time domain t ∈ [0, 1] and spatial domain x ∈ T
3 are fixed,

we suppress the domain of the Lp
t and Lp

x norms throughout the proof. By
symmetry, suppose N1 ≤ N2. Decompose R

3 into a disjoint collection of cubes
{Cj}, each of side length N1, and observe that u1(PCj

u2) has spectrum localized
in a fixed dilate of Cj . Thus, we may use almost orthogonality to conclude

‖eitΔu1e
itΔu2‖L2

t L2
x

≤
⎛
⎝∑

j

‖eitΔu1e
itΔ(PCj

u2)‖2
L2

t L2
x

⎞
⎠

1
2

.

By Hölder’s inequality, the right-hand side is bounded above by

‖eitΔu1‖L4
t L4

x

⎛
⎝∑

j

‖eitΔ(PCj
u2)‖2

L4
t L4

x

⎞
⎠

1
2

.

Applying Strichartz estimates to the above upper bound, we conclude

‖eitΔu1e
itΔu2‖L2

t L2
x

� N
1
4
1 ‖u1‖L2

x

⎛
⎝∑

j

N
1
2
1 ‖PCj

u2‖2
L2

x

⎞
⎠

1
2

� N
1
2
1 ‖u1‖L2

x
‖u2‖L2

x

The next proposition allows us to move between the previous bilinear
Strichartz estimates and bilinear estimates in Bourgain Xs,b spaces. The result
is contained in [7], but the proof is included here for completeness.

Proposition 4.4. The following two statements are equivalent:
(1) For u1 and u2 ∈ L2(T3), with spectra in [−N1, N1]3 and [−N2, N2]3,

respectively,

‖eitΔu1e
itΔu2‖L2

t L2
x([0,1]×T3) � min(N1, N2)s‖u1‖L2

x(T3)‖u2‖L2
x(T3)
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(2) For any b > 1
2 and any v1, v2 ∈ X0,b(R × T

3) with spectra in [−N1, N1]3

and [−N2, N2]3, respectively,

‖v1v2‖L2
t L2

x(R×T3) � min(N1, N2)s‖v1‖X0,b(R×T3)‖v2‖X0,b(R×T3)

Proof. We show statement (1) implies statement (2) under the assumption
that both v1 and v2 are supported on the time interval (0, 1). The general
case easily follows using a partition of unity argument. By symmetry, suppose
N1 ≤ N2. For k ∈ {1, 2}, define Vk := e−itΔvk, so that we may write

vk = eitΔVk.

Use Ft to denote the Fourier transform in the time variable and observe

(v1v2)(t) = (2π)−2

∫ ∞

−∞

∫ ∞

−∞
eitτ+σeitΔFtV1(τ)eitΔFtV2(σ) dτdσ.

Let us simplify the notation, and write L2
t L

2
x := L2

t L
2
x([0, 1]×T

3). By statement
(1) of the proposition, we have the estimate

‖v1v2‖L2
t L2

x
≤ (2π)−2

∫ ∞

−∞

∫ ∞

−∞
‖eitΔFtV1(τ)eitΔFtV2(σ)‖L2

t L2
x
dτdσ

� Ns
1

∫ ∞

−∞

∫ ∞

−∞
‖FtV1(τ)‖L2

x(T3)‖FtV2(σ)‖L2
x(T3) dτdσ. (4.2)

Motivated by the observation that for b > 1
2 , 〈τ〉−b ∈ L2

τ (R), we use Hölder’s
inequality and proceed as follows:∫ ∞

−∞
‖FtV1(τ)‖L2

x(T3) dτ ≤ Cb

(∫ ∞

−∞
〈τ〉2b‖FtV1(τ)‖2

L2
x(T3) dτ

) 1
2

= Cb‖V1(t)‖Hb
t L2

x(R×T3)

= Cb‖v1‖X0,b(R×T3). (4.3)

Together, (4.2) and (4.3) imply statement (2) when v1(t), v2(t) are supported
on the time interval (0, 1). The general case follows from a standard partition
of unity argument.

To see the reverse implication, suppose uk ∈ L2(T3) has spectral support
[−Nk, Nk]3 for k = 1, 2, and define Uk(t) := eitΔuk. Let ψ(t) ∈ C∞

0 (R) be
supported in the interval (0, 1), so that vk(t) := ψ(t)Uk(t) ∈ X0,b(R). The
equivalences

‖v1v2‖L2
t L2

x(R×T3) = ‖U1U2‖L2
t L2

x((0,1)×T3) = ‖eitΔu1e
itΔu2‖L2

t L2
x((0,1)×T3)

and

‖vk‖X0,b(R×T3) = ‖e−itΔψ(t)eitΔuk‖Hb
t L2

x(R×T3) = Cψ‖uk‖L2
x(T3)

are all that is needed to see that statement (2) implies statement (1).

In the next proposition, we establish a range of bilinear estimates using
the Bourgain spaces.
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Proposition 4.5. For any s > 1
2 , there is some 1

4 < b′ < 1
2 such that for any

v1, v2 ∈ X0,b(R × T
3), with spectral support on [−N1, N1]3 and [−N2, N2]3,

respectively, the following estimate holds:

‖v1v2‖L2
t L2

x(R×T3) � min(N1, N2)s‖v1‖X0,b′ ‖v1‖X0,b′

Proof. Let v1 and v2 have the required spectral support, and suppose N1 ≤ N2.
From the previous lemma and the bilinear Strichartz estimate, for any ε0 > 0,
if v1, v2 ∈ X0, 12+ε0 , then

‖v1v2‖L2
t L2

x(R×T3) � min(N1, N2)
1
2 ‖v1‖

X0, 12+ε0
‖v2‖

X0, 12+ε0
. (4.4)

Using Hölder’s inequality, Bernstein’s inequality, and the inclusion X0, 14 ↪→
L4

t L
2
x, we derive a second estimate as follows:

‖v1v2‖L2
t L2

x(R×T3) ≤ ‖v1‖L4
t L∞

x (R×T3)‖v2‖L4
t L2

x(R×T3)

� Ns
1‖v1‖L4

t L2
x(R×T3)‖v2‖L4

t L2
x(R×T3)

� Ns
1‖v1‖

X0, 14
‖v2‖

X0, 14
, (4.5)

for any s ≥ 3
2 .

Interpolating the bounds (4.4) and (4.5) gives the desired result.

We may now prove Lemma 4.2, our key multilinear estimate, using a du-
ality argument combined with a frequency decomposition of the u(j) functions.

Proof of Lemma 4.2. Let (b, b′) satisfy the hypotheses, with values to be de-
termined later. By duality, we prove the equivalent estimate:
for any u(0) ∈ X−s,b′

(R × T
3),⏐⏐⏐⏐

∫
R

∫
T3

u(0)u(1)u(2)u(3) dxdt

⏐⏐⏐⏐ ≤ C‖u(0)‖X−s,b′

3∏
j=1

‖u(j)‖Xs,b(R×T3). (4.6)

By density, we may assume u(j) ∈ C∞
0 (R × T

3) for j = 0, 1, 2, 3, and we will
decompose each of these functions into dyadic cubes in Fourier space.

To this end, we adopt the notation Nj to mean the family of dyadic
numbers {2nj }nj∈N, and the summation

∑
Nj

f(Nj) indicates to sum over
all possible values of Nj . Summing over the collection N of all such dyadic
decompositions,

N =
{
(N0, N1, N2, N3)

⏐⏐Nj ∈ 2N for j = 0, 1, 2, 3
}
,

we observe⏐⏐⏐⏐
∫
R

∫
T3

u(0)u(1)u(2)u(3) dxdt

⏐⏐⏐⏐ ≤
∑
N

⏐⏐⏐⏐
∫
R

∫
T3

u
(0)
N0

u
(1)
N1

u
(2)
N2

u
(3)
N3

dxdt

⏐⏐⏐⏐. (4.7)

The integral on the right-hand side is zero unless the two highest frequencies
are comparable. Using symmetry, we reduce the sum to two cases.

Case 1: Define N1 := {N0 ∼ N1 ≥ N2 ≥ N3} ∩ N , and suppose s′ sat-
isfies 1

2 < s′ < s. We use Hölder’s inequality, Proposition 4.5, and Bernstein’s
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inequality to show that for some 1
4 < b′ < 1

2 ,

∑
N1

⏐⏐⏐⏐⏐
∫
R

∫
T3

u
(0)
N0

u
(1)
N1

u
(2)
N2

u
(3)
N3

dxdt

⏐⏐⏐⏐⏐
≤
∑
N1

‖u
(0)
N0

u
(2)
N2

‖L2
t L2

x
‖u

(1)
N1

u
(3)
N3

‖L2
t L2

x

�
∑
N1

Ns′
2 Ns′

3

3∏
j=0

‖u
(j)
Nj

‖X0,b′

�
∑
N1

Ns
0

Ns
1

Ns′−s
2 Ns′−s

3 ‖u
(0)
N0

‖X−s,b′

3∏
j=1

‖u
(j)
Nj

‖Xs,b′ (4.8)

Noting that s′ − s ≤ 0, and summing over N3 ≤ N2 using Cauchy–Schwarz,
we bound the expression (4.8) above by

C‖u(2)‖Xs,b′ ‖u(3)‖Xs,b′
∑

N0∼N1

‖u
(0)
N0

‖X−s,b′ ‖u
(1)
N1

‖Xs,b′ . (4.9)

We use Cauchy–Schwarz again to sum on N0 ∼ N1 in (4.9), concluding

∑
N1

⏐⏐⏐⏐⏐
∫
R

∫
T3

u
(0)
N0

u
(1)
N1

u
(2)
N2

u
(3)
N3

dxdt

⏐⏐⏐⏐⏐
� ‖u(0)‖X−s,b′

3∏
j=1

‖u(j)‖Xs,b′ . (4.10)

Case 2: Define N2 := {N0 ≤ N1 ∼ N2 ≥ N3} ∩ N As in the previous
case, for s′ satisfying 1

2 < s′ < s, Proposition 4.5 guarantees the existence of
b′ with 1

4 < b′ < 1
2 such that

∑
N2

⏐⏐⏐⏐⏐
∫
R

∫
T3

u
(0)
N0

u
(1)
N1

u
(2)
N2

u
(3)
N3

dxdt

⏐⏐⏐⏐⏐
≤
∑
N2

‖u
(0)
N0

u
(1)
N1

‖L2
t L2

x
‖u

(2)
N2

u
(3)
N3

‖L2
t L2

x

�
∑
N2

Ns′
0 Ns′

3

3∏
j=0

‖u
(j)
Nj

‖X0,b′

�
∑
N2

Ns′+s
0

Ns
1Ns

2

Ns′−s
3 ‖u

(0)
N0

‖X−s,b′

3∏
j=1

‖u
(j)
Nj

‖Xs,b′ , (4.11)

where we have used Hölder’s inequality for the first line and Bernstein’s in-
equality for the last. We find upper bounds for the last expression above by
first summing on N0 and N3, then on N1 ∼ N2, using Cauchy–Schwarz each
time:
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C‖u(0)‖X−s,b′ ‖u(3)‖Xs,b′
∑

N1∼N2

Ns′
1

Ns
2

‖u
(1)
N1

‖Xs,b′ ‖u
(2)
N2

‖Xs,b′

� ‖u(0)‖X−s,b′ ‖u(3)‖Xs,b′
∑

N1∼N2

‖u
(1)
N1

‖Xs,b′ ‖u
(2)
N2

‖Xs,b′

� ‖u(0)‖X−s,b′

3∏
j=1

‖u(j)‖Xs,b′ (4.12)

Together, (4.10) and (4.12) conclude the proof of our lemma. �

5. Well-Posedness of the Cubic NLSS

We now use a contraction argument on the Duhamel formula for the cubic
NLSS to show local well-posedness for initial data in Hs

λ(T3) for s > 1
2 . In the

defocusing cubic NLSS with initial data in H1
λ(T3), the local well-posedness

combines with the conservation laws to extend the solution for all time.

Proof of Theorem 3.1. We begin with the Duhamel formula for the j-th equa-
tion of the cubic NLSS

Φj(u)(t) = eitΔu0,j − iσ

∫ t

0

eiΔ(t−t′)ρuj(t′)dt′

where u0,j = uj(t = 0, x), u = {uj}∞
j=1 and ρ =

∑
k∈N

λk|uk|2. Define the
map Φ(u) := {Φj(u)}∞

j=1. Fix s so that s > 1
2 . and let b′ = b′(s) be the

value guaranteed by Proposition 4.5. Choose b = b(s) > 1
2 so that b′ + b < 1.

Suppose ‖u0‖Hs
λ(T3) ≤ η for some η to be chosen later. We will show that Φ is

a contraction on the ball

B :=
{

u ∈ Xs,b
T,λ ∩ CtH

s
λ([0, T ] × T

3)
∣∣∣ ‖u‖Xs,b

T,λ
≤ 2η

}
for some T ≤ 1.

By Proposition 4.1 and Lemma 4.2, we have

‖Φj(u)‖Xs,b
T

≤ ‖eitΔu0,j‖Xs,b
T

+
∥∥∥∥
∫ t

0

ei(t−t′)Δρuj(t′) dt′
∥∥∥∥

Xs,b
T

≤ ‖u0,j‖Hs(T3) + CT 1−b−b′ ∑
k

λk‖|uk|2uj‖X−s,b′
T

≤ ‖u0,j‖Hs(T3) + CT 1−b−b′ ∑
k

λk‖uk‖2
Xs,b

T

‖uj‖Xs,b
T

≤ ‖u0,j‖Hs(T3) + CT 1−b−b′‖u‖2
Xs,b

T,λ

‖uj‖Xs,b
T

From the last inequality above, we square both sides, multiply by λj , sum on
j, then take the square root to find

‖Φ(u)‖Xs,b
T,λ

≤
√

2‖u0‖Hs
λ(T3) + CT 1−b−b′‖u‖3

Xs,b
T,λ

.
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For u ∈ B

‖Φ(u)‖Xs,b
T,λ

≤
√

2η + CT 1−b−b′
η3

and the right side is bounded above by 2η for T small enough depending on
C and η.

For the contraction argument on B, we first observe that∑
k

λk

∥∥ |uk|2uj − |vk|2vj

∥∥
X−s,b′

T

≤
∑

k

λk‖uk‖2
Xs,b

T

‖uj − vj‖Xs,b
T

+
∑

k

λk‖uk − vk‖Xs,b
T

(
‖uk‖Xs,b

T
+ ‖vk‖Xs,b

T

)
‖vj‖Xs,b

T

≤ ‖u‖2
Xs,b

T,λ

‖uj − vj‖Xs,b
T

+ ‖u − v‖Xs,b
T,λ

(
‖u‖Xs,b

T,λ
+ ‖v‖Xs,b

T,λ

)
‖vj‖Xs,b

T
(5.1)

where we have used Cauchy–Schwarz twice. We combine the above argument
with Ginibre’s estimate, then square, multiply by λj , sum on j, then take the
square root to find

‖Φ(u) − Φ(v)‖Xs,b
T,λ

� T 1−b−b′‖u − v‖Xs,b
T,λ

(
‖u‖Xs,b

T,λ
+ ‖v‖Xs,b

T,λ

)2

.

For small enough T depending on s, ‖u0‖Hs
λ(T3), and the implicit constant,

Φ is a contraction on B in the Xs,b
λ norm, and we obtain a unique solution

to the Cauchy problem on [0, T ). Continuous dependence on initial data is
obtained using a similar argument, and we conclude the cubic NLSS is locally
well-posed in Hs

λ(T3) for s > 1
2 .

Now consider the defocusing cubic NLSS with initial data u0 ∈ H1
λ(T3).

Recall, the conserved energy is

Eλ =
1
2

∑
k

λk

∫
|∇uk|2 dx +

1
4
‖ρ‖2

L2
x
.

By Hölder’s inequality and Sobolev embedding, we have

‖ρ‖L2(T3) ≤
∑

k

λk‖uk‖2
L4(T3) �

∑
k

λk‖uk‖2
L6(T3) � ‖u‖2

H1
λ(T3),

so that

‖u(t)‖2
H1

λ(T3) ≤ M(u(t)) + 2E(u(t)) = M(u0) + 2E(u0)

= ‖u(0)‖2
H1

λ(T3) +
1
2
‖ρ(0)‖2

L2
x(T3)

≤ ‖u(0)‖2
H1

λ(T3) + C‖u0‖4
H1

λ(T3),

Thus, for some T ′ < T, depending on the constant in the above upper bound,
we may repeat the local well-posedness argument on intervals of length T ′

indefinitely. �
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6. Well-Posedness of the Quintic NLSS on T
3

The quintic nonlinear Schrödinger system is given by{
i∂tuj = −Δuj + σρ2uj , j ∈ N

uj(0, x) = uj,0(x), x ∈ T
3,

(6.1)

where σ ∈ {−1, 1}, λ ∈ �1+, and ρ(t, x) =
∑

λj |uj(t, x)|2. The system has the
conserved quantities of mass and energy, given by

Mλ(u) :=
∑

k

λk‖uk‖2
L2(T3) = ‖u‖2

L2
λ

(6.2)

Eλ(u) :=
1
2

∑
k

λk‖∇uk‖2
L2(T3) + σ

1
6

∫
T3

ρ3 dx. (6.3)

In this chapter, we prove the following theorem:

Theorem 6.1 (Local and global well-posedness of the quintic NLSS). Let λ ∈
�1+, and suppose u0 ∈ H1

λ(T3). There exists a time T depending on u0 such
that the system (6.1) is locally well-posed for t ∈ [0, T ). Moreover, there exists
η > 0 such that if ‖u0‖H1

λ(Td) ≤ η, then the solution is global in time.

As in the case of the quintic NLS equation, the time of existence depends
on the function itself, and global well-posedness holds for initial data with
sufficiently small H1

λ norm.
We will use some of the same tools as were used in the cubic case,

namely establishing multilinear estimates using frequency decompositions and
the Strichartz estimate (3.2). However, following [15] and [18], we will use the
function spaces Xs and Y s in our analysis, similar to the Xs,b spaces, as they
are well-suited the study of the energy-critical system.

7. Relevant Function Spaces and Their Properties

The definitions of the Xs and Y s spaces are based on underlying Up and
V p spaces. We present an overview of this construction and state some of
the properties of these function spaces that we require for our analysis. For a
thorough treatment of these spaces, we refer the interested reader to [15].

We construct the Xs and Y s on finite time intervals, and as in the pre-
vious chapter, our norms will be restriction norms on the given time interval.
Let H be a separable Hilbert space over C, and [0, T ] a finite time interval. Let
T be the set of partitions of the interval [0, T ], that is, {tj}M

j=0 ∈ T whenever
0 = t0 < t1 < ... < tM ≤ T for some finite M. For functions u : [0, T ) → H,
we define u(T ) := 0 at the endpoint of the interval.

Definition 7.1. A Up-atom, 1 ≤ p < ∞ is a function a : [0, T ) → H of the form

a =
M∑

j=1

χ[tj−1,tj)φj−1
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where M < ∞, {tj}M
j=0 ∈ T and the sequence {φj} ⊂ H satisfies∑M

j=0 ‖φj‖p
H = 1. Define Up([0, T );H) to be the space of all functions that

may be represented in the form

u =
∞∑

k=1

μkak

where {μk} ∈ �1(C) and {ak} are Up-atoms. Up is a Banach space with the
norm

‖u‖Up([0,T );H) := inf

{ ∞∑
k=1

|μk|⏐⏐u =

∞∑
k=1

μkak with {μk} ∈ �1(C) and Up-atoms ak

}

Definition 7.2. The space V p([0, T );H), 1 ≤ p < ∞, is the space of all func-
tions v : [0, T ) → H such that

‖v‖V p([0,T );H) := sup
{tk}∈T

(
M∑

k=1

‖v(tk) − v(tk−1)‖p
H

)1/p

< ∞.

Define V p
rc to be the closed subspace of V p consisting of right-continuous func-

tions v(t) such that v(0) = 0. V p
rc is a Banach space under the above norm.

Definition 7.3. For s ∈ R, we define the spaces Xs([0, T )) and Y s([0, T ))
as the spaces of all functions u : [0, T ) → Hs(Td) such that for every ξ ∈
Z

d, eit|ξ|2 û(t)(ξ) is in U2([0, T ); C) and V 2
rc([0, T ); C), respectively, with finite

norms

‖u‖Xs([0,T )) :=

⎛
⎝∑

ξ∈Zd

〈ξ〉2s‖ ̂e−itΔu(t)(ξ)‖2
U2

⎞
⎠

1/2

‖u‖Y s([0,T )) :=

⎛
⎝∑

ξ∈Zd

〈ξ〉2s‖ ̂e−itΔu(t)(ξ)‖2
V 2

⎞
⎠

1/2

.

Remark 7.1. We record the following properties of Xs and Y s:
(1) We have the continuous embeddings Xs ↪→ Y s and Xs ↪→ CtH

s
x

(2) The Xs and Y s spaces scale like L∞
t Hs

x and have the same Fourier-based
properties, including Bernstein inequalities and square summability.

(3) Proposition 2.11 in [15] gives∥∥∥∥
∫ t

0

ei(t−t′)ΔF (t′) dt′
∥∥∥∥

Xs([0,T ))

� ‖F‖L1
t Hs

x([0,T )×(T3))

(4) For p > 10
3 , the Strichartz estimate 3.2 gives

‖P≤Nu‖Lp
t,x([0,T )×T3) � N

3
2− 5

p ‖e−itΔP≤Nu‖Up([0,T );L2(T3))

� N
3
2− 5

p ‖P≤Nu‖Y 0([0,T )). (7.1)
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8. Nonlinear Estimates

We begin this section by stating the following proposition from [15], which
allows us to estimate the nonlinear term of the Duhamel formula using a dual
formulation.

Proposition 8.1. Let s ≥ 0 and T > 0. If F (t, x) ∈ L1
t H

s
x([0, T ) × T

3), then∫ t

0
ei(t−t′)ΔF (t′) dt′ ∈ Xs([0, T )), and

∥∥∥∥
∫ t

0

ei(t−t′)ΔF (t′) dt′
∥∥∥∥

Xs([0,T ))

≤ sup
v∈Y −s([0,T )),‖v‖

Y −s=1

∣∣∣∣
∫ T

0

∫
T3

F (t, x)v(t, x) dxdt

∣∣∣∣ .
We will use this dual formulation, combined with a frequency decompo-

sition argument similar to the argument in Chapter 2 to prove the following
lemma:

Lemma 8.2. For λ ∈ �1+ and a fixed value of T satisfying 0 < T ≤ 1, there is
a constant C > 0 (which does not depend on T ) such that for any quintuple
u(j) ∈ X1([0, T )), j = 1, . . . , 5,∥∥∥∥∥∥

∫ t

0

ei(t−s)Δ

⎛
⎝ 5∏

j=1

u(j)(s)

⎞
⎠ ds

∥∥∥∥∥∥
X1([0,T ])

≤ C

5∏
j=1

‖u(j)‖X1([0,T ]). (8.1)

In particular,∥∥∥∥
∫ t

0

ei(t−s)Δρ2uj(s)ds

∥∥∥∥
X1([0,T ])

≤ C‖u‖4
X1

λ([0,T ])‖uj‖X1([0,T ]). (8.2)

Proof. Fix N ≥ 1, and note P≤N [ρ2uj ] ∈ L1([0, T ];H1(T3)). By duality, we
have from [15]∥∥∥∥

∫ t

0

ei(t−s)ΔP≤N [ρ2uj(s)] ds

∥∥∥∥
X1([0,T ])

≤ sup
‖ṽ‖Y −1([0,T ])=1

∣∣∣∣∣
∫ T

0

∫
T3

P≤N [ρ2uj(t, x)]ṽ(t, x)dxdt

∣∣∣∣∣ .
Letting v := P≤N ṽ,∣∣∣∣∣

∫ T

0

∫
T3

ρ2ujv dxdt

∣∣∣∣∣ ≤
∑
k,l

λkλl

∣∣∣∣∣
∫ T

0

∫
T3

|uk|2|ul|2ujv dxdt

∣∣∣∣∣ (8.3)

Observe that our problem reduces to finding an upper bound for the double in-
tegral on the right-hand side for fixed k and l. To that end, for i ∈ {1, 2, 3, 4, 5},
let u(i) be one of the collection {uk, uk, ul, ul, uj} so that the list is exhausted
as i varies from 1 to 5. We write each factor as a sum of dyadic frequency
projections, that is,∣∣∣∣∣

∫ T

0

∫
T3

|uk|2|ul|2ujv dxdt

∣∣∣∣∣ ≤
∑
N

∣∣∣∣∣
∫ T

0

∫
T3

vN0u
(1)
N1

u
(2)
N2

u
(3)
N3

u
(4)
N4

u
(5)
N5

dxdt

∣∣∣∣∣
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where N =
{
Ni ∈ 2N, for i ∈ {0, 1, 2, 3, 4, 5}}.

Note that the integral on the right-hand side above is only nonzero when
the two largest frequencies are comparable. By this fact and symmetry, we
may break N into two cases where the two largest frequencies are N0 ∼ N5

and N5 ∼ N1. In the analysis of each case, we adopt the abbreviated notations
‖·‖p := ‖·‖Lp

t,x([0,T ],T3), ‖·‖Y s := ‖·‖Y s([0,T ]), and we use a similar abbreviation
for the Xs norm.

Case 1: N1 = {N0 ∼ N5 ≥ N1 ≥ N2 ≥ N3 ≥ N4} ∩ N . Subdivide Z
3 into

cubes Cm of size N1, and write Cm ∼ Cn if the set Cm + Cn overlaps the
Fourier support of P≤2N1 . Note that here are a bounded number of Cm ∼ Cn

for a given Cn. Using Hölder’s inequality, Strichartz estimates, and Bernstein’s
inequalities, we have
∑
N1

∫ T

0

∫
T3

∣∣∣vN0u
(5)
N5

u
(1)
N1

u
(2)
N2

u
(3)
N3

u
(4)
N4

∣∣∣ dxdt (8.4)

�
∑
N1

∑
Cm∼Cn

‖PCm
vN0‖4‖PCn

u
(5)
N5

‖4‖u
(1)
N1

‖4‖u
(2)
N2

‖4‖u
(3)
N3

‖∞‖u
(4)
N4

‖∞

�
∑
N1

∑
Cm∼Cn

N
3/4
1 N

1/4
2 N

3/2
3 N

3/2
4 ‖PCm

vN0‖Y 0‖PCn
u

(5)
N5

‖Y 0

4∏
i=1

‖u
(i)
Ni

‖Y 0

�
∑
N1

∑
Cm∼Cn

N0N
1/2
3 N

1/2
4

N5N
1/4
1 N

3/4
2

‖PCm
vN0‖Y −1‖PCn

u
(5)
N5

‖Y 1

4∏
i=1

‖u
(i)
Ni

‖Y 1 (8.5)

We apply the Cauchy–Schwarz inequality and then sum on N4 for N4 ≤ N3.
We then repeat this process for N3 ≤ N2 to see that (8.5) is controlled by

‖u(3)‖Y 1‖u(4)‖Y 1

( ∑
N0∼N5

∑
Cm∼Cn

‖PCm
vN0‖Y −1‖PCn

u
(5)
N5

‖Y 1

)

×
⎛
⎝ ∑

N1≥N2

(
N2

N1

)1/4

‖u
(1)
N1

‖Y 1‖u
(2)
N2

‖Y 1

⎞
⎠

Using Cauchy–Schwarz to find an upper bound for each of the sums, we first
sum on the set N2 ≤ N1 ≤ N5, then on the set Cm ∼ Cn, and finally on the
set N5 ∼ N0. We find that the previous expression is bounded above by

C‖v‖Y −1‖uj‖Y 1

4∏
i=1

‖u(i)‖Y 1 ,

for some constant C > 0. The embedding X1 ↪→ Y 1 proves that

∑
N1

∫ T

0

∫
T3

∣∣∣vN0u
(1)
N1

u
(2)
N2

u
(3)
N3

u
(4)
N4

u
(5)
N5

∣∣∣ dxdt ≤ C‖v‖Y −1

5∏
j=1

‖u(j)‖X1 (8.6)

The implicit constant arises from the use of the Strichartz estimates, Bernstein
inequalities, and the embedding X1 ↪→ Y 1, thus is independent of T.
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Case 2: N2 := {N0 ≤ N5 ∼ N1 ≥ N2 ≥ N3 ≥ N4} ∩ N . In this case, it
is not necessary to subivide into cubes. From Hölder’s inequality, Strichartz
estimates, and Bernstein’s inequality, we find∑

N2

∫ T

0

∫
T3

∣∣∣vN0u
(5)
N5

u
(1)
N1

u
(2)
N2

u
(3)
N3

u
(4)
N4

∣∣∣ dxdt (8.7)

∑
N2

‖vN0‖4‖u
(5)
N5

‖4‖u
(1)
N1

‖4‖u
(2)
N2

‖4‖u
(3)
N3

‖∞‖u
(4)
N4

‖∞

�
∑
N2

(N0N5N1N2)
1
4 (N3N4)

3
2 ‖vN0‖Y 0‖u

(5)
N5

‖Y 0

4∏
i=1

‖u
(i)
Ni

‖Y 0

�
∑
N2

N
5
4
0 N

1
2
3 N

1
2
4

N
3
4
5 N

3
4
1 N

3
4
2

‖vN0‖Y −1‖u
(5)
N5

‖Y 1

4∏
i=1

‖u
(i)
Ni

‖Y 1 (8.8)

Using Cauchy–Schwarz for each sum, we sum in the order N4 ≤ N3, N3 ≤ N2,
N2 ≤ N1, and N0 ≤ N5. Thus, there is a constant C > 0 such that (8.8) is
bounded above by

C‖v‖Y −1‖u(2)‖Y 1‖u(3)‖Y 1‖u(4)‖Y 1

∑
N5∼N1

N
1
2
5

N
1
2
1

‖u
(5)
N5

‖Y 1‖u
(1)
N1

‖Y 1

� ‖v‖Y −1‖u(5)‖Y 1

4∏
i=1

‖u(i)‖Y 1 .

Finally, we again use the embedding Xs ↪→ Y s to conclude

∑
N2

∫ T

0

∫
T3

∣∣∣vN0u
(1)
N1

u
(2)
N2

u
(3)
N3

u
(4)
N4

u
(5)
N5

∣∣∣ dxdt ≤ C‖v‖Y −1

5∏
j=1

‖u(j)‖X1 , (8.9)

where the implicit constant C > 0 arises in the same way as in Case 1. To-
gether, the bounds (8.6) and (8.9) yield∣∣∣∣∣∣

∫ T

0

∫
T3

v
( 5∏

j=1

u(j)(t)
)

dxdt

∣∣∣∣∣∣ ≤ C‖v‖Y −1

5∏
j=1

‖u(j)‖X1 . (8.10)

Recalling that v = P≤N ṽ where ‖ṽ‖Y −1 = 1, and letting N → ∞, we infer
that the asserted bound (8.1) holds.

Recalling that u(i), i = 1, . . . , 5, enumerates the collection
{uk, uk, ul, ul, uj}, we have∥∥∥∥∥

∫ T

0

∫
T3

|uk|2|ul|2uj dxdt

∥∥∥∥∥
X1

≤ C‖uj‖X1‖uk‖2
X1‖ul‖2

X1 . (8.11)

Multiplying the above inequality by λkλj and summing on k, l, we obtain∥∥∥∥∥
∫ T

0

∫
T3

ρ2uj dxdt

∥∥∥∥∥
X1

≤ C‖u‖4
X1

λ
‖uj‖X1
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where C > 0 does not depend on time. This proves (8.2).

9. Proof of Main Result for the Quintic Case

Proof of Theorem 6.1. We first show local well-posedness for small initial data.
The Duhamel formula for the j-th equation in the quintic NLS system is given
by:

Φj(u)(t) = eitΔu0j
− iσ

∫ t

0

ei(t−t′)Δρ2uj(t′) dt′.

Define the map Φ(u) := {Φj(u)}∞
j=1. Suppose ‖u0‖H1

λ(T3) ≤ η for some small
η to be chosen later. We will show that Φ is a contraction on the ball

B1 :=
{

u ∈ X1
λ([0, 1]) ∩ CtH

1
λ([0, 1] × T

3)
∣∣∣ ‖u‖X1

λ([0,1]) ≤ 2η
}

under the X1
λ([0, 1]) norm. As we proceed, each X1 and X1

λ norm will be over
the interval [0, 1] and each H1 and H1

λ norm will be over T
3.

By Lemma 8.2, we have

‖Φj(u)‖X1 ≤ ‖u0j
‖H1 + C‖u‖4

X1
λ
‖uj‖X1 ,

square each side, multiply by λj , sum on j, and take the square root to find

‖Φ(u)‖X1
λ

≤
√

2‖u0‖H1
λ

+ C‖u‖5
X1

λ
(9.1)

For u ∈ B1, we have ‖Φ(u)‖X1
λ

≤ √
2η+C(2η)5. The right-hand side is bounded

by 2η if η is sufficiently small, thus Φ maps the ball B1 to itself.
Next we show that Φ is a contraction on B1. Let u, v ∈ B1 and consider

‖Φ(u − v)‖X1
λ
. We use arguments similar to those leading to equation (5.1) in

the cubic case, to show

‖Φj(u−v)‖X1 �
(‖u‖X1

λ
+‖v‖X1

λ

)3‖u−v‖X1
λ
‖uj‖X1+‖v‖4

X1
λ
‖uj−vj‖X1 (9.2)

We then square the above estimate, multiply by λj , and take the square root
to find

‖Φ(u − v)‖X1
λ

≤ C‖u − v‖X1
λ

(
‖u‖X1

λ
+ ‖v‖X1

λ

)4

Thus, for u, v ∈ B1, we have

‖Φ(u − v)‖X1
λ

≤ C‖u − v‖X1
λ

(4η)4

≤ 1
2
‖u − v‖X1

λ

for η sufficiently small. By the contraction mapping principle, we obtain a
solution u on the time interval [0, 1].

The global well-posedness for the case of small initial data is obtained
from the conserved mass and energy for the energy-critical NLS system:

M(u) = ‖u‖2
L2

λ(T3) E(u) =
1
2

∑
j

(
λj

∫
T3

|∇uj |2 dx
)

+ σ
1
6

∫
T3

ρ3 dx
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In the defocusing case, σ = 1, we may expand ρ0 and apply the Sobolev
embedding H1 ↪→ L6, to find

‖u(t)‖2
H1

λ
≤ M(u(t)) + 2E(u(t)) = M(u0) + 2E(u0)

≤ ‖u0‖2
H1

λ
+

1
3
C‖u0‖6

H1
λ

For ‖u0‖H1
λ

sufficiently small, we may ensure ‖u(t)‖H1
λ

≤ η throughout its
time of existence. We may continue iterating the previous local well-posedness
arguments indefinitely to obtain global well-posedness.

For global in time solutions in the focusing case, σ = −1, we again use
the conservation of mass and energy, combined with a continuity argument as
follows. First, we observe

‖u(t)‖2
H1

λ
= M(u(0)) + 2E(u(0)) +

1
3
‖ρ(t)‖3

L3
λ

(9.3)

Expand ρ(t) and again use Sobolev embedding to obtain the inequality that
we will use for the continuity argument:

‖u(t)‖2
H1

λ
≤ ‖u0‖2

H1
λ

+
1
3
C‖u0‖6

H1
λ

+
1
3
C‖u(t)‖6

H1
λ

(9.4)

Define f(x) = x − (1/3)Cx3 so that we have f(‖u(t)‖2
H1

λ
) ≤ ‖u0‖2

H1
λ

+

(1/3)C‖u0‖6
H1

λ
on the time interval [0, 1]. On the interval I := [0, C−1/2], the

function f(x) increases from 0 to a maximum value of (2/3)C−1/2 and satisfies
f(x) ≥ (2/3)x for all x ∈ I.

Set η2
0 = min{(2/3)C−1/2, (2/3)η2}, and consider initial data satisfying

‖u0‖2
H1

λ
+

1
3
C‖u0‖6

H1
λ

≤ η2
0 .

We then have f(‖u(t)‖2
H1

λ
) ≤ (2/3)C−1/2. The continuity of ‖u(t)‖H1

λ
in t

implies ‖u(t)‖2
H1

λ
∈ I for t ∈ [0, 1], so that

‖u(t)‖2
H1

λ
≤ 3

2
f(‖u(t)‖2

H1
λ
) ≤ 3

2
η2
0 ≤ η2

for all t ∈ [0, 1]. Therefore, we may iterate the local well-posedness argument
to obtain global well-posedness for sufficiently small initial data.

We now turn to the task of showing local well-posedness for large initial
data. Let ‖u0‖H1

λ(T3) ≤ A for some 0 < A < ∞. Let δ = δ(A) > 0 (to be
chosen later) and N = N(u0, δ) ≥ 1 such that ‖P>Nu0‖H1

λ(T3) ≤ δ.

For some T = T (u0), the mapping Φ(u) is a contraction on the ball

B2 :=
{

u ∈ X1
λ([0, T ))∩C1

t H1
λ

(
[0, T ) × T

3) ∣∣∣‖u‖X1
λ[0,T ) ≤ 2A, ‖P>Nu‖X1

λ[0,T ) ≤ 2δ
}

under the X1
λ-norm. In what follows, norms in time will be taken over the

interval [0, T ) and norms in space are on the domain T
3. We use C to denote

any positive constant which does not depend on T.
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To prove that Φ maps B2 to itself, we write

ΦNL(u) := −σ

∫ t

0

ei(t−t′)Δρ2u(t′) (9.5)

for its nonlinear part and observe that

‖P>NΦ(u)‖X1
λ

≤
√

2‖P>Nu0‖X1
λ

+
√

2‖P>NΦNL(u)‖X1
λ

≤
√

2η +
√

2‖ΦNL(u)‖X1
λ
. (9.6)

Clearly, ΦNL(u) is quintic in u = P≤Nu + P>Nu, and we decompose it into

ΦNL(u) = Φ(1)
NL(P≤Nu, P>Nu) + Φ(2)

NL(P≤Nu, P>Nu) (9.7)

where Φ(1)
NL is at least quadratic in P>Nu, and Φ(2)

NL is at least quartic in P≤Nu.
Then, (8.1) and the argument used to obtain (8.2) imply that

‖Φ(1)
NL(P≤Nu, P>Nu)‖X1

λ
≤ C‖u‖3

X1
λ
‖P>Nu‖2

X1
λ

≤ C1A
3η2. (9.8)

To bound Φ(2)
NL, we use the notation

‖u‖Lq
t Lp

λ
:=

⎛
⎜⎝∫ t

0

ds

⎛
⎝∑

j

λj‖uj(s)‖2
Lp

x

⎞
⎠

q
2
⎞
⎟⎠

1
q

. (9.9)

Then, applying Hölder, we get

‖Φ(2)
NL(P≤Nu, P>Nu)‖X1

λ

≤ C1‖u‖L∞
t H1

λ
‖P≤Nu‖4

L4
t L∞

λ
+ C1N‖u‖L∞

t L6
λ
‖P≤Nu‖4

L4
t L12

λ
(9.10)

where the first term on the r.h.s. bounds the expression obtained from the
derivative in the definition of X1

λ acting on P>Nu, and the second term from
it acting on P≤Nu. Using ‖P≤Nu‖4

L4
t L∞

λ
≤ ‖P≤N û‖4

L4
t L1

λ
≤ CTN2‖u‖4

L∞
t H1

λ
, to-

gether with ‖P≤Nu‖4
L4

t L12
λ

≤ CT‖P≤Nu‖4

L∞
t H

5
4

λ

≤ CTN‖u‖4
L∞

t H1
λ
, and Sobolev

embedding, this is bounded by

‖Φ(2)
NL(P≤Nu, P>Nu)‖X1

λ
≤ CTN2‖u‖5

L∞
t H1

λ
≤ C2TN2A5. (9.11)

To show that Φ is a contraction on B2, let v ∈ B2,. Then, similarly as
above, one shows that

‖Φ(1)
NL(P≤Nu, P>Nu) − Φ(1)

NL(P≤Nv, P>Nv)‖X1
λ

≤ C1A
3η‖u − v‖X1

λ
. (9.12)

Moreover, one obtains

‖Φ(2)
NL(P≤Nu, P>Nu) − Φ(2)

NL(P≤Nv, P>Nv)‖X1
λ

≤ C1TN2A4‖u − v‖X1
λ
. (9.13)

Then, letting 0 < T < η
10C2N2A5 , and choosing η > 0 sufficiently small, it

follows that Φ maps B2 into itself and is a strict contraction.
While contraction mapping theorem gives a unique solution u in B2, we

must show that uniqueness holds in the larger space
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X1
λ([0, T ])∩C1

t H1
λ

(
[0, T ] × T

3
)
. Suppose that v ∈ X1

λ([0, T ])∩C1
t H1

λ

(
[0, T ] × T

3
)

is a solution to the equation with v(0) = u0. There exists some N ′ ≥ 1 such
that ‖v‖X1([0,T ]) ≤ 2δ. If N ′ > N, define a new ball B′

2 that contains both u
and v and apply the contraction mapping argument to see that u = v on a
(possibly smaller) time interval [0, T ′]. By repeating this argument, we achieve
uniqueness in the larger space. �

10. Stationary States of the NLSS on T
3

We now turn to the existence and nonlinear stability of stationary states of
cubic and quintic NLS systems on three-dimensional flat tori. As in the previ-
ous chapters, the results hold for rectangular, rational and irrational tori. In
this chapter, we restrict ourselves to consider only the defocusing systems{

i∂tuj = −Δuj + ραuj , j ∈ N

uj(0, x) = uj,0(x), x ∈ T
3,

(10.1)

where ρ :=
∑

j∈N
λj |uj |2 for a given λ ∈ �1+, and α ∈ {1, 2}.

Stationary states {vj}j∈N are solutions to (10.1) of the form

vj(t, x) = e−iμjtuj,0(x)

where μj ∈ R is the energy level of uj,0(x). As stated in the introductory
chapter, the stationary states we find are minimizers of an energy-Casimir
functional, which is the sum of the conserved energy and another function
conserved by the flow of (10.1).

In this chapter, we begin by defining Casimir-class functions and the sta-
tionary state equations corresponding to a Casimir-class function f, and then
develop the definition and properties of the energy-Casimir functional Hf de-
termined by f. Next, assuming the existence and uniqueness of the desired
stationary states, we bound a nonlinear function of the distance between a
stationary state and another solution to (10.1) using the energy-Casimir func-
tional. Finally, to prove the existence and uniqueness of the stationary states,
we use the saddle point principle to find a dual functional to Hf , for any
Casimir-class f, and use convexity theory to show that the dual functional
has a unique maximizer. This maximizer corresponds to a stationary state of
(10.1) which minimizes Hf .

11. Stationary States and Energy-Casimir Functionals

Define the state space for the NLSS as

S =

{
(u, λ)

⏐⏐u = {uk}k∈N ⊂ H1(T3) a complete orthonormal system in L2(T3),

λ = {λk}k∈N ∈ �1 with λk ≥ 0, and
∞∑

k=1

λk‖uk‖2
H1(T3) < ∞

}
.
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In the previous chapters, we have shown that the defocusing cubic NLSS is
globally well-posed in S , and for some η > 0, the defocusing quintic NLSS is
globally well-posed for initial data (u0, λ) ∈ S provided ‖u0‖H1

λ
< η.

Definition 11.1. A function f : R → R is said to be of Casimir class C if it
has the following properties:

(i) f is continuous, and there is s0 ∈ (0,∞] such that f(s) > 0 for s ≤ s0

and f(s) = 0 for s > s0.
(ii) f is strictly decreasing on (−∞, s0] with lims→−∞ f(s) = ∞.
(iii) there exist constants ε > 0 and C > 0 such that

f(s) ≤ C(1 + s)(−5/2−ε) for s ≥ 0

An example of f ∈ C with s0 = ∞ is given by the Boltzmann distribution
f(s) = e−βs for β > 0.

The stationary states that we seek are (u0, λ0) ∈ S corresponding to a
quadruple (u0, λ0, μ0

, ρ0) with μ
0

= {μ0,k}k∈N ⊂ R, and ρ0 ∈ Lα+1(T3), such
that for some f ∈ C ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−Δ + ρα
0 )u0,k = μ0,ku0,k for all k ∈ N

ρ0 =
∞∑

k=1

λ0,k|u0,k|2

λ0,k = f(μ0,k) for all k ∈ N

(11.1)

where α = 1 or 2 throughout. The equation λ0,k = f(μ0,k) demonstrates the
role of the function f ∈ C : a stationary state u0,k with energy μ0,k has
occupation probability λ0,k = f(μ0,k). We see that if s0 is finite for f ∈ C ,
the NLSS is constrained to a finite number of occupied states. Thus, we set
s0 = ∞ for the remainder of this chapter.

The next proposition ensures that for any solution of the stationary state
equations, (u0, λ0) is in the required state space and ρ0 has the integrability
required for the solution to have finite energy.

Proposition 11.1. Suppose the quadruple (u0, λ0, μ0
, ρ0) satisfies the stationary

state equations (11.1) with f ∈ C , and u0 = {u0,k}∞
k=1 a complete orthonormal

basis of L2(T3). Then ρ0 ∈ Lα+1(T3), and (u0, λ0) ∈ S .

Proof. First observe that the nonnegativity of f immediately gives the non-
negativity of λ0,k for all k, which implies ρ0 is nonnegative, thus μ0,k is also
nonnegative for all k. From the first equation in (11.1), we find

∞∑
k=1

λ0,k

∫ [|∇u0,k|2 + ρα
0 |u0,k|2] dx =

∞∑
k=1

λ0,kμ0,k

The stationary state equations satisfied by ρ0 and λ0,k show that the previous
equation may be rewritten in the form

∞∑
k=1

(
λ0,k

∫
|∇u0,k|2 dx

)
+
∫

ρα+1
0 dx =

∞∑
k=1

f(μ0,k)μ0,k (11.2)
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We claim that the sum on the right-hand side of (11.2) is finite. Since
f ∈ C ,

f(μ0,k)μ0,k ≤ C(1 + μ0,k)−3/2−ε

for each k ∈ N. Let {μ−Δ,k} denote the complete set of eigenvalues of −Δ
on T

3, and observe that the nonnegativity of ρ0 implies μ0,k ≥ μ−Δ,k. The
estimate of Li and Yau [19] gives μ−Δ,k ≥ Ck2/3, where the constant C depends
only on the domain T

3. Thus, for each k ∈ N,

f(μ0,k)μ0,k ≤ C(1 + μ−Δ,k)−3/2−ε ≤ Ck−1−ε

which proves our claim that the sum converges.
As the right side of (11.2) is finite,

∑∞
k=1 λ0,k

∫ |∇u0,k|2 dx is finite, and
ρ0 ∈ Lα+1(T3). By the Poincaré inequality,

∑∞
k=1 λ0,k

∫ |u0,k|2 dx must also
be finite, and we conclude (u0, λ0) ∈ S .

Remark 11.1. In the cubic case, α = 1, we have ρ ∈ L2(T3), and ρ serves as the
potential function in the cubic NLSS. However, in the quintic case, α = 2, the
potential function is ρ2. We have shown that ρ ∈ L3(T3), thus ρ2 ∈ L3/2(T3).
In order to generalize our arguments to apply to both the cubic and quintic
NLSS, we will use potentials V ∈ L

α+1
α

+ (T3), which include the functions ρα.

We now develop the energy-Casimir functional associated with a given
Casimir-class function f. For f ∈ C , define

F (s) :=
∫ ∞

s

f(σ) dσ, s ∈ R.

F is a nonnegative, continuously differentiable, decreasing function, strictly
convex on its support. Furthermore, we have the bound

F (s) ≤ C(1 + s)(−3/2−ε) for s ≥ 0. (11.3)

The Legendre transform of F is given by

F ∗(λ) = sup
s∈R

(
λs − F (s)

)
λ ∈ R. (11.4)

Since F is differentiable with F ′ = −f , F ∗ is differentiable, and (F ∗)′ =
(−f)−1. In particular, the supremum in (11.4) is attained at s = f−1(−λ),
and the Legendre transform of F is given by:

F ∗(−λ) = λμ − F (μ). (11.5)

where μ = f−1(λ). Moreover, the Legendre transform is an involution, F ∗∗ =
F .

We recall that the energy of a solution u to the defocusing NLSS (10.1)
determined by λ is defined as

Eλ(u) :=
1
2

∑
k

λk‖∇uk‖2
L2(T3) +

1
2(α + 1)

∫
T3

ρα+1 dx

and is conserved by the flow of the system.
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Definition 11.2. Let (u, λ) ∈ S . For a fixed f ∈ C , we define the energy-
Casimir functional determined by f as

Hf (u, λ) :=
∑

k

F ∗(−λk) + 2Eλ(u) (11.6)

=
∑

k

(
F ∗(−λk) + λk

∫
T3

|∇uk|2 dx
)

+
1

α + 1

∫
T3

ρα+1
u dx (11.7)

Since λ and Eλ(u) are constant in time, Hf is also a conserved quantity of
the defocusing NLSS. We will prove the stability of stationary solutions of the
NLSS employing Hf in a similar way as Lyapunov functions are used for the
corresponding problem in classical Hamiltonian dynamics. This approach is
often referred to as the energy-Casimir method.

We remark that the convergence of
∑

k F ∗(−λk) follows from∑
k

F ∗(−λk) =
∑

k

λkμk −
∑

k

F (μk) (11.8)

where λk = f(μk); see (11.5) and (12.4), below. The convergence of
∑

k λkμk

is proven in Proposition 11.1 and that of
∑

k F (μk) in Lemma 11.2.

We conclude this section with some useful properties of f and F for
f ∈ C .

Lemma 11.2. Let f ∈ C .

(i) For every β > 1, there exists C = C(β) ∈ R such that

F (s) ≥ −βs + C, s ≤ 0

(ii) If V ∈ L
α+1

α
+ (T3) then both f(−Δ + V ) and F (−Δ + V ) are trace class.

Proof. Part (i) of the lemma follows directly from the properties of F (s). In
particular, as F (s) strictly convex on its support, its graph lies above any of
its tangent lines. Since F (s) is decreasing, with lims→−∞ F (s) = ∞, for any
β > 1, there is some s < 0 such that the tangent line to F at s has slope −β.

To prove part (ii) of the lemma, let {μV,k}∞
k=1 be the complete set of

eigenvalues of −Δ + V, and let {μ−Δ,k}∞
k=1 be the complete set of eigenvalues

of −Δ on L2(T3). As V is nonnegative, we have μV,k ≥ μ−Δ,k ≥ Ck
2
3 for each

k ∈ N. As F (s) decreases faster than (1 + s)−3/2 for s ≥ 0, we find

TrF (−Δ + V ) =
∞∑

k=1

F (μV,k) ≤
∞∑

k=1

F (μ−Δ,k)

≤
∞∑

k=1

F
(
Ck

2
3
) ≤ C

∞∑
k=1

(
1 + k

2
3
)− 3

2−ε
.

The last series is convergent; thus, F (−Δ + V ) is trace class. As f(s) is non-
negative and decreases at a rate faster than F (s), f(−Δ + V ) is also trace
class.
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Lemma 11.3. For φ ∈ H1(T3) with ‖φ‖L2(T3) = 1, and V ∈ L
α+1

a
+ (T3),

F (〈φ, (−Δ + V )φ〉) ≤ 〈φ, F (−Δ + V )φ〉
with equality if φ is an eigenstate of −Δ + V.

Proof. Using the spectral theorem, let Pγ be the family of orthogonal projec-
tions onto the eigenspaces of −Δ + V, and write

−Δ + V =
∫ ∞

0

γdPγ

For any φ satisfying the hypotheses, the spectral measure of −Δ + V with
respect to φ is given by

〈φ, dPγφ〉 =: dν(γ),
which is indeed a probability measure. Since F is convex, we apply Jensen’s
inequality to conclude

F

(∫ ∞

0

γdν(γ)
)

≤
∫ ∞

0

F (γ)dν(γ)

which is equivalent to the inequality in the lemma.
If φ is an eigenstate of −Δ+V, with eigenvalue γ0, then dν(γ) is a Dirac

measure at γ0, and each side of the above inequality is F (γ0).

Corollary 11.4. For φ ∈ H1(T3) with ‖φ‖L2(T3) = 1, V ∈ L
α+1

a
+ (T3), and fixed

but arbitrary σ ∈ R

F (〈φ, (−Δ + V + σ)φ〉) ≤ 〈φ, F (−Δ + V + σ)φ〉
with equality if φ is an eigenstate of −Δ + V.

Proof. Note that fσ(s) := f(s + σ) ∈ C for f(s) ∈ C , since we may take the
cutoff s0 as large as we wish. The corollary follows by applying the previous
lemma to Fσ(s) = F (s + σ).

12. Nonlinear Stability of Stationary States

For a given f ∈ C , we define the functional Ψf (u, λ, V ), as follows, where

(u, λ) ∈ S , and V ∈ L
α+1

α
+ (T3), with α = 1 (cubic) or α = 2 (quintic).

Ψf (u, λ, V ) :=
∞∑

k=1

[
F ∗(−λk) + λk

∫ (|∇uk|2 + V |uk|2)dx
]

(12.1)

Remark 12.1. Note that if (u, λ) is a solution of the NLSS (1.4) with corre-
sponding density function ρ ∈ Lα+1

+ (T3),

Ψf (u, λ, ρα) : =
∞∑

k=1

[
F ∗(−λk) + λk

∫
|∇uk|2 dx

]
+
∫

ρα+1 dx

= Hf (u, λ) +
α

α + 1

∫
ρα+1 dx (12.2)
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Lemma 12.1. Let V ∈ L
α+1

α
+ (T3), with α = 1 or α = 2. For any (u, λ) ∈ S ,

and any f ∈ C ,

Ψf (u, λ, V ) ≥ −Tr[F (−Δ + V )], (12.3)

with equality if (u, λ) = (uV , λV ), where uV = {uV,k} is an orthonormal se-
quence of eigenfunctions of −Δ + V with eigenvalues μ

V
= {μV,k}, satisfying

λV,k = f(μV,k) for all k ∈ N.

Proof. Set

μk = 〈uk, (−Δ + V )uk〉 =
∫ (|∇uk|2 + V |uk|2) dx

By the inequality F ∗(−λ) + λμ ≥ −F (μ) for λ, μ ∈ R, and Lemma 11.3, we
have

∞∑
k=1

[
F ∗(−λk) + λk

∫ (|∇uk|2 + V |uk|2) dx

]
≥ −

∞∑
k=1

F (〈uk, (−Δ + V )uk〉)

≥ −
∞∑

k=1

〈uk, F (−Δ + V )uk〉

= −Tr[F (−Δ + V )]

Now suppose uV = {uV,k} is the orthonormal sequence of eigenfunctions
of −Δ+V with eigenvalues μ

V
= {μV,k}, so that μV,k = 〈uV,k, (−Δ+V )uV,k〉.

Tr[F (−Δ + V )] =
∞∑

k=1

F (μV,k)

By definition, λV,k = f(μV,k) = −F ′(μV,k), for each k ∈ N. By the conjugate
relationship μV,k = (F ∗)′(−λV,k), so that F ∗(−λV,k) = −λV,kμV,k − F (μV,k).
Summing on k gives

−
∞∑

k=1

F (μV,k) =
∞∑

k=1

[
F ∗(−λV,k) + λV,kμV,k

]
, (12.4)

which is precisely the statement of equality in (12.3).

Corollary 12.2. Let V ∈ L
α+1

α
+ (T3), with α = 1 or α = 2. For any σ ∈ R, any

(u, λ) ∈ S , and any f ∈ C ,

Ψf (u, λ, V ) + σ

∞∑
k=1

λk ≥ −Tr[F (−Δ + V + σ)], (12.5)

with equality if (u, λ) = (uV , λV ), where uV = {uV,k} is an orthonormal
sequence of eigenfunctions of −Δ + V with eigenvalues μ

V
= {μV,k}, with

λV,k = f(μV,k + σ) for all k ∈ N.

Proof. We use the same argument of previous lemma, replacing μk with μk +σ
throughout.
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Theorem 12.3 (Nonlinear Stability of Stationary States). Let (u0, λ0, μ0
, ρ0)

be a stationary state of the defocusing NLSS (10.1) with α ∈ {1, 2}. Suppose
(u0, λ0) ∈ S , and λ0,k = f(μ0,k) for some f ∈ C and all k ∈ N. Let Hf be the
energy-Casimir functional determined by f. If (u(t), λ) is another solution of
the defocusing NLSS on the time interval [0, T ) with initial datum (u(0), λ) ∈
S , then

1
α + 1

‖ρu(t),λ − ρ0‖α+1
Lα+1(T3) ≤ |Hf (u(0), λ) − Hf (u0, λ0)|, t ≥ 0.

for all t ∈ [0, T ).

Proof. Cubic Case. Let (u0, λ0, μ0
, ρ0) be a stationary state of the cubic NLSS

with f ∈ C satisfying f(μ0,k) = λ0,k, for all k ∈ N. Suppose (u, λ) is a
solution of equation (10.1) for α = 1, with initial datum (u(0), λ) ∈ S , and
let ρ ∈ L2

+(T3) be the particle density corresponding to (u, λ). We have

1
2
‖ρ − ρ0‖2

2 =
1
2

∫ (
ρ2 − 2ρρ0 + ρ2

0

)
dx

= Hf (u, λ) −
∞∑

k=1

[
F ∗(−λk) + λk

∫ (|∇uk|2 + ρ0|uk|2)dx
]

+
1
2

∫
ρ2
0 dx

≤ Hf (u, λ) + Tr[F (−Δ + ρ0)] +
1
2

∫
ρ2
0 dx (12.6)

= Hf (u, λ) − Ψf (u0, λ0, ρ0) +
1
2

∫
ρ2
0 dx

= Hf (u(0), λ) − Hf (u0, λ0), (12.7)

where we have used Lemma 12.1 to establish (12.6) and (12.7). �
Quintic Case. Let (u0, λ0, μ0

, ρ0) be a stationary state of the quintic
NLSS with f ∈ C satisfying f(μ0,k) = λ0,k, for all k ∈ N. Suppose (u, λ)
is a solution of (10.1) for α = 2 on time interval [0, T ) with initial datum
(u(0), λ) ∈ S , and let ρ ∈ L3

+(T3) be the particle density corresponding to
(u, λ).

First, note that since ρ, ρ0 ≥ 0 on T
3, we have∫

|ρ − ρ0|3 dx ≤
∫

(ρ − ρ0)2(ρ + ρ0) dx =
∫

(ρ3 − ρ2ρ0 − ρρ2
0 + ρ3

0) dx (12.8)

By the geometric-arithmetic means inequality,

ρ2
0ρ = ρ0(ρ0ρ) ≤ 1

2
ρ0(ρ2

0 + ρ2),

from which we obtain
− ρ2ρ0 ≤ −2ρ2

0ρ + ρ3
0. (12.9)

Using estimates (12.8) and (12.9), we find∫
|ρ − ρ0|3 dx ≤

∫ (
ρ3 − 3ρ2

0ρ + 2ρ3
0

)
dx (12.10)
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Proceeding as we did in the proof of the cubic case:

1
3
‖ρ − ρ0‖3

L3(T3) ≤ 1
3

∫ (
ρ3 − 3ρ2

0ρ + 2ρ3
0

)
dx

= Hf (u, λ) −
∞∑

k=1

[
F ∗(−λk) + λk

∫ (|∇uk|2 + ρ2
0|uk|2)dx

]
+

2
3

∫
ρ3
0 dx

= Hf (u, λ) − Ψf (u, λ, ρ2
0) +

2
3

∫
ρ3
0 dx

≤ Hf (u, λ) + Tr[F (−Δ + ρ2
0)] +

2
3

∫
ρ3
0 dx (12.11)

= Hf (u, λ) − Ψf (u0, λ0, ρ
2
0) +

2
3

∫
ρ3
0 dx

= Hf (u(0), λ) − Hf (u0, λ0), (12.12)

where we have used Lemma 12.1 to establish (12.11) and (12.12). �

13. Deriving the Dual Functional

We now turn to the problem of existence of stationary states satisfying (11.1).
For each f ∈ C , we define a dual functional to Hf (u, λ). First, for fixed f ∈ C
and fixed Λ > 0, we use the saddle point principle to define:

G (u, λ, V, σ) :=
∞∑

k=1

[
F ∗(−λk) + λk

∫ (|∇uk|2 + V |uk|2)dx

]

− α

α + 1

∫
V

α+1
α dx + σ

[ ∞∑
k=1

λk − Λ

]

where u = {uk} is an orthonormal basis of L2(T3), λ = {λk} ∈ �1+, and

V ∈ L
α+1

α
+ . The variable σ ∈ R plays the role of a Lagrange multiplier.

The following lemma illustrates the relationship between the functional
G and the energy-Casimir functional.

Lemma 13.1. For any u, λ, σ, we have

sup
V

G (u, λ, V, σ) = Hf (u, λ) + σ

[ ∞∑
k=1

λk − Λ

]
, (13.1)

and the supremum occurs when V =
(∑∞

k=1 λk|uk|2)α
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Proof. For arbitrary (u, λ) ∈ S , let ρu,λ =
∑

k λk|uk|2. Suppose α = 1. We
may write G (u, λ, V, σ) equivalently as

G (u, λ, V, σ) =
∞∑

k=1

[
F ∗(−λk) + λk

∫
|∇uk|2dx

]
+

1
2

∫
ρ2

u,λdx − 1
2

∫
ρ2

u,λdx

+
∫

V ρu,λ dx − 1
2

∫
V 2 dx + σ

[ ∞∑
k=1

λk − Λ

]

= Hf (u, λ) − 1
2
‖ρu,λ − V ‖2

L2(T3) + σ

[ ∞∑
k=1

λk − Λ

]
.

Clearly, G (u, λ, V, σ) has a maximum for V = ρu,λ, and we have the desired
supremum.

Now, consider the case α = 2. This time, we write G (u, λ, V, σ) in the
equivalent form

G (u, λ, V, σ) =
∞∑

k=1

[
F ∗(−λk) + λk

∫
|∇uk|2dx

]
+

1
3

∫
ρ3

u,λdx − 1
3

∫
ρ3

u,λdx

+
∫

V ρu,λ dx − 2
3

∫
V 3/2 dx + σ

[ ∞∑
k=1

λk − Λ

]

= Hf (u, λ) − 1
3

∫ (
ρ3

u,λ − 3ρu,λV + 2V 3/2
)
dx + σ

[ ∞∑
k=1

λk − Λ

]
.

Since V ∈ L
3/2
+ , it has a nonnegative square root. Let ρ :=

√
V ∈ L3

+, so that

G (u, λ, ρ2, σ) = Hf (u, λ) − 1
3

∫ (
ρ3

u,λ − 3ρ2ρu,λ + 2ρ3
)
dx + σ

[ ∞∑
k=1

λk − Λ

]

= Hf (u, λ) − 1
3

∫
(ρu,λ + 2ρ)(ρu,λ − ρ)2dx + σ

[ ∞∑
k=1

λk − Λ

]
.

As ρu,λ and ρ are nonnegative, we have − 1
3

∫
(ρu,λ +2ρ)(ρu,λ −ρ)2dx ≤ 0 with

equality precisely when
√

V = ρ = ρu,λ, which proves the lemma in the case
α = 2.

Let us now derive a useful representation of the dual function defined by
Φ(V, σ) := infu,λ G (u, λ, V σ). First, note that G can be written in the form

G (u, λ, V, σ) = Ψf (u, λ, V ) − α

α + 1

∫
V

α+1
α dx + σ

[ ∞∑
k=1

λk − Λ

]
.

By Lemma 12.1, we have the lower bound

G (u, λ, V, σ) ≥ −Tr
[
F (−Δ + V + σ)

]− σΛ − α

α + 1

∫
V

α+1
α dx

with equality if (u, λ) = (uV , λV ), where uV is the complete set of eigenstates
of −Δ + V with corresponding eigenvalues μ

V
such that λV,k = f(μV,k + σ)
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for all k ∈ N. Therefore, we have the following expression for Φ

Φ(V, σ) := − α

α + 1

∫
V

α+1
α dx − Tr

[
F (−Δ + V + σ)

]− σΛ.

14. Existence and Uniqueness of Stationary States

Theorem 14.1. The functional Φ(V, σ), determined by a given Λ > 0 and
f ∈ C , is continuous, strictly concave, bounded from above, and −Φ(V, σ)
is coercive. Thus, Φ(V, σ) has a unique maximizer (V0, σ0). This maximizer
uniquely determines a stationary state (u0, λ0, μ0

, ρ0) as follows: u0 = {u0,k}
is the set of orthonormal eigenstates of −Δ + V0 with corresponding eigenval-
ues μ

0
= {μ0,k}, λ0,k := f(μ0,k + σ0) for k ∈ N satisfies

∑∞
k=1 λ0,k = Λ, and

V0 = ρα
0 , where ρ0 :=

∑∞
k=1 λ0,k|u0,k|2.

Proof. For notational convenience, let q := α+1
α , so that q = 2 corresponds to

the cubic NLSS, while q = 3
2 corresponds to the quintic NLSS. For fixed but

arbitrary f ∈ C and Λ > 0, Φ : Lq
+(T3) × R → R is given by

Φ(V, σ) = −1
q

∫
V q dx − Tr

[
F (−Δ + V + σ)

]− σΛ.

Φ is strictly concave. We begin by proving that Tr
[
F (−Δ + V + σ)

]
is

convex. To this end, suppose (Vj , σj) ∈ Lq(T3) × R for j = 1, 2, and consider
the expression

F
(〈

ψ, [r(−Δ + V1 + σ1) + (1 − r)(−Δ + V2 + σ2)]ψ
〉)

,

where ψ ∈ H1(T3) with ‖ψ‖L2(T3) = 1, and 0 < r < 1 By Lemma 11.3 and
convexity of F, we have

F
(〈

ψ, [r(−Δ + V1 + σ1) + (1 − r)(−Δ + V2 + σ2)]ψ
〉)

≤ r
〈
ψ,F (−Δ + V1 + σ1)ψ

〉
+ (1 − r)

〈
ψ,F (−Δ + V2 + σ2)ψ

〉
Now, let {ψk} be the complete set of eigenstates of

r(−Δ + V1 + σ1) + (1 − r)(−Δ + V2 + σ2).

Using the definition of trace and the previous inequality, we have
∞∑

k=1

F
(〈

ψk, [r(−Δ + V1 + σ1) + (1 − r)(−Δ + V2 + σ2)]ψk

〉)

≤ r

∞∑
k=1

〈
ψk, F (−Δ + V1 + σ1)ψk

〉

+ (1 − r)
∞∑

k=1

〈
ψk, F (−Δ + V2 + σ2)ψk

〉
. (14.1)

Thus, Tr
[
F (−Δ + V + σ)

]
is convex.
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As the remaining two terms − 1
q

∫
V q dx−σΛ are clearly concave in (V, σ),

we conclude Φ(V, σ) is concave. To show that Φ(V, σ) is strictly concave, sup-
pose equality holds in the concavity statement for Φ(V, σ). This reduces to the
equality of the expressions

Tr
[
F
(
r(−Δ + V1 + σ1) + (1 − r)(−Δ + V2 + σ2)

)]
− rTr

[
F (−Δ + V1 + σ1)] − (1 − r)Tr

[
F (−Δ + V2 + σ2)

]
(14.2)

and
1
q

(
r

∫
V q

1 dx + (1 − r)
∫

V q
2 dx −

∫
(rV1 + (1 − r)V2)qdx

)
. (14.3)

By convexity of Tr
[
F (−Δ + V + σ)

]
, the expression (14.2) is nonpositive. On

the other hand, by the convexity of
∫

V q dx for q = 2 and for q = 3
2 , the

expression (14.3) is nonnegative. For equality to hold, both expressions must
equal zero.

As
∫

V qdx is indeed strictly convex on the domain V ∈ Lq
+ for q = 2 and

q = 3
2 , setting (14.3) equal zero yields V1 = V2. Next we set the expression

(14.2) equal to zero, which is equivalent to the case of equality in (14.1). In
this case, the strict convexity of F implies that for all k ∈ N,

〈ψk, F (−Δ + V1 + σ1)ψk〉 = 〈ψk, F (−Δ + V2 + σ2)ψk〉
Thus, the operators −Δ + V1 + σ1 and −Δ + V2 + σ2 have the same

set of eigenvectors {ψk} with the same eigenvalues. We combine this with the
previous requirement that V1 = V2 to see that we must have σ1 = σ2, which
proves the strict concavity of Φ(V, σ).

Φ is bounded from above, and −Φ is coercive. Note that since Λ > 0, we
must distinguish the cases σ ≥ 0 and σ < 0. First, suppose σ is nonnegative.
As F is a positive, decreasing function, we immediately find

Φ(V, σ) ≤ −1
q
‖V ‖q

Lq(T3) − σΛ ≤ 0 (14.4)

Now consider the case σ < 0. Let μV,1 be the ground state energy of
−Δ + V. Again using positivity of F, we obtain the upper bound

Φ(V, σ) ≤ −1
q
‖V ‖q

Lq(T3) − F (μV,1 + σ) − σΛ (14.5)

By definition,

μV,1 := inf
ψ

∫
|∇ψ|2 + V |ψ|2dx

where the infimum is taken over all ψ ∈ H1(T3) satisfying ‖ψ‖L2(T3) = 1.

Choose ψ =
(
vol T

3
)− 1

2 in the above integral. We have

μV,1 ≤
∫

|∇ψ|2 + V |ψ|2dx =
∫

V ψ2 dx

≤ ‖V ‖Lq(T3)‖ψ2‖Lq′ (T3) = C1‖V ‖Lq(T3),
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where q′ is the Hölder conjugate of q, and C1 :=
(
vol T

3
)− 1

q . For σ satisfying
σ ≤ −C1‖V ‖Lq ≤ −μV,1, part (i) of Lemma 11.2 guarantees that for any
β > 1 there is some constant C2 such that −F (μV,1 + σ) ≤ β(μV,1 + σ) − C2.
Choosing β > max{Λ, 1} yields

Φ(V, σ) − 1
q
‖V ‖q

Lq(T3) − F (μV,1 + σ) − σΛ

≤ −1
q
‖V ‖q

Lq(T3) + βμV,1 + (β − Λ)σ − C2

≤ −1
q
‖V ‖q

Lq(T3) + βC1‖V ‖L2 + (β − Λ)σ − C2

By the last inequality above and elementary calculus, there exists a positive
constant C3 such that

Φ(V, σ) ≤ − 1
2q

‖V ‖q
Lq(T3) + C3 + (β − Λ)σ − C2 (14.6)

on the interval σ ≤ −C1‖V ‖Lq . The inequalities (14.4) and (14.6) together
show that Φ(V, σ) is bounded above and that −Φ(V, σ) is coercive.

Φ is continuous. The continuity of Φ is clear for all but the trace term.
As it is convex, Proposition 2.5 in Chapter 1 of [10] implies the trace term
is continuous on its support, provided it is proper and bounded above by a
constant on some open set. The trace term is proper as F is nonnegative
and trace class, and the local upper bound follows from the fact that F is
decreasing. Indeed, for any fixed σ0 ∈ R, Tr

[
F (−Δ + V + σ)

]
is bounded

above by Tr
[
F (−Δ + σ0)

]
< ∞ on the interval σ > σ0.

Φ has a unique maximizer, corresponding to a stationary state. By stan-
dard convexity theory, Φ has a unique maximum, occurring at some (V0, σ0).
Let u0 = {u0,k} denote the complete set of orthonormal eigenfunctions of
−Δ+V0, with corresponding eigenvalues μ

0
= {μ0,k}, and let λ0,k = f(μ0,k +

σ0). As σ0 is a critical point for Φ(V0, σ) and F ′ = −f, we find

0 =
dΦ(V0, σ)

ds

∣∣∣∣
σ=σ0

= Tr
[
f(−Δ + V0 + σ0)

]− Λ

=
∞∑

k=1

f(μ0,k + σ0) − Λ =
∞∑

k=1

λ0,k − Λ

Thus,
∑

k λ0,k = Λ, as claimed.
As V0 is the maximizer of Φ(V, σ0), it satisfies the Euler–Lagrange equa-

tion

−V q−1
0 +

∞∑
k=1

f(μ0,k + σ0)|u0,k|2 = 0.

Note that since q − 1 = 1
α , the equation above gives V

1
α

0 =
∑∞

k=1 λ0,k|u0,k|2 =
ρ0. This concludes the proof for the existence and uniqueness of stationary
states.
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Proposition 14.2. Let the hypotheses of Theorem 14.1 be satisfied. Suppose
(u0, λ0, μ0

, ρ0) is the unique stationary state corresponding to the maximizer
(V0, σ0) of the functional Φ determined by f and Λ. Then Φ(V0, σ0)
= Hf (u0, λ0).

Proof. At (V0, σ0), we have V0 = ρα
0 , and

∑∞
k=1 λ0,k = Λ. Using Corollary 12.2

and Remark (12.1), we find

Φ(V0, σ0) = −Tr
[
F (−Δ + ρα

0 + σ0)
]− σ0Λ − α

α + 1

∫
ρα+1
0 dx

= Ψf (u0, λ0, ρ
α
0 + σ0) − σ0Λ − α

α + 1

∫
ρα+1
0 dx

= Ψf (u0, λ0, ρ
α
0 ) + σ0

( ∞∑
k=1

λk − Λ

)
− α

α + 1

∫
ρα+1
0 dx

= Hf (u0, λ0).

Remark 14.1. We note that the stationary states (u0, λ0, μ0
, ρ0) for the quintic

NLSS are shown to exist without necessary restriction on ‖u0‖H1
λ(T3), but that

we have only proven global existence of solutions to the quintic NLSS in the
case ‖u0‖H1

λ(T3) < η, for some η > 0. It may be the case that there exists a
choice of f ∈ C that corresponds to a stationary state with large initial data,
which would be an improvement to our results from Chapter 3. However, recall
from the introduction that Ionescu and Pausader established the existence and
uniqueness of global in time solutions to the defocusing quintic NLS on the
square, rational 3-torus, for all H1 initial data. It is our hope that future
research will establish analogous results for the quintic NLS system, so that
the nonlinear stability statement in the quintic case of Theorem 12.3 will hold
for all time.
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variables d’espace (d’après Bourgain). In: Séminaire Bourbaki, vol. 1994/95, vol-
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