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ABSTRACT
This article is concerned with constructing a confidence interval for a target policy’s value offline based
on a pre-collected observational data in infinite horizon settings. Most of the existing works assume no
unmeasured variables exist that confound the observed actions. This assumption, however, is likely to be
violated in real applications such as healthcare and technological industries. In this article, we show thatwith
some auxiliary variables that mediate the effect of actions on the system dynamics, the target policy’s value
is identifiable in a confounded Markov decision process. Based on this result, we develop an efficient off-
policy value estimator that is robust to potential model misspecification and provide rigorous uncertainty
quantification. Our method is justified by theoretical results, simulated and real datasets obtained from
ridesharing companies. A Python implementation of the proposed procedure is available at https://github.
com/Mamba413/cope. Supplementary materials for this article are available online.
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1. Introduction

We consider reinforcement learning (RL) where the goal is to
learn an optimal policy that maximizes the (discounted) cumu-
lative rewards the decision maker receives (Sutton and Barto
2018). A (stationary) policy is a time-homogeneous decision
rule that determines an action based on a set of observed
state variables. Off-policy evaluation (OPE) aims to evaluate the
impact of a given policy (called target policy) using observa-
tional data generated by a potentially different policy (called
behavior policy). OPE is an important problem in settings
where it is expensive or unethical to directly run an experiment
that implements the target policy. This includes applications
in precision medicine (Murphy 2003; Zhang et al. 2012, 2013;
Chakraborty and Murphy 2014; Matsouaka, Li, and Cai 2014;
Luedtke and Van Der Laan 2016; Wang et al. 2018; Gottesman
et al. 2019;Wu andWang 2020), autonomous driving (Li, Chan,
and Chen 2020), robotics (Kober, Bagnell, and Peters 2013),
natural language processing (Li et al. 2016), education (Mandel
et al. 2014), among many others.

This article is concerned with OPE under infinite horizon
settings where the number of decision points is not necessarily
fixed and is allowed to diverge to infinity. We remark that
most works in the statistics literature focused on learning and
evaluating treatment decision rules for precision medicine with
only a few treatment stages (see Tsiatis et al. 2019; Kosorok and
Laber 2019, for an overview). These methods are not directly
applicable to many other sequential decision making problems
in reinforcement learning with infinite horizons (see e.g., Sutton
and Barto 2018), such as autonomous driving, robotics, and
mobile health (mHealth). Recently, there is a growing inter-
est on policy learning and evaluation in mHealth applications
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(Ertefaie 2014; Hu et al. 2020; Luckett et al. 2020; Qi and Liao
2020; Xu et al. 2020; Liao, Qi, and Murphy 2020; Liao, Klasnja,
and Murphy 2021; Shi et al. 2021, 2022). In the computer
science literature, existing works for OPE in infinite horizons
can be roughly divided into three categories. The first type
of method directly derives the value estimates by learning the
system transition matrix or the Q-function under the target
policy (Le, Voloshin, and Yue 2019; Feng et al. 2020; Hao
et al. 2021). The second type of method is built upon impor-
tance sampling (IS) that re-weights the observed rewards with
the density ratio of the target and behavior policies (Thomas,
Theocharous, and Ghavamzadeh 2015; Liu et al. 2018; Nachum
et al. 2019; Dai et al. 2020). The last type of method com-
bines the first two for more robust and efficient value evalua-
tion. References include Jiang and Li (2016), Uehara, Huang,
and Jiang (2020), and Kallus and Uehara (2019). In particu-
lar, Kallus and Uehara (2019) develops a double reinforcement
learning (DRL) estimator that achieves the semiparametric effi-
ciency limits for OPE. Informally speaking, a semiparametric
efficiency bound can be viewed as the nonparametric exten-
sion of the Cramer–Rao lower bound in parametric models
Bickel et al. (1993). It lower bounds the asymptotic variance
among all regular estimators Van der Vaart (2000). However,
all the above cited works rely on the sequential ignorability
or the sequential randomization assumption (see e.g., Robins
2004, for a detailed definition). It essentially precludes the exis-
tence of unmeasured variables that confound the action-reward
or action-next-state associations. However, this assumption is
likely to be violated in applications such as healthcare and
technological industries. We consider the following example
to elaborate.
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Our work is motivated by the example of applying customer
recommendation program in a ride-hailing platform. We con-
sider evaluating the effects of applying certain customer recom-
mendation program in large-scale ride-hailing platforms such as
Uber, Lyft and Didi. These companies form a typical two-sided
market which enables efficient interactions between passengers
and drivers (Rysman 2009) and substantially transforms the
transportation landscape of human beings (Jin et al. 2018).

Suppose a customer launches a ride-hailing application on
their smart phone. When they enter their destination, the plat-
formwill decidewhether to recommend them to join a program.
This corresponds to the action. Different programs will apply
different coupons to the customer to discount this ride. The
purpose of such recommendation is to (i) increase the chance
that the customer orders this particular ride, and reduce the
local drivers’ vacancy periods; (ii) increase the chance that the
customer uses the appmore frequently in the future.We remark
that (i) and (ii) correspond to the short-term and long-term
benefits for the company, respectively.

Wewould like to evaluate the cumulative effect of a given cus-
tomer recommendation program given an observational dataset
collected from the ride-hailing company. In addition to a point
estimate on a target policy’s value, many applications would
benefit from having a confidence interval (CI) that quantifies
the uncertainty of the value estimates. For instance, it allows us
to infer whether the difference between two policies’ values is
statistically significant. This motivates us to study the off-policy
confidence interval estimation problem.

Confounding is a serious issue in data generated from these
applications. This is because the behavior policy involves not
only an estimated automated policy to maximize the company’s
long term rewards but human interventions as well. For exam-
ple, when there is severe weather like thunderstorms or large
events like sports games and concerts in a certain area, there will
be much more passengers than drivers in the local area. In that
case, human interventions are needed to discourage passengers
to request call orders. However, live events and extreme weather
are not recorded, leading to a confounded dataset.

More recently, in the causal inference literature, a few meth-
ods have been proposed to deal with unmeasured confounders
for treatment effects evaluation. Tchetgen Tchetgen et al. (2020)
proposed a proximal g-computation algorithm in single-stage
and two-stage studies. Shi et al. (2020) proposed to learn the
average treatment effect (ATE) with double-negative control
adjustment. See also Kallus, Mao, and Uehara (2021). These
methods are not directly applicable to the infinite horizon set-
ting, which is the focus of our paper. In the RL literature, a
few works considered reinforcement learning with confounded
datasets. Among those available, Wang, Yang, andWang (2020)
considered learning an optimal policy in an episodic con-
founded MDP setting. Namkoong et al. (2020) and Kallus and
Zhou (2020) proposed partial identification bounds on the tar-
get policy’s value under a single-decision confounding assump-
tion and a memoryless unobserved confounding assumption,
respectively. Bennett et al. (2021) introduced an optimal balanc-
ing algorithm for OPE in a confoundedMDP, without requiring
the mediators to exist. Tennenholtz, Shalit, and Mannor (2020)
adopted the POMDP model to formulate the confounded OPE
problem and develop value estimators in tabular settings using

the idea of proxy variables. More recently, there are a few works
that extend their method to more general settings (Bennett and
Kallus 2021; Nair and Jiang 2021; Shi et al. 2022). However,
none of the aforementioned methods considered constructing
confidence intervals for the target policy’s value in infinite
horizons.

In this article, we model the observational data by a con-
founded Markov decision process (CMDP, Zhang and Barein-
boim 2016). See Section 2.1 for a detailed description of the
model. To handle unmeasured confounders, we make use
of some intermediate variables (mediators) that mediate the
effect of actions on the system dynamics. These mediators are
required to be conditionally independent of the unmeasured
confounders given the actions. We remark that these auxiliary
variables exist in several applications.

For instance, in the ride-hailing example, the mediator cor-
responds to the final discount applied to each ride. It is worth
mentioning that the final discount might be different from
the discount included in the program, as it depends on other
promotion strategies the platform applies to the ride, but is
conditionally independent of other unmeasured variables that
confound the action. In addition, the action will affect the
immediate reward and future state variables only through the
mediator (see our real data section for a detailed definition
of the immediate reward). Consequently, the mediator satisfies
the desired condition. Predictive policing is another example.
Consider the Crime Incidents dataset (Elzayn et al. 2019).
The action is whether a district is labeled as dangerous or
not and the outcome is the total number of discovered crime
incidents. Given the action, the police allocation (mediator)
is determined by the current available policing resources and
is thus conditionally independent of the confounder. In addi-
tion, in medicine, the treatment (action) and the patient’s out-
come might be confounded by that patient’s attitude toward
different treatments. For example, some patients might prefer
conservative treatments, and others will strictly stick to the
doctor’s advice. However, given the treatment, the dosage that
patients receive is determined by their age, weight and clin-
ical conditions, and is thus conditionally independent of the
confounder.

To the best of our knowledge, this is the first article that
systematically studies off-policy confidence interval estimation
under infinite horizon settings with unmeasured confounders.
Most prior work either requires the unmeasured confounders
assumption, or focuses on point estimation. More importantly,
our proposal addresses an important practical question in ride-
sharing companies, allowing them to evaluate different cus-
tomer recommendation programs more accurately in the pres-
ence of unmeasured confounders. Our proposal involves two
key components. We first show that in the presence of medi-
ators, the target policy’s value can be represented using the
probability distribution that generates the observational data.
This result generalizes the front-door adjustment formula (see
e.g., Pearl 2009) to infer the average treatment effect in single-
stage decision making. Based on this result, we next apply the
semiparametric theory (see e.g., Tsiatis 2007) to derive the effi-
ciency limits for OPE under CMDPwith mediators, and outline
a robust and efficient value estimate that achieves this efficiency
bound and its associated CI.
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Figure 1. Causal diagrams.

The rest of the article is organized as follows. Section 2 lays
out the basic model notation and data-generating process. Sec-
tion 3 discusses the identifiability of the policy value and con-
struct efficient and robust interval estimation. Section 4 presents
the asymptotic properties of the proposed estimator with its
inferential results. Section 5 presents two simulation studies
to evaluate the performance of our proposed estimator and
compare with the state-of-the-art methods by using synthetic
data only. In Section 6, an application of the proposed estimator
is used to analyze real data collected from a world-leading ride-
hailing company. All proofs are given in the supplementary
material.

2. Preliminaries

2.1. Data-Generating Process

We consider observational data generated from an confounded
Markov decision process. Specifically, at a given time t, let
(St ,At ,Rt) denote the observed state-action-reward triplet. A
standard MDP without confounding is depicted in Figure 1(a).
We assume both the state and action spaces are discrete, and the
immediate rewards are uniformly bounded. The discrete state-
space assumption is imposed only to simplify the theoretical
analysis. Our proposal is equally applicable to continuous state
space as well. Let Ut denote the set of unmeasured variables
at time t that confounds either the At-Rt or At-St+1 associa-
tions, as shown in Figure 1(b). Such a data-generating process
excludes the existence of confounders that are influenced by
past actions, leading to “memoryless unmeasured confound-
ing” (Kallus and Zhou 2020). It yields the following Markov
assumption:

Assumption 1. Ut and other observed variables at time t are
conditionally independent of {Uj}j<t and past observed vari-
ables up to time t – 1 given St.

To deal with unmeasured confounders, we assume there exist
some observed immediate variablesMt thatmediate the effect of
At onRt and St+1 at time t, as shown in Figure 1(c). See Assump-
tion 2. This assumption is similar to the front-door adjustment

criterion (Pearl 2009) in single-stage decision making and is
considered by Wang, Yang, and Wang (2020) as well for multi-
stage decision making.

Assumption 2. (a)Mt intercepts every directed path from At
to Rt or to St+1;
(b) St blocks all backdoor paths from At toMt;
(c) All back-door paths from Mt to Rt or St+1 are blocked by
(St, At).

For any two nodes X and Y, a backdoor path from X to Y
is a path that would remain if we were to remove any arrows
pointing out ofX.We revisit Figure 1(c) to elaborateAssumption
2. Specifically, Assumption 2(a) requires the pathway thatAt has
a direct effect on St+1 absentMt to bemissing.WithoutAssump-
tion 2(a), we can only identify the natural indirect treatment
effect (Fulcher et al. 2020) and the policy value is not identifiable.
Under Assumptions 2(b) and (c), Ut will not directly affectMt.
Assumption 2(b) essentially requires that there are no unmea-
sured variables that confound the At-Mt association. Similarly,
Assumption 2(c) requires that there are no unmeasured vari-
ables that confound theMt-St+1 association.

We next detail the data generating process. At time t, we
observe the state vector St and the environment randomly
selects some unmeasured confounder Ut ∼ pu(•|St). Then the
agent takes the action At ∼ pa(•|St ,Ut) and the mediator Mt
is generated using pm(•|At , St) which is not confounded by Ut
according to Assumption 2. Finally, the agent receives a reward
Rt ∼ pr(•|Mt ,At , St ,Ut) and the environment transits into
the next state St+1 ∼ ps(•|Mt ,At , St ,Ut). We refer to such a
stochastic process as the confounded MDP with mediators, or
CMDPWM for short.

2.2. Problem Formulation

The data consist of N trajectories, summarized as
{(Si,t ,Ai,t ,Mi,t ,Ri,t , Si,t+1)}1≤i≤N,0≤t<Ti where Ti corresponds
to the termination time of the ith trajectory. We assume
these trajectories are iid copies of a CMDPWM model
{(St ,At ,Mt ,Rt , St+1)}t≥0.
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Let π denote a given stationary policy that maps the state
space to a probability mass function on the action space A.
Following π , at each time t, the decision maker will set At = a
with probability π(a|St) for any a ∈ A. Unlike the behavior
policy pa, the probability mass function π does not depend on
the unmeasured confounders. For a given discounted factor 0 ≤
γ < 1, we define the corresponding (state) value function as

Vπ (s) =
+∞∑
t=0

γ t
E

π (Rt|S0 = s), (1)

where the expectation E
π is defined by assuming the system

follows the policy π . Based on the observed data, our objective
is to learn the aggregated value ηπ = E{Vπ (S0)} where the
expectation is taken with respect to the initial state distribution,
and to construct its associated confidence interval.

We remark that we adopt a discounted reward formulation
to investigate the policy evaluation problem. This formulation
allows us to take customers’ frequency of using the app into
consideration in our application (see Section 6 for details).
Meanwhile, our proposal can be easily extended to the average
reward setting (see Appendix A.4, supplementary materials).

3. Off-Policy Confidence Interval Estimation

We first discuss the challenge of OPE in the presence of unmea-
sured confounders. We next show that ηπ can be represented
as a function of the observed dataset. This result implies that
ηπ is identifiable and forms the basis of our proposal. We then
outline two potential estimators for ηπ . Each estimator suffers
from some limitations and requires some parts of the model
to be correctly specified. This motivates our procedure that
combines both estimators for more robust and efficient off-
policy evaluation, based upon which a Wald-type CI is derived.
Finally, we detail our method.

3.1. The Challengewith Unmeasured Confounders

In this section, we discuss the challenge of OPE with unmea-
sured confounders. To simplify the presentation, we assume
π is a deterministic policy such that π(•|s) is a degenerate
distribution for any s throughout this section and Section 3.2.
For any such policy, we use π(s) to denote the action that
the agent selects after observing the state vector s. To begin

with, we introduce the do-operator do to represent a (hard)
intervention (see e.g., Pearl 2009). It amounts to lift At from the
influence of the old functional mechanism At ∼ pa(•|St ,Ut)
and place it under the influence of a new mechanism that sets
the value At while keeping all other mechanisms unperturbed.
For instance, the notation do(At = π(St))means that the action
At is set to the value π(St) irrespective of the value of Ut. In
other words, whatever relationship exists between Ut and At,
that relationship is no longer in effect when we perform the
intervention. Adopting the do-operator, the expectation E

π in
(1) can be represented as

E{Rt|do(Aj = π(Sj)),∀0 ≤ j ≤ t, S0 = s}. (2)

In the presence of unmeasured confounders, the major chal-
lenge lies in that ηπ is defined based on the intervention
distribution under the do-operator and cannot be easily approx-
imated via the distribution of the observed data. To elaborate
this, we remark that the expectation in (2) is generally not equal
to E{Rt|Aj = π(Sj),∀0 ≤ j ≤ t, S0 = s}. This is because
the distribution under do(At = π(St)) is different from that
given the observation At = π(St). The latter corresponds to
the conditional distribution generated by the causal diagram
in Figure 1 given At = π(St), whereas the former is the
distribution generated by a slightly different graph, with the
pathway Ut → At removed.

As an illustration, we apply DRL and the proposed method
to a toy example detailed in Section 5.1. The data are generated
according to a CMDPWMmodel. As we have commented, DRL
is proposed by assuming no unmeasured confounders exist. As
such, it can be seen from the left panel of Figure 2 that the DRL
estimator has a non-diminishing bias under this example, due
to the presence of unmeasured confounders. As shown in the
right panel of Figure 2, the mean squared error (MSE) of DRL
does not decay to zero as the number of trajectories increases to
infinity.

In the next section, we address the above mentioned chal-
lenge bymaking use of the auxiliary variablesMt in the observed
data. It can be seen from Figure 2 that the proposed estimator is
consistent. Both its bias and MSE decay to zero as the number
of trajectories diverges to infinity. Finally, we remark that in
addition to the use of do-operator, one can adopt the potential
outcome framework to formulate the policy evaluation problem
(see e.g., Fulcher et al. 2020). We omit the details to save space.

Figure 2. Bias and mean squared error (MSE) of DRL and the proposed estimator under different settings. T = 100 and the results are aggregated over 200 simulations.
The error bar corresponds to 95% confidence interval for the bias andMSE, from left to right. The proposed estimator requires specification of two sets of models,M1 and
M2 (see Section 5.1 for details). The green line depicts the estimator where both sets of models are correctly specified. The blue line depicts the estimator where models
inM1 are correctly specified andM2 misspecified. The purple line depicts the estimator whereM2 is correctly specified andM1 is misspecified.
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3.2. Identification of ηπ

In this section, we first show that ηπ is identifiable based on
the observed data. The main idea is to iteratively apply the
Markov property and the front-door adjustment formula to
represent the intervention distribution under the do-operator
via the observed data distribution.

Recall that pa is the conditional distribution of At|(St ,Ut).
We use p∗

a to denote the corresponding conditional distribution
At|St , marginalized over Ut. Similarly, we use p∗

s,r to denote the
conditional distribution (St+1,Rt)|(Mt ,At , St). We summarize
the results in the following theorem.

Theorem 1. Let τt denote the data history {(sj, aj,mj, rj)}0≤j≤t
up to time t and ν denote the initial state distribution. Under
Assumptions 1 and 2, ηπ is equal to[∑+∞

t=0 γ t ∑
τt ,st+1 rt

{∏t
j=0 p∗

s,r(sj+1, rj|mj, aj, sj)
pm(mj|π(sj), sj)p∗

a(aj|sj)
}
ν(s0)

]
.

Note that none of the distributions p∗
s,r, pm and p∗

a involves the
unmeasured confounders. As such, these distribution functions
can be consistently estimated based on the observational data.
Consequently, Theorem 1 implies that ηπ can be rewritten using
the observed data distribution. Assumption 1 ensures the pro-
cess satisfies theMarkov property. Together with Assumption 2,
it allows us to iteratively apply the front-door adjustment for-
mula to replace the intervention distribution with the observed
data distribution. See the proof of Theorem 1 in Appendix
C.2, supplementary materials for details. We next outline two
potential estimators for ηπ .

3.3. Direct Estimator

The first estimator is Direct Estimator, where we estimate the Q-
function based on the observed data and directly use it to derive
the value estimator. In our setting, we define the Q-function
Qπ (m, a, s) = E{Rt + γVπ (St+1)|Mt = m,At = a, St = s}. We
make a few remarks. First, our definition of the Q-function is
slightly different from that in the existing RL literature, defined
by E{Rt + γVπ (St+1)|At = a, St = s}, as it involves mediators.
Second, similar to Theorem 1, we can show Vπ is identifiable
from the observed data. It follows thatQπ is identifiable as well.

To motivate the first estimator, we notice that ηπ

can be rewritten as E
π {Qπ (M0,A0, S0)}, or equivalently,∑

a E[π(a|S0)E{Qπ (M0, a, S0)|do(A0 = a), S0}]. Applying the
front-door adjustment formula, we obtain that

ηπ =
∑

m,a,a′,s
pm(m|a′, s)π(a′|s)p∗

a(a|s)Qπ (m, a, s)ν(s). (3)

This motivates us to learn pm, p∗
a , Qπ , and ν from the observed

data and construct the value estimate by plugging-in these esti-
mators. We refer to this estimator as the direct estimator, since
the procedure shares similar spirits as the direct method in the
RL literature.

3.4. Importance Sampling Estimator

The second estimator is Importance Sampling (IS) Estimator.
This is motivated by the work of Liu et al. (2018) that develops a

marginal IS estimator that breaks the curse of horizon, assuming
no unmeasured confounders exist. Compared to the standard
IS estimator (Zhang et al. 2013) whose variance will grow expo-
nentially fast with respect to the number of decision points, the
marginal IS estimator takes the stationary property of the state
transitions into consideration and effectively breaks the curse
of high variance in sequential decision making. Specifically, let
ωπ(•) be the marginal density ratio,

(1 − γ )
∑
t≥0

γ t pπ
t (s)

p∞(s)
,

where pπ
t (s) denotes the probability of St = s by assuming

the system follows π , and p∞ denotes the limiting distribution
of the stochastic process {St}t≥0. Similar to Theorem 1, we can
show for any t > 1, pπ

t is identifiable. So is ωπ .
A key observation is that, when the stochastic process {St}t≥0

is stationary, it follows from the change of measure theorem
that ηπ = (1 − γ )−1 ∑

a E{π(a|St)Rtωπ(St)|do(At = a)}.
When no unmeasured confounders exist, we have ηπ = (1 −
γ )−1

E{π(At|St)Rtωπ(St)/p∗
a(At , St)}, yielding the marginal IS

estimator. To replace the intervention distribution with the
observed data distribution, we apply the importance sampling
method again and re-weight each reward by another probability
ratio

ρ(Mt ,At , St) =
∑

a π(a|St)pm(Mt|a, St)
pm(Mt|At , St)

. (4)

Such an importance sampling trick has been used by Fulcher
et al. (2020) to handle unmeasured confounders in single-stage
decision making. This yields the following estimate,

1
(1 − γ )

∑
i Ti

∑
i,t

Ri,tω̂(Si,t)
∑

a π(a|St )̂pm(Mt|a, St)
p̂m(Mt|At , St)

,

where ω̂ and p̂m denote some estimators for ωπ and pm.
To conclude this section, we discuss the limitations of the

two estimators. First, each estimator requires some parts of the
model to be correctly specified. Specifically, the direct estimator
requires consistent estimates forQπ , pm, and p∗

a , and IS requires
correct specification of ωπ and pm. Second, generally speaking,
the direct estimator suffers from a large bias due to potential
model misspecification whereas the IS estimator suffers from a
large variance due to inverse probability weighting. To address
both limitations simultaneously, we develop a robust and effi-
cient OPE procedure by carefully combining the two estimating
strategies used in Sections 3.3 and 3.4. Meanwhile, the resulting
estimator requires weaker assumptions to achieve consistency.
We present the main idea in the next section.

3.5. Our Proposal

We begin with some notations. Let O be a shorthand for a data
tuple (S,A,M,R, S′). The key to our estimator is the estimating
function, ψ(O) = ψ0 + ∑3

j=1 ψj(O), where ψ0 is the direct
estimator outlined in (3), and ψ1(O),ψ2(O),ψ3(O) are some
augmentation terms detailed below. Recall that ψ0 depends on
Qπ , pm, and p∗

a . The purpose of adding the three augmentation
terms is to offer additional protection against potential model
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Algorithm 1 Proposed procedure for confounded off-policy
confidence interval estimation.
Require: The data {(Si,t ,Ai,t ,Mi,t ,Ri,t)}i,t , and the significance

level 0 < α < 1.
1: Compute the estimators for p∗

a and pm via supervised learn-
ing algorithms. Estimate ν via the empirical initial state
distribution.

2: Compute theQ-function andmarginal density ratio estima-
tor according to Section 3.6.

3: Plug-in the aforementioned estimated nuisance functions
into (5) to construct the value estimator η̂.

4: Construct the Wald-type CI.

misspecification of these nuisance functions. As such, the pro-
posed estimator achieves the desired robustness property. See
Figure 2 for an illustration. A pseudocode summarizing the
proposed algorithm is given in Algorithm 1.

We next present the explicit forms of the three augmentation
terms. Specifically, ψ1(O) equals

1
1 − γ

ωπ(S)ρ(M,A, S)
{
R + γ

∑
m,a,a∗

Qπ (m, a, S′)pm(m, a∗, S′)

p∗
a(a|S′)π(a∗|S′) − Qπ (M,A, S)

}
,

where ρ is the probability ratio defined in (4). The last term in
the curly bracket corresponds to the temporal difference error
under theCMDPWMmodel whose conditionalmean given (M,
A, S) equals zero. As such, ψ1(O) has zero mean when Qπ , pm
and p∗

a are correctly specified.
ψ2(O) equals

(1 − γ )−1ωπ(S)
π(A|S)
p∗
a(A|S)

∑
a

p∗
a(a|S){

Qπ (M, a, S) −
∑
m

pm(m|A, S)Qπ (m, a, S)
}
.

When pm is correctly specified, the last term in the curly
bracket can be represented as the residual Qπ (M, a, S) −
E{Qπ (M, a, S)|A, S}. As such, ψ2(O) has zero mean when pm is
correctly specified.

ψ3(O) equals

(1 − γ )−1
∑
m,a′

ωπ(S)pm(m|a′, S)π(a′|S)
{
Qπ (m,A, S) −

∑
a

Qπ (m, a, S)p∗
a(a|S)

}
.

Similarly, the last term in the curly bracket can be represented
as the residual Qπ (m,A, S) − E{Qπ (m,A, S)|S}. When p∗

a is
correctly specified, we have Eψ3(O) = 0.

Based on the estimating function, the proposed estimator
takes the following formula,

η̂ = 1∑
i Ti

N∑
i=1

Ti−1∑
t=0

ψ(Oi,t), (5)

where Oi,t = (Si,t ,Ai,t ,Mi,t ,Ri,t , Si,t+1). Compared to the stan-
dard DRL estimator, the proposed estimator involves additional

computations due to the inclusion of the mediator distribution
function in the latter two augmentation terms. When there are
no unmeasured confounders, the proposed estimator shares
similar spirits with DRL.

To construct such an estimator, we need to learnQπ , ωπ , p∗
a ,

pm and the initial state distribution ν. Note that estimating
p∗
a or pm is essentially a regression problem. These functions
can be conveniently estimated via existing supervised learning
algorithms. We estimate ν via the empirical distribution of
{Si,0}1≤i≤N . As for Qπ and ωπ , we discuss the corresponding
estimating procedure later in Section 3.6.

Next, we discuss the relationship between the proposed esti-
mator in (5) and the two estimators outlined in Sections 3.3 and
3.4. Suppose pm is correctly specified. LetM1 denote the set of
models {Qπ , p∗

a}, andM2 denote the model ωπ . First, when the
models in M1 are correctly specified, the three augmentations
terms have zero mean, as we have discussed earlier. By the weak
law of large numbers, (5) is asymptotically equivalent to the
direct estimator and is thus consistent. Second, when themodels
inM2 are correctly specified, we haveEψ2(O) = 0. In addition,
using similar arguments in Part 3 of the proof of Theorem 2 in
the appendix, supplementary materials, we can show that

ψ0 + Eψ3(O)

= 1
1 − γ

E
[
ωπ(S)ρ(M,A, S){Qπ (M,A, S) − γVπ (S′)}] .

By the definition of ψ1, this in turn implies that (5) is unbiased
to the IS estimator. It is thus consistent. The above discussion
informally justifies the robustness property of (5). We will rig-
orously prove the claim in Theorem 2.

Finally, we observe that the proposed estimator can be writ-
ten as N−1 ∑N

i=1 ηi where ηi denotes the estimating function
based on the ith trajectory only. Since the trajectories are inde-
pendent, the proposed estimator is asymptotically normal, as
shown in Theorem 3. A Wald-type CI [̂η − zα/2N−1/2σ̂η, η̂ +
zα/2N−1/2σ̂η] is valid for off-policy interval estimation, where
zα denotes the upper αth quantile of a standard normal distri-
bution and σ̂ 2

η denotes the sampling variance estimator of {ηi}i.

3.6. Learning Qπ andωπ

The estimating procedure for Qπ is motivated by the following
Bellman equation,

E

{
R + γ

∑
m,a,a∗

Qπ (m, a, S′)pm(m, a∗, S′)p∗
a(a|S′)

π(a∗|S′)
∣∣M,A, S

}
= Qπ (M,A, S).

Similar to the standard Bellman equation under settingswithout
unmeasured confounders, it decomposes the Q-function into
two parts, the immediate reward plus the discounted future
state-action values.

To prove this identity, notice that similar to (3), we can show
that

Vπ (s) =
∑
m,a,a∗

Qπ (m, a, s)pm(m, a∗, s)p∗
a(a|s)π(a∗|s),
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based on the front-door adjustment formula. This together
with our definition of the Q-function yields the above Bellman
equation.

Let p̂m and p̂∗
a denote consistent estimators for pm and pa,

based on the observed data. Given the Bellman equation, multi-
plemethods can be applied to estimateQπ .We employ the fitted
Q-evaluation method Le, Voloshin, and Yue (2019) in our setup
and propose to iteratively compute Q̂�+1 by solving

argminQ∈Q
∑

i,t
{
Ri,t − Q(Mi,t ,Ai,t , Si,t) + γ V̂�(Si,t+1)

}2 ,
where V̂�(Si,t+1) = ∑

m,a,a∗ Q̂�(m, a, Si,t+1)̂pm(m, a∗, Si,t+1)
p̂∗
a(a|Si,t+1)π(a∗|Si,t+1), for some function class Q and � =
0, 1, . . ., until convergence. Similar to Fan et al. (2020), we
can show that the resulting Q-estimator is consistent when Q
is a class of universal function approximators such as neural
networks.

We next consider ωπ . Similar to the work of Liu et al. (2018),
we can show that when the process {St}t≥0 is stationary, ωπ sat-
isfies the equation L(ωπ , f ) = 0 for any discriminator function
f in our setup, where L(ωπ , f ) is given by

Eωπ(Si,t)

{
f (Si,t) − γ

∑
a∼π(•|Si,t) pm(Mi,t|a, Si,t)
pm(Mi,t|Ai,t , Si,t)

f (Si,t+1)

}
− (1 − γ )

∑
s

f (s)ν(s). (6)

As such, ωπ can be learned by solving the following mini-max
problem,

arg minω∈
 sup
f∈F

L2(ω, f ), (7)

for some function classes 
 and F . The expectation in (6)
can be approximated by the sample average. pm and ν in (6)
can be substituted with their estimators. As pointed out by one
of the referees, the minimax optimization is often not stable.
To address this issue, we restrict attention to linear or kernel
function classes to simply the calculation. See Appendix B,
supplementary materials for details.

4. Statistical Guarantees

We prove the robustness and efficiency of our estimator as
well as the validity of our CI in this section. Without loss of
generality, we assumeTi = T for any i. To derive the asymptotic
theories, we require the number of trajectories N to diverge
to infinity. The termination time T can either be bounded, or
diverge with N. The assumption on N is imposed to ensure that
the initial state distribution ν can be well-approximated by the
empirical distribution of {Si,0}1≤i≤N . We first introduce some
conditions. LetHm andHa be the function classes used tomodel
pm and pa, respectively.

Assumption 2. The function classes Q, 
, Hm and Ha are
bounded and belong to VC type classes (Definition 2.1, Cher-
nozhukov, Chetverikov, and Kato 2014) with VC indices upper
bounded by v = O(Nκ) for some 0 ≤ κ < 1/2.

Assumption 2 is mild as the function classes are user-
specified. VC type classes contains a wide variety of functional
classes, including neural networks and regression trees. The VC

index controls the model complexity. It generally increases with
the number of parameters in the model. We allow the VC index
to divergewith the sample size to reduce the bias of the estimator
due to model misspecification.

Theorem 2 (Robustness). Suppose the process {St}t≥0 is station-
ary, pm(Mi,t|Ai,t , Si,t), pa(Ai,t|Si,t), p̂m(Mi,t|Ai,t , Si,t), p̂a(Ai,t|Si,t)
and p∞(Ai,t|Si,t) are uniformly bounded away from zero,
Assumptions 1, 2 hold, and p̂m is consistent. Then as N → ∞,
the proposed estimator is consistent when either Q̂, p̂∗

a or ω̂

converges in L2-norm to their oracle values.

To save space, we present the detailed definition of L2-
norm convergence in Appendix C.1, supplementary materials.
Theorem 2 formally establishes the robustness property. Notice
that the proposed estimator equals the direct estimator outlined
in Section 3.3 when ωπ = 0 and equals the IS estimator in
Section 3.4when Q̂ = 0.As a byproduct, we obtain the following
corollary.

Corollary 1. (i) Suppose the conditions in Theorem 2 hold.
Suppose Q̂ and p̂∗

a converge in L2-norm to their oracle values.
Then the direct estimator is consistent as N → ∞. (ii) Suppose
ω̂ converges in L2-norm to their oracle value. Then the IS
estimator is consistent as N → ∞.

To achieve efficiency, we need the following assumption:

Assumption 3. Suppose Q̂, p̂∗
a , p̂m, ω̂ converge in L2-norm to

their oracle values at a rate of N−κ∗ for some κ∗ > 1/4.
Assumption 3 characterizes the theoretical requirements on

the nuisance function estimators. Suppose some parametric
models (e.g., linear) are imposed to learn these nuisance func-
tions. When the models are correctly specified, then we have
κ∗ = 1/2 (Uehara et al. 2021). Here, we do not impose paramet-
ric assumptions and only require κ∗ > 1/4. For instance, when
using kernels or neural networks for function approximation,
the corresponding convergence rates of Q̂ and ω̂ are provided in
Fan et al. (2020) and Liao, Qi, and Murphy (2020). p̂∗

a and p̂m
can be computed via standard supervised learning algorithms.
Their rates of convergence are available for most often used
machine learning approaches including random forests (Wager
and Athey 2018) and deep learning (Schmidt-Hieber 2020).

Theorem 3 (Efficiency). Suppose the conditions in Theorem 2
hold and Assumption 3 holds. Then the proposed estimator
achieves the semiparametric efficiency bound.

We make a few remarks. First, we show in the proof of
Theorem3 that the proposed estimator is asymptotically normal
and satisfies

√
N (̂η − ηπ)

d→ N(0, σ 2
T) where the explicit form

of σ 2
T is detailed in Appendix C.4, supplementarymaterials. The

asymptotic variance estimator for σ 2
T can be constructed via the

sampling-variance formula. Consequently, a two-sided Wald-
type confidence interval (CI) can be derived for ηπ . Second,
the asymptotic variance σ 2

T decays with T. Specifically, it can be
decomposed into σ 2

0 + T−1σ 2∗ for some σ0, σ∗. See Appendix
C.4, supplementary materials for the explicit forms of these
quantities. The first term σ 2

0 accounts for the variation of the
initial state distribution in the plug-in estimator. The second
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term T−1σ 2∗ is the variance of the augmentation terms and
decays to zero as T → ∞. Third, Kallus and Uehara (2019)
derives the efficiency bound for OPE in infinite horizon settings
where no unmeasured confounders exist and the initial state
distribution under the target policy is known. Our proof for
Theorem 3 differs from theirs in that we allow the initial state
distribution to be unknown and allow unmeasured confounders
to exist. Fourth, in Assumption 3, we require all the nuisance
function estimators to converge to their oracle values and thus
exclude the case with model misspecification. When the model
is misspecified, the semiparametric efficiency bound cannot
be achieved. Finally, in our proposal, we use the same dataset
twice to estimate the nuisance functions and construct the final
value estimator. We do not use cross-fitting. Because of that,
we impose certain metric entropy conditions in Assumption
2 to establish the robustness and efficiency of the proposed
value estimator. To remove Assumption 2, we can couple our
procedurewith sample-splitting and cross-fitting (see e.g., Cher-
nozhukov et al. 2018; Kallus and Uehara 2019). However, in our
setup, we find that the proposed estimator without cross-fitting
has better finite sample properties.

Theorem 4 (Validity). Suppose the conditions in Theorem 3
hold. Then the coverage probability of the proposed CI
approaches to the nominal level as N diverges to infinity.

We remark that Theorems 3 and 4 are concerned with the
asymptotic distribution of the value estimator under a single
target policy. In Appendix A.3 of the supplementary materials,
we establish the joint asymptotic distribution of the proposed
value estimators under multiple target policies, introduce the
proposed CI for the value difference between two target policies
and prove its validity.

5. Simulation Studies

In this section, we evaluate the finite sample performance of the
proposed estimator using two simulation studies. The first toy
example aims to illustrate the robustness properties of our esti-
mator to unmeasured confounding andmodel misspecification.
In the second simulation study, we demonstrate that ourmethod
is superior to state-of-the-art policy evaluation methods.

5.1. A Toy Example

We first describe the detailed setting for the toy example. We fix
time T = 100 and the initial state is sampled from a Bernoulli
distribution with support {0, 1} and satisfies that P(S0 = 1) =
P(S0 = 0) = 0.5. The unmeasured confounders {Ut}Tt=1 are
iid sampled from a Bernoulli distribution with support {−1, 1}
and satisfy that P(Ut = 1) = P(Ut = −1) = 0.5. The
action is discrete-valued and the behavior policy pa satisfies that
pa(1|St ,Ut) = pa(−1|St ,Ut) = 0.5sigmoid(0.1St + 0.9Ut), and
pa(0|St ,Ut) = 1 − sigmoid(0.1St + 0.9Ut). The mediator is
drawn from a Bernoulli distribution with binary support. We
set pm(1|At , St) = sigmoid(0.1St − 0.9(At − 0.5)) which does
not depend on Ut. Assumption 1 is thus satisfied. The reward
Rt and the next-state St+1 are Bernoulli random variables with

support {0, 10} and {0, 1}, respectively, and satisfy P(Rt =
10|St ,Ut ,Mt) = P(St+1 = 1|St ,Ut ,Mt) = sigmoid(0.5I(Ut =
1)(St + Mt) − 0.1St). We are interested in evaluating a random
policy that outputs 0 with probability 1 − sigmoid(0.3St), and
outputs−1 or 1 with probability 0.5sigmoid(0.3St) after observ-
ing St. Under this toy example, we are able to deriveQπ , pm, p∗

a ,
and ηπ theoretically, and we calculate the true value of ωπ via
Monte Carlo method.

Recall thatM1 is a combination ofQπ , p∗
a andM2 = {ωπ }.

We evaluated the performance of the proposed estimator under
the following scenarios: (i) all the models pm, M1, M2 are
correct; (ii) pm and M1 are correct, M2 is misspecified; (iii)
pm and M2 are correct, M1 is misspecified. Specifically, to
misspecify Qπ , we inject a Gaussian noise with unit variance
to the true Qπ . To misspecify p∗

a , we multiply p∗
a by a variable

sampled from a uniform distribution with lower boundary 0.75
and higher boundary 1. Tomisspecifyωπ , we increase the value
of ωπ(0) by 0.5 and reduce the value of ωπ(1) by 0.5. As shown
in Figure 2, our proposed estimator is robust to unmeasured
confounding and model misspecification.

5.2. Comparisonwith State-of-the-Art Methods

We compare the proposed method with the state-of-the-art
methods in the existing reinforcement learning literature. The
simulated data are generated as follows. The initial state is
sampled from a standard normal distribution with dimension
dS = 1 or 3. The distributions of unmeasured confounders are
the same as those in the toy example. Let 1t be a length t vector
with values 1, and Ct = 1�

dSSt , the sum of the state. The action
is binary-valued and is generated according to the behavior
policy pa(1|St ,Ut) = sigmoid(0.1Ct + 0.9Ut). The mediator is
drawn from a Bernoulli distribution with binary support. We
set pm(1|At , St) = sigmoid(0.1Ct + 0.9(At − 0.5)) which does
not depend onUt. Assumption 1 is thus satisfied. The reward Rt
is sampled from a normal distribution with conditional mean
0.5I(Ut = 1)(Mt + Ct) − 0.1Ct and standard deviation 0.1.
The future state St+1 is sampled from a multivariate normal
distribution with mean 0.5I(Ut = 1)(Mt1dS + St) − 0.1St and
covariancematrix 0.25IdS . The target policy selects action 1with
probability sigmoid(0.3Ct).

We compare the proposed estimator with three types of
baselinemethods. All thesemethods are developed by assuming
no unmeasured confounders. The first one is the direct esti-
mator, computed based on an estimated Q-function, η̂REG =
N−1 ∑N

i=1 Q̂(Si,0,π(Si,0)) (denoted by REG). In our implemen-
tation, we compute Q̂ via the fitted Q-evaluation algorithm. The
second one is the marginal importance sampling (MIS) estima-
tor (Liu et al. 2018). To implement this method, the marginal
sampling ratio is estimated by assuming no unmeasured con-
founders exist and is different from the proposed estimator for
ωπ . The third one is the DRL estimator that combines the first
two estimators for value evaluation. None of these methods
uses the mediator. For fair comparison, we also include the
mediator in the state to construct the value estimates. Denote
the resulting three estimators by REG-M, MIS-M, and DRL-
M, respectively. We further estimate their variances based on
the sampling variance formula (see Appendix B, supplementary
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Figure 3. Logarithms of the bias and mean square error (MSE), and 95% CI’s coverage rate of various OPE methods with different combinations of N and T when St is
three-dimensional. The black dash line corresponds to the confidence level 95%. Top panels: T is fixed to 20 and N ∈ {20, 40, 80, 160, 320}, bottom panels: N is fixed to 20
and T ∈ {20, 40, 80, 160, 320}.

materials for details) and construct the associated confidence
interval. The proposed estimator is denoted by COPE, short for
confounded off-policy interval estimation.

The linear basis function models p̂∗
a , p̂m, Q̂π , ω̂π employ

randomly generated Fourier features based on the Python
RBFsampler function. We find that the performance of the
value estimator is not overly sensitive to the number of basis
functions (seeAppendix B, supplementarymaterials for details).
Let ηπ be the ground truth and η̂π be a given OPE estimator, we
define logBias as log10(|Eη̂π −ηπ |) and logMSE as log10{E(̂ηπ −
ηπ)2}, where the expectation E(·) is approximated by Monte
Carlo simulations.We report thesemetrics, as well as the empir-
ical coverage probabilities of all the confidence intervals for the
target policy’s value in Figures 3 and S3 (see Appendix B in
the supplementary materials). We also calculate the standard
deviation of these metrics in 400 replications and report them
in Appendix B, supplementary materials.

It can be seen that COPE achieves the least bias and MSE
among all methods. In addition, its MSE decays with N and T
in general and the empirical coverage rate of our CI is close
to the nominal level. We also notice that the squared bias of
our estimator is much smaller than its MSE. This demonstrates
the consistency of our method and is in line with our theoret-
ical findings. In contrast, other baseline estimators are severely
biased, since they cannot handle the unmeasured confounders.

6. Real Data Application

In this section, we apply our method to a real dataset from
a world-leading ride-hailing company. We focus on a particu-
lar recommendation program applied to customers in regions
where there are more taxi drivers than the call orders. As we
have commented, in the short term, this helps balance the taxi
supply and passenger demand across different areas of the city.
In the long term, this increases the frequency that the customer
uses the app to request the trip.

The dataset consists of all the call orders at a given a city from
September 16th to September 22th. The features available to us

consist of each order’s time, origin, destination and a supply-
demand equilibrium metric that characterizes the degree that
supply meets the demand. For each of the call order, the cus-
tomer might receive a coupon for 20% off. This yields a binary
action. The mediator is the actual discount applied to the order.
As we have commented, the mediator is calculated by the
platform using the action and other promotion strategies and
differs from the action, but is conditionally independent of those
unmeasured variables that confound the action. Assumption
2(b) is thus satisfied. The reward is zero if the customer does not
request the ride at the end, and one minus the actual discount
times the price of the order otherwise. We present the empirical
quantiles of the reward and state in Table S4.

By definition, the reward depends on the action only through
its effect on the mediator. In addition, the customer observes
the final discount applied to their ride on the application, but
is not aware of which promotion strategy yields the discount.
As such, it is reasonable to assume that these promotion strate-
gies will affect their behaviors through the final discount only.
Consequently, the reward and future state are conditionally
independent of the action and other promotion strategies given
the mediator. Assumptions 2(a) and (c) thus hold.

We first fit a MDP model to this dataset, and use the
estimated MDP to generate synthetic data to mimic the real
dataset. Specifically, the distribution of initial state is approxi-
mated by amultivariate normal distribution. The state transition
St+1|At , St ,Mt is modeled by a multivariate normal distribution
N(μ(St ,At ,Mt), σ 2) where the conditional mean function μ is
estimated using regularized linear basis function models. Sim-
ilarly, we estimate the reward function E(Rt|St ,At ,Mt) using a
regularized linear basis function model as well. All the tuning
parameters are selected by 5-fold cross-validation. Based on
the fitted MDP, synthetic dataset can be generated to evaluate
different OPE methods.

We are interested in evaluating two recommendation poli-
cies. One of them is a random policy (denote by π1), with which
each customerwould have an equal chance to get a 20%discount
with probability 0.5. Another policy (denote by π2) relies on the
imbalance measure between supply and demand. Specifically,
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Figure 4. Logarithms of the bias and MSE, and 95% CI’s coverage rate of various OPE methods with different combinations of N and T in simulated real data environment.
The black dash line in the right most panel corresponds to the confidence level 95%. Top panels: T is fixed to 20 and N ∈ {80, 160, 240, 320}, bottom panels: N is fixed to
100 and T ∈ {20, 40, 80, 160, 320}.

for the region with extremelymore vacant drivers than requests,
we randomly choose 70% of the customers for getting the dis-
count. For the rest of regions, the customers would have a 30%
chance for obtaining the discount. We expect the second policy
would yield larger values, as it has better immediate reward and
encourages customers to request rides more often.

To take customers’ frequency of using the app into consider-
ation, we use a slightly different definition of the value function
as in Xu et al. (2018), and adjust the proposed method and
other baselines accordingly to reflect this change. In addition
to {(Si,t ,Ai,t ,Mi,t ,Ri,t)}i,t , the observed data consist of another
sequence of variables {Ti,t}, corresponding to the time that
the ith customer launches the app and enters the destination.
We initialize Ti,0 to zero, for all i. The target policy’s value is
defined as ηπ = ∑+∞

t=0 E
π (γ Ti,t Ri,t). To reflect this change, the

proposed estimator takes the following form,

η̂ = ψ(O) = ψ0 + 1
NT

3∑
j=1

∑
i,t

ψ ′
j (Oi,t),

where ψ0 is the same as the direct estimator with the Q-
estimator Q̂ replaced by Q̂′ detailed below, and for any j,ψ ′

j (Oi,t)

is a version ofψj(Oi,t)with γ replaced by γ Ti,t+1−Ti,t , Q̂ replaced
by Q̂′ and ω̂ replaced by ω̂′. Specifically, Q̂′ is computed by
solving a slightly different Bellman equation

E

{
Ri,t + γ Ti,t+1−Ti,t

∑
m,a′,a

pm(m|a′, Si,t+1)p∗
a(a|Si,t+1)π(a′|Si,t+1)

Qπ (m, a, Si,t+1) − Qπ (Mi,t ,Ai,t , Si,t) |Mi,t ,Ai,t , Si,t
}

= 0,

and ω̂′ is computed by solving (7) with γ replaced by γ Ti,t+1−Ti,t

in (6). The DRL estimator can be similarly modified to adapt to
this change.

We apply REG-M, MIS-M, DRL-M and the proposed
method COPE to evaluate the value difference ηπ2 − ηπ1 . The
ground truth OPE is approximated via Monte Carlo based on

the fitted MDP model and equals 0.17. This is consistent with
our expectation that the second policy yields a larger value.
We evaluate the estimation accuracy by logBias and logMSE as
in the simulation section, and the coverage probability of the
confidence interval. See Appendix A.3 in the supplementary
materials for the construction of the confidence interval of the
value difference. The simulation results are aggregated over 500
replications. The discounted factor γ is set to 0.99, as we are
interested in the long-term treatment effects.

Figure 4 depicts the performance of four methods. Results
are summarized as follows. First, COPE has the best estimation
accuracy among the four methods. Second, the coverage proba-
bility of the proposedCI is close to the nominal level. In contrast,
the baseline methods fail to achieve the nominal coverage when
N or T is large. These results are consistent with our simulation
findings.

We next apply our method and DRL to the real dataset to
evaluate the value difference ηπ2 − ηπ1 . The proposed method
yields a value difference of 0.63. The 95% associated confidence
interval is [0.03, 1.23]. As such, the second policy is signifi-
cantly better than the first one. The result is consistent with
our expectation. On the contrary, DRL yields a value difference
of −0.96. The associated confidence interval is [−2.07, 0.14].
According toDRL, the randompolicy ismuch better. This is due
to that DRL cannot handle unmeasured confounders, leading
to a biased estimator. Combining this with our theoretical and
simulations results, we have more confidence about the findings
of our proposed CI.

7. Discussion

In this section, we discuss several extensions. First, our current
proposal relies on the “memoryless unmeasured confounding”
assumption to simplify the derivation. In Appendix A.1 of
the supplementary materials, we discuss several possible relax-
ations of this assumption. Second, we assume the mediators
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are discrete to simplify the presentation. In Appendix A.2,
supplementary materials, we extend the proposed method to
settings with continuous mediators. Third, we adopt a dis-
counted reward formulation to investigate the policy evaluation
problem. We extend our proposal to the average reward setting
in Appendix A.4 of the supplementary materials. Fourth, we
assume the mediator variable is completely observed. In the
causal inference literature, Chernofsky, Bosch, and Lok (2021)
considered settings with left censored mediators. They pro-
posed three estimation methods, including (i) mediator model
extrapolation; (ii) numerical integration and optimization of
the observed data likelihood function; (iii) the Monte Carlo
Expectation-Maximization algorithm. In cases with partially
observedmediators, we can couple their ideas with our proposal
for value evaluation.

Supplementary Materials

The supplementary article consists of some further discussions of themem-
oryless unmeasured confounding assumption, extensions of the proposal
to settings with the average reward objective, continuous mediators and
multiple target policies, as well as some implementation details, technical
definitions and proofs.
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