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Abstract—Artificial intelligence (AI) systems in autonomous
driving are vulnerable to a number of attacks, particularly the
physical-world attacks that tamper with physical objects in the
driving environment to cause Al errors. When Al systems fail or
are about to fail, human drivers are required to take over vehicle
control. To understand such human and AI collaboration, in this
work, we examine 1) whether human drivers can detect these
attacks, 2) how they project the consequent autonomous driving,
3) and what information they expect for safely taking over
the vehicle control. We conducted an online survey on Prolific.
Participants (/N = 100) viewed benign and adversarial images of
two physical-world attacks. We also presented videos of simulated
driving for both attacks. Our results show that participants did
not seem to be aware of the attacks. They overestimated the
AD’s ability to detect the object in the dirty-road attack than in
the stop-sign attack. Such overestimation was also evident when
participants predicted AI’s ability in autonomous driving. We
also found that participants expected different information (e.g.,
warnings and Al explanations) for safely taking over the control
of autonomous driving.

I. INTRODUCTION

To achieve autonomous driving in complex and dynamic
driving environments, a collection of artificial intelligence (AI)
systems have been designed and developed to handle the core
functions such as perception, localization, prediction, and plan-
ning. For example, the perception module usually takes camera
and sensor data (e.g., LiDAR and radar) as inputs, perceives
the surrounding environments, and extracts the information
for driving (e.g., road obstacles). However, those Al systems
are known to be vulnerable to adversarial attacks [9], [20],
[25], making autonomous driving susceptible to safety- and
security-critical errors that can cause road hazards and even
fatal consequences.

Human drivers are still required to take over control from
autonomous driving when the system fails or is about to
fail (e.g., with SAE Level 3 automation [15]). Thus, it is
essential to increase their awareness of those Al vulnerabilities
in autonomous driving and design a safe and secure system
for them to use. While previous studies have focused on the
technical aspects of those Al systems (e.g., [3], [20], [25]),
recent work has started to understand human drivers’ detection
of physical-world attacks (e.g., classification of malicious stop-
sign images [10]). However, little research has investigated
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whether human drivers are able to identify physical-world
attacks as the sources of errors for autonomous driving.
Moreover, it is unclear what information human drivers expect
to receive such that they can increase their awareness of those
attacks and take over the control if needed.

We conducted an online survey (N = 100) on Prolific to
understand human drivers’ situation awareness of autonomous
driving under two physical-world attacks. Participants an-
swered questions about object classification and autonomous
driving projection using images of the two attacks. We also
presented videos of the simulated driving for both attacks
and assessed participants’ satisfaction, take-over intent, and
comprehension of the situation in the videos. In addition, we
asked open-ended questions to elicit the participants’ expected
information to understand the situation and take over the
control if needed. Moreover, we asked questions to assess
participants’ knowledge, awareness, and trust of Al systems
in autonomous driving before and after our study.

We found that participants could differentiate the benign
and adversarial objects (i.e., STOP signs and road lanes). They
also perceived that Al was less capable than human drivers in
object detection. Yet, the participants overestimated the AI’s
capability of lane detection with the dirty-road patch compared
to the adversarial stop-sign classification. Their projection
of autonomous driving with and without the physical-world
attacks showed similar results as the detection tasks. The
participants also overestimated the Al’s ability to drive safely
on the dirty road. The quantitative and qualitative evaluations
of the videos revealed that the participants’ unawareness of
physical-world attacks (i.e., overestimation of the Al ability) is
likely due to their driving experience or mental models of driv-
ing situations (e.g., ice/wet patches on the road due to accidents
rather than dirty-road attacks). We suggest researchers consider
various tasks (e.g., detection and projection) for human drivers
when evaluating physical-world attacks in autonomous driving.
We also recommend exploring different information (e.g.,
warnings and Al explanations) human drivers expected to
afford safe take-over control of autonomous driving.

II. RELATED WORK

In the following, we discuss related work of physical-world
attacks on Al perception, human situation awareness and take-
over control, and trust in autonomous driving.

A. Physical-world Attacks on Al Perception

Multiple AI components are required to complete the
complex tasks of autonomous driving, including perception,



localization, prediction, and planning. Yet, Al components of
autonomous driving are known to be vulnerable to adversarial
attacks [11]. In the past decade, extensive efforts have been
conducted to understand the attack spaces of autonomous
driving. The majority of the existing attacks on autonomous
driving systems have focused on physical-layer attacks, espe-
cially physical-world attacks (see [25] for a review). Physical-
world attacks refer to modifying the physical-world driving en-
vironment, and consequently tampering with the sensor inputs
to Al systems. Among the physical-world attacks, about half
of them are specific to object texture for Al perception [25].
For example, previous efforts have leveraged malicious object
texture (e.g., robust physical perturbation [8] and representa-
tive ShapeShifter [4]) to make a STOP sign undetected by
Al systems [9], [27]. Sato et al. deployed a physical-world
adversarial attack using dirty-road patch and obtained a very
high success rate [24].

While Al systems are vulnerable to perturbed STOP signs,
human drivers can identify the STOP signs before and after a
malicious manipulation. Recent work has started to investigate
whether human drivers can understand that Al systems are
vulnerable to the perturbed STOP sign images. For example,
Carcia et al. [10] found that participants revealed a higher-
than-expected belief that Al systems would be able to identify
a perturbed STOP sign in their study, indicating human drivers’
unawareness of the Al vulnerability.

B. Human Situation Awareness and Take-over Control

Since the Al perception systems of autonomous driving
are known to be generally vulnerable to adversarial attacks,
human drivers’ unawareness of such attacks can expose them
to safety-critical situations. Moreover, in SAE Level 3 automa-
tion, drivers have to be available to take over vehicle control
detected and announced by the automated system in “situations
that exceed the operational limits of the automated driving
system” [15]. Thus, it is essential to understand the proper in-
car communication to increasing drivers’ awareness of the Al
vulnerability and facilitating the take-over control.

Taking over vehicle control before the physical-world at-
tacks causing harm can be demanding for drivers. First of
all, they need to detect the occurrence of an attack (e.g.,
a perturbed STOP sign), assess the risk impacts (e.g., Al
perception system could fail to detect the STOP sign), and
estimate further effects (e.g., a STOP sign violation or causing
a traffic accident). Drivers’ situational awareness [7] (i.e.,
perception, comprehension, and projection of the situation),
have been extensively studied with respect to take-over control
across different automation levels [1]. However, the domain of
physical-world attacks on Al system constitutes a special case
for situation awareness in autonomous driving, as it involves
how Al systems’ capabilities and vulnerabilities should be con-
veyed to human drivers. To provide human drivers with helpful
information, we propose to examine what information they
expect for safely taking over the control in those situations.

C. Human Trust in Automation

Humans usually assume that machines (e.g., an Al system)
function flawlessly, and consequently encounter them with
a trust advance [18], [19]. However, over-trusting the Al

Fig. 1: Images for object detection and autonomous driving projec-
tion. Top row shows images for road-surface scenario and bottom row
shows images for stop-sign scenario. Left column shows the benign
images and right column shows the adversarial images.

system could result in AI’s vulnerabilities being neglected and
potential risks going through unmitigated. The human-Al trust
is expected to be calibrated to an appropriate level through the
communication and collaboration between humans and the Al
systems [14], [18]. Our study also examines human drivers’
knowledge, awareness, and trust of Al systems in autonomous
driving as a function of physical-world attacks.

III. METHODOLOGY

We examined whether human drivers can detect the objects
and how they project autonomous driving using two scenarios
(i.e., dirty-road and stop-sign attacks). We designed our study
around SAE Level 3 automation [15], in which participants
were required to take over control from the autonomous-
driving system when prompted by a take-over request.

A. Materials

To maintain adequate ecological validity of the experiment,
we first asked participants to evaluate images of both scenarios.
We also presented two videos of simulated driving showing
physical-world attacks (i.e., physically perturbed objects in the
environment of autonomous driving).

1) Images: We generated the images by varying two inde-
pendent factors within subjects: scenario (STOP sign vs. road
surface) and image type (benign vs. adversarial). The image
type reflected whether the STOP sign or road surface had
been tampered with or not. The benign image was either a
standard STOP sign or a local road with a clean surface (see
Figure 1). The adversarial image was the same stop-sign image
but perturbed by ShapeShifter (SS) [4] or the same local road
with a dirty patch [24]. Both attacks have been demonstrated
feasible in prior work [24], [25].



2) Videos: After the image evaluation, we asked partic-
ipants to view a randomly selected video using a between-
subject design. The dirty-road attack video was created by Sato
et al. [24] and the stop-sign attack was produced by Shen et
al. [25]. Each video was about 11 s, presenting a simulated
driving of the attack.

Dirty-road attack. In this simulated scenario (i.e., local-
road scenario [24]), the autonomous vehicle (AV) first drives
toward the lane center along a local road. After 5 s, a dirty-
road patch down the road starts to take effect from the driver’s
perspective. The AV fails to identify road lanes with such
dirty-road patch, and causes the vehicle to deviate to the left
significantly and hit the truck from the opposite direction.
Thus, the simulation scenario shows that the safety impacts
of the attack can be severe.

Stop-sign attack. In this simulated scenario, the AV first
drives toward an intersection with a STOP sign. The AV fails to
recognize the perturbed STOP sign and overshot the STOP sign
near the intersection. We chose this scenario because traffic-
sign attacks have been presented and investigated recently [9],
[25]. Also, the simulated scenario does not result in an
accident, showing less-critical safety impacts than the dirty-
road attack.

B. Procedure

The online survey was designed using Qualtrics. The
survey consisted of four parts. After participants indicated their
informed consent, the survey started. Part I was designed to
obtain a baseline of human drivers’ awareness and trust of Al
systems in autonomous driving. We asked participants’ agree-
ment on six statements about the Al system for autonomous
driving. Question 1 asked participants whether Al is used for
extracting important driving information from the environment,
which was meant to gauge their knowledge of Al function.
Questions 2-6 asked participants to judge their own awareness
and trust in AL All six quantitative questions asked for a
response on a 7-point Likert scale, with “1” indicating “com-
pletely disagree” and “7” indicating “completely agree.” See
Appendix A for details of those and the following questions.

In Part 2, the participants were exposed to images of the
two physical-world attacks (see Figure 1). For each attack, we
had one benign setting, in which a clean STOP sign or a clean
road was presented. There was also an adversarial setting for
each scenario, in which we presented images of the perturbed
STOP sign [25] or a dirty-road patch [24].

The participants reported their perception of how an agent
would classify objects in each image. The agent was either
human drivers (e.g., the participants themselves) or an Al sys-
tem. For the human drivers, the statement asked participants’
agreement level with, “I think this image shows a STOP sign/I
think this image shows lane lines of the road clearly.” on the
7-point Likert scale. For the Al system, the statement asked
about their perception of the current Al technology’s ability to
classify the image, “I think the current Al system in AVs will
classify this as an image of a STOP sign/I think the current
Al system in AVs will detect the lane lines of the road in the
image.” using the same 7-point scale.

Moreover, we asked the participants to project how the
agent would drive using the same design. For example, the

statement asked about their agreement level with Al system,
“I think the AI system in AVs will navigate the above road
condition safely.” Participants were not told that the perturbed
images were under physical-world attacks. We counterbalanced
the order of the two scenarios, as well as the benign and
adversarial settings in each scenario between subjects.

In Part 3, we first asked participants to imagine that
they were driving in an AV with activated Al systems to
contextualize the scenario in the video. We also made it
clear that they need to supervise the AVs’ behavior. We
then randomly presented one of the videos with the physical-
world attacks. After the video presentation, participants were
prompted to evaluate the scenario with two open-ended ques-
tions regarding their 1) understanding of the presented scenario
and 2) expected information about the situation such that
human drivers can safely take over the control. Participants
also rated five statements about autonomous driving regarding
their 1) satisfaction, 2) perceived safety, 3) take-over intention,
4) perceived cause due to accident, and 5) perceived cause
due to intentional attack. The same 7-point Likert scale as the
image evaluation was used. To ensure participants’ viewing
of the video’s content, we asked an attention-check question.
Following the video presentation, the participants were asked
to select the traffic sign in the stop-sign video or the color of
the truck from the opposite direction in the dirty-road video.

Lastly, participants filled in their demographic information
and answered questions about their driving experience in Part
4. We also asked the six questions of Part 1 to examine
the impacts of the physical-world attacks on participants’
knowledge, awareness, and trust of Al systems in autonomous
driving.

C. Pilot Study

Prior to the online survey’s deployment, we conducted one
pilot study (N = 20) on Prolific [23] to evaluate the study’s
procedure, determine the average duration, and gather feedback
on the survey questions for clarity and comprehensibility.
Participants took about 10.5 min to complete the survey. We
compensated participants with $2 (based on recommended
payment rate on Prolific $12/h). Nine participants commented
on the study, but none of them experienced any issues.

D. Recruitment and Participants

We recruited another 100 participants on the Prolific. To
participate in our study, Prolific workers needed to own a car
and be located in the US. We selected car ownership as a cri-
terion to ensure that participants have experience with regular
cars. Additionally, we required a 95% human intelligence task
(HIT) Approval Rate for all Prolific workers and that they
have more than 100 approved HITs.! All participants were
compensated $2 for completing the study (Thseqn = 11.5 min,
Thrredian = 9.6 min). This experiment was approved by the
Institutional Review Board (IRB) at the authors’ institution
(IRB #: STUDY00021615). Informed consent was obtained
from each participant.

A total of 44 males and 56 females took part in our study.
Eighty participants do not have a degree or job in computer

IThe same criteria were also implemented in the pilot study.



science or a related field. About half of the participants have
used connectivity functions or driving assistance functions.
Only 8 participants reported having previous experience in
autonomous driving. Participants’ demographics are shown in
Appendix Table I.

IV. RESULTS

There was an approximately equal number of participants
in each video condition, STOP sign (57) and dirty road (43).
Only six participants failed the attention check in the dirty-road
condition. We checked responses to the open-ended questions
from the six participants. Their responses were relevant to the
questions and all looked reasonable. We included their results
in the data analysis.

A. Analysis Plan

1) Statistical Analysis: Our statistical analysis focused on
quantitative measures in each part. We examined participants’
detection of adversarial objects and projection of autonomous
driving by manipulating three within-subject factors: scenario
(STOP sign vs. road surface), agent type (human drivers vs.
Al) and image type (benign vs. adversarial) in Part 2. To
quantify the effect, we conducted repeated-measure analysis
of variances (ANOVAs). We also conducted a two-sample -
test to compare participants’ evaluation of two physical-attack
videos. At Parts 1 and 4, we measured participants’ knowledge,
awareness, and trust of Al system in autonomous driving
before and after the study, respectively. A 2 (study: before
vs. after) x (video: STOP sign vs. dirty road) mixed ANOVA
was conducted to determine how those two factors and their
interaction affected participants’ ratings.

We conducted null hypothesis testing (o = 0.05) for those
measures. The null hypothesis was rejected when the obtained
results among the conditions were significantly different from
each other. We implemented parametric tests such as ANOVA
because they are robust to yield the right answer even when
distributional assumptions are violated [22].

2) Thematic Analysis: We use open coding [26] to eval-
uate the responses to the two open-ended questions. Two
researchers independently coded answers to open-ended ques-
tions for each scenario in two iterations. Initially, one of them
coded the first half of the dataset, the other one coded the other
half, and constructed an initial version of the codebook. After
this first iteration, the two researchers discussed their codes and
adapted the codebook accordingly. During the second iteration,
the two researchers swap the data.

B. Detection and Projection of Physical-World Attacks

1) Detection.: As shown in Figure 2 top panel, the partici-
pants can differentiate the benign images from the adversarial
images (F(1 99) = 336.34, p < .001). They gave lower ratings
for the adversarial images than for the benign images. The
participants also gave lower ratings for Al agent than for
human drivers (F(;,99) = 36.18, p < .001), indicating that
they were less certain about AI’s capability of classifying
the images in general. Moreover, the 2-way interactions of
image type X scenario (F(1 99y = 26.33, p < .001) and agent
type X scenario (F(1,99y = 7.29, p = .008), as well as the
3-way interaction of image type X agent type X scenario

Detection

£ o [e)] ~

w

Agreement Level

NN\

DAY
AN\
NN

1 I

Adve rsarlal_human

Adversarial_human

Adve rsarlaI_AI

B>

Benign_human Benign_

Benign_

r.Road Surface

Benlgn_human

m Stop Sign

Projection

AdversarlaI_AI

& (5]

Agreement Level
w

SN

AN\
m

N\

z

m Stop Sign  * Road Surface

Fig. 2: Results of object detection and autonomous driving projection
of images in different conditions at Part 2. The error bars represent
=+ one standard error.

(Fl(1,99) = 15.22, p < .001) were all significant. Specifically,
the participants showed uncertainty in AI’s object detection in
both scenarios with benign images. Yet, such uncertainty was
only evident for the adversarial stop-sign images.

2) Projection.: The participants were less certain about
Al’s capability of safely driving in the scenario (F(y g9) =
110.92, p < .001). They rated both Al and themselves (human
drivers) to be less capable of driving in the adversarial settings
than for the benign settings (F{1 99y = 275.1,p < .001), and
the reduction was greater for Al agent than for human drivers
(Fl(1,99) = 31.55,p < .001). Moreover, the 2-way interaction
of scenario X image type (F(199) = 51.99, p < .001) and
the 3- way interaction of scenario X image type X agent type
(Fu 09) = 8.95, p = .004) were significant. Specifically,
part1c1pants uncertalnty of AD’ capability was similar between
the two scenarios in the benign settings. However, they were
more uncertain about AI’s capability of driving safety in
the stop-sign scenario than the dirty-road scenario in the
adversarial settings (see Figure 2 bottom panel).

Overall, the results were similar for the detection and
projection measures. Also, participants’ gave an average rating
above 4 for adversarial images evaluated by Al agent (see
Figure 2), indicating that they did not seem to be aware of the
physical-world attacks, especially the dirty-road attack.

C. Quantitative Measures of Videos

Figure 3 shows the results of quantitative measures of
the two videos. The participants were not satisfied with the
behavior in the dirty-road video, which was significantly lower
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Fig. 3: Results of quantitative measures for videos. The error bars
represent + one standard error.

than that in the stop-sign video (f(;,9s) = —10.63, p < .001).
They believed that human drivers would handle the situation
better than AI in each video, and the rating was higher
after viewing the dirty-road video than the stop-sign video
(t(1,08y = 5.79, p < .001). The participants would like to
take over the control in both scenarios. The rating was also
higher for the dirty-road video than for the stop-sign video
(t(1,08) = 6.66, p < .001). Participants believed that the dirty-
road scenario was more likely due to accidents than the stop-
sign scenario (f(1,98) = 3.89, p < .001). Those results are
possibly due to the collision shown in the dirty-road video.

Although the participants gave higher ratings for the stop-
sign video than that for the dirty-road video (¢(1,93y = —2.16,
p = .033), they did not believe that either scenario was due
to attacks. Such results are in agreement with the results of
detection and projection tasks.

D. Human Drivers’ Knowledge, Awareness, and Trust of Al
Systems in Autonomous Driving

Figure 4 shows the mean values of the ratings across condi-
tions. The participants agreed that Al is essential for perceiving
the driving environment and extracting relevant information
in autonomous driving in general. Such agreement was not
dependent on the video scenarios (F' < 1.0) or before/after
the current study (F{1,9gy = 2.62, p = .108). The participants
became more aware of using Al for perceiving the driving
environment and extracting relevant information after our study
(Fl1,08y = 20.73, p < .001). Their basic understanding of
the concepts and technology that allow Al to work showed a
trend to increase after viewing the stop-sign video but not after
viewing the dirty-road video (F{1 9g) = 5.76, p = .018).

The participants who viewed the stop-sign video showed
higher trust than those who viewed the dirty-road video
(F(1,08y = 6.14, p = .015). The main effect of video was
qualified by study (F(1,9s) = 20.72,p < .001), indicating that
such difference became more evident after the current study.
In agreement with the trust measure, participants became more
worried about the use of Al in autonomous driving after the
current study (F(; 98y = 6.73, p < .011), mainly for those
who viewed the dirty-road video but not for those who viewed
the stop-sign video (F(;98) = 12.36, p < .001). Even if
the participants could know more about how Al perceives the
environment and extracts information in autonomous driving,
they reduced their trust in Al for autonomous driving after the
current study (F{q,98) = 4.56, p = .035).
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Fig. 4: Average ratings of the six statements of human drivers’
knowledge and trust of Al systems in autonomous driving at Parts 1
and 4. The error bars represent + one standard error.

E. Thematic Analysis

The inter-rater reliability of Cohen’s Kappa is 0.87 [17],
indicating a satisfactory agreement. The two coders resolved
the discrepancies, discussed the results, and finalized the
thematic analysis together. Note that a single response may
have multiple themes. We describe a few major themes and
the numerical difference across scenarios.

1) Comprehension of the Video Contents: We report the
results of the dirty-road video first and then the STOP-sign
video. For participants (n = 43) who viewed the dirty-road
video, the most common themes are:

e Al malfunction, error, or confusion: 28 participants
(65.1%) mentioned the scenario was caused by some
problem in the Al, like P100: “The AI confused the
blurriness on the ground and did not stay in its lane.”

e Incorrect AI Lane Detection: 19 participants (44.2%)
specifically mentioned that the AI did not correctly read
the lane lines on the road (e.g., P19 said that “The Al
thought the marks on the road were the lanes ...”, and
P43 felt that “... the Al could not detect the street lines
appropriately and swerved out of bounds as a result.”)

e Road Condition: 24 participants (55.8%) mentioned
something about the condition of the road, like the dirty
markings. Interestingly, several participants interpreted
the dirty patch as ice, like P40, who said that “... an
icy/wet patch was hit ...”, and P76 responded, “... [the]
mark on the ground could have been a patch of black ice
and it made the car swerve into the oncoming lane and
hit the truck.”



e Collision: 22 participants (51.2%) explicitly mentioned
the car’s collision with the truck. For example, P3 re-
sponded: “The Al was not able to detect the line on the
ground ... so it crashed into the oncoming truck.”

For participants (n = 57) who viewed the STOP sign video,
most (54,94.8%) answered that the car or Al stopped at the
sign. Only 13 (22.8%) participants believed that AI did not
stop or human drivers had intervened. Of those responses, P2
described that “... the Al ignored the stop sign and the human
had to stop the car themselves.” In contrast to the dirty-road
condition, only three participants explicitly mentioned that the
STOP sign was malignant.

2) Expected Information for Safe Take-over Control: We
first report the results of participants who viewed the dirty-
road video. They expected the following information.

e An Alert: 34 participants (79.1%) wished for some kind
of alert (e.g., audio or a combination of audio and visual).
An example is P76, who stated that the vehicle “... should
make a chime ... stating that it cannot detect part of the
road ahead ...”

e An explanation of the AI’s decision-making: 20 par-
ticipants (46.5%) wanted to see the AI’s reasons for
deciding how the vehicle will move next. For example,
P56 wanted the vehicle to explain that the Al “... had
detected something impairing its ability to make judgment
on the road condition,” and P47 wanted the Al to indicate
that it “... cannot detect road lines so the driver can take
over.”

e An explanation of AI errors: Eighteen participants
(41.9%) wanted to see some explanation of why a driving
Al made a faulty decision. Five other participants specif-
ically wanted to see a description of lane violation. For
example, P100 wanted the Al to “... notify the [driver]
that it cannot identify what it sees”, and P66 stated that
“It should provide that it is about to swerve ...”

e Request the driver to take over: Eleven participants
(25.6%) wanted the vehicle to indicate that the human
drivers should take control (e.g., P34 wanted the vehicle
to indicate “That the Al is unable to safely navigate and
the human will need to interact immediately.”)

Participants who viewed the stop-sign video expected the
following:

e Explicit mention of the stop sign: Twenty participants
(35.1%) wanted the vehicle to explicitly point out the stop
sign to the driver. P81 responded that “The Al system
should acknowledge there’s a stop sign approaching ...”,
and P32 wanted a “... visible indicator of stop sign.”

e An alert: Nineteen participants (33.3%) expected some
kind of warning alert. Like the dirty-road condition, the
warnings could be audio, or both visual and audio. For
example, P95 responded that “... the Al system could have
some sort of notification pop up on the dashboard that
says ‘Upcoming: Stop Sign’...”

e An explanation of the AI’s decision-making: Eleven
participants (19.3%) would like to see an explanation of
the AI’s decisions. For example, P8 wanted “... some sort
of screen that shows the human what the Al was detecting
- like if there was a little message on the dash board that

said ‘stop sign approaching’ ... so that humans know that
the Al knows there is a stop sign.”

e An explanation of AI errors: Eight participants (14%)
expected descriptions of Al error, confusion, or uncer-
tainty (e.g., P80 stated, “/The Al] should tell the human
that it is having trouble telling if there is a stop sign.”

Different from the dirty-road condition, 25 (43.9%) par-
ticipants who viewed the stop-sign video indicated that they
might not have understood why human drivers need to take
over the control, indicating their unawareness of the malicious
STOP sign and stop-sign violations in the video.

V. DISCUSSION

The present study investigated human drivers’ detection of
physical-world attacks and projection of autonomous driving
in two scenarios (i.e., dirty-road and stop-sign attacks). We
found that participants were able to differentiate the benign and
adversarial images for both attacks. They also rated Al agent
to be less capable of such detection and projection than human
drivers. While such uncertainty about AI’s capability was
evident for the benign images of both scenarios, it was only
evident for the adversarial stop-sign images. After viewing
the videos, participants did not believe either scenario was
due to an attack. As revealed in their responses to the open-
ended questions, participants’ unawareness of the physical-
world attacks could be due to them having experienced a
similar situation without an attack (e.g., ice/wet patches on
the road due to bad weather/an accident).

The participants rated Al agent and human drivers to be
less capable of detection and projection tasks in the adversarial
settings than in the benign settings, but the reduction for
the AI was greater than that for human drivers. Such results
are in agreement with prior work showing that humans have
higher self confidence than confidence in automation [14].
Compared to the general knowledge question in Section IV-D,
the detection and projection tasks are more specific. Thus,
while human drivers are aware of the use of Al in autonomous
driving, they lack knowledge about how Al system functions
in specific autonomous driving tasks.

Participants in our study believed that the lane-detection
and lane-keeping tasks were more difficult than classifying
STOP signs and driving in the stop-sign scenarios using
benign images. Such results make perfect sense since lane-
detection and lane-keeping tasks involve lateral control, which
is more attention-demanding or effortful than speed control
(e.g., STOP sign compliance) [13]. Interestingly, we also found
that participants did not believe that the dirty-road patch
could cause problems for either human drivers or Al agent.
Responses to the open-end questions revealed that participants’
prior driving experience may have made them more confident
in driving on the dirty road (e.g., ice/wet road). In the case
of the stop-sign video, the participants might not be able to
identify the violation since overshooting a STOP sign is a very
common offense for a lot of human drivers.

Mental models are human’s internal representations of the
external world, which is dynamic and based on individual ex-
perience [16]. Our findings indicate that human drivers’ mental
models of driving situations are based on their experience
(e.g., dirty-road attack — ice/wet road), which could impact



their perception and projection of autonomous driving and
result in misconceptions. Previous studies showed that users’
mental models could be improved with increased transparency
of intelligent systems [6]. Explainable Al (XAI) is a research
field that aims to make Al systems’ decisions more transparent
and understandable to humans [21]. Previous work has started
to explain autonomous driving behaviors [2], [12]. When asked
about their expected information for safely taking over the
control, a lot of participants expected explanations of the Al
decision, as well as Al errors, confusion, or uncertainties. In
terms of trust in Al, participants gave a lower rating for the
dirty-road scenario than for the stop-sign scenario. A possible
reason is that participants viewed the collision in the dirty-road
video, which is safety-critical. The results are similar to prior
work that shows participants’ trust was corrected downwards
with every mistake the machine made [5]. Besides explaining
capabilities, it is essential to communicate vulnerability of Al
systems, which can enhance mental models of driving situa-
tions, calibrate trust in Al, and enable human-AlI collaboration.

After viewing the videos, few participants mentioned the
perturbed STOP sign, and more than half of them even
responded with confusion when asking for their expected
information for taking over the control. Thus, although human
drivers are capable of detecting the attacks, they probably
will miss the attacks in actual driving or think the malignant
marks do not matter. Such results underline the importance of
constructing ecologically valid experiments to evaluate human
drivers’ susceptibility to physical-world attacks.

A. Limitations

There are a few limitations in the current study. First,
we only evaluated two cases of physical-world attacks, which
limited us to discussing further implications of other physical-
world attacks from human drivers’ perspective. Future work
can systematically assess the capability of human drivers to
identify physical-world attack vectors (e.g., object texture,
object shape, and object position [25]) in autonomous driving.
Second, we recruited participants on Prolific, who are usually
between 18 and 44 years old and have at least some level
of college education. Thus, the obtained results might not be
representative of the general public. Third, participants made
responses with hypothetical scenarios, images, and videos from
simulated drivings. Thus, the experience could be different
from actual driving. Lastly, we noticed extra differences be-
tween the benign and adversarial images in the dirty-road
attack, such as the trunk of the ego vehicle and the truck size
(see Figure 1). However, we expect minimal impacts of those
factors on the detection and projection results since participants
were instructed to pay attention to the road lanes. However,
future work can consider better controlling those factors and
further evaluating the scenarios. Moreover, we note that the
size, viewing angle, and viewing distance of the STOP sign in
the video might have resulted in participants’ unawareness of
the perturbed sign. Future work could consider conducting a
study using a driving simulator, which could offer more real
driving experience and driving-related tasks.

VI. CONCLUSION

A clear understanding of human drivers’ detection of
physical-world attacks and projection of consequent driving

allows us to better comprehend their situation awareness of
autonomous driving under such attacks. Our study shows that
human drivers’ awareness of those attacks (e.g., the dirty-
road attack) is limited, which is likely due to their prior
driving experience. Moreover, our work demonstrates the im-
portance of constructing different tasks for human drivers to
evaluate various physical-world attacks in autonomous driving.
Our study also provides useful information to in-car risk
communication, which could afford safe take-over control of
autonomous driving and appropriate calibration of trust in Al
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APPENDIX

Survey questions about physical-world attacks. [Part 1&4:
Knowledge and Trust in AI] Participants were asked to rate their
agreement level with the following statements using a 7-point Likert
scale (Completely disagree (1), Strongly Disagree (2), Disagree (3),
Neither Agree Nor Disagree (4), Agree (5), Strongly Agree (6),
Completely agree (7)).

Q1. Autonomous driving requires the use of Al to perceive the
environment and extract information for driving, such as detecting
pedestrians or other vehicles. Q2. I am aware of how autonomous
driving systems use Al to perceive the environment and extract
information for driving. Q3. I have a basic understanding of the
concepts and technology that allow Al to work. Q4. I can trust Al in
autonomous driving. QS. I am wary of the use of Al in autonomous
driving. Q6. If I know more about how Al perceives the environment
and extracts information, I would trust it more in autonomous driving.

[Part 2: Images] The participant was presented with both the
benign and adversarial images for each scenario in a random order.
The questions for the benign and adversarial images in each scenario
were the same.

Stop Sign Questions: Q1. I think this image shows a STOP sign.
Q2. I think the current Al system in AVs will classify this as an image
of a STOP sign. Q3. I think a human driver will navigate a driving
situation with the above STOP sign on the road safely. Q4. I think
the current Al system in AVs will navigate a driving situation with
the above STOP sign on the road safely. Road Surface Questions:
Q1. I think this image shows lane lines of the road clearly. Q2. I

think the current Al system in AVs will detect the lane lines of the
road in the image. Q3. I think a human driver will navigate the above
road condition safely. Q4. I think the current Al system in AVs will
navigate the above road condition safely.

[Part 3: Video]l The participant was randomly shown one of
the two videos. They were then asked a multiple choice question to
gauge their attention. Afterwards, they were presented with two open-
response questions.

Stop Sign Video: Q1. What traffic sign was featured in the video?
(Options: Stop sign, Traffic Light, Yield Sign, Prefer not to answer)
Q2. What do you think happened in the video? Q3. What information
should the Al system provide about the situation so that human drivers
can avoid the STOP sign violation? Road Surface Video: Q1. What
colors were the truck? (Options: Blue and red, Green and yellow,
Black and white, Prefer not to answer) Q2. What do you think
happened in the video? Q3. What information should the Al system
provide about the situation so that human drivers can safely take over
the control?

Participants were then asked to rate their agreement with the
following statements using the 7-point Likert scale as Part 1. These
questions were the same regardless of what video the participant saw.

Q4. I am satisfied with the AV’s behavior in the situation. Q5. I
would drive more safely than Al in this situation. Q6. I would take
over the AI’s driving in this situation. Q7. I believe this situation
was caused by accident. Q8. I believe this situation was caused by
intentional attack.

TABLE I: Demographic Information of Participants

Item Options Percentage
Male 44%
Gender Female 56%
18-24 12%
25-34 23%
Age 35-44 24%
45-54 24%
55 or older 17%
American  Indian/Alaskan 1%

Native
Ethnicity African/African American 8%
Hispanic/Latino 4%
Caucasian 73%
Asian 14%
No high school 1%
High School 19%
. Some College 5%
Education Associate’s 11%
Bachelor’s 43%
Masters/PhD 21%
No 80%
Prefer not to answer 1%
Driver’s License Yes 100%
< 2,000 14%
Ave. 2,000-5,000 26%
Annual Mileage 5,000-10,000 32%
(mi.) 10,000-20,000 21%
> 20,000 4%
Prefer not to answer 3%
- Not at all 35%

Connectivity

Function RarelyA 14%
Experience Sorpetlmes 30%
Quite often 21%
Driving Ass. Not at all 37%
Function RarelyA 14%
Experience Sorpetlmes 34%
Quite often 15%
Not at all 88%
. Rarely 4%
Driven AVs Sometimes 6%
Quite often 2%
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