
Biostatistics, 2024, 00, 1–14
https://doi.org/10.1093/biostatistics/kxae002
Article

Estimation of optimal treatment regimes with
electronicmedical record data using the residual

life value estimator
Grace Rhodes1,*, Marie Davidian2, Wenbin Lu2

1Eli Lilly and Company, Indianapolis, IN 46204, USA
2Department of Statistics, North Carolina State University, SAS Hall, 2311 Stinson Dr, Raleigh, NC 27607, USA

∗Corresponding author: Eli Lilly and Company, Indianapolis, IN 46204, USA. Email: grace.rhodes.stat@gmail.com

SUMMARY
Clinicians and patients mustmake treatment decisions at a series of key decision points throughout disease
progression.Adynamic treatment regime is a set of sequential decision rules that return treatment decisions
based on accumulating patient information, like that commonly found in electronicmedical record (EMR)
data. When applied to a patient population, an optimal treatment regime leads to the most favorable out-
come on average. Identifying optimal treatment regimes that maximize residual life is especially desirable
for patients with life-threatening diseases such as sepsis, a complex medical condition that involves severe
infectionswith organdysfunction.We introduce the residual life value estimator (ReLiVE), an estimator for
the expected valueof cumulative restricted residual life under a fixed treatment regime.BuildingonReLiVE,
we present a method for estimating an optimal treatment regime that maximizes expected cumulative
restricted residual life. Our proposedmethod, ReLiVE-Q, conducts estimation via the backward induction
algorithm Q-learning. We illustrate the utility of ReLiVE-Q in simulation studies, and we apply ReLiVE-
Q to estimate an optimal treatment regime for septic patients in the intensive care unit using EMR data
from the Multiparameter Intelligent Monitoring Intensive Care database. Ultimately, we demonstrate that
ReLiVE-Q leverages accumulating patient information to estimate personalized treatment regimes that
optimize a clinically meaningful function of residual life.

KEYWORDS: context vector; dynamic treatment regime; electronic medical record; MIMIC-III; preci-
sion medicine; Q-learning; random forest; residual life; sepsis.

1. INTRODUCTION
A dynamic treatment regime is a set of sequential decision rules that provides a formal process for
making treatment decisions at a series of key decision points throughout disease progression. At
each decision point, the decision rule accepts patient history as input and returns a recommended
treatment fromamong the feasible options.Anoptimal treatment regime leads to themost favorable
outcome on average when it is used to select treatments for a patient population. Identifying an
optimal regime is an integral component of precision medicine, an approach to healthcare that
focuses on tailoring treatment decisions to patient characteristics.

For patients with potentially life-threatening conditions, identification of an optimal treatment
regime that maximizes remaining life is of particular interest. Formally, the remaining life of a
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patient at time t, given the patient has survived up to time t, is referred to as residual life. Sepsis
is a life-threatening medical condition that involves severe infections with organ dysfunction and
is a leading cause of death worldwide (Singer et al., 2016). Although international guidelines for
sepsis treatment have been established, treating septic patients remains highly challenging, as the
heterogeneity of the septic patient population results in differing responses tomedical intervention
(László et al., 2015). Consequently, identifying optimal decision rules that maximize residual life
and select treatment based on patients’ individualized characteristics is highly desirable for septic
patient care.

We are especially interested in identifying optimal treatment regimes for septic patients in the
intensive care unit (ICU) using their electronic medical record (EMR) data. In particular, we study
a data set of septic patients constructed from the Multiparameter Intelligent Monitoring Inten-
sive Care database (MIMIC-III), a freely available database comprised of de-identified medical
records for over 40,000 critical care patients (Johnson et al., 2016). Given a number of patient
characteristics, including admission records, longitudinal vital signs, and longitudinal laboratory
measurements, we seek to estimate an optimal treatment regime that maximizes residual life for the
septic patients in MIMIC-III.

An overview of methods for estimating optimal treatment regimes based on censored time-to-
event outcomes can be found in Chapter 8 of Tsiatis et al. (2020). One class of methods seeks to
directly optimize an estimator for the value of a regime, where the value of a regime is defined in
terms of the expectation of a given function of the event time, and optimization is conducted over
all treatment regimes in a restricted class. Zhao et al. (2015), Bai et al. (2017), Cui et al. (2017),
Zhou et al. (2021), and Wang et al. (2022) introduced direct optimization methods for regimes
limited to only a single decision point, while Jiang et al. (2017a), Jiang et al. (2017b), Hager et al.
(2018), Zhao et al. (2020), Xue et al. (2022), and Choi et al. (2023) presented methods for esti-
mating optimal multistage regimes. In practice, implementing direct optimization methods with
observational EMR data can be computationally prohibitive. First, EMR data often include a large
number of covariates. Thus, the class of possible regimes derived from EMR data is likely to be
large, rendering direct optimization computationally intensive. Second, estimators for the value
of a regime often involve weighting by patients’ propensities for being consistent with the given
regime. In EMR data with a large number of possible regimes, the number of patients observed
to be consistent with any given regime may be low, resulting in unstable value estimates. These
complications become especially severe in settings with a large number of decision points.

Given the limitations of direct optimization, Q-learning has become a popular method for
estimating optimal treatment regimes from observational data. Q-learning is a backward induc-
tion algorithm introduced in the reinforcement learning literature to solve multistage decision
problems (Bellman, 1957; Watkins and Dayan, 1992). The Q-learning algorithm considers three
key elements at each stage: a state, an action, and a reward. Q-learning estimates a sequence of
decision rules, or a policy, that maximizes the expected sum of rewards. At each stage, a decision
rule accepts the accumulated states and actions as input and returns a recommended action. Like
direct optimization, Q-learning estimates become increasingly unstable as the number of stages
increases. However, theQ-learning algorithm canmore readily estimate optimal policies in settings
with numerous covariates and low levels of observed consistency with studied policies.

In the clinical setting, a stage corresponds to a decision point, a state corresponds to patient
history, an action corresponds to treatment, and a policy corresponds to a dynamic treatment
regime. Moreover, a reward is defined to be some quantitative measure of patient health. The Q-
learning algorithm estimates an optimal treatment regime that maximizes the expected sum of
rewards using a backward recursive approach. First, the algorithmestimates anoptimal decision rule
at the final decision point, then the algorithm sequentially estimates an optimal decision rule at each
previous decision point. At each decision point, aQ-model is posited for the expectation of the sum
of current and future rewards, given patient history and treatment. To estimate optimal decision
rules, each Q-model is optimized with respect to treatment, with all future treatment decisions
taken to be optimal (Murphy, 2005).
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The Q-learning framework has been extended to accommodate censored time-to-event
outcomes. Zhao et al. (2011), Goldberg and Kosorok (2012), Huang et al. (2014), and Zhao et al.
(2020) all introduced Q-learning methods to estimate optimal treatment regimes that maximize
expected survival timebeyond thefirst decisionpoint,where survival time is restricted to a constant.
For regimes comprised of a fixed number of decision points, Zhao et al. (2011) presented a Q-
learning method that used support vector regression to fit the Q-models. Goldberg and Kosorok
(2012) extended the Q-learning algorithm to accommodate a flexible number of decision
points, positing Q-models of an unspecified functional form adjusted by inverse probability of
censoring weights. Huang et al. (2014) implemented a related approach that relied on fitting
accelerated failure time models. Zhao et al. (2020) extended the Q-learning algorithm presented
by Goldberg and Kosorok (2012) to allow shared decision rule parameters across decision points.
Recent innovations in the field include an imputation-based Q-learning approach presented by
Lyu et al. (2023), which uses non- or semiparametric models to estimate optimal treatment
rules, followed by multiple imputation to predict optimal potential survival times. Additionally,
Illenberger et al. (2023) introduced a combined Q-learning and policy-search method to estimate
optimal list-based treatment regimes with a constraint imposed on expected treatment costs.
Notably, all of the presented Q-learning methods defined the reward at each decision point to
be a measure of the incremental amount of time between the given decision point and the next
decision point or failure, whichever comes first.

Alternative reinforcement learning algorithms have been proposed for estimating optimal treat-
ment regimes with censored time-to-event outcomes. One approach, called A-learning, employs
a similar backward recursive strategy to Q-learning, but estimates the optimal decision rule at
each decision point by optimizing only the portion of the regression outcome that involves dif-
ferences between treatments (Murphy, 2003; Robins, 2004). While this makes A-learning robust
to misspecification of the outcome models, A-learning also requires modeling the probability of
the observed treatments given patient history at each decision point. Simoneau et al. (2020) and
Zhang et al. (2022) introduced A-learning methods to estimate optimal treatment regimes that
maximize expected restricted survival time beyond the first decision point. Alternatively, Cho et al.
(2022) presented a backward recursive algorithm to estimate an optimal treatment regime that
maximizes either mean survival time or survival probability at a given timepoint. As opposed to Q-
learning and A-learning, the method presented by Cho et al. (2022) does not express the value of a
regime in terms of a sum of rewards. At each decision point, Cho et al. (2022) appends conditional
survival probability information, rather than a reward, in a backward recursive fashion.

To estimate optimal treatment regimes with censored time-to-event outcomes, we present a
new Q-learning method based on an intuitive reward definition. While the aforementioned Q-
learning methods define the reward to be the incremental time between decision points or failure,
we argue that in clinical application, a more interpretable reward is a patient’s remaining survival
time, or residual life. Using this reward specification, theQ-learning algorithm estimates an optimal
treatment regime that maximizes the expected sum of residual life, where the sum is taken across all
decision points reached by the patient. We refer to this quantity as “expected cumulative residual
life.” To formulate the proposed Q-learning algorithm, we first introduce the residual life value
estimator (ReLiVE), which estimates the expected cumulative residual life of a patient under a
fixed treatment regime. We then build on ReLiVE to present the residual life value estimator Q-
learning method (ReLiVE-Q). By defining the reward at each decision point to be residual life,
ReLiVE-Q estimates an optimal treatment regime thatmaximizes expected cumulative residual life.
To guarantee a finite expectation,we study restricted residual life, whichwe compute based on event
times restricted to a fixed constant.

In addition to reward interpretability, ReLiVE-Q offers two advantages that make it especially
suitable for estimating optimal treatment regimes from EMR data with censored time-to-event
outcomes. First, the relationship between patient history, treatment, and event times is inherently
complex and unlikely to be well-represented by a parametric model. At each decision point,
ReLiVE-Q fits flexible, nonparametric Q-models using the random forest algorithm (Breiman,
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2001). Second, ReLiVE-Q incorporates longitudinal covariates into the Q-models using low-
dimensional summaries of the trajectories, called context vectors, that are constructed using mod-
ern machine learning techniques (Rhodes et al., 2023). This is important because EMR data often
contain a large number of longitudinal covariates measured over a potentially dense time grid,
and the number and timing of measurements often differs among patients. Thus, including the
entire patient history directly in the Q-models is often computationally prohibitive. Moreover,
while summary statistics of the longitudinal covariates could be included in the Q-models, simple
summaries are unlikely to provide an adequate synthesis of the complex information contained in
the trajectories.

In Section 2, we present the statistical framework for ReLiVE and ReLiVE-Q, and in Section
3, we detail the ReLiVE and ReLiVE-Q methodology. In Section 4, we demonstrate the utility
of ReLiVE-Q in a simulation study, and in Section 5, we apply ReLiVE-Q to estimate optimal
treatment regimes for septic patients in MIMIC-III. In both the simulation study and MIMIC-
III data application, we demonstrate that ReLiVE-Q estimates personalized treatment regimes
that optimize a clinically meaningful function of residual life. We conclude with a discussion of
implications and open problems in Section 6.

2. STATISTICAL FRAMEWORK
2.1. Potential outcomes and treatment regimes

We focus our study on settings where treatment decisions are made at fixed intervals, as is the
scenario for the studied MIMIC-III data set. Consider a series of K decision points at which
treatment decisions must be made, where the decision points occur at fixed times τ1, . . . , τK
with τ1 = 0. Let x1 denote the vector of covariates measured at τ1. Then the patient history at
decision point 1 is h1 = (τ1, x1). For k = 1, . . . ,K, define Ak to be the finite set of all available
treatment options at decision point k, and let ak ∈ Ak be the treatment administered at decision
point k. We assume all ak ∈ Ak are feasible for all subjects at all decision points k = 1, . . . ,K, as
this assumption holds for the treatments studied in MIMIC-III. For k = 2, . . . ,K, let xk denote
the vector of covariate information accumulated between decision points k − 1 and k. Moreover,
let τ̄k = (τ1, . . . , τk), x̄k = (x1, . . . , xk), and āk = (a1, . . . , ak), where k = 1, . . . ,K, and let ā = āK .
Then for k = 2, . . . ,K, a patient who does not experience the event of interest prior to decision
point k will have patient history hk = (τ̄k, x̄k, āk−1) at decision point k. In contrast, a patient who
experiences the event of interest at time t between decision points k − 1 and k will have patient
history hj = (τ̄k−1, x̄k−1, āk−1, t) at each decision point j = k, . . . ,K.

For each decision point, k = 1, . . . ,K, let dk(hk) be a decision rule. If hk indicates that the event
of interest has not occurred prior to decision point k, then dkmapshk toAk. Else, ifhk indicates that
the event of interest has occurred prior to decision point k, then dk(hk) returns null. For notational
simplicity, suppress the dependence of the decision rule on patient history, and let dk = dk(hk).
Define treatment regime d = (d1, . . . , dK), and denote the set of all such possible treatment regimes
asD. For convenience, let d̄k = (d1, . . . , dk), where k = 1, . . . ,K.

To formalize the definition of the residual life that would occur if an individual were to follow a
given regime d ∈ D, we define the potential outcomes that would be achieved if a randomly selected
patient were treated according to d. To this end, we first define the potential outcomes associated
with a given sequence of treatments ā. Let κ∗(ā) be the potential number of decision points a
randomly selected patient would reach if administered treatments ā, where 1 ≤ κ∗(ā) ≤ K. For
k = 2, . . . , κ∗(ā), let X∗

k (āk−1) be the vector of potential covariate information that would occur
between decision points k − 1 and k if a patient was administered treatments āk−1. Further, let
T∗(āκ∗(ā)) be the potential time-to-event that would be observed if a patient was administered
treatments āκ∗(ā). Define the set of all possible potential outcomes to beW∗ = {For all possible ā ∈
A1 × · · · × AK : κ∗(ā),X∗

2(a1),X
∗
3(ā2), . . . ,X

∗
κ∗(ā)(āκ∗(ā)−1),T∗(āκ∗(ā))}.

As discussed in Sections 6.2.3 and 8.3.2 of Tsiatis et al. (2020), it can be shown that the potential
outcomes associated with a given regime d ∈ D can be defined in terms of W∗. Let T∗(d) be the
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potential time-to-event under regime d. To avoid infinite event times, also specify a restricted event
time L > 0. Then κ∗

L(d) = max[k : τk < min{T∗(d),L}] is the potential number of decision points
reached under regime d. For k = 2, . . . , κ∗

L(d), let X∗
k (d̄k−1) be the vector of potential covariate

information that would occur between decision points k − 1 and k if a randomly selected patient
was treated according to regime d̄k−1. Denote the set of potential outcomes associated with regime
d asW∗

d = {κ∗
L(d),X∗

2(d1),X
∗
3(d̄2), . . . ,X

∗
κ∗
L(d)(d̄κ∗

L(d)−1),T∗(d)}.
Because sepsis is a life-threatening medical condition, we specify T∗(d) to be the potential

time of death under regime d. Then, restricted residual life under regime d at a given time τ

is min{T∗(d),L} − τ . We specify the reward at each decision point k = 1, . . . , κ∗
L(d) to be the

patient’s restricted residual life under regime d at τk. Let the cumulative restricted residual life of
a patient under regime d be the sum of the patient’s restricted residual life under d, taken across
all decision points reached by the patient. We define the value of regime d ∈ D, V(d), to be the
expected value of cumulative restricted residual life under d. That is, we define

V(d) = E

⎧⎨
⎩

K∑
j=1

I[min{T∗(d),L} > τj] · [
min{T∗(d),L} − τj

]⎫⎬⎭ . (2.1)

An optimal treatment regime dopt ∈ D satisfies the condition that V(dopt) ≥ V(d) for all d ∈ D.
Thus, an optimal regime dopt maximizes expected cumulative restricted residual life across regimes
d ∈ D. Based on observed EMR data, we first aim to estimate V(d) for any fixed regime d ∈ D. We
then aim to estimate an optimal regime dopt and its value V(dopt) from the observed data.

2.2. Data and assumptions
We now describe the observed data. As is conventional in the survival analysis literature, let T > 0
and C > 0 denote the potential times to death and censoring, respectively. We observe only U =
min(T,C) and � = I(T < C), an indicator of whether death is observed (� = 1) or censored
(� = 0). Accounting for the restricted lifetime L > 0, we observe the restricted outcome UL =
min(U,L) and associated indicator�L = I{min(T,L) < C} = � + I(L < U)(1 − �). Apatient is
observed to reach κL = max{k : τk < UL} decision points, where 1 ≤ κL ≤ K. Then the observed
history at decision points k = 1, . . . , κL is Hk = (τ̄k, X̄k, Āk−1), and the observed history at deci-
sion points k = κL + 1, . . . ,K is Hk = (τ̄κL , X̄κL , ĀκL ,UL,�L). Given i = 1, . . . ,m patients, the
observed data are independent and identically distributed (κLi,X1i,A1i, . . . ,XκLii,AκLii,U

L
i ,�

L
i ).

We aim to estimate value (2.1) for a given regime d ∈ D, and to estimate an optimal regime dopt
and its value, based on the observed data. Because T∗(d) is defined in terms of W∗, we must be
able to express relevant functionals of the distribution of the potential outcomes in terms of the
observed data. Such expression is possible under three key, standard assumptions: the Stable Unit
Treatment Value Assumption (SUTVA), the Sequential Randomization Assumption (SRA), and
the positivity assumption. SUTVA, commonly referred to as the consistency assumption, states
that the observed data are the same as those that would potentially be achieved under the treatment
decisions observed to be administered. Formally, we assume κL = κ∗

L(ĀκL) and T = T∗(ĀκL). We
also assume Xk = X∗

k (Āk−1) for k = 2, . . . , κL. SRA states that the treatment administered at each
decision point is independent of the set of potential outcomes conditional on the history. For
k = 1, . . . ,K, we assume W∗ ⊥ Ak|Hk, κL ≥ k, where ⊥ denotes independence. The positivity
assumption states that all treatment options at each decision point are represented in the data.
This is necessary to specify the distributions of the potential outcomes for all d ∈ D in terms of
the observed data. Formally, we assume P(Ak = ak | Hk = hk, κL ≥ k) > 0 for all ak ∈ Ak and
for all possible hk such that P(Hk = hk, κL ≥ k) > 0, k = 1, . . . ,K. For simplicity, we also assume
censoring is independent of treatment assignment, patient characteristics, restricted lifetime, and
potential outcomes. See Section 6 for a discussion on relaxing this assumption.
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3. METHODS
3.1. Methodological foundation of ReLiVE

We first introduce the methodological foundation for ReLiVE, our proposed estimator for value
(2.1) of a fixed regime. For a given regime d ∈ D, we construct an estimator for V(d) by defining
K backward recursive Q-functions. We incorporate inverse-probability weights in the Q-functions
to account for censoring. For u > τk, let Kk(u|hk, ak) = P(C > u | UL > τk,Hk = hk,Ak = ak),
where k = 1, . . . ,K. Under SUTVA and the independent censoring assumption, Kk(u|hk, ak) =
P(C > u)/P(C > τk). See Section 1 of the supplementary material for details.

For a fixed regime d ∈ D, we define the Q-function at decision point K to be

Qd
K(hK , aK) = E

{
�L(UL − τK)

KK(UL|hK , aK)

∣∣∣∣UL > τK ,HK = hK ,AK = aK
}
.

Similarly, we define the Q-function at decision points k = K − 1, . . . , 1, to be

Qd
k (hk, ak) = E

{
�L(UL − τk)

Kk(UL|hk, ak) + I(UL > τk+1)Vd
k+1(Hk+1)

Kk(τk+1|hk, ak)

∣∣∣∣∣UL > τk,Hk = hk,Ak = ak

}
,

where Vd
k (hk) = Qd

k {hk, dk(hk)}. Under SUTVA, SRA, and the positivity and independent cen-
soring assumptions, Vd

1 (h1) is an unbiased estimator of V(d) if the true Q-functions are known. In
Section 2 of the supplementary material, we provide a proof demonstrating E{Vd

1 (h1)} = V(d). In
practice, theQ-functions for regime d are unknown andmust be estimated from the data. In Section
3.5, we present the value estimator ReLiVE, which uses a flexible approach to model and estimate
the Q-functions.

3.2. Methodological foundation of ReLiVE-Q
Next, we introduce the methodological foundation for ReLiVE-Q, our proposed Q-learning
method for estimating an optimal treatment regime and its value. Building on the Q-functions
presented in Section 3.1, we characterize an optimal treatment regime dopt ∈ D such thatV(dopt) ≥
V(d) for all d ∈ D. At decision point K, define the Q-function for dopt to be

Qdopt
K (hK , aK) = E

{
�L(UL − τK)

KK(UL|hK , aK)

∣∣∣∣UL > τK ,HK = hK ,AK = aK
}
,

and let doptK (hK) = argmax
aK∈AK

Qdopt
K (hK , aK). Similarly, at decision points k = K − 1, . . . , 1, define

Qdopt
k (hk, ak) = E

{
�L(UL − τk)

Kk(UL|hk, ak) + I(UL > τk+1)Vdopt
k+1(Hk+1)

Kk(τk+1|hk, ak)

∣∣∣∣∣UL > τk,Hk = hk,Ak = ak

}
,

where Vdopt
k (hk) = Qdopt

k {hk, doptk (hk)} and doptk (hk) = argmax
ak∈Ak

Qdopt
k (hk, ak). Under SUTVA,

SRA, and the positivity and independent censoring assumptions, it can be shown that dopt =
(dopt1 , . . . , doptK ) is an optimal treatment regime satisfying V(dopt) ≥ V(d) for all d ∈ D, and the
value of an optimal regime is V(dopt) = E{Vdopt

1 (h1)}. See Sections 7.2.3–7.2.4 of Tsiatis et al.
(2020) for details. In practice, the Q-functions for dopt are unknown and must be estimated from
the data. In Section 3.6, we present ReLiVE-Q, a Q-learning method that uses a flexible approach
to estimate the Q-functions for dopt.
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3.3. Representation of longitudinal covariates
In practice, certain covariates, such as sex and birth date, are collected on patients only at baseline.
Denote the vector of covariates measured only at baseline as S. Other covariates, such as vital signs
and laboratory values, may be measured repeatedly during a patient’s follow up. LetM be the set
of patient-specific measurement times, and denote the vector of longitudinal covariates measured
at time t ∈ M as Z(t) = {Z1(t), . . . ,Zp(t)}. For longitudinal covariates measured at time t = τk,
k = 1, . . . , κL, we follow the convention that longitudinal covariates are measured immediately
prior to making treatment decisions. Then X1 = {S,Z(0)}, and Xk = {Z(t) : τk−1 < t ≤ τk} for
k = 2, . . . , κL.

When estimating the Q-functions for ReLiVE and ReLiVE-Q, it is desirable to leverage all
available patient information. Recall that EMR data often contain a large number of longitudinal
covariates potentiallymeasuredover a dense timegrid, and thenumber and timingofmeasurements
often differs among patients. To incorporate the trajectories of the longitudinal covariates into
the Q-models specified in Sections 3.5 and 3.6, it is expedient to construct lower-dimensional
summary representations of the longitudinal trajectories. Let f (·) be a vector-valued function, and
define vector ζ (k) = f [{Z(t) : t ≤ τk}] to be a function of the longitudinal covariate measurements
accumulated by decision point k. Then, X̄1 = {S,Z(0)}, and for k = 2, . . . , κL, we define X̄k =
{S, ζ (k)}. The observed patient history is then given by H1 = (τ1,X1) = {τ1, S,Z(0)} at decision
point 1, andHk = (τ̄k, X̄k, Āk−1) = {τ̄k, S, ζ (k), Āk−1} at decisionpoints k = 2, . . . , κL. At decision
points k = 1, . . . ,K, we train theQ-models for ReLiVE andReLiVE-Qover the predictor space X̄k,
as described in Section 3.4.

Intuitively, it is desirable to select a function f (·) that summarizes the longitudinal trajectories
from baseline to decision point time. Several simple summary functions are commonly used in
practice. The baseline vector ζB(k) contains the longitudinal measurements recorded at baseline,
the last-value carried forward vector ζL(k) contains the most recently observed measurements,
and the average vector ζA(k) contains the average of the measurements observed through decision
point k. Because these simple summary functions are unlikely to capture the complex nature of the
longitudinal trajectories,wepropose synthesizing the longitudinal covariates usingwindow-specific
context vectors constructed via long short-term memory (LSTM) autoencoders, as described in
Rhodes et al. (2023). The window-specific context vector ψ l(τ ) is an encoded representation
of the trajectory of longitudinal covariate Zl(·) from baseline to time τ > 0, where l = 1, . . . , p.
Specifically, we propose defining ζC(k) = {ψ1(τk), . . . ,ψp(τk)}. A detailed description of the
studied forms of ζ (·) can be found in Section 3 of the supplementary material.

3.4. Q-function estimation strategy
We introduce methods to estimate the Q-functions for ReLiVE and ReLiVE-Q in Sections 3.5
and 3.6, respectively. Although extension to more general treatment settings is possible, we focus
on settings with two treatment options such that Ak = {0, 1} for k = 1, . . . ,K. We model the Q-
functions using a non-parametric approach to account for the inherently complex relationship be-
tween patient history, treatment, and residual life. Specifically, we estimateQd

k (hk, 0) andQd
k (hk, 1)

at each decision point k = 1, . . . ,K using distinct random forests, where the outcomes used to
train the forests are presented in Sections 3.5 and 3.6. A random forest is an ensemble learning
algorithm that conducts estimation by combining the output of numerous decision trees. For a
detailed overview of the random forest algorithm, see Breiman (2001). At decision point 1, we
train the random forests over the predictor space X̄1 = {S,Z(0)}. Given a function ζ (·), at decision
points k = 2, . . . ,K, we train the random forests over the predictor space X̄k = {S, ζ (k)}. We train
the random forest forQd

k (hk, 0) on patients having UL > τk and Ak = 0, and we train the random
forest forQd

k (hk, 1) on patients havingUL > τk and Ak = 1.

3.5. ReLiVE: value estimation for a fixed regime
Wenow introduceReLiVE,which estimates value (2.1) for afixed regimed ∈ D. Let K̂k(u|hk, ak) =
Ĝ(u)/Ĝ(τk) for k = 1, . . . ,K, where Ĝ(t) is the Kaplan–Meier estimator for the survival function
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of censoring time C at time t (Kaplan andMeier, 1958). Then K̂k(u|hk, ak) = K̂k(u). Beginning
with decision point K, given patient history HK = hK , we train the random forests for Qd

K(hK , 0)
andQd

K(hK , 1) to estimate the outcome {�L(UL − τK)}/K̂K(UL).
Denote the random forest estimators of Qd

k (hk, 0) and Qd
k (hk, 1) as Q̂d

k (hk, 0) and Q̂d
k (hk, 1),

respectively, for k = 1, . . . ,K. At decision points k = K − 1, . . . , 1, given patient historyHk = hk,
we then train the random forests forQd

k (hk, 0) andQd
k (hk, 1) to estimate the outcome

�L(UL − τk)

K̂k(UL)
+ I(UL > τk+1)V̂d

k+1(hk+1)

K̂k(τk+1)
,

where V̂d
k (hk) = Q̂d

k {hk, dk(hk)}. Givenm patients, we define ReLiVE as

V̂(d) = m−1
m∑
i=1

V̂d
1 (h1i),

where V̂d
1 (h1i) = Q̂d

1 {h1i, d1(h1i)} for patient i with history h1i.

3.6. ReLiVE-Q: estimation of an optimal regime and its value
Next, we introduce ReLiVE-Q, which estimates an optimal treatment regime dopt ∈ D and its value
V(dopt). Beginning with decision point K, given patient history HK = hK , we train the random
forests forQdopt

K (hK , 0) andQdopt
K (hK , 1) to estimate the outcome {�L(UL − τK)}/K̂K(UL).

We let d̂optK (hK) = argmax
aK∈AK

Q̂dopt
K (hK , aK)=I{Q̂dopt

K (hK , 1) > Q̂dopt
K (hK , 0)}, where aK = 0 is the

standard treatment. At decision points k = K − 1, . . . , 1, given patient history Hk = hk, we then
train the random forests forQdopt

k (hk, 0) andQdopt
k (hk, 1) to estimate the outcome

�L(UL − τk)

K̂k(UL)
+ I(UL > τk+1)V̂dopt

k+1(hk+1)

K̂k(τk+1)
,

where V̂dopt
k (hk)=Q̂dopt

k {hk, d̂optk (hk)}.We let d̂optk (hk) = argmax
ak∈Ak

Q̂dopt
k (hk, ak) = I{Q̂dopt

k (hk, 1) >

Q̂dopt
k (hk, 0)}, where ak = 0 is the standard treatment. We estimate an optimal treatment regime to

be d̂opt = (d̂opt1 , . . . , d̂optK ). Givenm patients, we estimate the value of an optimal treatment regime
to be V̂(dopt) = m−1 ∑m

i=1 V̂
dopt
1 (h1i), where V̂dopt

1 (h1i) = Q̂dopt
1 {h1i, d̂opt1 (h1i)} for patient i with

history h1i.

3.7. Testing and validation procedures
To evaluate the estimation performance of ReLiVE-Q, we implement testing and validation pro-
cedures that compare value estimates for an optimal treatment regime to value estimates for two
fixed treatment regimes, the observed treatment regime dobs and the no treatment regime dno. At
each decision point k = 1, . . . ,K, dobs specifies dk(hk) = ak, where ak is the treatment observed
in the data at decision point k, and dno specifies dk(hk) = 0. Thus, dobs represents the treatment
regime that was actually administered by clinicians in practice, and dno represents the treatment
regime that always administers the standard treatment. In the testing and validation procedures,
we compare N value estimates for each regime d ∈ {dopt, dobs, dno}. A detailed description of the
testing and validation procedures is provided in Section 4 of the supplementary material.

In summary, the testing procedure obtains N value estimates V̂ test(d) for each regime d ∈
{dopt, dobs, dno} usingN unique training/testing data sets. The procedure computes V̂ test(d) for the
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fixed regimes d ∈ {dobs, dno} by conducting ReLiVE separately on the training and testing data sets.
The testing procedure also estimates d̂opt and its value V̂ test(dopt) via a cross-validated adaptation of
ReLiVE-Q. Moreover, the validation procedure obtains N value estimates V̂val(d) for each regime
d ∈ {dopt, dobs, dno} by exploiting the known data generation process in a simulation study. Given a
simulated data set of patient covariates and a regime d, the validation procedure randomly generates
N potential survival times T∗(d) for each patient. Using each of the N randomly generated sets
of T∗(d), the procedure computes V̂val(d) as the mean of g{T∗(d)} = ∑K

j=1 I[min{T∗(d),L} >

τj] · [min{T∗(d),L} − τj] across patients.
We implement the testing and validation procedures using simulated data in Section 4, and we

implement the testing procedure using the MIMIC-III data set in Section 5. In both sections, we
repeat the testing and validation procedures four times, defining ζ (·) in terms of the baseline vector
ζB(·), the last-value carried forward vector ζL(·), the average vector ζA(·), and the context vectors
ζC(·), as described in Section 3.3. Note, V̂ test(dopt), V̂ test(dobs), and V̂ test(dno) are dependent on
the fitted Q-models, as is V̂val(dopt). Thus, these value estimates are dependent on the functional
form of ζ (·). In contrast, V̂val(dobs) and V̂val(dno) are independent of the fittedQ-models, so these
estimates donot dependon ζ (·).We evaluate the estimationperformanceofReLiVE-Qby studying
the results of the testing and validation procedures in Sections 4 and 5.

4. SIMULATION STUDY
4.1. Simulation strategy

We design a simulation study to evaluate the estimation performance of ReLiVE-Q. We provide
a detailed description of the simulation strategy in Section 5 of the supplementary material. In
summary, we conduct the testing and validation procedures described in Section 3.7 to obtain
N = 500 value estimates for each studied regime using simulated data.We considerK = 4 decision
points that occur at times (τ1, . . . , τ4) = (0, 3, 6, 9), and we generate a data set of m = 10, 000
patients. For each patient, we generate a single treatment variableAk ∈ Ak = {0, 1} at k = 1, . . . , 4,
and we generate a single covariate measured only at baseline, S. We consider ten measurement
timesM = (0, 1, . . . , 9), andwegenerate three longitudinal covariatesZl(t) = Bl(t) + εl(t) at each
t ∈ M, where l = 1, 2, 3.We generate censoring timesC and impose a restricted lifetime ofL = 50.
We conduct two separate analyses, each using a distinct survival time generation process. First, we
generateT according to an accelerated failure time (AFT)model. Second, we generateT according
to a Cox proportional hazards model. We provide the code used to conduct the simulation study in
the supplementary material.

4.2. Simulation results
The 500 testing value estimates V̂ test(d) and validation value estimates V̂val(d) are plotted in
Figures 1 and 2 for d ∈ {dopt, dobs, dno}. In both the AFT and Cox analyses, the distributions of
V̂ test(d) and V̂val(d) are consistently higher for the optimal treatment regime than for the observed
treatment regime or the no treatment regime. Thus, the simulation study supports that V(d̂opt) >

V(dobs) and V(d̂opt) > V(dno), which allows us to conclude that ReLiVE-Q successfully produces
reasonable estimates of an optimal treatment regime.

Moreover, in both the AFT and Cox analyses, Q-models fit with ζB(·) result in lower value
estimates for the optimal treatment regime than those fit with ζA(·), ζL(·), or ζC(·). In the AFT
analysis, Q-models fit with ζL(·) or ζC(·) result in the highest value estimates for the optimal
treatment regime, while in the Cox analysis, Q-models fit with ζC(·) result in the highest. Thus, the
simulation study supports that sophisticated functions are necessary to synthesize the trajectories
of the longitudinal covariates, and that representing the longitudinal covariates with context vectors
can lead to improved optimal treatment regime estimation via ReLiVE-Q.
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Figure 1. AFT simulation study: boxplots of the value estimates from the validation procedure (left) and
the testing procedure (right) for an optimal treatment regime (Opt), the observed treatment regime
(Obs), and the no treatment regime (No). For scenarios dependent on the Q-models, value estimates are
presented using the baseline vector (B), the average vector (A), the last-value carried forward vector (L),
and the context vector (C).

Figure 2.Cox simulation study: boxplots of the value estimates from the validation procedure (left) and
the testing procedure (right) for an optimal treatment regime (Opt), the observed treatment regime
(Obs), and the no treatment regime (No). For scenarios dependent on the Q-models, value estimates are
presented using the baseline vector (B), the average vector (A), the last-value carried forward vector (L),
and the context vector (C).

5. MIMIC-III DATA APPLICATION
5.1. MIMIC-III data description

Next, we evaluate the estimation performance of ReLiVE-Q by conducting the testing procedure
described in Section 3.7 on the EMRdata of septic patients in theMIMIC-III database.MIMIC-III
is a freely available database comprised of deidentified medical records for over 40,000 patients
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who stayed in the critical care units at Beth Israel Deaconess Medical Center between 2001
and 2012 (Johnson et al., 2016). MIMIC-III contains data on patients’ demographics, vital signs,
laboratory measurements, medications, imaging reports, chart notes, procedure codes, diagnostic
codes, hospital stay, and survival. For a complete description of the MIMIC-III database, refer to
Johnson et al. (2016).

In 2016, the definitions and clinical criteria for sepsis and septic shock were updated in the
Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) (Singer et al., 2016).
Sepsis-3 defines sepsis as a “life-threatening organ dysfunction caused by a dysregulated host
response to infection” and provides clinical criteria for diagnosing septic patients (Singer et al.,
2016). Komorowski (2019) developed code to identify patients inMIMIC-III fulfilling the Sepsis-
3 criteria. Komorowski’s code pulls relevant physiological parameters for septic patients from up to
24 h preceding their sepsis diagnosis until 48 h after. The code aggregates the data into 4-h time
windows, recording an appropriate summary statistic when several measurements were taken in
the same timewindow.We use Komorowski’s code to construct our studied data set ofm = 20, 952
patients, only 15% of whom have observed restricted survival times, i.e.�L = 1.

We estimate optimal treatment regimes for septic patients in the ICU using the MIMIC-III data
set.Weconduct the testingproceduredescribed inSection3.7 toobtainN = 100value estimates for
the studied regimes. Technical details are provided in Section 7 of the supplementary material. We
considerK = 10 decision points that occur every 4 h at (τ1, τ2, . . . , τ10) = (0, 4, . . . , 36). We study
a single treatment Ak ∈ {0, 1} at each decision point, k = 1, . . . , 10, where Ak = 1 if the patient is
provided vasopressors in the 4-h time window [τk, τk + 4) and Ak = 0 otherwise. We specify a
restricted lifetime of L = 40, and we study a predictor space containing a single baseline covariate
S and 13 longitudinal covariates Z(·). The baseline covariate of interest is an indicator of whether
the patient was previously admitted to the ICU during the given hospital stay. The longitudinal
covariates of interest include a longitudinal indicator of mechanical ventilator dependence, as well
as 12 longitudinal vital signs and laboratory values: albumin, calcium, magnesium, hemoglobin, ar-
terial lactate, arterial pH, fraction of inspired oxygen (FiO2), peripheral oxygen saturation (SpO2),
Sequential Organ Failure Assessment (SOFA) score, respiratory rate, heart rate, and systolic blood
pressure.

5.2. MIMIC-III results
The 100 testing value estimates V̂ test(d) are plotted in Fig. 3 for d ∈ {dopt, dobs, dno}. The distri-
bution of V̂ test(d) is consistently higher for the optimal treatment regime than for the observed
treatment regime or the no treatment regime. These results support that V(d̂opt) > V(dobs) and
V(d̂opt) > V(dno). Thus, we can conclude that ReLiVE-Q successfully uses EMR data to produce
reasonable optimal treatment regime estimates for septic patients in the ICU.

Again, Q-models fit with ζB(·) result in lower value estimates for the optimal treatment regime
than those fit with ζA(·), ζL(·), or ζC(·). Moreover, Q-models fit with ζC(·) result in the highest
value estimates for the optimal treatment regime. This application suggests that representing longi-
tudinal covariates with context vectors can lead to improved optimal treatment regime estimation
via ReLiVE-Q. In Section 8 of the supplementary material, we evaluate the importance of each
studied covariate for accurately estimating the Q-functions.

6. DISCUSSION
In the simulation study and application to MIMIC-III, we demonstrate that the optimal treatment
regime estimated via ReLiVE-Q results in higher estimates of value (2.1) than the no treatment and
observed treatment regimes. Thus, we can expect cumulative restricted residual life to be higher on
average for patients who follow the estimated optimal treatment regime, as compared to patients
who always receive the standard treatment, and compared to patients who received the observed
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Figure 3.MIMIC-III application: boxplots of the value estimates from the testing procedure for an
optimal treatment regime (Opt), the observed treatment regime (Obs), and the no treatment regime
(No). Value estimates are presented fromQ-models using the baseline vector (B), the average vector (A),
the last-value carried forward vector (L), and the context vector (C).

treatments administered by clinicians. Thus, ReLiVE-Q leverages patient history to estimate per-
sonalized treatment regimes that maximize a clinically meaningful function of residual life. This
finding is especially important for patients diagnosed with sepsis, as septic patients experience
varying responses to treatment for the life-threatening condition. Moreover, we demonstrate that
synthesizing longitudinal covariates with context vectors in ReLiVE-Q leads to improved optimal
treatment regime estimation, as compared to using simpler summary statistics.

We limit our study to clinical settings with two treatment options that are feasible for all patients
at all decision points, where decision points occur at fixed intervals. Extending our methods
to accommodate a finite number of treatment options is straightforward. Our methods can be
extended to settings where not all treatments are feasible for all patients under the feasible sets
framework outlined in Tsiatis et al. (2020). By re-framing the decision point times as potential
outcomesdependentonpatient history, ourmethods can alsobe extended to accommodate subject-
specific decision point times. See Sections 8.3.1–8.3.2 of Tsiatis et al. (2020) for an example of
this approach. Further research is required to determine how ReLiVE-Q performs in these more
complex clinical settings.

We assume censoring is independent of treatment assignment, patient characteristics, restricted
lifetime, and potential outcomes, and we estimate the censoring weights via the Kaplan-Meier
method. However, it may be possible to relax this assumption and take censoring to be noninfor-
mative in the sense that the cause-specific hazard of censoring as a function of patient history and
potential outcomes does not depend on the potential outcomes. In this case, a time-dependent Cox
model could be used to incorporate covariate information into the censoring weight estimates. See
Section 8.3.2 of Tsiatis et al. (2020) for details.

In this article, we focus on accurately estimating optimal treatment regimes. Accordingly, we
model the Q-functions using flexible, nonparametric random forests. A drawback to modeling the
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Q-functions using random forests is that the estimated optimal treatment rules are not readily
interpretable. ReLiVE-Q could be implemented with simpler Q-models to improve decision rule
interpretability, though further research is required to determine how this would affect estimation.

ReLiVE-Q defines the reward at each decision point to be residual life. This quantity is more
interpretable than the rewards used in the alternative Q-learning methods described in Section 1,
defined as the incremental amount of time between the given decision point and the next decision
point or failure. However, ReLiVE-Q’s improvement in reward interpretability comes with the
trade-off of a less interpretable value function. ReLiVE-Q defines the value of regime d ∈ D to be
the expected value of cumulative restricted residual life under d summed across all decision points
reached by the patient, while the Q-learning methods discussed in Section 1 more simply define
the value of regime d to be the expected value of restricted residual life under d.
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