communications
physics

ARTICLE () ook o s
https://doi.org/10.1038/s42005-023-01394-8

Complex quantum network models from spin
clusters

Ravi T. C. Chepuri® "2 & Istvan A. Kovécs® 3™

In the emerging quantum internet, complex network topology could lead to efficient quantum
communication and robustness against failures. However, there are concerns about com-
plexity in quantum communication networks, such as potentially limited end-to-end trans-
mission capacity. These challenges call for model systems in which the impact of complex
topology on quantum communication protocols can be explored. Here, we present a theo-
retical model for complex quantum communication networks on a lattice of spins, wherein
entangled spin clusters in interacting quantum spin systems serve as communication links
between appropriately selected regions of spins. Specifically, we show that ground state
Greenberger-Horne-Zeilinger clusters of the two-dimensional random transverse-field Ising
model can be used as communication links between regions of spins. Further, the resulting
guantum networks can have complexity comparable to that of the classical internet. Our work
provides a generative model for further studies towards determining the network char-
acteristics of the emerging quantum internet.
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to serve as a quantum internet is a highly anticipated goal

that would enhance the existing classical internet, with
applications in secure communications, quantum computation,
distributed sensing, and more!~4. Experimental advances toward
the technology needed for a quantum internet, such as quantum
repeaters, are rapidly being made®~12, Such advances have already
enabled the creation of quantum communication networks with a
few nodes, which may be precursors to the future quantum
internet?13-15,

In the simplest case of quantum repeater based architectures,
quantum communication networks can be represented as shown
in Fig. 1al6-22, Each node of the network represents a collection
of quantum bits, or qubits, and each link of the network repre-
sents an entangled pair of qubits belonging to two distinct nodes.
As such, the degree of each node (the number of links it has) is at
most the number of qubits in the node. Although non-adjacent
nodes such as A and C in Fig. 1a do not share entangled qubits,
strategic local quantum operations on the qubits of the inter-
mediate node BB can create entanglement between qubits of .4 and
C in a process known as entanglement swapping. Quantum
routing protocols based on entanglement swapping can generate
entanglement between even more distant nodes, thereby enabling
quantum communication between remote pairs of nodes within
the network!7-20-24,

Complex network topology is an emergent property observed
in diverse real world networks. Complex networks prominently
exhibit a heavy-tailed degree distribution, approximated by a
power-law as

The creation of a global quantum communication network

P(k) oc k™ (1)

with 2 <y <3, where k is the degree of the node and P(k) is the
fraction of nodes having degree k2°. Another key feature of net-
work complexity is the small-world property, stating that other
nodes can be reached in a few steps from any given node: the

diameter d of the network (the maximum shortest path length
between any two nodes) increases slower than a power-law, for
example d « In N for a network of N nodes. Complex topology
has been shown to be essential to the proper functioning of the
classical internet, for instance by making it robust to the random
failure of computers or routers,

Recent findings highlight the need to investigate the possibility
of complex topology in a quantum internet. For example, com-
plex quantum communication networks exhibit promising
robustness to random failures of noisy quantum-repeater nodes?’
(though in the different framework of quantum spin models on
imprinted networks, complexity does not necessarily provide
robustness?8). Additionally, satellite-based quantum networks
naturally have the small world property, meaning only a few
entanglement swaps are needed to enable communication
between any pair of nodes?. This is advantageous due to reduced
usage of quantum resources. Another advantage to complex
topology is that existing optical cables of the classical internet
could be utilized for quantum communication, likely as part of a
hybrid architecture along with more expensive cryo-cables, thus
providing incentive to eventually match (at least partially) the
complex topology of the classical internet*-6-30,

However, there are also anticipated difficulties with creating
quantum communication networks that mimic the complexity of
the classical internet. For one, unlike in the case of satellite-based
quantum networks, quantum networks based on optical fibers do
not necessarily have the small world property due to photonic
losses limiting transmission length3!. There are also concerns that
low network densities of complex networks may limit end-to-end
transmission capacity of quantum information, and that there is
vulnerability to targeted attacks, just as in the classical
internet3233, By default, existing proposals for the creation of
quantum communication networks avoid these issues by
imposing a simple, grid-like network structure!3. Further, exist-
ing quantum routing protocols often assume simple grid-like or
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Fig. 1 Creation of quantum networks using spin clusters. a Quantum communication networks based on quantum repeaters consist of collections of local
qubits (orange nodes) that are entangled (green links) with qubits in other local collections. b We propose the use of entangled clusters (green) in
interacting spin systems as communication channels between nodes that are spatially localized regions of lattice sites (orange). ¢ Nodes are chosen as
adjacent circular regions of sites from a broad size distribution, as illustrated here on a lattice of size 128 x 128. A link is added when a cluster in the
underlying spin system is shared by exactly two nodes. d The resulting network between nodes in panel (¢) indicates which pairs of nodes share
entanglement. e Using larger lattices (here 4096 x 4096), a complex network emerges. f A snapshot of the classical internet from 1999 at the level of
autonomous systems®2 shows similar complexity to that in panel (e), although being significantly larger.
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ring-like network structurel7-20:21.23 with one recent exception?4.
As such, there is a need for model systems in which the impact of
complex topology on quantum communication can be studied.

In this paper, we present a proof-of-concept model to create
quantum networks of substantial complexity in the context of
spins on a lattice. In spin models on a two-dimensional lattice
such as the two-dimensional random transverse-field Ising model
(RTIM), there is a dominance of disorder near the critical
point34-40, The emerging strong disorder physics induces locality,
causing the ground state of the system to factorize into distinct
entangled Greenberger-Horne-Zeilinger (GHZ) spin clusters
(each corresponding to a magnetic domain)3°-43, Here, we pro-
pose interpreting the emergent GHZ clusters as links of a
quantum network: we choose regions of the lattice as nodes, and
link two nodes if a spin cluster overlaps both node regions and no
other node regions, as shown in Fig. 1b. We find that the resulting
quantum networks can have substantial complexity similar to that
observed for the classical internet. Our work is in part inspired by
a previous study*4, in which the author studied superconductivity
by viewing clusters as nodes and adding a link between clusters if
they were sufficiently close together. We focus primarily on the
prominent example of the critical 2D RTIM, but our results apply
generally to systems exhibiting strong disorder.

Results

Quantum network construction. In this work, ground-state spin
clusters of the RTIM serve as links for constructing complex
quantum networks. As an overview of our construction, network
nodes are chosen to be connected regions of lattice sites, with a
broad distribution of sizes, for example as shown in Fig. 1c. Then,
nodes are connected by a quantum link if they both have a site
belonging to the same spin cluster, and that cluster has no sites in
another node, as shown in Fig. 1b.

The two-dimensional RTIM is specified by the Hamiltonian

M= =% y0i0] = Sho! . @

where each ¢ is the spin-1/2 Pauli matrix in the « direction for a
spin at site i of a L x L square lattice with periodic boundary
conditions. The label (ij) indicates that the sum is taken over
neighboring sites i and j on the lattice, which are coupled by
bonds of random strength J;; > 0, each drawn independently from
the uniform distribution on the unit interval. Each site i has a
transverse external magnetic field of strength h; The relevant
physics of the RTIM remains unchanged for any non-singular
distribution of h; and Jj; as long as at least the h; fields or the Jj;
bonds are chosen randomly#>4°. Therefore, to simplify the model
we consider a fixed-h model with a uniform magnetic field h;=h
for all sites 343>, unless otherwise stated.

The RTIM is a paradigmatic example of a system which can
undergo a quantum phase transition at zero temperature as the
quantum control parameter 6 =Inh is tuned past its critical
value 64748, Below 0, the ground state has a macroscopic spin
cluster ordered by the couplings Jj;, and above 6. the ground state
is given by small spin clusters aligned independently. In contrast,
at the critical point 8, = —0.17034(2), the spin clusters have a
broad size-distribution and are self-similar fractal-like
objects’#3>,  Many properties of the critical RTIM are
universal*>%, that is, they are independent of the form of the
disorder in h and ], as well as of the type of the 2D lattice.

The ground state of the RTIM can be conveniently determined
using the strong disorder renormalization group (SDRG)
method?#>46:49:50, which is asymptotically exact in the vicinity
of the critical point®! as demonstrated in both two and higher
dimensions34-41°253, We used an efficient SDRG algorithm,
which runs in O(NlogN) time for N=1L? sites, to generate

instances of RTIM ground state clusters at the critical point343.
During the SDRG method, the largest local terms in the
Hamiltonian are successively eliminated and new Hamiltonians
are generated through a perturbation calculation34. After
decimating all degrees of freedom, the ground state of the RTIM
is found to be a collection of independent ferromagnetic clusters
of various size, each cluster being in a GHZ state

1
ﬁ(”';'ﬂ‘l"i'j'w) 3)

where 1 ({) for site i labels the +1 (—1) eigenstate of o7, and # is
the number of spins in the cluster424>46 In practice, we
considered lattices up to size L = 4096, with at least 16 instances
at each size. An advantage of using the critical point is that it is
expected to yield relatively large network size, while the SDRG
remains asymptotically exact. Note that the ground state of the
RTIM factorizes into a collection of independent GHZ clusters
even outside the critical point#2, indicating that off-critical RTIMs
could also be used.

We propose the selection of spatially localized regions of the
RTIM lattice to serve as nodes of a model quantum network. This
can be motivated by interpreting the RTIM as a model of a
magnetic solid: due to temporal restrictions, the magnetic solid
may only permit simultaneous quantum operations across small
distances. With the lattice partitioned into many local regions,
each region may permit local operations on its own sites, much
like a node of a real quantum network. In contrast, sites in distant
pairs of regions are not in general able to be simultaneously
measured.

Consider one spatially localized region A of the RTIM lattice
that will serve as a network node. The entanglement entropy

S = —Tr(p 4log,p ), 4

which is the von Neumann entropy of the reduced density matrix
p 4> provides a quantification of the entanglement between A and
the rest of the lattice A°. Thus, S is a measure of the node’s ability
to share entanglement with other nodes. In the RTIM, the
entanglement entropy is simply the number of clusters with spins
in both A and A°3%41:43,54 which as a special case of the area law
is on average proportional to the surface area (boundary length)
of A>. As a consequence, regions with a larger boundary have a
larger capacity to establish connections, leading to a proportion-
ally larger expected degree.

To achieve a heavy-tailed degree distribution for the eventual
quantum networks, we aimed to choose node regions with a
broad distribution of surface area. As a simple choice, we selected
discretized circles of varying sizes in the RTIM lattice as our
regions, as shown in Fig. 1c. We chose to sample the circles’ radii
from a power-law distribution with exponent pp,gius=2.67.
(Other values of yp,4;,s between 2 and 3 give qualitatively similar
results.) A minimum radius of 2 lattice units was used to ensure
the circles would consist of at least a few lattice sites. We then
placed the circles on the lattice by sequentially placing circles in
an outward-spiralling manner so that a new circle is tangent to
one or more of the already placed circles®®. The close placement
of the circles in principle promotes connectivity. Note that this
method does not attempt to solve the challenging problem of
maximizing the packing density, nor is it a uniformly random
placement of the circles. In practice, circles were added until a
fixed proportion, here chosen to be 0.3, of the lattice sites were
covered, as illustrated in Fig. 1c.

Now, with spatially localized regions of the lattice identified as
nodes of a model quantum network, we aim to add a link between
a pair of nodes A and B (Fig. 1b) if lattice sites of .4 and B share
entanglement. Unfortunately, as we partition the system into
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more than two subsystems (A, B, and the rest of the lattice), it
becomes challenging to quantify quantum entanglement between
pairs of subsystems®’, as the entanglement entropy is no longer
applicable. As an alternative, one can consider the logarithmic
negativity, which is an upper bound for the distillable entangle-
ment. Although the logarithmic negativity is notoriously difficult
to compute in practice®®?, in the RTIM, the entanglement
negativity is non-zero if and only if A and B share a spin cluster
that has no sites outside of these two regions®®®l. As such, a
cogent proposal would be to add a link between A and B in the
quantum network if and only if there exists a cluster that (i) has a
spin in both A and B and (ii) does not have a spin outside of .4 or
B.

However, the strict construction described above is overly
restrictive in the context of quantum networks, as any cluster that
has sites in both regions can be used for communication, as long
as the other sites in the cluster remain unchanged. As it is
reasonable to assume that spins are only manipulated inside the
nodes, we chose to add a quantum link between 4 and B if and
only if there exists a cluster that (i) has a spin in both A and B
and (ii) does not have a spin in a node other than A or B. Note
that in our construction A and B are typically spatially adjacent
and at least some of the shared clusters are relatively small,
meaning that in practice this modification has a negligible effect.

If the resulting network is disconnected (as in Fig. 1d), we
considered only the largest connected component (LCC) of the
network. In other words, each connected component is a separate
quantum communication network, and we only consider the
largest here.

Topological analysis of quantum networks. Visualizations of
quantum networks constructed using the method of the previous
subsection (Fig. le) indicate nontrivial topological features,
including highly connected hubs and clustering. This suggests the
presence of network complexity, which we verify here numeri-
cally. For comparison, we also consider grid-like benchmark
networks lacking complexity: quantum networks constructed
using the method of the previous subsection but with uniformly
sized nodes. In this grid-like benchmark, the radius of the nodes
was set so that we have the same overall coverage of the RTIM
lattice as in our complex quantum networks. The nodes were
arranged in a hexagonal packing on the lattice, and as such the
resulting networks are expected to approximate a triangular grid.
We also compare to the topology of the classical internet at the
level of autonomous systems from 1997 until 200092, From 733
available snapshots we selected five representative networks to
serve as a basis for comparison, the earliest of which is visualized
in Fig. 1f.

We first check that the quantum networks have a heavy-tailed
degree distribution, a hallmark property of network complexity.
As the node size distribution obeys a power-law, the expectation
based on the area law is that the degree distribution obeys a
power-law with the same exponent, under the assumption that
node positions were chosen truly randomly. Indeed, Fig. 2a shows
a degree distribution of a typical quantum network constructed
using the methods of the previous subsection, with a power-law
exponent approximately the same as the one by which the node
sizes were chosen. A slight difference in the power-law exponent
may be attributed to the non-uniformly random selection of the
node regions. The degree distribution is qualitatively similar to
that of a representative network of the classical internet at the
autonomous systems level, while contrasting with grid-like
benchmark networks. The inset in Fig. 2a displays an even more
clear power-law behavior, upon averaging the degree distribution
for a set of quantum networks.

Another key feature of complex networks is the small-world
property. Here, we used the average shortest path length (d)
between two nodes as a proxy for the diameter of the quantum
networks, shown in Fig. 2b for quantum networks from different
RTIM system sizes. Though the average path length of the
quantum networks is larger than that of the classical internet
networks, and also grows slightly faster than (d) ocInN, it is
evident that it scales much more slowly than in the grid-like
network, which has (d) o« +/N. We conclude that the quantum
networks are nearly small-world, although with a somewhat
larger diameter than the classical internet.

A closer examination of individual quantum networks reveals
that spatially large nodes do not always have a high degree.
Depending on the number and size of the surrounding nodes, a
large node can often end up with only a few connections,
especially if the node is on the periphery of the node packing
configuration, or if it is next to other large nodes. We therefore
checked for the presence of degree correlations between linked
nodes. In Fig. 2c the average degree of a node’s nearest neighbors
is shown as a function of the node’s own degree. Just like in the
classical internet, the negative slope indicates that the quantum
networks are disassortative, meaning high degree nodes tend to
connect to low degree nodes and vice versa. This contrasts with
the grid-like benchmark networks, which exhibit approximately
neutral behavior. The observed network disassortativity can be
quantified by the degree correlation coefficient r, defined as the
Pearson correlation coefficient between degrees at the ends of a
link. A correlation coefficient r = 0 means no degree correlations,
while negative values indicate disassortativity. A plot of r against
network size in Fig. 2d shows that both the quantum networks
and the classical internet exhibit disassortativity for all N, but they
tend to become less disassortative as N increases. In contrast,
grid-like networks have asymptotically no degree correlations.
For small sizes, low degree nodes often appear next to each other
in areas dominated by a large cluster in the RTIM, as well as on
the periphery of the grid, leading to slightly positive r values.

Degree correlations capture patterns at the level of pairs of
connected nodes, but it is often useful to go one step beyond and
check patterns of three nodes. The simplest such measurement is
the global clustering coefficient, given by

3 - Number of complete triangles > ki A Ak
Number of connected triplets of nodes > k;(k; — 1)
(©)

where A is the adjacency matrix of the network. The global
clustering coefficient of quantum networks of various sizes are
shown in Fig. 2e. A perfect triangular lattice would achieve
C = 0.4, somewhat above the grid-like benchmark networks that
often miss some connections. The clustering coefficient of
classical internet networks falls into the range spanned by the
heterogeneous and grid-like benchmark networks.

Beyond the global clustering coefficient, we can determine if
the network exhibits hierarchical modularity, in which low degree
nodes tend to exist in dense communities while high degree nodes
connect disparate communities, by examining the relationship
between the local clustering coefficient and node degree. The local
clustering coefficient of node i is

2 kA A Ak
ki(k; — 1)
Hierarchical network structure is indicated by a local clustering
coefficient that decays as the node degree increases. As shown in
Fig. 2f, we indeed observe that Gy, decays with k in both the

quantum networks and the classical internet network. Further,
the local clustering coefficient of the quantum networks obeys the

C=

(6)

Clocal«i =
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Fig. 2 Analysis of quantum network topology. a Degree distribution of a quantum network created with heterogeneously sized (green circles, N = 3731
nodes) or uniformly sized (dark orange crosses, N =11,658) circular nodes on a 4096 x 4096 random transverse-field Ising model (RTIM) lattice, and the
degree distribution of the classical internet at the autonomous systems level on 11/08/1997 (purple 'Y's, N = 3015)2. The dashed line is the expectation
for a triangular grid. Inset: The average degree distribution of 16 quantum networks appears to obey a power-law with exponent approximately the same as
that of the node size distribution. b Average shortest path length of networks from a few RTIM lattice sizes. Error bars represent standard error of the
mean. ¢ Average nearest neighbor degree as a function of node degree (averaged over nodes binned logarithmically by degree). d Degree correlation

coefficients at a few sizes. e Global clustering coefficient. f Local clustering coefficient vs. degree (averaged over nodes binned logarithmically by degree).

relation Cioea ~ k! well, indicating agreement with the hier-
archical network model®. Thus the quantum networks share the
hierarchical nature of the classical internet, in stark contrast to
grid-like networks with no hubs.

Off-critical RTIM and other variants. Our approach can be
generalized to systems other than the critical fixed-h RTIM dis-
cussed above. Starting with an off-critical version, in Fig. 3a, d we
perform the construction of the “Quantum network construction”
subsection with the control parameter 6 at various values away
from 6, and plot the average size (number of links) of the LCC of
the resulting network. For 0 near but not at 6, the network
construction still produces quantum networks of substantial size
with similar properties and complexity to that found in the
previous subsection. We also perform a similar construction with
the box-h RTIM, where the h; are uniformly distributed in (0, /],
in Fig. 3b, e. Note that the box-h system has a low density of
clusters and typically small clusters, leading to much smaller
networks on average. Nonetheless, we still expect to see com-
plexity at larger scales. For both fixed-h and box-h constructions,
the network size achieves a maximum for 0 = 6,, although this is a
coincidence as criticality is not required in our network con-
struction. What we need is a maximum number of local clusters,
which happens to occur in the vicinity of the critical point.

To illustrate that criticality is not necessarily required or
optimal for our network construction, we consider further
variants of the RTIM, such as the diluted RTIM (J;; = J> h with
probability p, J; =0 otherwise)%4-67. This system has connected
ground state clusters in the shape of bond percolation clusters,
shown in Fig. 3¢, f, and belongs to a different universality class
than the fixed-h and box-h RTIM#243, Yet, our network
construction still leads to large networks of substantial complex-
ity. Clearly, the maximum network size is achieved far from
criticality.

More generally, the quantum network construction can be
extended to any system with a ground state that factorizes into
independent spin clusters. Such systems include the random Potts
and clock models®® as well as the Ashkin-Teller model®.

Discussion

In this work, we have introduced a theoretical method to create
model quantum communication networks on a lattice of spins
using entangled clusters as quantum communication channels.
Specifically, we have shown that ground state GHZ clusters of the
critical RTIM can be used as quantum communication links
between local regions of spins, yielding quantum networks with
substantial network complexity.

As an extension, spin clusters of different layers could serve
both as nodes and links. For example, one layer of the diluted
critical RTIM (with percolation clusters) could define the nodes,
while another layer could provide the links. As clusters in the
critical diluted RTIM have a broad power-law size distribution
with exponent 187/91, they would naturally lead to a broad
degree distribution”?.

Our network construction can lead to even more dense and
potentially more complex networks by using multiple layers of
spin clusters for links. This idea leads to multilayer networks’!,
where the union of the links coming from different layers can
increase the topological complexity further, no longer resulting in
the current, quasi-planar graphs. In both a single-layer and multi-
layer construction, we can construct a weighted network, where
the link weight is the multiplicity of the established quantum
channels between each node pair. While for a purely topological
analysis such weights are irrelevant, they can be of key impor-
tance for practical quantum communication protocols®’.

In our model, we focus on pairwise interactions between nodes
of the network by discarding clusters with sites in more than two
node regions. However, one could in principle keep these clusters
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Fig. 3 Spin clusters in variants of the random transverse-field Ising model (RTIM) used to create quantum networks. a Fixed-h RTIM ground state
clusters at the critical 0. Clusters are colored by size, and may be disconnected243. b Box-h RTIM (h; uniformly distributed in (0, h]) ground state clusters
at critical 0. ¢ Bond percolation clusters, which are ground state clusters of the diluted RTIM (J; =J>> h with probability p, J; =0 otherwise)®4-67. Here
p=0.3. d-f For each system (here on a 512 x 512 square lattice), there is an optimal value of a cluster control parameter which produces the maximum
largest connected cluster (LCC) (averaged over 256 samples; error bars represent standard error of the mean). In the first two cases the optimal value of 6
approximately coincides with the critical point (dashed lines), but this does not hold in general.

as higher order interactions of a hypergraph, with these interac-
tions representing multipartite quantum entanglement. The
resulting quantum hypergraph could be an interesting object for
future study, as the creation and distribution of multipartite
entangled states on quantum networks is of interest for quantum
information processing?2.

Note that scale-free spatial networks would traditionally
require long-range connections?’. As our design includes spatially
extended nodes, scale-free quantum networks can be achieved
even with only short range connections, like in the optimal oft-
critical construction in Fig. 3f. Our quantum network construc-
tion could also generalize to higher dimensions. In 3D, the area
law means that the degree distribution is coupled to the dis-
tribution of the area of the subsystems instead of their linear
extent. Hence the degree distribution is expected to obey a power-
law with an exponent one larger than the exponent of the linear
size distribution. Unlike the networks from the 2D construction,
networks from the 3D construction would not be nearly planar,
and it would be of interest to investigate patterns in the clustering
coefficient. In contrast, the same construction would not work in
the 1D RTIM: Since the boundary of a connected region is
constant, all connected node regions are expected to have equal
average degree. A caveat is that for a 1D RTIM at criticality, there
are logarithmic corrections to the area law’2-74; however, it would
be unwieldy to create power-law distributions from merely
logarithmic corrections.

In conclusion, we have presented a way to create model
complex quantum networks on a lattice of spins. As the first
application, our work centers around the critical two-dimensional
RTIM, but generalizations to other interacting spin systems with
strong disorder that admit entangled ground state clusters are
apparent. Our model serves as an accessible generative framework
for further investigations on network complexity in the emerging
quantum internet. Further, our results could motivate experi-
mental work to create a spatially small but many-node complex

quantum communication network using a magnetic solid that
admits magnetic domains in the form of spin clusters. We believe
that in addition to ongoing and future experiments with a few
nodes separated at large distances>!13-15, we also need small-scale
experiments with many nodes to explore the implications of
complex network topologies. This is an exciting time to explore
the question of quantum network topology, influencing how the
quantum internet will be shaped. As of now, it is unclear if the
emerging quantum internet will acquire a complex network
structure. Even if the quantum internet falls into a novel class of
complex networks substantially different from those observed in
classical systems, models like the one presented here may be
valuable to understand how network properties arise.

Data availability

Data on the topology of the classical internet at the autonomous systems level are
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Code availability
Codes developed in this work are available from the corresponding author upon
reasonable request.

Received: 16 December 2022; Accepted: 14 September 2023;
Published online: 26 September 2023

References

1. Kimble, H. J. The quantum internet. Nature 453, 1023-1030 (2008).

2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road
ahead. Science 362, eaam9288 (2018).

3. Kozlowski, W. & Wehner, S. Towards large-scale quantum networks. In Proc.
Sixth Annu. ACM Int. Conf. Nanoscale Comput. Commun., NANOCOM ’19,
1-7 (Association for Computing Machinery, New York, NY, USA, 2019).

6 COMMUNICATIONS PHYSICS| (2023)6:271| https://doi.org/10.1038/s42005-023-01394-8 | www.nature.com/commsphys


https://snap.stanford.edu/data/as-733.html
www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01394-8

ARTICLE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Cacciapuoti, A. S. et al. Quantum internet: networking challenges in
distributed quantum computing. IEEE Netw. 34, 137-143 (2020).

van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature
607, 69-73 (2022).

Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles
separated by 12.5 km. Phys. Rev. Lett. 129, 050503 (2022).

Wei, S.-H. et al. Towards real-world quantum networks: a review. Laser
Photonics Rev. 16, 2100219 (2022).

Chen, J.-P. et al. Sending-or-not-sending with independent lasers: secure twin-
field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501
(2020).

Fang, X.-T. et al. Implementation of quantum key distribution surpassing the
linear rate-transmittance bound. Nat. Photonics 14, 422-425 (2020).

Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers.
Science 356, 1140-1144 (2017).

Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549,
43-47 (2017).

Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70-73
(2017).

Peev, M. et al. The SECOQC quantum key distribution network in Vienna.
New J. Phys. 11, 075001 (2009).

Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD
Network. Opt. Express 19, 10387-10409 (2011).

Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev.
Lett. 120, 030501 (2018).

Biamonte, J., Faccin, M. & De Domenico, M. Complex networks from classical
to quantum. Commun. Phys. 2, 1-10 (2019).

Acin, A, Cirac, J. I. & Lewenstein, M. Entanglement percolation in quantum
networks. Nat. Phys. 3, 256-259 (2007).

Cirag, J. I, Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and
entanglement distribution among distant nodes in a quantum network. Phys.
Rev. Lett. 78, 3221-3224 (1997).

Satoh, T., Le Gall, F. & Imai, H. Quantum network coding for quantum
repeaters. Phys. Rev. A 86, 032331 (2012).

Perseguers, S., Cirac, J. I, Acin, A., Lewenstein, M. & Wehr, J. Entanglement
distribution in pure-state quantum networks. Phys. Rev. A 77, 022308 (2008).
Schoute, E., Mancinska, L., Islam, T., Kerenidis, I. & Wehner, S. Shortcuts to
quantum network routing. Preprint at arXiv https://doi.org/10.48550/arXiv.
1610.05238 (2016).

Meignant, C., Markham, D. & Grosshans, F. Distributing graph states over
arbitrary quantum networks. Phys. Rev. A 100, 052333 (2019).

Pirandola, S. End-to-end capacities of a quantum communication network.
Commun. Phys. 2, 1-10 (2019).

Shi, S. & Qian, C. Concurrent entanglement routing for quantum networks:
model and designs. In Proc. Annu. Conf. ACM Spec. Interest Group Data
Commun. Appl. Technol. Archit. Protoc. Comput. Commun., SSIGCOMM 20,
62-75 (Association for Computing Machinery, New York, NY, USA, 2020).
Barabasi, A.-L. Network Science (Cambridge University Press, Cambridge,
United Kingdom, 2016), 1st edition edn.

Albert, R,, Jeong, H. & Barabasi, A.-L. Error and attack tolerance of complex
networks. Nature 406, 378-382 (2000).

Coutinho, B. C., Munro, W. J., Nemoto, K. & Omar, Y. Robustness of noisy
quantum networks. Commun. Phys. 5, 1-9 (2022).

Sundar, B., Walschaers, M., Parigi, V. & Carr, L. D. Response of quantum spin
networks to attacks. J. Phys. Complex. 2, 035008 (2021).

Brito, S., Canabarro, A., Cavalcanti, D. & Chaves, R. Satellite-based photonic
quantum networks are small-world. PRX Quantum 2, 010304 (2021).
Rabbie, J., Chakraborty, K., Avis, G. & Wehner, S. Designing quantum
networks using preexisting infrastructure. npj Quantum Inf. 8, 1-12 (2022).
Brito, S., Canabarro, A., Chaves, R. & Cavalcanti, D. Statistical properties of
the quantum internet. Phys. Rev. Lett. 124, 210501 (2020).

Zhang, B. & Zhuang, Q. Quantum internet under random breakdowns and
intentional attacks. Quantum Sci. Technol. 6, 045007 (2021).

Zhuang, Q. & Zhang, B. Quantum communication capacity transition of
complex quantum networks. Phys. Rev. A 104, 022608 (2021).

Kovics, I. A. & Igloi, F. Renormalization group study of random quantum
magnets. J. Phys. 23, 404204 (2011).

Kovdcs, I. A. & Igldi, F. Renormalization group study of the two-dimensional
random transverse-field Ising model. Phys. Rev. B 82, 054437 (2010).
Motrunich, O., Mau, S.-C., Huse, D. A. & Fisher, D. S. Infinite-randomness
quantum Ising critical fixed points. Phys. Rev. B 61, 1160-1172 (2000).
Pich, C,, Young, A. P., Rieger, H. & Kawashima, N. Critical behavior and
Griffiths-McCoy singularities in the two-dimensional random quantum Ising
ferromagnet. Phys. Rev. Lett. 81, 5916-5919 (1998).

Lin, Y.-C,, Kawashima, N., Igléi, F. & Rieger, H. Numerical renormalization
group study of random transverse Ising models in one and two space
dimensions. Progr. Theor. Phys. Suppl. 138, 479-488 (2000).

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

Yu, R, Saleur, H. & Haas, S. Entanglement entropy in the two-dimensional
random transverse field Ising model. Phys. Rev. B 77, 140402 (2008).
Kovics, I. A. & Igloi, F. Critical behavior and entanglement of the random
transverse-field Ising model between one and two dimensions. Phys. Rev. B 80,
214416 (2009).

Lin, Y.-C,, Igléi, F. & Rieger, H. Entanglement entropy at infinite-randomness
fixed points in higher dimensions. Phys. Rev. Lett. 99, 147202 (2007).
Kovics, I. A. & Juhasz, R. Emergence of disconnected clusters in
heterogeneous complex systems. Sci. Rep. 10, 21874 (2020).

Kovics, I. A. & Igloi, F. Universal logarithmic terms in the entanglement
entropy of 2d, 3d and 4d random transverse-field Ising models. EPL 97, 67009
(2012).

Bianconi, G. Superconductor-insulator transition in a network of 2d
percolation clusters. EPL 101, 26003 (2013).

Igl6i, F. & Monthus, C. Strong disorder RG approach of random systems.
Phys. Rep. 412, 277-431 (2005).

Igloi, F. & Monthus, C. Strong disorder RG approach—a short review of
recent developments. Eur. Phys. J. B 91, 290 (2018).

Sachdev, S. Quantum criticality: competing ground states in low dimensions.
Science 288, 475-480 (2000).

Sachdev, S. Quantum Phase Transitions (Cambridge University Press,
Cambridge, 2011), second edn.

Ma, S.-K., Dasgupta, C. & Hu, C.-K. Random antiferromagnetic chain. Phys.
Rev. Lett. 43, 1434-1437 (1979).

Dasgupta, C. & Ma, S.-K. Low-temperature properties of the random
Heisenberg antiferromagnetic chain. Phys. Rev. B 22, 1305-1319 (1980).
Fisher, D. S. Phase transitions and singularities in random quantum systems.
Physica A 263, 222-233 (1999).

Karevski, D., Lin, Y.-C., Rieger, H., Kawashima, N. & Igl6i, F. Random
quantum magnets with broad disorder distribution. Eur. Phys. J. B 20,
267-276 (2001).

Kovics, I. A. & Igldi, F. Infinite-disorder scaling of random quantum magnets
in three and higher dimensions. Phys. Rev. B 83, 174207 (2011).

Refael, G. & Moore, J. E. Entanglement entropy of random quantum critical
points in one dimension. Phys. Rev. Lett. 93, 260602 (2004).

Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: area laws for the
entanglement entropy. Rev. Mod. Phys. 82, 277-306 (2010).

Wang, W., Wang, H., Dai, G. & Wang, H. Visualization of large hierarchical
data by circle packing. In Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
CHI ’06, 517-520 (Association for Computing Machinery, New York, NY,
USA, 2006).

Szalay, Sz. Multipartite entanglement measures. Phys. Rev. A 92, 042329
(2015).

Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A
65, 032314 (2002).

Plenio, M. B. Logarithmic negativity: a full entanglement monotone that is not
convex. Phys. Rev. Lett. 95, 090503 (2005).

Ruggiero, P., Alba, V. & Calabrese, P. Entanglement negativity in random spin
chains. Phys. Rev. B 94, 035152 (2016).

Zou, J. S., Ansell, H. S. & Kovdcs, I. A. Multipartite entanglement in the
random Ising chain. Phys. Rev. B 106, 054201 (2022).

Meyer, D. Route Views—University of Oregon Route Views Project. http://
www.routeviews.org/routeviews/.

Ravasz, E. & Barabasi, A.-L. Hierarchical organization in complex networks.
Phys. Rev. E 67, 026112 (2003).

Senthil, T. & Sachdev, S. Higher dimensional realizations of activated
dynamic scaling at random quantum transitions. Phys. Rev. Lett. 77,
5292-5295 (1996).

Harris, A. B. Effect of random defects on the critical behaviour of Ising
models. J. Phys. C 7, 1671-1692 (1974).

Stinchcombe, R. B. Diluted quantum transverse Ising model. J. Phys. C 14,
1263-L267 (1981).

dos Santos, R. R. The pure and diluted quantum transverse Ising model. J.
Phys. C 15, 3141-3161 (1982).

Senthil, T. & Majumdar, S. N. Critical properties of random quantum Potts
and clock models. Phys. Rev. Lett. 76, 3001-3004 (1996).

Carlon, E., Lajkd, P. & Igldi, F. Disorder induced cross-over effects at quantum
critical points. Phys. Rev. Lett. 87, 277201 (2001).

Stauffer, D. & Aharony, A. Introduction To Percolation Theory: Second Edition
(Taylor & Francis, London, 2017), second edn.

Kiveld, M. et al. Multilayer networks. J. Complex Netw. 2, 203-271 (2014).
Holzhey, C., Larsen, F. & Wilczek, F. Geometric and renormalized entropy in
conformal field theory. Nucl. Phys. B 424, 443-467 (1994).

Vidal, G., Latorre, J. I, Rico, E. & Kitaev, A. Entanglement in quantum critical
phenomena. Phys. Rev. Lett. 90, 227902 (2003).

Calabrese, P. & Cardy, J. Entanglement entropy and quantum field theory. J.
Stat. Mech. P06002 (2004).

COMMUNICATIONS PHYSICS| (2023)6:271| https://doi.org/10.1038/542005-023-01394-8 | www.nature.com/commsphys 7


https://doi.org/10.48550/arXiv.1610.05238
https://doi.org/10.48550/arXiv.1610.05238
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/
www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01394-8

Acknowledgements

This work was supported by the National Science Foundation under Grant No. PHY-
2310706 of the QIS program in the Division of Physics, the JTF project The Nature of
Quantum Networks (ID 60478), and the Baker Faculty Grant of the Weinberg College of
Arts and Sciences, Northwestern University, 2020. R.T.C. Chepuri was supported by the
Northwestern University SURG-Advanced in 2021. We are thankful for Ginestra Bian-
coni for useful discussions. We also thank Bingjie Hao, Anastasiya Salova, and Helen S.
Ansell for insightful feedback on the manuscript.

Author contributions

L.A.K. developed the initial concept and supervised the research. RT.C.C. performed the
network simulations and numerical analyses. All authors contributed to the design and
writing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01394-8.

Correspondence and requests for materials should be addressed to Istvan A. Kovacs.

Peer review information Communications Physics thanks Bhuvanesh Sundar, Bingzhi
Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

8 COMMUNICATIONS PHYSICS| (2023)6:271| https://doi.org/10.1038/s42005-023-01394-8 | www.nature.com/commsphys


https://doi.org/10.1038/s42005-023-01394-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Complex quantum network models from spin clusters
	Results
	Quantum network construction
	Topological analysis of quantum networks
	Off-critical RTIM and other variants

	Discussion
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




