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Abstract

Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated
outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude
in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest
scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs
immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas
outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,
RB= 103Rg. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested
disk (MAD), and launches relativistic jets that propagate well outside RB and suppress BH accretion to 1.5% of the
Bondi rate, MB. Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–
Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it
rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% of MB reach the BH. Thereafter,
the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak
intermittent jets that spread their energy over a large area and suppress BH accretion to 2% MB. Because the
BAD and RAD states tangle up the jets and destroy them well inside RB, they are promising candidates for the
more abundant, but less luminous, class of FR0 galaxies.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Active galactic nuclei (16); Black hole
physics (159); Relativistic jets (1390); General relativity (641)

Supporting material: animations

1. Introduction

Relativistic collimated outflows, known as jets, are prevalent
across many astrophysical systems of vastly different scales. The
largest and most energetic ones emanate from the galaxy centers
that harbor supermassive black holes (SMBHs). Active galactic
nuclei (AGNs), whose central SMBHs consume gas, release
energy that couples to the galactic environment in a process
called AGN feedback. The consensus is that the feedback comes
in two flavors: (i) radio or kinetic mode, which occurs at lower
accretion rates (L= 0.01LEdd/c

2, where LEdd is the Eddington
luminosity)—in this mode, powerful radio jets dominate the
feedback (see Fabian 2012; Morganti 2017 for reviews); and (ii)
radiative or quasar mode, which takes place at high accretion
rates in luminous AGNs (L 0.01LEdd/c

2)—here, the radiation
coupled with the surrounding gas and dust drives powerful
outflows at wide angles into the galactic environment. About one
in 10 luminous AGNs can produce powerful radio jets (Sikora
et al. 2007). In both cases, (i) and (ii), the radio jets can

propagate into the interstellar medium (ISM) and intracluster
medium (ICM), displace the gas, and inflate X-ray cavities of up
to several megaparsecs in size (Oei et al. 2022; see McNamara &
Nulsen 2007, 2012 for reviews). Whereas these cavities appear
empty in X-ray images, they are filled with relativistically hot
magnetized plasma that emits copious synchrotron emission in
the radio band. The cavities result from AGN feedback that can
offset the runaway cooling of the ICM via shocks, acoustic
waves, and/or turbulent heating and thus can regulate star
formation (Zhuravleva et al. 2016; Martizzi et al. 2019; Li et al.
2020). However, how SMBHs feed on the gas, power the jets,
and exert feedback on their environment remains poorly
understood.
The Fanaroff–Riley (FR) classification system (Fanaroff &

Riley 1974) is widely used to categorize radio galaxies into two
main types, FRIs and FRIIs, determined by the morphology of
their radio emission. FRIs are bright near the core and grow
gradually fainter with increasing distance. FRIIs are brighter
near the edge of the radio lobes and grow fainter toward the
core. Recently, a new classification has been established: the
FR0s that morphologically lack radio emission at scales
r 1 kpc (Ghisellini 2011). They are more abundant than
FRIs and FRIIs (Stecker et al. 2019), hinting that they might be
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the dominant population in the local Universe (Baldi et al.
2018; see Baldi 2023 for a review). Additionally, the Fermi
observatory recently detected bright γ-rays from three of 100
FR0 galaxies, with two of these being an order of magnitude
brighter in radio than the rest (Paliya 2021). This, along with
their abundance, suggests that FR0s can significantly contribute
to the isotropic γ-ray background (Stecker et al. 2019), the
diffuse neutrino background (Tavecchio et al. 2018; Ack-
ermann et al. 2022), as well as ultra-high-energy cosmic rays
(Merten et al. 2021; Lundquist et al. 2022). It is not clear yet
whether FR0s are part of the evolutionary stage of FRI/IIs. The
SMBH mass and host environment appear similar to the FRIs,
but the jet size is smaller, r 1 kpc, usually unresolved, and
moves slower, γ 2 (Balmaverde & Capetti 2006; Baldi et al.
2018). This might suggest that either the BH spin or the
magnetic field strength are different enough that this can affect
the jet power and velocity (Baldi et al. 2018).

Spinning BHs surrounded by whirlpools of hot magnetized
plasma, or accretion disks, can produce relativistic jets via the
Blandford & Znajek (1977; hereafter, BZ) process. The BZ
process capitalizes on the fact that as the hot plasma in the disk
accretes on a spinning BH, it brings with it poloidal (pointing
in the R- and z-directions) magnetic flux. BH rotation drags the
inertial frames via the Lense & Thirring (1918) effect, which
twists the poloidal flux in the vicinity of the BH, causing it to
build up a strong toroidal component, which in turn powers
collimated Poynting-flux-dominated outflows—the twin polar
jets (see Tchekhovskoy 2015; Davis & Tchekhovskoy 2020).
The rotation of the disk launches disk winds (via a process like
that suggested by Blandford & Payne 1982) that collimate the
jets into small opening angles and enable the jets to accelerate
(Komissarov et al. 2009; Tchekhovskoy et al. 2009). This
suggests that rotation is an important ingredient for accretion,
jets and outflows, and their feedback on the environment. In
this work, we aim to reveal the importance of ambient gas
rotation on the jets and their feedback.

To understand how the jets escape out of the BH sphere of
influence, one must follow them from their formation at the BH
event horizon to their interaction with the ISM or ICM. For
this, one needs to model the BH feeding by following the gas
infall from the ISM to the BH event horizon. These are
extremely arduous tasks due to the enormous scale separation
of the problem. The gas originates at the edge of the BH sphere
of influence, the Bondi radius (Bondi 1952):
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which is significantly larger than the BH gravitational radius,
Rg=GMBH/c

2= 5× 10−5 pc× (MBH/10
9Me). Here, MBH is

the SMBH mass and c∞ is the ISM sound speed. For a typical
ISM temperature, T∞∼ 1 keV, the scale separation between RB

and Rg reaches 6 orders of magnitude (Russell et al.
2015, 2018). Adding to the challenge, the ICM and dark
matter halos reach scales of ∼100 kpc, marking the scale
separation of the full problem at ∼9–10 orders of magnitude.
Dedicated galaxy simulations are capable of following gas
flows from the dark matter halo down to ∼1 kpc scales
(Anglés-Alcázar et al. 2015, 2017), and state-of-the-art hyper-
refined Lagrangian simulations can even reach subparsec scales
(Anglés-Alcázar et al. 2021). However, to bridge the “last
mile” of the scale separation and connect the smallest scales in

galaxy simulations to the event horizon, general relativistic
magnetohydrodynamic (GRMHD) simulations are essential.
A popular approach for bridging the scale separation is the

Bondi model (Bondi 1952; Shapiro & Teukolsky 1986), which
approximates BH accretion as a spherically symmetric
hydrodynamic flow. Although an elegant and simple approx-
imation, it does not allow for jets. In this work, we add the
minimum ingredients to the Bondi model that enable the study
of BH-powered jet formation and propagation: we retain the
zero angular momentum of the ambient gas, but add BH
rotation and an ambient vertical magnetic field. We also
consider the system at sufficiently high resolution and in full
3D to resolve the jet propagation and allow for the
development of nonaxisymmetric instabilities in the jets.
GRMHD simulations found that magnetized accretion can

accumulate large-scale poloidal magnetic fields on the BH to
the point that the fields become dynamically important, i.e.,
able to obstruct gas infall, at which point the system enters the
magnetically arrested disk (MAD) state (Bisnovatyi-Kogan &
Ruzmaikin 1974, 1976; Igumenshchev et al. 2003; Narayan
et al. 2003; Igumenshchev 2008) that can launch jets with
energy efficiencies exceeding 100%, i.e., whose power exceeds
the accretion power (Tchekhovskoy et al. 2011). In this state,
the accretion continuously brings in the magnetic flux to the
BH, thereby flooding both the BH and inner disk with the
vertical magnetic flux. At the same time, the dynamically
important magnetic flux periodically erupts from the BH, rips
through the disk, and escapes. In the presence of sufficient
angular momentum, the inward advection of the magnetic flux
wins, and the BH is always flooded with the magnetic flux
(Tchekhovskoy & McKinney 2012).
In contrast, zero-angular-momentum accretion was found to

not be conducive to powerful, stable jet production. Analytic
models have suggested that zero-angular-momentum accretion
produces weak jets (with energy efficiency 1%; Das &
Czerny 2012). Kwan et al. (2023; hereafter, K23) used
GRMHD simulations to model the accretion of spherically
symmetric magnetized gas on a rapidly spinning BH and found
that zero-angular-momentum accretion could not remain in a
MAD state for a prolonged period of time. The jet efficiency
only transiently surpassed 100%, due to the BH eventually
losing the large-scale BH magnetic flux powering the jets (see
also Gottlieb et al. 2022a for a related phenomenon in
collapsars) and entering the “standard and normal evolution”
(SANE) state (Narayan 2012), in which the large-scale
magnetic flux is subdominant and the jets are weaker or
nonexistent. Ressler et al. (2021; hereafter, R21) performed 3D
GRMHD simulations of spherically symmetric gas accretion
onto a rapidly spinning BH (a= 0.9375), with a Bondi-to-
event horizon scale separation of RB/Rg= 100.9 They varied
the angle between the ambient magnetic field and BH spin
directions and found that outflow efficiencies, in most cases,
did not exceed 100%: the accretion flow had a hard time
reaching and staying in the MAD state. Based on the results of
their simulations, R21 predicted that for RB/Rg 800, all jets
powered by low-angular-momentum accretion will end up
falling victim to the kink instability inside the Bondi radius, as
is the case for realistic systems, RB/Rg 105−6 (e.g., SgrA*

or M87).

9 Note that in comparison to our Equation (1), R21 use an extra factor of 2 in
their Bondi radius definition: = =¥R GM c R2 200B BH

2
g.
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Here, we evaluate the ability of low-angular-momentum
accretion to power large-scale jets for an order-of-magnitude
larger scale separation than has been possible until now.
Lalakos et al. (2022; hereafter, L22) simulated a 3D GRMHD
accretion of the rotating ISM for a Bondi-to-event horizon ratio
of RB/Rg= 103. Here, we follow the L22 approach, but
consider zero-angular-momentum accretion. As in L22, we
include a rapidly spinning BH, a= 0.94, and a large-scale
vertical magnetic field, which is aligned with the BH spin
vector. To study the self-consistent jet formation and propaga-
tion to distances well outside the Bondi radius, we use adaptive
mesh refinement (AMR) to ensure sufficient resolution of the
tightly collimated jets.

More generally, we aim to understand the basic ingredients
necessary for the formation of stable jets or, conversely, what it
takes to “break” them. Namely, we aim to answer questions
such as: is gas angular momentum (and the formation of an
accretion disk) needed to maintain jet stability? Is there a
critical power above which the jets manage to escape the BH
sphere of influence? How does the ambient medium trigger jet
instability? What are the observational signatures of unstable
jets and how do they fit within the FR morphological
classification?

Throughout the paper, we work in units of G=M= c= 1.
For conciseness, we sometimes measure the time in the unit of
1000Rg/c, which we denote as 1k: e.g., 7.5× 104Rg/c≡ 75 k.
In Section 2, we describe our simulation setup and choice of
the initial physical parameters. In Section 3, we present the
properties of the accretion flow and jets as measured near the
BH. In Section 4, we show how the jets can escape out of the
Bondi sphere and discuss their stability. In Section 5, we show
how changes in the behavior of accretion flow angular
momentum can lead to the destruction of the jets. In
Section 6, we compare internal and external kink instabilities.
Finally, in Section 7, we summarize and discuss our results.

2. Numerical Method and Setup

We carry out our simulations using the GRMHD code H-
AMR, which includes advanced features such as graphics
processing unit acceleration, AMR, and local adaptive time-
stepping (Liska et al. 2022). We initialize the simulation by
placing a BH inside a uniform static ambient medium. We
consider a rapidly spinning BH, with dimensionless spin
a= 0.94, to favor jet launching. To allow the system to evolve
naturally, we avoid prescribing the conditions inside RB: we
carve out a cavity inside the Bondi sphere (r< RB) and place
the ambient gas of uniform rest-mass (RM) density, ρ= ρ∞,
outside the sphere (r� RB).

We choose the ambient sound speed, c∞, to achieve the
desired scale separation, RB= 103Rg (Equation (1)). This is
similar to L22, but here we set the ambient medium angular
momentum to zero. In this work, we focus on low-luminosity
BH accretion systems. Because of this, we do not include any
radiation effects (e.g., radiative cooling), which are important at
higher-mass accretion rates. Thus, our simulations are
nonradiative and scale-free: the simulation results trivially
rescale to any value of ρ∞. As appropriate for AGN
environments at the Bondi radius, we adopt a monatomic
nonrelativistic (Γ= 5/3) gas with an ideal gas equation of
state, pg= (Γ− 1)ug, where pg and ug are the pressure and
internal energy density of the gas.

Outside the Bondi radius, we include a large-scale vertical
magnetic field in the direction parallel to the BH spin.
Asymptotically far away, we set B= B0a. Closer to RB, we
deform the field such that the radial component of the magnetic
field, Br, smoothly vanishes toward the edge of the cavity and
no field enters the cavity, r� RB. To achieve this, we adopt the
magnetic vector potential, qµ -jA r Rmax , 0 sin2

B
2 2[( ) ] . We

normalize the strength of the magnetic field such that the
thermal-to-magnetic pressure ratio is β= pg/pm= 100 asymp-
totically far away (this also ensures that β� 100 everywhere).
Here, pm= b2/8π is the magnetic pressure, where b2= bμbμ
and bμ is the comoving contravariant magnetic field four-
vector (defined in Appendix A). In order to break axisymmetry
and provide the seeds for the growth of the magneto-rotational
instability (MRI; Balbus & Hawley 1991), we include random
pressure perturbations at a 2% level in the initial conditions.
We note that the cavity is, technically, not entirely empty,

because GRMHD codes cannot handle vacuum. To prevent ρ
and ug from becoming extremely low or negative in highly
magnetized regions (i.e., the jet launching regions), our
numerical scheme adopts the following density floors. If at
any point in the simulation the densities drop below the floor
values, r r p< = - - -b rmax 60 , 10 , 10fl

2 7 2 20[ ( ) ] and/or <ug
p= - - G -u b rmax 3000 , 10 , 10g, fl

2 9 2 20[ ( ) ], then we add mass
and/or internal energy, respectively, in the drift frame until the
floor values are reached (see Appendix B3 of Ressler et al.
2017).
We construct our grid in spherical polar coordinates, r, θ,

and j. The radial grid is uniform in rlog , and r spans
0.83RH� r� 106Rg. There are six cells inside the event
horizon, = + -R R a1 1H g

2( ), and the radius of the outer
boundary is larger than the light travel distance in a simulation
duration: these ensure that both the inner and outer radial
boundaries are causally disconnected from and cannot
influence the solution. The polar and azimuthal grids are
uniform in the θ- and j-directions and span 0� θ� π and
0� j� 2π, respectively. We use outflow, transmissive, and
periodic boundary conditions in the radial, polar, and azimuthal
directions, respectively (Liska et al. 2022). The base grid
resolution is Nr× Nθ×Nj= 448× 96× 192 cells in the r-, θ-,
and j-directions. At r� 6.5Rg, we activate one level of static
mesh refinement (SMR): this doubles the resolution in each
dimension, leading to an increased effective resolution of
896× 192× 384. On top of the SMR, we also include two
additional AMR levels that we dynamically activate during the
run, to ensure sufficient resolution to resolve the collimated jets
and cocoons at large radii, as we describe in Appendix B. The
maximum effective resolution in the jets can therefore reach
3584× 768× 1536 cells.
In order to avoid the polar singularity interfering with highly

magnetized jet regions, we tilt the entire BH–gas system by 90°
relative to our computational grid: as a result, the BH rotational
axis is perpendicular to the polar singularity of our computa-
tional grid. However, for the sake of narrative simplicity, we
present our results below as if we did not perform the tilt: for
presentation purposes, we direct the z-axis along the BH spin
vector and count off the polar angle, θ, from the BH spin
direction.

3. MAD Prologue

The simulation starts with the constant-density ambient gas
at rest, located outside of the empty cavity, r� RB (Section 2).

3
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The pressure gradient at the edge of the cavity, along with the
gravitational attraction from the BH, push the gas inward. To
study the mass flow in our simulation, we define the RM
component of the energy flux density:

r=f c u , 2r
RM

2 ( )

whose surface integral gives us the net energy outflow rate or
power:

=E f dA, 3RM RM∬ ( )

where q j= -dA g d d is the differential surface element,
= mng g∣ ∣ is the determinant of the metric, and uμ is the

coordinate-frame contravariant proper velocity vector. In a
steady state, ERM is conserved and independent of radius. We
evaluate the BH mass accretion rate as the negative of the RM
power, º - = M E r R c8RM g

2( ) , which we measure at
r= 8Rg to avoid potential contamination by the density floors
near the event horizon.

Figure 1(a) shows the time dependence of M , which peaks at
approximately the analytic Bondi prediction,

pl
r

= ¥

¥

M GM
c

4 , 4B s BH
2

3
( ) ( )

at about a freefall time = ´- t R R R c2 2.2ff
1 2

B g
3 2

g( )
=R c10 224

g k after the beginning of the simulation. Here, for
our choice, Γ= 5/3, we have λs= 1/4 (Shapiro et al. 1976; Di
Matteo et al. 2003). That M reaches the simple analytic Bondi
prediction, MB, is not entirely surprising, because, in the absence
of any external angular momentum supply, the gas never
encounters a centrifugal barrier, which would inhibit the
accretion relative to the Bondi expectation.

The infalling gas drags inward the large-scale vertical
magnetic flux, and some of it makes it all the way to the
event horizon, resulting in the increase of the absolute BH
magnetic flux:

F = B dA0.5 . 5r
BH ∬ ∣ ∣ ( )

Here, the integral is over the entire event horizon of the BH,
and the factor of 0.5 converts it to a single hemisphere.
Figure 1(b) shows the time dependence of the normalized
absolute magnetic flux:

f =
F

á ñtM R c
, 6BH

BH

g
2

( )

which measures the strength of the magnetic flux relative to the
onslaught of the infalling gas; here, to clarify the units, we
explicitly include the length and velocity scaling factors, and
á ñtM is the rolling average of the mass accretion rate over the
time interval of τ= 3 k. This time interval is sufficiently long
to average over the strong M oscillations in the MAD state. We
also consider a signed magnetic flux through the northern
hemisphere,

ò òq jF = -
p p

d d B g , 7r
N

0

2

0

2
( )

as well as its normalized form, fN, defined analogous to
Equation (6). As the infalling gas continuously drags more of

the ambient magnetic flux inward, the BH magnetic flux grows
in strength and fBH steadily increases.
Similar to Equation (3), we compute the various components

of the energy flux using the stress–energy tensor:
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We are interested in the radial energy flux and set κ= r and
λ= t. Thus evaluated, Equation (8) gives us the total radial
energy flux, fTOT. The electromagnetic (EM), thermal (TH),
and kinetic energy (KE) flux density components of the total
energy flux, respectively, are:

p= - -f b u u b b 4 , 9r
t

r
tEM

2( ) ( )

= - +f u p u u , 10r
tTH g g( ) ( )

r= -f c u u , 11r
tKE

2 ( )

where u r is the radial contravariant four-velocity component
and ut is the temporal covariant velocity component, which is a
conserved quantity for point masses. We also define the
components of power (integral versions of the flux densities),
Equations (9)–(11), following Equation (3):

º# #
E f dA, 12∬ ( )

where # = EM, TH, KE, or RM. The integral version of
Equation (9) gives us the jet power, = =L E r R8j EM g( ), which
we measure through a sphere of radius r= 8Rg. Note that Lj
includes the power of both jets. Figure 1(c) shows that Lj
abruptly increases at t; 24 k once fBH exceeds a critical value,
fBH; 15, and the jets form.
Figure 1(d) shows the outflow energy efficiency,

h º á ñtL Mcj
2 , which is the jet power measured in units of

BH accretion power: at t; 24 k, it is not yet very high, but it is
still significant, η= 0.1≡ 10%—from now on, we will express
all fractions in terms of percent. Although at this time the jets
have not yet reached the maximum efficiency, they already
exert significant feedback on the accretion flow and suppress
the BH accretion rate relative to its peak by nearly an order of
magnitude, ~ M M 20%B , via injecting the energy into the
accretion flow and partially unbinding it. This marks the end of
the initial transient phase, during which the system settles into a
quasi-steady state.
Figure 1(b) shows that the dimensionless BH magnetic flux

grows until it saturates around fBH 50 at t 31 k. At this
time, the BH magnetic flux becomes dynamically important,
i.e., the magnetic pressure can withstand the onslaught of the
total momentum flux of the infalling gas. This signals the
formation of a MAD (Tchekhovskoy et al. 2011). The jets
produced during the MAD state attain the maximum power for
a given M , increasing their chance of reaching the Bondi scale
and producing feedback. This suppresses the mass accretion
rate to á ñ = M M 1.5B %, a staggering reduction by nearly 2
orders of magnitude from the peak, and the analytical
Bondi (1952) expectation, MB. The average jet power,
á ñ  L M c 2.9j B

2 %, translates into extremely high jet effi-
ciency, há ñ  190%: this implies that the BH energy output in
the form of jets exceeds the energy input in the form of the RM
energy. This is typical for rapidly spinning (a� 0.9) MAD

4
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BHs, whose rotational energy is extracted—by the continuous
winding of magnetic fields on the event horizon—faster than
the accretion can replenish it (Tchekhovskoy et al. 2011;
McKinney et al. 2012; Tchekhovskoy & McKinney 2012).
Figure 1(b) shows that at t 65k, the normalized magnetic flux
drops below the characteristic MAD value, fBH= 50, the flow

exits the MAD state, and the jets become progressively weaker
(Figure 1(c)) until their complete destruction at the event
horizon at t= 78 k, when η� 0.1% (Figure 1(d)). With no
strong jets to obstruct the accretion, the mass accretion rate
(Figure 1(a)) increases from ~ M M 1.5B % in the MAD state
to  M M 10B  % in the SANE state.

Figure 1. In the absence of rotation and a strong magnetic field, the instantaneous BH mass accretion rate can transiently reach the Bondi value,   M MB (the thin line
in panel (a)). However, once the magnetic flux accumulates on the BH event horizon and its normalized absolute value exceeds fBH ≈ 15 at t = 24 k (the thick line in
panel (b)), the first jets—of normalized power  L M c 5%j B

2 (panel (c)) and efficiency η ; 10% (panel (d))—emerge and suppress the instantaneous BH accretion
rate to   M M 20B % (the thin line in panel (a); we normalize fBH and η to á ñtM , which is M smoothed over τ = 3k and shown with the thick line in panel (a)).
Following this initial transient phase, the accumulating magnetic flux reaches fBH  50 (the thick line in panel (b)) and leads to a MAD state (the purple shaded
region; 31 k � t � 65 k). In a MAD state, jets of high power, á ñ  L M c 2.9%j B

2 (panel (c)) and efficiency, há ñ  190% (panel (d)), severely suppress BH accretion to
á ñ  M M 1.5B % (panel (a); Section 3). At t  65 k, the system exits the MAD state, the jets become weaker, há ñ 15% , and the mass accretion rate higher,
á ñ M M 5B  % (the red shaded region; 69 k � t � 95 k). The jets sometimes completely shut off and fall apart (e.g., at t = 78 k and 96–102 k; Section 4) when the
normalized northern hemisphere BH magnetic flux vanishes, fN = 0 (the thin line in panel (b)), η drops (to 0.1%; panel (d)), and the reduced jet feedback allows
higher  M M 10B  % (panel (a)). However, even such weaker jets can suppress M similar to the MAD state, á ñ  M M 1.7B %, for extended periods of time if they
continuously reorient (the orange shaded region; 110 k � t � 130 k; Section 5 and Figure 4). In all panels, the horizontal dashed lines show time average values,
which are also labeled with callouts.
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4. A Twisted Interlude

In this section, we explore the large-scale stability and
propagation of the jets, and how they reach and impact the BH
feeding scales at rRB. Some jets can traverse vast distances,
sometimes larger than the galaxy itself (e.g., Cygnus A; Perley
et al. 1984), whereas others appear to perish within the galaxy (e.g.,
M87; Biretta et al. 1991). This involves a scale separation of ∼10
orders of magnitude from the BH to the outskirts of the galaxy.
Along the way, the jets survive in the face of many obstacles, each
of which can become a major dissipation-triggering event (e.g.,
internal, external, and/or recollimation shocks, MHD instabilities,
magnetic reconnection, etc.), where a significant fraction of the jet
energy can transform into radiation, and the jet can become locally
or globally disrupted. Indeed, magnetized jets are prone to current-
driven instabilities, with the kink instability being perhaps the most
destructive (Bateman 1978; Lyubarskij 1992; Begelman 1998;

Lyubarskii 1999; Eichler 1993; Narayan et al. 2009). The kink
instability acts on the jet core, dislodging it from its original
location and twisting it into a helical structure. In ambient media
with a flat density profile, ρ∝ r−α, where α< 2, the kink
instability is inevitable (Bromberg & Tchekhovskoy 2016;
hereafter, BT16): in such a medium, a jet with a constant opening
angle would displace progressively more and more gas as it
propagates out. The jet responds by becoming progressively more
collimated. As we will see below (Section 4.1), this makes it more
susceptible to the kink instability that can cause the jets to fall
apart.
To visualize the large-scale morphology and evolution of the

jets, we have created a 3D volume-rendered animation. We
present a sequence of key snapshots in Figure 2, taken at the
times indicated by the vertical lines in Figure 1. The jets are
launched at t= 24 k (Figure 1(c)), and by t; 28k they reach
the Bondi sphere and start interacting with the ambient medium

Figure 2. 3D volume renderings of density at different times show that as jets propagate out of the Bondi sphere, they become kink-unstable and globally fall apart.
The BH spin is pointing in the direction of jet propagation to the right in panel (a). An animation is available and on YouTube. The animation runs from t = 0 to
t = 1.4 × 105Rg/c. The real-time duration of the animation is 14 s. (a) The highly powered MAD jets (red) easily escape the Bondi sphere without obvious signs of
instability, except near the head. At the contact points (hotspots), at which the jets drill through the ambient gas, the shocked jet material spills sideways, creates
backflows, and forms the cocoons (yellow). The relativistic motion of the jets and cocoons shocks the ambient gas via bow shocks (blue). (b) As the jets propagate
farther out, this leaves enough time for the kink instability to grow, and it leads to helical bends near the hotspot. (c) The jet power decreases by ∼4, and the kink-
unstable regions move in closer to the BH. The decrease in power propagates through the jets faster than the cocoons can react, and the weakened jets get squeezed by
the cocoons. (d) The central engine shuts off, and the jets break apart globally. (e) Weakened jets wobble and lose focus: without consistent energy supply from the
jets, mildly magnetized cocoons become relics, which buoyantly rise outward. Meanwhile, the wobbling jets transiently form and fall apart, without an opportunity to
reach the Bondi sphere. (f) Intermittent and weaker jets form, but get deflected sideways, as the accretion disk tilt continuously changes. The inset image shows that
the jets develop extreme bends inside the Bondi radius.

(An animation of this figure is available.)

6

The Astrophysical Journal, 964:79 (20pp), 2024 March 20 Lalakos et al.

https://www.youtube.com/watch?v=RumlBxHk3WQ%26list=PLrqKzywvCPji5cufLwDzOgSMXcPLtE6T3%26ab_channel=AretaiosLalakos


(not shown in Figure 2). Figure 2(a) shows that by t= 58 k, the
high-power MAD jets (red) drill their way through the ambient
medium out to r; 4000Rg= 4RB. As the jets ram into the
ambient medium, they form strong twin bow shocks at the jet
heads. The shocks increase the internal energy at the heads,
which typically renders these regions observable as hotspots.
At the head, jet material spills sideways and flows back to
create the inner cocoon (orange), and the strong bow shock,
caused by the jet’s relativistic motion, heats up the ambient gas
to create the outer cocoon (blue). The jets are mostly straight,
apart from the bends in the outer half of the jets (r 2000Rg).
Figure 2(b) shows that at later times, t= 65 k, these bends
become more pronounced, e.g., one of them twists the jet into a
knot, as seen at r; 2000Rg in the left jet.

Soon after this, the MAD state comes to an end: by t= 71k, the
jet power drops by a factor of ∼4 (Figure 1(c)). Figure 2(c) shows
that the jets become more helical: the kink instability affects a
larger fraction of the jet length, with the first jet bend showing up
already at r 1000Rg. Figure 2(d) reveals that by t= 78 k, the jets
get globally destroyed: at this time, the power of the jets essentially
vanishes (Figure 1(c)) and they no longer focus their energy into
the twin cocoons. At later times, Figures 2(e)–(f) show that short-
lived jets still form close to the BH, but fall apart around, or even
inside, the Bondi radius, and starve the cocoons of energy. With
the energy supply via the jets mostly shut off, the mildly
magnetized cocoons become relics, with a combination of leftover
momentum and buoyancy, and occasional mergers with smaller
cavities inflated by the wobbling jets, driving them outward. At
large scales, although weakened, bow shocks are still present and
outrun the cocoons, while injecting energy and momentum into the
ambient gas.

4.1. Jet Stability Criterion

To quantitatively analyze the development of the kink mode
in the jets, we use Equations (3) and (9)–(11) to express the
ratio of total to RM energy fluxes:
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f
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( ) ( )

which gives the maximum Lorentz factor a fluid element attains
if all of its EM and thermal energy fluxes are converted into the
KE flux. To obtain Equation (13), we used the facts that
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where h is the nonrelativistic gas enthalpy per unit mass (i.e.,
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where the approximate equalities in Equations (14) and (16)10

are accurate at large distances from the BH (Chatterjee et al.

2019). Below, unless stated otherwise, we will use the right-
hand sides of Equations (13), (15), and (16) as expressions for
μ, h, and σ, respectively.
The jets consist of an inner core of cylindrical radius, Rc,

dominated by the poloidal comoving magnetic field comp-
onent, bp, and an outer region, dominated by the toroidal
comoving field component, btor (BT16). Here, q=R r sin cc
corresponds to the opening angle of the jet core, θc, at distance
r, and we measure both bp and btor in the fluid frame (see
Appendix A). The kink instability growth timescale for a local
fluid element is approximately the time it takes for an Alfvén
wave to travel around the circumference of the jet at the Alfvén
velocity:
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We define the kink instability growth timescale, as measured in
the lab frame:
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where we used the jet Lorentz factor, γ, to convert the timescale
from the fluid frame to the lab frame. The ratio, bp/btor, is the
magnetic winding, and R× bp/btor is the pitch, where

q=R r sin is the cylindrical radius of the jet location in
question. The factor, ηkink; 5–10, is the poorly constrained
prefactor that enters the kink timescale for the jet to become
considerably deformed (Mizuno et al. 2009, 2012; Bromberg
et al. 2019). The approximate equality in Equation (18)
evaluates the timescale at the edge of the jet core, where, by
definition, bp= btor, and the value of the pitch is simply Rc. The
kink instability develops in the fluid frame, and the available
time for its growth is the propagation time of the jet fluid from
the BH, moving at velocity v. In the lab frame, this dynamical
time is:

ò=
¢ t
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v
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v
, 19
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where we assume constant jet velocity, v, ignoring the initial
acceleration of the jet, and assume that the jet travels only in
the radial direction (not true in a bent jet). The ratio of the kink
to the dynamical timescale (Equations (18) and (19)) gives the
jet stability parameter:

h
p g

L =
R v

v r

2
. 20kink

c

A
( )

The jet is stable at Λ> 2 and unstable at Λ< 2 (BT16).
Calculating the radius of the jet core is a nontrivial task, since
the jet core can displace itself from the z-axis in a
nonaxisymmetric fashion. To compute Rc, we first evaluate
the solid angle subtended by the jet core, Ωc, which we identify
as satisfying both the μ> 3 and bp� btor conditions. We then
calculate the core opening angle using p qW = -2 1 cosc c( )
and obtain its cylindrical radius, q=R r sinc c. Without loss of
generality, we focus on one of the twin jets, the one pointing in
the direction of the BH spin, a .

10 We ignore the term b rbt in the approximate equality in (16), since
bt ≈ − b t = − B iui ≈ 0 asymptotically far from the BH (r  10Rg) outside of
current sheets (see Appendix A).

7

The Astrophysical Journal, 964:79 (20pp), 2024 March 20 Lalakos et al.



4.2. Jet Bends Set the Speed Limit

Figure 3(a1) shows a transverse projection of the jet proper
velocity, γv, at t= 58 k (the same time as in Figure 2(a)). Here,
we average γv along the line of sight (which is perpendicular to
the direction of BH spin, a ), and weigh it with the
magnetization, σ, to highlight the internal structure of the jet.
At this time, most of the jet is free of significant bends, except
toward the head, at r 2000Rg= 2RB. As the jet bends, its
proper velocity drops from γv; 3 (dark blue) to γv; 1.7
(green), which corresponds to γ; 2: the slower the jet, the
easier for it to make sharp turns. The jet maintains its
transrelativistic proper velocity until it reaches the head
(hotspot), splashes sideways and backward, and creates the
backflows (brown) at γv 1. Figure 3(a2) shows the jet after
the MAD state has ended, at t= 71 k (the same time as in
Figure 2(c)). By this time, the average jet power has decreased
by a factor of ∼4, compared to Figure 3(a1). Weaker jets are
less rigid, thus their interaction with the ambient medium can
bend them more easily. Indeed, the jet develops bends that are
much stronger and closer to the BH than in the MAD state.
These bends force most of the jet to become mildly relativistic,
γv� 1.7. Even tiny, visually imperceptible, bends can have
dramatic consequences for relativistic jets.

For relativistically magnetized jets, the consequences can
become particularly dire when the jets become superfast
magnetosonic, i.e., when they outrun their own fast magneto-
sonic waves, which for cold flows translates to a proper
velocity uF= γFvF≈ σ1/2 (Tchekhovskoy et al. 2010). If we
introduce the fast Mach number, MF= γv/uF≈ γv/σ1/2, we
can write the fast-wave Mach cone opening angle as

q
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where the first approximate equality applies when the jets are in
the highly superfast magnetosonic regime, MF? 1 and the
latter applies in the cold limit. Why do relativistic jets have a
hard time making turns? This is because in order for a jet to
navigate a turn smoothly, the jet must be able to anticipate that
the turn is coming. Here, θMach gives the jet’s “field-of-vision”
angle, i.e., the maximum angular deviation within which fast
waves can mediate the total pressure perturbations. Thus, the
jets cannot bend by more than the fast Mach cone opening
angle,
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or, equivalently, the jets cannot exceed the “speed limit,” umax:
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where the latter approximate equality applies in the cold limit.
The stronger the bend (larger θbend), the smaller the speed limit,
umax, which is the maximum allowed jet proper velocity, γv, for
which the jets avoid the development of internal shocks. If γv
exceeds umax, the jets develop oblique internal shocks that
discontinuously reduce the jet velocity. Bends are not the only
mechanism through which jets can develop shocks and
decelerate. For instance, if the jets conically expand into a
medium, they accelerate rapidly and soon become superfast

magnetosonic. At some point, the pressure of the hot cocoons
engulfing the jets starts to dominate over the jet internal
pressure and squeezes the jets. As a result, the jets develop
collimation shocks behind which the jet material slows down.
Magnetic stresses operating downstream of the shocks
introduce additional compression forces that cause the jets to
pinch and form narrow nozzles in which the kink instability can
grow more efficiently and dissipate energy (e.g.,
Lyubarsky 2009; BT16; Barniol Duran et al. 2017).

4.3. What Triggers Kink Instability in Our Jets?

Figure 3(b) shows the radial profiles of proper, γv (magenta),
and Alvén, vA (green), velocities, which we have angle-
averaged over the jet core of radius Rc (shown in gold; see
Section 4.1 for a definition). For comparison, we also show the
radius of the jet, Rj (dark red). Using Equation (20), we can
now compute the stability parameter, Λ (blue): here, the line
thickness indicates the uncertainty range of ηkink= 5–10 in the
definition of the stability parameter. That Λ 2 at r 1500Rg

in Figure 3(b1) implies that according to the stability criterion,
the jet is expected to be stable: Figure 3(a1) shows that at these
distances, the jet appears to be mostly straight. At larger radii,
however, we have Λ 2, suggesting an instability: consistent
with this expectation, the jet develops bends at r 1500Rg. At
the later time, Figure 3(b2) shows that Λ 2 throughout most
of the jet, already at r 500Rg, indicating that according to the
stability criterion, we expect that most of the jet is susceptible
to the kink instability. Figure 3(a2) shows multiple strong
bends throughout the lengths of the jet. We note that strictly
speaking, Equation (20) is only valid for small perturbations
(i.e., in the limit of small jet bends) and is not applicable once
the bends become extreme (see Section 6).
Figure 3(b1) shows that in the stable region, at r 1500Rg,

the jet core is relativistic, γv; 3, with an average radius of
Rc; 20Rg. The multiple dips in γv correspond to recollimation
or oblique shocks in the jet, at r/Rg; 800, 1300, and 1500. At
these locations, the velocity drops to γv; 2, while the jet and
core radii dip; Figure 3(a1) shows that the jet tends to develop
bends at the same locations. At r 2000Rg, the jet displays its
largest bend: at the beginning of the bend, the jet velocity dips
to γv; 1.5 and the core radius dips to Rc 10Rg. As the jet
bend proceeds, the core radius gradually increases to
Rc= 50Rg, likely reflecting the dissipation of the toroidal field;
the velocity also recovers and levels off at γv 2. Neither the
jet radius Rj, which remains ∼3–4 times wider than the core,
nor the Alfvén speed, which remains roughly constant at
vA/c∼ 0.5–0.7, appear to be affected by the bend.
At the later time, Figure 3(b2) shows that the jet core moves

at a transrelativistic speed, γv 2, and both Rc and Λ show
multiple dips, likely associated with oblique shocks (e.g., at
r/Rg; 400 and 600), at which the stability parameter dips
down to an unstable level, Λ< 2, indicating the presence of the
instability. Figure 3(a2) shows that the jet disrupts at r= 800Rg

and the velocity decreases to γv 1. At the same time, both Rc

and Rj spike due to the =r constant cross section slicing the
jets at an angle and making jet features appear wider. Even at
such high resolutions as ours, the simulation resolves the
transverse extent of the jet core (∼30Rg) out to r; 1500Rg by
five cells. The simulation resolves the transverse extent of the
jet (∼100Rg) out to r; 5000Rg by five cells, although at such
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large distances, it might lose some details of its internal
structure.

4.4. Energy Partition and Dissipation

Figures 3(c)–(d) show radial profiles of quantities, over the
entire jet cross section, which we define as the relativistic

region, μ> 3, to avoid the contamination caused by the mildly
magnetized cocoon and weakly magnetized ambient gas. (This
is in contrast to Figure 3(b) that considered the averages over
the jet core.)
Figure 3(c1) shows various components of the surface-

integrated jet energy flux, essentially the power. We normalize

Figure 3. The kink instability disrupts the jets as their power drops fourfold upon the exit out of the MAD state at t ≈ 65 k. (a) Transverse projection of σ-weighted
proper velocity, γv, reveals large-scale jet bends, telltale signs of the kink instability. (b) Whereas at the earlier time (t = 58 k; panels (a1) and (b1)), only the outer jet,
r  2000Rg, shows bends and satisfies the kink instability criterion, Λ  2, at the later time (t = 71 k; panels (a2) and (b2)), most of the jet, r  800Rg, shows bends
and satisfies the criterion. The jet bends cause the core average proper jet velocity γv (magenta) to significantly decrease from γv ; 3 (panel (b1)) to γv  2
(panel (b2)) and result in a comparable decrease in Λ (Equation (20)). Although the jet radius, Rj (dark red), also decreases, this noticeably affects neither the core
radius, Rc (gold), nor the core average Alfvén velocity, vA (green). (c) Surface-integrated fluxes, or power, through the jet (μ > 3) normalized to the time average total
MAD power, á ñEMAD . The normalized total jet power, ETOT (black), remains approximately constant in stable jet regions. The KE component, EKE (light blue),
gradually increases at the expense of the EM component, EEM (purple), which dominates the total energy power until the instability sets in at r  2000Rg in panel (c1)
and r  800Rg in panel (c2). Panels (a1) and (a2) show that in the unstable regions, the jet develops one or more bends. Whereas just before each substantial bend, the
thermal component (orange–red) grows up to equipartition with the EM component (purple), ~ E ETH EM, after each bend, all the power components drop, followed
by a gradual increase until the next bend (e.g., for the bends at r/Rg ; 800, 1300, 2000, 2500, and 3000 in panel (c2)): we attribute this to the “accordion” effect—the
jet bends allow the jets to elongate and rarefy longitudinally. The RM power ERM (orange) remains subdominant to the rest of the components. (d) The jet average
proper velocity, γv (light blue; obtained via g º  E EKE RM), increases as the jets accelerate at the expense of the decreasing jet average magnetization, s º  E EEM KE

(purple), before decelerating at the jet bends. The jet average enthalpy, º  h E ETH KE (orange–red), increases at the jet bends due to energy dissipation. The
m º  E ETOT RM parameter (black) decreases due to the jet losing its energy to the ambient medium (via ambient gas displacements and shocks).
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all of the power components by the total power flowing through
the entire jet cross section (μ> 3) at r= 8Rg, averaged over the
duration of the MAD state, º á = ñ E E r R8 ;MAD TOT g MAD( )
here, 〈...〉MAD denotes the time average over the MAD state,11

which we highlighted in purple in Figure 1. The total jet power,
ETOT (the black line in Figure 3(c1)), remains approximately
constant at r 2000Rg and drops slightly thereafter, just as the
jet starts to bend, as seen in Figure 3(a1). The jet EM power,
EEM (purple), dominates the jet power at r 2000Rg, whereas
the thermal component of the power, ETH (orange–red),
steadily increases until, at r∼ 2000Rg, it reaches equipartition
with EEM, a telltale sign of energy dissipation (BT16). The
increase in ETH just as the jet starts to bend most likely comes
from the dissipation of EM and KE into heat due to the kink,
mixing instabilities, and/or shocks caused by the bend (see
Section 4.2).12 The KE power component, EKE (light blue),
steeply rises at r 100Rg, while the RM power component
ERM (orange) is subdominant compared to the other
components.

At r 2000Rg, EKE remains approximately constant,
because the jet becomes cylindrical (due to external collimation
by the constant-density ambient medium). However, once the
jet becomes unstable to the kink instability and develops strong
bends, EKE drops. At the later time, t= 71 k, Figure 3(c2)
shows that ETOT steeply drops at r; 800Rg, right where the jet
makes a sharp 90° turn, as seen in the projection on
Figure 3(a2). In fact, all of the power components experience
similarly sharp drops, since we are only accounting for the
radial component of the fluxes, which vanishes. At the location
of such drops, which correspond to strong bends, the jet is
disrupted and the energy rate does not recover, meaning it is
lost. This is anticipated since: (i) when the jets fall apart, they
can mix with the ambient medium, lower the specific energy,
and so they will not be picked out by our jet criterion μ� 3;
and (ii) the jet bend is spending energy on displacing the
surrounding gas.

In Figure 3(d1) we plot the jet area averaged radial profiles
of the μ parameter (black), the magnetization, σ (purple), the
proper velocity, γv (light blue), and the gas specific enthalpy, h
(orange–red). To compute the jet area averaged values, we
expressed them through the ratios of jet power components
(i.e., using #E in place of f# in the definitions (13)–(16)).
Figure 3(d1) shows that the jet accelerates to relativistic
velocities, γv; 2 at r 100Rg and γ; 3 at r 1000Rg. At
r 2000Rg, the jet is still magnetized, σ 2, the proper
velocity remains (on average) relativistic, γv 3, and the
enthalpy, h, slowly increases, similar to ETH. Once the jet
becomes unstable and develops the bends, the magnetic energy
dissipates into heat, until σ h, i.e., until the magnetic energy
comes into equipartition with the thermal energy. The KE is
also reduced, with the jet decelerating down to the transrela-
tivistic value γv; 1.7, as the jet needs to slow down in order to
be able to navigate the jet bends (see Section 4.2). In
Figure 3(d2), we see a similar behavior as in Figure 3(d1),
but with the kink instability happening much closer to the BH,

already at r= 800Rg. Both the magnetization and proper
velocity drop, σ h and γv; 1.7, and the enthalpy h increases.

5. A Turbulent Epilogue

Figure 4(a) shows 3D volume-rendered images of the low-
density (purple) jets and the high-density accretion flow
(orange). Figure 4(a1) shows the system at t= 50 k when it
is in the MAD state: the jets are powerful and mostly bend-free,
and the accretion flow near the BH shows a disklike structure.
Figure 4(a2) shows the system after it has exited the MAD
state, where the jet power has decreased by a factor ∼4. The
weakened jets appear to have bends originating from wobbles
near their launching region. Figure 4(a3) shows jets with
extreme bends, misaligned from the BH spin (z-)axis. The
accretion flow is also significantly misaligned, compared to
Figures 4(a1) and (a2). This shows that the evolution, stability,
and destruction of the jets are correlated with the underlying
state of the accretion flow near the launching region.
To understand the evolution of the system, we calculate the

density-weighted specific angular momentum,

l =r ×v

= (lx, ly, lz), at a given r. In particular, we compute the
magnitude of
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The angular momentum computed this way is appropriate in
flat spacetime, r 10Rg. We normalize the resulting specific
angular momentum with the specific Keplerian angular
momentum lK around a Kerr BH with spin a (Shapiro &
Teukolsky 1986):
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Figure 4(b) shows the magnitude of l/lK on a spacetime
diagram. The three vertical black lines indicate the times of the
3D panels in Figure 4(a). We choose l/lK; 0.3 as a fiducial
value to separate the accretion disk from the rest of the gas,
which we overplot as a green contour in Figure 4(b). Although
initially the gas had zero angular momentum, within several Rg

from the BH the frame dragging (Lense & Thirring 1918) due
to the BH high spin (a= 0.94), combined with large-scale
magnetic fields, force the accretion flow to partially corotate
with the BH: as a result, the flow develops an azimuthal
angular momentum component (see also R21). Additionally,
the MRI excites disk turbulence and transports the angular
momentum outward, so the disk can grow in size. Indeed, by
t; 50 k, the accretion disk size has grown up to 50Rg.
Figure 4(a1) shows that once formed, the jet travels along the

BH spin axis (perpendicular to the x− y disk plane, i.e., along the
z-direction). Figure 4(c) shows the tilt and precession angles of
both the disk and one jet, at r= 50Rg (the dashed black line in
Figure 4(b)). We calculate the disk tilt d (orange line) and
precession d (orange circles) angles using = - l lcos zd

1 ( ) and
= +- l l lcos y x yd

1 2 2 1 2 [ ( ) ], respectively. To compute the jet tilt
and precession angles, we first find the Cartesian coordinates of
the jet core centroid, at every radius r, using the magnetization-
weighted average of xj, yj, and zj in regions where μ> 3 and
bp� btor. The jet tilt is then given by = - z rcosj

1
j j ( ) (purple)

and the precession angle by = +- y x ycosj
1

j j
2

j
2 1 2 [ ( ) ]

11 Because most of the EM energy flux out of the BH flows through the highly
magnetized jets, we have » á ñE L0.5MAD j MAD, where the factor of 0.5 is
needed because Lj is the EM power of both jets.
12 At much smaller distances, close to the jet base, r  100Rg, highly
magnetized inner jet regions can heat up due to the numerical truncation error
that affects the smallest energy scale—in this case, the internal energy.
However, these effects tend to operate when the internal energy is very
small, ´ E Efew 0.01TH TOT .
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(purple crosses), where = + +r x y zj
2

j
2

j
2

j
2. Figure 4(c) shows

that during the MAD state (purple shaded) the tilt angle is small,
p 16d  , at t 65 k: in other words, the angular momentum

vector is nearly parallel to the BH spin. For this reason, the disk

precession angle, d , is ill-defined and we lower its opacity to
minimize clutter. The jet tilt is, on average, similar to the disk tilt,
with p 16j  . The jet precession angle shows high-amplitude
variability, but on average clusters around p 2j  . This means

Figure 4. The morphology, strength, and directions of the angular momentum of the accretion flow during the MAD, BAD, and RAD states. (a) We show three distinct 3D
volume-rendered images of density. Panel (a1) captures the system during the MAD state, at t= 50K, where the jets (purple) follow the direction of the BH’s spin, and the
accretion disk (orange) lies perpendicular to the jets. Panel (a2) captures the system in the BAD state, at t= 71 k, with weakened jets showing strong bends near the BH and
getting significantly kinked. Panel (a3) captures the system in the RAD state, at t= 135 k. The jets are on average 1 order of magnitude weaker and misaligned from the spin
direction. The disk is also significantly tilted, at about π/2, and precessing, causing significant bends and wobbles in the jets. (b)We plot the density-weighted specific angular
momentum normalized to the local Keplerian value in a spacetime diagram. Angular momentum builds around the BH promptly after freefall (tff ; 22k) with an average disk
of size 10− 50Rg, chosen for l  0.3lK. Between, 65 k� t� 100k, the accreted angular momentum forms intermittent and tilted disks with l � 0.3lK, which results in
intermittent and wobbly jets. After t ; 100k, the angular momentum starts building up, this time reaching larger radii ;200Rg; however, near the BH, the intermittent jets
push most of the gas away while oscillating wildly, stopping the angular momentum from coherently adding up and stabilizing the jets. (c) We show the tilt and precession
angles of the disk and north jet, measured at a distance of r = 50Rg. During the MAD state (purple shaded), both the tilt of the disk p 16d  (orange) and jet p 16j 
(purple), as they are aligned with the BH spin. The disk precession angle (orange circles), d , is ill-defined as the disk tilts about the z-axis, while the jet precession angle
(purple crosses), p 2j  , which means it propagates at a preferential direction. Once we transition from the MAD to the BAD state (red shaded), at t� 65 k, the disk's
angular momentum has decreased, while its tilt increases, reaching up to π/2, and rapidly precesses. The jet tries to follow and forms large bends (see Figure 4(a2)) that lead
to its destruction. Between 95 k t 110 k, the disk’s tilt goes from π/2 to π, flipping to retrograde, while the jet is disrupted. During the RAD state, at t� 110 k, the disk
flips again, which coincides with the flipping of the magnetic flux on the northern hemisphere, in Figure 1(b). After t 105 k, we show the tilt and precession of the
counterjet, as it attempts to follow the rocking motion of the disk.
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that the jet on average has a preferred direction that is distinctly
different than the rotational axis of the BH: indeed, Figure 4
shows that both jets are skewed sideways, toward the y-axis.

At 50 k t 65 k, the radial extent of the disk shrinks down
to ∼10Rg, and by the end, it disappears, as the MAD state ends.
This hardly seems like a coincidence, and we suggest that the
system exits the MAD state when the accretion flow loses the
rotational support. But what can cause the loss of angular
momentum in the disk? It is possible that once launched, the
jets perturb the infalling gas and induce turbulence and
vorticity, with the angular momentum, on average, misaligned
with the BH spin vector. Once the misaligned angular
momentum reaches the disk, it can cancel out the disk’s
coherent angular momentum, which was relatively low, to
begin with, due to the limited disk radial extent (Rdisk;
50Rg= RB= 1000Rg). Moreover, strongly magnetized disks
can launch winds that carry the angular momentum outward
(Blandford & Payne 1982) and can further reduce the disk’s
angular momentum. Whatever the case, the disk of small size,
10Rg, cannot support a jet with large-scale winds. The jet is
left exposed to violent interactions with the ambient medium,
for which the winds would normally act as a cushion.
Additionally, the magnetic flux on the BH, once held by the
disk, leaks out (Figure 1(b)) and the power of the jet decreases
(Figure 1(c)), making the jets more easily bendable.
From here on, the system's behavior changes drastically: at

t 65 k, our quasi-steady MAD state transitions to a state
dominated by the accretion of gas with a continuously varying
direction of the angular momentum vector. At 69 k t 95 k,
the disk tilt increases and the disk starts precessing, while the
angular momentum magnitude decreases. The flow with such
low angular momentum is Barely A Disk, which we will refer
to as the BAD state. The weakened and slower jet is now more
affected by the presence of the ambient gas and, more
specifically, the precessing and tilting disk starts twisting the
jet into a helix: this is similar to when one shakes the end of a
rope in a circular fashion, creating circular waves that are
transmitted along the rope. Around t= 78 k, the jets transiently
fall apart (due to the shutoff of jet power at the BH;
Figure 1(c)). Figure 4(b) shows that subsequently, a short-
lived disk of size ∼30Rg forms at 78 k t 85 k. Figure 1(c)
shows that the jets remain active until t; 95 k.

At 95 k� t� 110 k, the disk gradually flips upside down
and changes its sense of rotation from prograde ( ~ 0d ,
rotating in the same sense as the BH) to retrograde ( p~d ,
rotating in the opposite sense to the BH).13 This causes the jets
to weaken, bend dramatically, and disrupt. We will refer to this
state as the Rocking Accretion Disk (RAD), where the
accretion of gas with highly tilted angular momentum is
capable of flipping the disk upside down. We highlight a
specific part of the RAD state, during 110 k� t� 130 k, where
the disk gradually flips back to the prograde configuration, but
stops at p 2d . Interestingly, when measured at r= 15Rg

(not shown here), the tilt decreases all the way down to
p 4d . The absolute dimensionless magnetic flux, fBH,

remains approximately constant during this transformation. In
contrast, the magnetic flux through the northern hemisphere,
fN, smoothly changes sign in phase with the disk tilt angle
changes: this is precisely the behavior we would expect if the
entire disk–jet system underwent a flip. During this stage of the

simulation, we witness a large angular momentum inflow
(Figure 4(b)), leading to an increase in the disk size to ∼200Rg.
The formation of an accretion disk, which grows in size,
deprives the BH of the gas and suppresses the BH accretion
rate. Although 15 times less powerful than in the MAD state,
the weaker, intermittent, and continuously reorienting jets fail
to pierce through the infalling gas and are forced to bend
around it: as seen in Figure 4(a3), they efficiently couple their
energy to the infalling gas and additionally reduce BH
accretion. This results in BH mass accretion rate suppression
to ~ M M 1.7%B , similar to the MAD state.

6. External versus Internal Kink

Figure 5 shows a time series of jet snapshots, illustrating the
propagation of the jets and the growth of the kink instability
during the early time in our simulation, in the MAD state
(31 k� t� 65 k): the color shows the proper velocity, γv,
projected along the y- and x-directions14 in the left and right
columns, respectively. We identify two early-time features, E1
and E2, which propagate along the jet, and we study how they
grow due to the kink instability. We pick these regions by (i)
visually searching for significant jet bends, or wiggles, and/or
(ii) identifying jet regions with low values of the stability
parameter, Λ 2 (e.g., in an animation of Figure 3(b)). In both
projections, the jet exhibits multiple wiggles along its length,
which originate near the jet launching region and propagate
out. Such wiggles can emerge due to the stochastic nature of
BH accretion and wind–jet interactions (see, e.g., Figure 4(c)).
Both the E1 and E2 features start out as small-scale wiggles
and propagate out to r; 1500Rg. The jet remains mostly
straight and maintains a relativistic velocity, 〈γv〉; 3. Such
powerful jets as this one, in the MAD state, can accelerate to
and sustain relativistic velocities (γv few): the relativistic
motion stabilizes the jets against kink instability due to
relativistic time dilation (see Equation (18), which has the
Lorentz factor in the numerator). However, as the jets
propagate out to larger distances in the flat density distribution,
they become increasingly unstable (Section 4.1). Indeed, after
reaching r; 1500Rg, the jets develop unstable regions, Λ 2
(Figure 3): this implies that the kink instability growth
timescale becomes comparable to the dynamical time of the
jet, and the jet bends grow in amplitude. Indeed, both the E1
and E2 features develop stronger jet bends that force the jet to
slow down to 〈γv〉; 1.7 (see Equation (22)). These bends
continue to grow both in amplitude and spatial scale and end up
essentially breaking up the jet into two segments, as seen in
Figure 5(d) for feature E1 and in Figure 5(f) for feature E2. To
calculate the propagation speed of the E1 and E2 features, we
fit straight lines through them, as we show in Figure 5. Both
features propagate along the jet at v/c; 0.82− 0.85, which is
comparable to, but slightly lower than, the jet velocity.
We have just discussed how in the MAD state the jets

developed unstable features: jet bends that propagate outward,
while slowly growing in amplitude. However, the jets managed
to maintain their outward motion most of the way to the jet
head. We also saw in Figures 2 and 3 that the jets globally
disintegrated shortly after the system exited the MAD state at
t; 65 k. Can we devise a criterion to predict when such

13 After the disk changes its orientation, we show the tilt and precession of the
counterjet.

14 We accomplish such projections by working in the original 90° tilted frame
where the jets propagate in the x-direction. The projections are then in the θ-
and j-directions, respectively.
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catastrophic jet destruction is bound to happen? BT16 derived a
simple analytic approximation for a global jet stability
parameter that evaluates the ability of the kink mode to grow
on the jet periphery, leading to a global deformation of the jet
body. For a jet of power, Lj, which moves through an ambient
medium of constant density, ρa, at a Lorentz factor,
g = - v c1 1 2 2 , the stability parameter at the jet head
distance, r= rh, is:

r g
L µ ´

L

r c

v

v
, 26h

j

a h
2 2 3

1 6

A
⎜ ⎟
⎛

⎝

⎞

⎠
( )

where for simplicity we have omitted constant prefactors.
Can Equation (26) predict the global jet disintegration we

observe in our simulations? Upon exiting the MAD state and
turning BAD, at t= 69 k, the jet power drops fourfold

(Figure 1(c)). At the same time, the jet Lorentz factor decreases
from 〈γv〉; 3 to 〈γv〉; 1.7, but vA remains roughly unchanged
(compare Figures 3(b1) and (b2)). The distance to the jet head,
rh, does not change significantly, because the drop in power
occurs over a short timescale (Δt∼ 5 k) and leaves the jet head
little time to advance (compare Figures 2(b) and (c)). As a
result, the stability parameter drops by an order unity factor,
ΛMAD/ΛBAD; 1.1.
Why does the stability criterion, Equation (26), not capture

the global jet instability we observe in the simulation? Figure 6
shows a time series of jet images at a later time, 68 k� t�
70.5 k, after the end of the MAD state and right up until the
time when the jet becomes strongly kinked and globally
unstable, a precursor to its global destruction. Figures 6(a)–(c)
show a relativistic jet (yellow), 〈γv〉; 3, which eventually
slows down to transrelativistic speed (orange), 〈γv〉; 1.7, in

Figure 5. Early-time MAD jet exhibits multiple small-amplitude bends and a major bend located at r ; 1500Rg. An animation of this figure is available and on
YouTube. The animation runs from t = 5.00 × 104Rg/c to t = 8.00 × 104Rg/c. The real-time duration of the animation is 29 s. The left and right columns show the
jet’s proper velocity, γv, projected along the y- and x-directions, respectively. We fit a straight line through features along the jet, which show wiggles (E1, E2), and
which we follow at different times to observe their growth. The slope of the white dashed line gives the propagation speed of the wiggles. For both the E1 and E2
features, the velocity is approximately v/c ; 0.82–0.85. The wiggles, which can act as a seed for the kink instability, originate from the jet tilting and precessing about
the BH spin. However, the fluid velocity is relativistic, γv ; 3, and the jet fluid does not have enough time to become kink-unstable, not until it reaches the distance of
r = 1500Rg, where it becomes globally unstable.

(An animation of this figure is available.)
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Figures 6(d)–(f). The dark purple regions are locations where
〈γv〉 1 and where the jet is getting disrupted. We identify
three bend features (L1, L2, and L3) that grow in time. The
feature L1 is one of the last features to be ejected during the
MAD state. In Figures 6(a1) and (a2), the jet is mostly straight,
apart from the large bend at r; 2000Rg: this is the bend
associated with the L1 feature, and it grows as the feature
approaches the jet head. The propagation speed of L1 is
vL1; 0.75c, comparable to what we found for unstable regions
at earlier times, as seen in Figure 5. The L2 feature was ejected
after the system exited the MAD state and after the jets
weakened and became unstable: this enables the L2 bend to
grow, as seen in Figure 6(b2). Figures 6(a)–(d) show that the
L2 feature propagates out and grows in amplitude with a

propagation speed of vL2; 0.6c, which is lower than that of the
L1 feature. Ejected at an even later time, the L3 feature starts
out as a bend of high amplitude already at r 500Rg, in
Figure 6(c). Its propagation speed, vL3; 0.35c, is the lowest
among all E and L features and is, therefore, the most unstable.
Indeed, Figure 6 shows that the L3 feature grows to become a
90° jet bend, at r; 800Rg, which eventually globally disrupts
the jet.
Summing up, we are witnessing a runaway growth of the

kink instability that generates large-scale, strong jet bends. This
implies that Equation (26), for some reason, does not apply to
our weakened jets in the BAD state (the red shaded region,
69 k� t� 95 k, in Figure 1). Namely, once the system enters
this state, the linear stability analysis (Equation (26))

Figure 6. The BAD jet gets progressively disrupted, with small bends fully developing into large bends. Similar to Figure 5, the color shows the proper velocity, γv,
and the two columns are the projections along the y- and x-directions, respectively. This jet has an average power four times smaller than the average power during the
MAD state. The drop in power is also associated with the tilt of the disk slowly increasing, as shown in Figure 4(c). The power drop leads to jets that cannot efficiently
accelerate to previously relativistic velocities, and as the jets follow the tilt of the disk, they run into the ambient medium, shock, and decelerate even more (see
Figure 3(b2)). An external kink starts affecting the jet bends. As the bends get progressively larger, the fluid can become internally kink-unstable, leading to the
“breaking” of the jet. We fit a straight line through regions that develop large bends, L1, L2, and L3, and we estimate the wiggle propagation velocity from the slope.
The L1 spot follows a bend developed during the end of the MAD state, when the fluid was mostly stable to the kink. At r ; 2000Rg, a bend develops and the wiggle
grows without significantly bending the jet, until the jet fluid smashes at the head. The estimated propagation speed is slightly smaller than the MAD equivalent, at
v ; 0.75c. The L2 spot propagates slower than L1, at v ; 0.6c, and the wiggle amplitude is noticeably larger. Finally, L3 is launched well into the weaker jet phase,
and the jet bend becomes nonlinear until the full jet disruption at r ; 800Rg. The L3 wiggle propagates at v ; 0.3c, significantly slower than either L1 or L2, due to the
fact that the large-amplitude bends launched near the BH interact with more ambient gas, which slows it down even more.
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underpredicts the growth of the global kink. What is missing
from the linear stability criterion, Equation (26), are the
nonlinear effects that combine to cause a catastrophic runaway
of the instability. Namely, the fluctuations in the disk tilt
(Figure 4(c)) cause the jets to wobble around the BH axis and
propagate in directions offset from the jet predrilled path. This
causes the jets to plow up the gas along new paths, through the
shocked cocoon material. Because the cocoon was generated at
earlier times, when the jets were four times more powerful, the
weakened jets have difficulty displacing the material and get
deflected: this causes the jets to bend and slow down
(Equation (22) and Figures 3(a1) and (b1)). The slower
velocity accelerates the kink (and bend) growth and further
slows down the jet propagation. As a result, such interactions
lead to a runaway slowdown not only of the jet fluid, but also
of the jet bends (Figure 6). In fact, the global kink instability
we are witnessing here grows in the frame of the bends, which
move slower than the jet fluid and hence become more
susceptible to the kink instability. This is an example of a
nonlinear evolution of an external kink instability, which
deforms the jet interface with the ambient medium. This is
different than the internal kink instability, which works on
disrupting the jet core, but leaves the jet–ambient medium
interface intact. The two flavors of the kink instability can
coexist: for instance, the growth of the external kink instability
can trigger the internal kink instability.

To study the nonlinear evolution of the global, external kink
instability in a more systematic way, we present in Figure 7 a
spacetime diagram, where the color shows the logarithm of the
dimensionless jet curvature,

k k= =
s

r r
d

dr
, 27˜ ( )

where κ is the dimensional jet curvature and s is a unit vector
parallel to the jet. High values of the dimensionless curvature
(yellow) indicate strong bends, whereas low values (black)
correspond to mostly straight jets. We see that even at small
distances, r 1000Rg, the jet develops multiple bends along its
length, due to the interactions with the ambient medium and disk
winds. In Figure 7, we plot the tracks of all features we identified
in Figures 5–6: the slopes of the tracks give the propagation
speeds of the features. During the MAD state, t 65 k, the jet on
average is mostly straight, and the bends travel at nearly the
same speed as the jet fluid. If we follow the E1 and E2 features,
they develop significant (orange) bends, at r; 1500Rg, where
the dimensionless curvature reaches klog 1.510( ˜ )  .
Farther away, at r 2000Rg, the jets get even more twisted:

they become globally unstable, break apart, and energize the
cocoon. Inflated by the jets, the cocoon expands at a
nonrelativistic speed of v; 0.05c, as revealed by the slope of

Figure 7. The spacetime diagram shows that the normalized jet curvature, k̃, grows due to the kink instability as it advects along the jet. We overplot the tracks of the
jet features in the MAD state (E1, E2) and BAD state (L1, L2, L3), also seen in Figures 5 and 6. The slopes of these tracks give us the propagation speeds of the
features. During the MAD state, the large-scale bends tend to develop at r ; 1500Rg and propagate to larger scales at roughly the speed of the jet fluid, v ∼ 0.8c, as the
jet powers the cocoon. The cocoon outer boundary (the rightmost extent of the boundary of the orange region) expands at v ; 0.05c, i.e., much slower than the jet
features. After the flow exits the MAD state (t = 65 k) and enters the BAD state (t = 69 k), the jet power drops and strong jet bends form at much smaller distances,
r/Rg ; 500–1000, and propagate at much slower speeds, v ∼ 0.3c (e.g., for feature L3). Eventually, the jet is globally destroyed, at t ; 78 k, as its power vanishes
(Figure 1(c)).
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the jet–cocoon boundary, which is seen as the orange–black
transition on the right of Figure 7. In fact, Figure 7 reveals that
the entire bright orange region of the strongest jet bends shifts
in time toward larger radii. This suggests that the proximity to
the cocoon exacerbates jet bends: cocoon convective motions
can displace and bend the jets sideways. Indeed, one can
visually identify such convective cocoon motions in the
animation of Figure 2 (see the figure caption for a link).
Consistent with this picture, once the cocoon expands out to
larger radii, the jets manage to avoid significant bends out to
larger radii as well: the radius beyond which the jets start to
show significant bends slowly increases from r; 1500Rg at
t= 50 k to r; 3000Rg at t; 68 k, just before the MAD state
ends and the jets become globally unstable.

Visually following the slope of the “late-time” track of
feature L1 in Figure 7, we estimate the propagation speed of jet
bends prior to disruption, vL1; 0.75 c, which is consistent with
the best-fit values in Figure 5. However, once the MAD state
comes to an end, at t; 65 k, the jet power drops. This causes
each subsequent feature to travel at a slower speed, as indicated
by the steepening of the slopes, decreasing to vL2; 0.6c and
eventually to vL3; 0.35c. This is consistent with the feature
propagation speeds we measured in Figure 6. At t 70 k, the
jet develops extreme bends and shortens to r 2000Rg, before
globally disrupting at t; 78 k.

7. Discussion and Conclusions

We study large-scale jet propagation and survival in global
3D GRMHD simulations of weakly magnetized, zero-angular-
momentum gas accretion onto rapidly spinning BHs, a= 0.94.
The gas accretes from the Bondi to the event horizon radius,
traversing the largest scale separation to date, RB= 103Rg, in a
single 3D GRMHD simulation. Over time, the gas drags in
from the ambient medium large-scale vertical magnetic flux,
which readily accumulates on the BH and launches powerful
relativistic collimated jets.

Although initially our accretion flow started out without any
angular momentum, as the accretion flow goes MAD, it forms
an accretion disk of size ∼50Rg (see also R21; K23). Thus, no
pre-existing accretion disk is required to form jets and collimate
them via winds, as long as the BH is rapidly spinning and has
accumulated dynamically important large-scale poloidal magn-
etic flux on its event horizon. Interestingly, the MAD state
achieved in our simulation is long-lived: its duration of
Δt= 34 k is three times as long as the total simulation duration
in R21 and about half as long as the simulation duration
in K23, where in both cases the system only transiently enters
the MAD state. Although our MAD state lasts comparatively
longer, it still has a finite duration: the BH eventually loses the
large-scale magnetic flux and the jets fall apart. The MAD state
ends in a fashion similar to that observed by R21 and K23.
Afterward, once our jets transiently reappear, they do not reach
beyond the Bondi radius.

To explore the origin of the differences between different
groups, we repeated our simulation at a reduced scale
separation, RB/Rg= 102, to match that of R21 (see
Appendix C). We carried out the simulation for t; 110 k, a
factor of ∼5 longer than R21. The system turns MAD
(fBH 50) at 70 k t 100 k, which suggests that the MAD
state can establish itself, but it might take longer simulation
durations in order to witness it. Why do MADs in the
simulations of K23 survive for a rather short duration? One

possibility is that our simulations contain more magnetic flux
closer to the BH: although both simulations start with β= 100
gas, we use a constant vertical field, =B constantz , which
results in the enclosed poloidal magnetic flux scaling as
Φ∝ Bzr

2∝ r2. In contrast, K23 use a parabolic-like field,
Bz∝ r−1, whose flux has a flatter radial profile, Φ∝ Bzr

2∝ r1.
Thus, out to the same distance, our simulations contain a larger
flux reservoir. It is possible that this allows our simulations to
transport the magnetic flux to the BH at a higher rate than the
BH loses it due to the magnetic flux eruptions. Additionally,
they have an adiabatic index Γ= 4/3, which describes
radiation-dominated gas. Because this makes the gas more
compressible, this can reduce the disk scale height and make it
harder for the disk to hold on to the magnetic flux on the BH.
Apart from the early-time transient phase, our MAD jets

carry the maximum power and extract BH rotational energy at
high efficiency, η; 190%. The jets reach distances of
r 4000Rg, or 3.5 orders of magnitude in scale separation.
In the inner ∼50% of the jet length, r 1500Rg, the jets remain
mostly bend-free, but they exhibit variability in their tilt and
precession angles (Figure 4(c)). The MAD eruptions, along
with disk turbulence, give rise to jet wobbles that can propagate
outward (see the animation of Figure 5). In Figure 3, during the
MAD state, the jets exhibit direction/directional variability on
the order of Δt; 104Rg/c; 10 yr, scaled to M87. We offer
this as an observational alternative to Lense & Thirring (1918)
precession of a misaligned disk–jet system (Cui et al. 2023).
Farther out, the jets develop twists and bends, as they become
kink-unstable. Magnetic energy dissipates into thermal energy,
a process that can power high-energy teraelectronvolt flares
(Giannios et al. 2009; Schoeffler et al. 2023). The jet
magnetization drops until the magnetic fields reach equiparti-
tion with the gas thermal energy. Multiple locations along the
jets show signs of recollimation and/or oblique shocks,
associated with small-scale bends of the jets. To interpret this
association, recall that at the recollimation point, the fluid
pinches and decelerates, which leads to a drop in the local
stability parameter, Equation (26), and explains how margin-
ally stable jets become kink-unstable and twist as a result.
The fact that the jets can reach r; 1500Rg without getting

globally disrupted is not trivial. R21 find that their jets become
kink-unstable at r; 200–400Rg. Using Equation (26) to
extrapolate to larger Bondi radii and assuming a density profile
of ρ∝ r−1 within the Bondi radius, they predict that for
RB 800Rg, jets should become kink-unstable. Because
observations show many jets survive out to much greater
distances, this would suggest that such jets cannot be powered
by low-angular-momentum accretion. Surprisingly, our jets
make it out to r; 1500Rg without significant global bends.
One possible reason for this difference is that when our jets first
form, they navigate a steeper density profile, ρ∝ r−3/2, than the
one established at late times due to feedback processes,
ρ∝ r−1. The steeper profile makes it easier for the jets to
escape unscathed (BT16). Another difference is that soon after
jet launching, the accretion flow goes MAD and maximizes the
jet power. It is possible that once our system exits the MAD
state and the jets transiently shut off, they would struggle to
make it out to the same distances even if they went MAD
again, because the feedback causes the ambient density profile
to flatten, ρ∝ r−1, at late times.
At 50 k t 65 k, the MAD disk shrinks in size down to

∼10Rg, the MAD state terminates (fBH< 50), and the mass
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accretion rate increases. Initially, the jet power stays roughly
constant, before dropping. Without the disk wind to shield the
jets, the infalling gas slams into and bends them. The bends
propagate out along the jets in a spiral pattern. Once the jet
power drops, the mass accretion rate increases even further, and
the system enters the BAD state at 69 k t 95 k. During this
state, the jet becomes even more susceptible to bends, which
are amplified by the external kink instability: in fact, the bends
grow nonlinear, experience drag against the cocoon material,
and slow down. This leads to a runaway growth of the bends
that twists the jets into a helix. Figure 3(a2) shows that
eventually the instability grows nonlinearly and breaks up the
jet into segments. Because each segment is no longer
constrained lengthwise by the formerly adjacent jet segment,
it is free to expand longitudinally and inject part of its energy
into the cocoon, resulting in a dramatic drop in jet energy flux
at the beginning of each segment. We show that the global
stability criterion, Equation (26), fails to predict the destructive
instability growth in the jets because it does not capture
nonlinear effects. In contrast, the local linear stability criterion,
Equation (20), when applied to the result of nonlinear jet
evolution, still correctly predicts the severity of the instability.
Our analysis demonstrates the importance of global long-
duration numerical modeling to reveal global jet instabilities
and the associated dissipation that would otherwise be missed
by global linear stability criteria.

As the system went MAD, the jets reached the maximum
energy efficiency and suppressed the accretion rate by a factor
of ∼70: only a tiny fraction,   M M 1.5%B , of the Bondi
accretion rate reached the BH, and the feedback (e.g., by BH-
powered jets and disk-powered winds) ejected the remaining
98.5% of the gas. L22 used an identical setup, except for
including nonzero angular momentum in the ambient medium
(with circularization radius Rcirc= 30Rg), and found similar
levels of M suppression. This suggests that most of the
feedback is done by the powerful jets, as opposed to disk
winds.

Indeed, during the BAD state (69 k� t� 95 k), Figure 1(a)
shows that the mass accretion remains roughly constant,
  M M 5%B , despite the formation of an accretion disk at
78 k t 86 k. The average outflow efficiency is η; 15%,
with weak jets that mainly go through the predrilled path from
the prior large-scale jets. In fact, we see that M transiently
increases whenever the jet power vanishes, e.g., at t; 78k and
95 k t 105 k. This indicates that it is the jets, especially in
the MAD state, that dominate the M suppression, as opposed to
the rotationally supported disk and its wind.

For the rest of the simulation, t 95 k, the system enters the
RAD state, where the accreted material brings in gas with an
angular momentum vector that is misaligned with respect to the
BH spin vector. Newly formed intermittent and weaker jets do
not leave the Bondi radius intact, but promptly get disrupted,
leaving behind weakly magnetized buoyant bubbles. When the
jets are not active, the mass accretion rate can reach all the way
up to   M M 10%B . There are periods where the intermittent
and weaker jets, along with the formation of an ephemeral
misaligned accretion disk, suppress the mass accretion rate
down to values in the MAD state. For example, during
110 k t 130 k, the mass accretion rate averages at

= M M 1.7%B , while the jet power is weaker compared to
the MAD values by ∼15. The outflow efficiency averages at
η= 11%, while the normalized magnetic flux at fBH= 18.

During the MAD state, the powerful relativistic jets (γ; 4)
form extensive lobes and hotspots similar to FRIIs. During
the RAD state, the jets disrupt at their base, form
intermittently, and propagate more slowly (γ; 2) and in
varying directions, without ever making it out of the Bondi
radius (r 800Rg). This is similar to FR0 jets that feature
mildly relativistic speeds and small sizes (r 1 kpc), which
make them hard to observe. For the first time, in a GRMHD
simulation, we are witnessing an FRII jet transition into an
FR0 jet. This suggests that FR0s are abundant in environ-
ments with low angular momentum. Even though such
systems are capable of creating FRI or FRII jets, if the disk
loses its angular momentum and shrinks, the system
inevitably turns BAD and/or RAD. The jets, which are
globally destroyed during the transition from MAD to BAD,
might be the source of the γ-rays observed by a handful of
FR0s (Paliya 2021), because our simulated jets dissipate a
significant amount of EM energy into heat, which can power
copious particle acceleration. Thus, jets in the BAD and RAD
states might be significant contributors to the isotropic γ-ray
background, the diffuse neutrino background (detectable by
IceCube), and the ultra-high-energy cosmic rays. We will
explore the radiation signatures of a globally kink-unstable
jet, as well as the FR0 jets, in a follow-up paper.
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Appendix A
Fluid-frame Magnetic Fields

Due to relativistic effects, such as aberration, we need to
appropriately boost the lab-frame magnetic fields to compute
the fluid-frame magnetic fields. We use the definitions

=b B u , A1t i
i ( )

=
+

b
B u b

u
. A2i

i i t

t
( )

The four-vector bμ is the fluid-frame magnetic field that is
comoving with the four-velocity uμ. Since the linear analysis of
the growth of the kink instability distinguishes the poloidal and
toroidal components of the fields, we aim to do the same. In an
idealistic setup, the jet would mostly propagate along the z-
axis, and one would write the magnetic field as

= + j jB B B ep · ˆ . Sufficiently far from the light cylinder,
the bulk velocity of the jet would be in the poloidal direction.
The Lorentz boost on the magnetic field, from the lab frame to
the comoving frame, where a fluid element is moving with a
Lorentz factor γj, exclusively affects the toroidal component,
while the poloidal remains unaffected; bj= Bj/γj and bp= Bp.
However, in our setup, the system is far from axisymmetry and
the jets can be offset from the z-axis. Once the jets develop
wobbles and the jet axis deviates strongly from a straight line,
simplistic assumptions on the morphology of the magnetic field
prior to boosting in the fluid frame will lead to the wrong
results. To address this hurdle, we first compute the drift
velocity of the flow that we use for the Lorentz boost of the
magnetic field component perpendicular to that velocity. We
define the base vectors e

i and êi that are parallel and
perpendicular to the velocity of the flow, respectively. That
way we can write the three-velocity as

= + = +^ ^ ^  v v v v e v e , A3i i i i i· · ( )

where =e B B;i i =ê B 0i i· and B is the magnitude of the
lab-frame magnetic field B2= Bi · B

i, with Bi= gijB
j. As

mentioned above, the drift velocity will be perpendicular to
the magnetic field component, hence subtracting the parallel
component in Equation (A3) we get

= - = -v v v v
v B B

B
, A4i i i

j
j

i

dr 2

( · )
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where =v v B B Bi j
j

i( ) was obtained by multiplying
Equation (A3) with Bi/B. After obtaining the spatial compo-
nents of the drift velocity, we can find the time component of
the proper velocity using the relativistic invariant =udr

2

= -u u 1i
i dr( · ) . Expanding the product, we get
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Noting that g = u tdr dr and =v u ui i t
dr dr dr, we can rewrite

Equation (A5) as

g- = + +g g v g v1 2 . A6tt ti
i

ii
i

dr
2

dr dr
2· ( ( ) ) ( )

Finally, solving for γdr in Equation (A6), we calculate the fluid-
frame magnetic fields as

b B B , A7r
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Our approximation will hold true as long as (i) we are
sufficiently far from the BH (r� 10Rg), so that most of the
poloidal component is at the r-direction and not in the θ-
direction; and (ii) the jets have not developed extreme bends
that result in the poloidal component having a significant
contribution from the θ- and j-directions. We argue that in that
case, if our goal is to study the growth of the kink instability in
the linear regime, this case has ventured into the nonlinear part
where our equations should not hold.

Appendix B
AMR Criterion

To identify the jet material, we use a cutoff in a proxy for
entropy, r= GS ug˜ , where ug is the internal energy density, ρ is
the comoving frame density of the gas, and Γ= 5/3 is the gas
polytropic index for a monatomic nonrelativistic gas. The reason
is that magnetic dissipation in the jets increases the value of S̃ ,
making it appear as “hot.” For our run, the cutoff is chosen at
S 10˜  . We additionally refine the cocoons, created when the
jets mix with the ambient gas, resulting in a shocked and mildly
magnetized gas. The cutoff for the cocoons is chosen at S 0.1˜  .
We also derefine blocks where the jets and/or cocoons left,
when the entropy values dropped to [50%− 100%] of the cutoff.
The AMR criterion is activated once the half-opening angle of
either the jets or cocoons becomes narrower than 48 cells (see
Gottlieb et al. 2022b), which is the width of a single AMR block,
whose resolution is ´ ´ = ´ ´q jN N N 56 48 48r

B B B . The
maximum effective resolution in the jets can reach

´ ´ = ´ ´q jN N N 3584 768 1536r
eff eff eff . This ensures that

both the jets and their cocoons are well resolved as they
propagate out to large radii: jet opening angles of 0.04 rad =2°.3
are resolved with �10 cells out to distances of 5000Rg.

Appendix C
Reduced Scale Separation

For our test run at a reduced scale separation, we use the
same physical parameters as in the fiducial run, except we
reduce the Bondi-to-event horizon scale separation by 1 order
of magnitude, RB/Rg= 102. The grid setup is mostly identical
to our fiducial run (see Section 2). However, because we were
not interested in the details of the jets, in this case we did not
tilt the BH spin 90° with respect to the polar axis. The base grid
resolution is the same: Nr×Nθ×Nj= 448× 96× 192 cells in
the r-, θ-, and j-directions. We activate one level of SMR at
r� 6.5Rg, doubling the resolution in each dimension for an
effective resolution 896× 192× 384 cells. Figure 8 shows the
normalized flux, fBH, on the BH. The system turns MAD after
an unusually long time, at 70 k t 100 k, highlighting the
importance of long-term simulations.

18

The Astrophysical Journal, 964:79 (20pp), 2024 March 20 Lalakos et al.



ORCID iDs

Aretaios Lalakos https://orcid.org/0000-0002-6883-6520
Alexander Tchekhovskoy https://orcid.org/0000-0002-
9182-2047
Omer Bromberg https://orcid.org/0000-0003-4271-3941
Ore Gottlieb https://orcid.org/0000-0003-3115-2456
Jonatan Jacquemin-Ide https://orcid.org/0000-0003-
2982-0005
Matthew Liska https://orcid.org/0000-0003-4475-9345
Haocheng Zhang https://orcid.org/0000-0001-9826-1759

References

Ackermann, M., Bustamante, M., Lu, L., et al. 2022, JHEAp, 36, 55
Anglés-Alcázar, D., Faucher-Giguère, C.-A., Quataert, E., et al. 2017,

MNRAS, 472, L109
Anglés-Alcázar, D., Özel, F., Davé, R., et al. 2015, ApJ, 800, 127
Anglés-Alcázar, D., Quataert, E., Hopkins, P. F., et al. 2021, ApJ, 917,

53
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Baldi, R. D. 2023, A&ARv, 31, 3
Baldi, R. D., Capetti, A., & Massaro, F. 2018, AA, 609, A1
Balmaverde, B., & Capetti, A. 2006, A&A, 447, 97
Barniol Duran, R., Tchekhovskoy, A., & Giannios, D. 2017, MNRAS,

469, 4957
Bateman, G. 1978, MHD Instabilities (Cambridge, MA: MIT Press)
Begelman, M. C. 1998, ApJ, 493, 291
Biretta, J. A., Stern, C. P., & Harris, D. E. 1991, AJ, 101, 1632
Bisnovatyi-Kogan, G. S., & Ruzmaikin, A. A. 1974, Ap&SS, 28, 45
Bisnovatyi-Kogan, G. S., & Ruzmaikin, A. A. 1976, Ap&SS, 42, 401
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Bondi, H. 1952, MNRAS, 112, 195
Bromberg, O., Singh, C. B., Davelaar, J., & Philippov, A. A. 2019, ApJ,

884, 39
Bromberg, O., & Tchekhovskoy, A. 2016, MNRAS, 456, 1739
Chatterjee, K., Liska, M., Tchekhovskoy, A., & Markoff, S. B. 2019, MNRAS,

490, 2200
Cui, Y., Hada, K., Kawashima, T., et al. 2023, Natur, 621, 711
Das, T. K., & Czerny, B. 2012, MNRAS, 421, L24
Davis, S. W., & Tchekhovskoy, A. 2020, ARA&A, 58, 407
Di Matteo, T., Allen, S. W., Fabian, A. C., Wilson, A. S., & Young, A. J. 2003,

ApJ, 582, 133
Eichler, D. 1993, ApJ, 419, 111
Fabian, A. C. 2012, ARA&A, 50, 455
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P
Ghisellini, G. 2011, in AIP Conf. Proc. 1381, 25th Texas Symp. on Relativistic

Astrophysics (TEXAS 2010), ed. F. Aharonian, W. Hofmann, & F. Rieger
(Melville, N Y: AIP), 180

Giannios, D., Uzdensky, D. A., & Begelman, M. C. 2009, MNRAS, 395, L29
Gottlieb, O., Lalakos, A., Bromberg, O., Liska, M., & Tchekhovskoy, A.

2022a, MNRAS, 510, 4962

Gottlieb, O., Liska, M., Tchekhovskoy, A., et al. 2022b, ApJL, 933, L9
Igumenshchev, I. V. 2008, ApJ, 677, 317
Igumenshchev, I. V., Narayan, R., & Abramowicz, M. A. 2003, ApJ, 592, 1042
Komissarov, S., Vlahakis, N., Konigl, A., & Barkov, M. 2009, MNRAS,

394, 1182
Kwan, T. M., Dai, L., & Tchekhovskoy, A. 2023, ApJL, 946, L42
Lalakos, A., Gottlieb, O., Kaaz, N., et al. 2022, ApJL, 936, L5
Lense, J., & Thirring, H. 1918, PhyZ, 19, 156
Li, Y., Gendron-Marsolais, M.-L., Zhuravleva, I., et al. 2020, ApJL, 889,

L1
Liska, M., Chatterjee, K., Issa, D., et al. 2022, ApJS, 263, 26
Lundquist, J. P., Merten, L., Vorobiov, S., et al. 2022, 37th Int. Cosmic Ray

Conf. (ICRC2021), ed. A. Kappes & B. Keilhauer, (Trieste: SISSA), 989
Lyubarskii, Y. E. 1999, MNRAS, 308, 1006
Lyubarskij, Y. E. 1992, SvAL, 18, 356
Lyubarsky, Y. 2009, ApJ, 698, 1570
Martizzi, D., Quataert, E., Faucher-Giguère, C.-A., & Fielding, D. 2019,

MNRAS, 483, 2465
McKinney, J. C., Tchekhovskoy, A., & Blandford, R. 2012, MNRAS,

423, 3083
McNamara, B., & Nulsen, P. 2007, ARA&A, 45, 117
McNamara, B., & Nulsen, P. 2012, NJPh, 14, 055023
Merten, L., Boughelilba, M., Reimer, A., et al. 2021, APh, 128, 102564
Mizuno, Y., Lyubarsky, Y., Nishikawa, K.-I., & Hardee, P. E. 2009, ApJ,

700, 684
Mizuno, Y., Lyubarsky, Y., Nishikawa, K.-I., & Hardee, P. E. 2012, ApJ,

757, 16
Morganti, R. 2017, FrASS, 4, 42
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2003, PASJ, 55,

L69
Narayan, R., Li, J., & Tchekhovskoy, A. 2009, ApJ, 697, 1681
Narayan, R., Sądowski, A., Penna, R. F., & Kulkarni, A. K. 2012, MNRAS,

426, 3241
Oei, M. S. S. L., van Weeren, R. J., Hardcastle, M. J., et al. 2022, A&A,

660, A2
Paliya, V. S. 2021, ApJL, 918, L39
Perley, R. A., Dreher, J. W., & Cowan, J. J. 1984, ApJL, 285, L35
Ressler, S. M., Quataert, E., White, C. J., & Blaes, O. 2021, MNRAS,

504, 6076
Ressler, S. M., Tchekhovskoy, A., Quataert, E., & Gammie, C. F. 2017,

MNRAS, 467, 3604
Russell, H. R., Fabian, A. C., McNamara, B. R., et al. 2018, MNRAS,

477, 3583
Russell, H. R., Fabian, A. C., McNamara, B. R., & Broderick, A. E. 2015,

MNRAS, 451, 588
Schoeffler, K. M., Grismayer, T., Uzdensky, D., & Silva, L. O. 2023, MNRAS,

523, 3812
Shapiro, S. L., Lightman, A. P., & Eardley, D. M. 1976, ApJ, 204, 187
Shapiro, S. L., & Teukolsky, S. A. 1986, in Black Holes, White Dwarfs and

Neutron Stars: The Physics of Compact Objects, ed. S. L. Shapiro &
S. A. Teukolsky (New York: Wiley), 672

Sikora, M., Stawarz, Ł, & Lasota, J.-P. 2007, ApJ, 658, 815
Stecker, F. W., Shrader, C. R., & Malkan, M. A. 2019, ApJ, 879, 68
Tavecchio, F., Righi, C., Capetti, A., Grandi, P., & Ghisellini, G. 2018,

MNRAS, 475, 5529

Figure 8. For the reduced scaled separation, RB/Rg = 102, the system turns MAD at 70 k  t  100 k.

19

The Astrophysical Journal, 964:79 (20pp), 2024 March 20 Lalakos et al.

https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-6883-6520
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0002-9182-2047
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-4271-3941
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-3115-2456
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-2982-0005
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0003-4475-9345
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://orcid.org/0000-0001-9826-1759
https://doi.org/10.1016/j.jheap.2022.08.001
https://ui.adsabs.harvard.edu/abs/2022JHEAp..36...55A/abstract
https://doi.org/10.1093/mnrasl/slx161
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472L.109A/abstract
https://doi.org/10.1088/0004-637X/800/2/127
https://ui.adsabs.harvard.edu/abs/2015ApJ...800..127A/abstract
https://doi.org/10.3847/1538-4357/ac09e8
https://ui.adsabs.harvard.edu/abs/2021ApJ...917...53A/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...917...53A/abstract
https://doi.org/10.1086/170270
https://ui.adsabs.harvard.edu/abs/1991ApJ...376..214B/abstract
https://doi.org/10.1007/s00159-023-00148-3
https://ui.adsabs.harvard.edu/abs/2023A&ARv..31....3B/abstract
https://doi.org/10.1051/0004-6361/201731333
https://ui.adsabs.harvard.edu/abs/2018A&A...609A...1B/abstract
https://doi.org/10.1051/0004-6361:20054031
https://ui.adsabs.harvard.edu/abs/2006A&A...447...97B/abstract
https://doi.org/10.1093/mnras/stx1165
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.4957B/abstract
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.4957B/abstract
https://doi.org/10.1086/305119
https://ui.adsabs.harvard.edu/abs/1998ApJ...493..291B/abstract
https://doi.org/10.1086/115793
https://ui.adsabs.harvard.edu/abs/1991AJ....101.1632B/abstract
https://doi.org/10.1007/BF00642237
https://ui.adsabs.harvard.edu/abs/1974Ap&SS..28...45B/abstract
https://doi.org/10.1007/BF01225967
https://ui.adsabs.harvard.edu/abs/1976Ap&SS..42..401B/abstract
https://doi.org/10.1093/mnras/199.4.883
https://ui.adsabs.harvard.edu/abs/1982MNRAS.199..883B/abstract
https://doi.org/10.1093/mnras/179.3.433
https://ui.adsabs.harvard.edu/abs/1977MNRAS.179..433B/abstract
https://doi.org/10.1093/mnras/112.2.195
https://ui.adsabs.harvard.edu/abs/1952MNRAS.112..195B/abstract
https://doi.org/10.3847/1538-4357/ab3fa5
https://ui.adsabs.harvard.edu/abs/2019ApJ...884...39B/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...884...39B/abstract
https://doi.org/10.1093/mnras/stv2591
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.1739B/abstract
https://doi.org/10.1093/mnras/stz2626
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2200C/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2200C/abstract
https://doi.org/10.1038/s41586-023-06479-6
https://ui.adsabs.harvard.edu/abs/2023Natur.621..711C/abstract
https://doi.org/10.1111/j.1745-3933.2011.01199.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421L..24D/abstract
https://doi.org/10.1146/annurev-astro-081817-051905
https://ui.adsabs.harvard.edu/abs/2020ARA&A..58..407D/abstract
https://doi.org/10.1086/apj.2003.582.issue-1
https://ui.adsabs.harvard.edu/abs/2003ApJ...582..133D/abstract
https://doi.org/10.1086/173464
https://ui.adsabs.harvard.edu/abs/1993ApJ...419..111E/abstract
https://doi.org/10.1146/astro.2012.50.issue-1
https://ui.adsabs.harvard.edu/abs/2012ARA&A..50..455F/abstract
https://doi.org/10.1093/mnras/167.1.31P
https://ui.adsabs.harvard.edu/abs/1974MNRAS.167P..31F/abstract
https://ui.adsabs.harvard.edu/abs/2011AIPC.1381..180G/abstract
https://doi.org/10.1111/j.1745-3933.2009.00635.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.395L..29G/abstract
https://doi.org/10.1093/mnras/stab3784
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.4962G/abstract
https://doi.org/10.3847/2041-8213/ac7530
https://ui.adsabs.harvard.edu/abs/2022ApJ...933L...9G/abstract
https://doi.org/10.1086/529025
https://ui.adsabs.harvard.edu/abs/2008ApJ...677..317I/abstract
https://doi.org/10.1086/375769
https://ui.adsabs.harvard.edu/abs/2003ApJ...592.1042I/abstract
https://doi.org/10.1111/j.1365-2966.2009.14410.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.1182K/abstract
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.1182K/abstract
https://doi.org/10.3847/2041-8213/acc334
https://ui.adsabs.harvard.edu/abs/2023ApJ...946L..42K/abstract
https://doi.org/10.3847/2041-8213/ac7bed
https://ui.adsabs.harvard.edu/abs/2022ApJ...936L...5L/abstract
https://ui.adsabs.harvard.edu/abs/1918PhyZ...19..156L/abstract
https://doi.org/10.3847/2041-8213/ab65c7
https://ui.adsabs.harvard.edu/abs/2020ApJ...889L...1L/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...889L...1L/abstract
https://doi.org/10.3847/1538-4365/ac9966
https://ui.adsabs.harvard.edu/abs/2022ApJS..263...26L/abstract
https://ui.adsabs.harvard.edu/abs/2022icrc.confE.989L/abstract
https://doi.org/10.1046/j.1365-8711.1999.02763.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.308.1006L/abstract
https://ui.adsabs.harvard.edu/abs/1992SvAL...18..356L/abstract
https://doi.org/10.1088/0004-637X/698/2/1570
https://ui.adsabs.harvard.edu/abs/2009ApJ...698.1570L/abstract
https://doi.org/10.1093/mnras/sty3273
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.2465M/abstract
https://doi.org/10.1111/j.1365-2966.2012.21074.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.423.3083M/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.423.3083M/abstract
https://doi.org/10.1146/astro.2007.45.issue-1
https://ui.adsabs.harvard.edu/abs/2007ARA&A..45..117M/abstract
https://doi.org/10.1088/1367-2630/14/5/055023
https://ui.adsabs.harvard.edu/abs/2012NJPh...14e5023M/abstract
https://doi.org/10.1016/j.astropartphys.2021.102564
https://ui.adsabs.harvard.edu/abs/2021APh...12802564M/abstract
https://doi.org/10.1088/0004-637X/700/1/684
https://ui.adsabs.harvard.edu/abs/2009ApJ...700..684M/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...700..684M/abstract
https://doi.org/10.1088/0004-637X/757/1/16
https://ui.adsabs.harvard.edu/abs/2012ApJ...757...16M/abstract
https://ui.adsabs.harvard.edu/abs/2012ApJ...757...16M/abstract
https://doi.org/10.3389/fspas.2017.00042
https://ui.adsabs.harvard.edu/abs/2017FrASS...4...42M/abstract
https://doi.org/10.1093/pasj/55.6.L69
https://ui.adsabs.harvard.edu/abs/2003PASJ...55L..69N/abstract
https://ui.adsabs.harvard.edu/abs/2003PASJ...55L..69N/abstract
https://doi.org/10.1088/0004-637X/697/2/1681
https://ui.adsabs.harvard.edu/abs/2009ApJ...697.1681N/abstract
https://doi.org/10.1111/j.1365-2966.2012.22002.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.3241N/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.3241N/abstract
https://doi.org/10.1051/0004-6361/202142778
https://ui.adsabs.harvard.edu/abs/2022A&A...660A...2O/abstract
https://ui.adsabs.harvard.edu/abs/2022A&A...660A...2O/abstract
https://doi.org/10.3847/2041-8213/ac2143
https://ui.adsabs.harvard.edu/abs/2021ApJ...918L..39P/abstract
https://doi.org/10.1086/184360
https://ui.adsabs.harvard.edu/abs/1984ApJ...285L..35P/abstract
https://doi.org/10.1093/mnras/stab311
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.6076R/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.6076R/abstract
https://doi.org/10.1093/mnras/stx364
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.3604R/abstract
https://doi.org/10.1093/mnras/sty835
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.3583R/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.3583R/abstract
https://doi.org/10.1093/mnras/stv954
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451..588R/abstract
https://doi.org/10.1093/mnras/stad1588
https://ui.adsabs.harvard.edu/abs/2023MNRAS.523.3812S/abstract
https://ui.adsabs.harvard.edu/abs/2023MNRAS.523.3812S/abstract
https://doi.org/10.1086/154162
https://ui.adsabs.harvard.edu/abs/1976ApJ...204..187S/abstract
https://ui.adsabs.harvard.edu/abs/1986bhwd.book.....S/abstract
https://doi.org/10.1086/511972
https://ui.adsabs.harvard.edu/abs/2007ApJ...658..815S/abstract
https://doi.org/10.3847/1538-4357/ab23ee
https://ui.adsabs.harvard.edu/abs/2019ApJ...879...68S/abstract
https://doi.org/10.1093/mnras/sty251
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.5529T/abstract


Tchekhovskoy, A. 2015, in The Formation and Disruption of Black Hole Jets,
ed. I. Contopoulos, D. Gabuzda, & N. Kylafis (Cham: Springer), 45

Tchekhovskoy, A., & McKinney, J. C. 2012, MNRAS, 423, L55
Tchekhovskoy, A., McKinney, J. C., & Narayan, R. 2009, ApJ, 699, 1789

Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2010, NewA, 15, 749
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011, MNRAS, 418,

L79
Zhuravleva, I., Churazov, E., Arévalo, P., et al. 2016, MNRAS, 458, 2902

20

The Astrophysical Journal, 964:79 (20pp), 2024 March 20 Lalakos et al.

https://ui.adsabs.harvard.edu/abs/2015ASSL..414...45T/abstract
https://doi.org/10.1111/j.1745-3933.2012.01256.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.423L..55T/abstract
https://doi.org/10.1088/0004-637X/699/2/1789
https://ui.adsabs.harvard.edu/abs/2009ApJ...699.1789T/abstract
https://doi.org/10.1016/j.newast.2010.03.001
https://ui.adsabs.harvard.edu/abs/2010NewA...15..749T/abstract
https://doi.org/10.1111/j.1745-3933.2011.01147.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418L..79T/abstract
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418L..79T/abstract
https://doi.org/10.1093/mnras/stw520
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.2902Z/abstract

	1. Introduction
	2. Numerical Method and Setup
	3. MAD Prologue
	4. A Twisted Interlude
	4.1. Jet Stability Criterion
	4.2. Jet Bends Set the Speed Limit
	4.3. What Triggers Kink Instability in Our Jets?
	4.4. Energy Partition and Dissipation

	5. A Turbulent Epilogue
	6. External versus Internal Kink
	7. Discussion and Conclusions
	Appendix AFluid-frame Magnetic Fields
	Appendix BAMR Criterion
	Appendix CReduced Scale Separation
	References



