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Abstract

Realistic modeling of ecological population dynamics requires spatially explicit descrip-
tions that can take into account spatial heterogeneity as well as long-distance disper-
sal. Here, we present Monte Carlo simulations and numerical renormalization group
results for the paradigmatic model, the contact process, in the combined presence of
these factors in both one and two-dimensional systems. Our results confirm our analytic
arguments stating that the density vanishes smoothly at the extinction threshold, in a
way characteristic of infinite-order transitions. This extremely smooth vanishing of the
global density entails an enhanced exposure of the population to extinction events. At
the same time, a reverse order parameter, the local persistence displays a discontinuity
characteristic of mixed-order transitions, as it approaches a non-universal critical value
algebraically with an exponent β ′p < 1.
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1 Introduction

Modeling the dynamics of populations is a key challenge in ecology [1]. Beyond traditional
mean-field models which consider a single variable (the global density) for each species, a
more realistic, although theoretically less tractable class of models is the family of spatially
explicit models, which describe the state of the system in terms of local densities in the two-
dimensional space. A frequently applied simplification to such spatially explicit models is that
local densities are attached to sites of a regular (most frequently square) lattice. A further
ingredient of a more realistic modeling beyond mean field is the stochasticity of reproduction
and extinction events [2].

The paradigmatic starting point of this kind of modeling is the contact process (CP) [3,4],
where the state is given by a set of binary variables at each site, encoding empty (0) or colo-
nized (1) habitat patches. Colonization of neighboring lattice sites (0 → 1) and spontaneous
extinction (1 → 0) occur independently with given rates. Depending on the ratio of these
rates, the steady state can be either a completely empty (extinct) state or a fluctuating state
with a non-zero global density of colonized sites. In between, a continuous phase transition oc-
curs, which belongs to the directed percolation (DP) universality class [5–7]. As it is common
for critical phenomena, the order parameter of the transition, the global density ρ, vanishes
algebraically with the reduced control parameter∆ as the transition point is approached from
the fluctuating phase:

ρ(∆)∼∆β , (1)

β denoting the dimension-dependent order-parameter exponent characteristic of the DP uni-
versality class.

This simple CP has been extended in at least two directions with the purpose of a more
realistic modeling of ecological systems. First, according to observations, colonization events
occur also to distant places, and the dispersal is heavy-tailed, i.e., the colonization probability
decreases with the distance slower-than-exponentially [8–14]. This issue has been studied
in the CP for the case of a dispersal probability decaying algebraically with the distance as
p(l) ∼ l−α [15–17]. According to these studies, in low dimensions (d < 4), the critical be-
havior remains in the DP class if α > αc(d), where αc(d) is a dimension-dependent threshold
value, while, for αMF(d) < α < αc(d), the critical exponents are altered and depend on α.
Finally, for α < αMF(d) =

3
2 d, the system enters the mean-field regime. Thus, even in this

case, the algebraic vanishing of the order parameter in Eq. (1) holds to be valid, although
with a modified β . Second, real systems may have a fine-scale heterogeneity in the conditions
of surviving or reproduction. This can be taken into account in the CP by quenched random
colonization and extinction rates. The well known, perturbative Harris criterion [18] predicts
weak disorder to be relevant in low dimensions (d < 4), leading to a new type of critical be-
havior. According to the strong-disorder renormalization group (SDRG) method [19, 20], at
least for sufficiently strong disorder,1 the critical behavior is described by an infinite-disorder
fixed point (IDFP) in agreement with results of Monte Carlo simulations [23–25]. At the IDFP,
the dynamics is highly uncommon, as time itself is replaced by its logarithm in scaling rela-
tions, but otherwise power-laws like Eq. (1) hold to be valid with critical exponents different
from those of DP.

Thus, we can see that the most relevant observable of the system, the stationary density
ρ, follows a power-law scaling with the reduced control parameter given by Eq. (1), even if
the model has long-distance dispersal or if it has quenched disorder in it, these circumstances
merely affecting the value of β . Informed by these results, it is natural to expect that the power-
law decay of the density holds even in the simultaneous presence of long-distance dispersal

1At present, it is not known rigorously whether the IDFP is attractive for any weak disorder [21] or there exists
a weak disorder regime with a line of fixed points [19,22].
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and quenched disorder. This is, however, not the case. According to SDRG studies of this
model, the critical behavior is described by a finite-disorder fixed point (FDFP) at which the
dynamical relationship between length and time scales is of power-law type with a logarithmic
correction [26–28]. This scenario is expected to be valid in the non-mean-field regime α > 3

2 d,
where the Harris criterion predicts weak disorder to be relevant. The predictions of this theory
for the dynamical scaling at the critical point have been confirmed by Monte Carlo simulations
in one and two dimensions [27, 29]. Furthermore, according to a recent SDRG study of the
one-dimensional model by one of us [30], the density vanishes near the critical point according
to

ρ(∆)∼ e−C/
p
∆ , (2)

with C being a nonuniversal positive constant. This type of infinite-order vanishing of the
density, corresponding formally to β =∞, is different from the conventional power-law sin-
gularity in Eq. (1).

In this paper, we first aim to compare this result of the SDRG treatment in one dimension
with Monte Carlo simulations. More importantly, we extend the investigations of the order
parameter to two dimensions, which is more relevant to ecological modeling, by a numerical
application of the SDRG method and by Monte Carlo simulations.

Besides the density order parameter, we also consider the local persistence, which is the
probability that a given site is never activated [31–37]. The persistence can be regarded as a
reverse order parameter, which is zero in the active phase and non-zero in the inactive one.
In the homogeneous model, it vanishes algebraically as the critical point is approached from
the inactive phase,

π(∆)∼ (−∆)βp , (3)

with a dimension-dependent exponent βp. In the simultaneous presence of quenched disorder
and long-range interactions, the SDRG method predicts again an anomalous behavior in one
dimension: the persistence remains non-zero at the transition point [29] but approaches its
critical value π0 algebraically [30] as

π(∆)−π0 ∼ (−∆)β
′
p , (4)

with β ′
p = 1/2, which is characteristic of mixed-order transitions. In this work, we confirm

this law by off-critical Monte Carlo simulations and show that similar behavior appears also in
two dimensions by the numerical SDRG method and Monte Carlo simulations.

The paper is organized as follows. The model is introduced in Sec. 2.1, followed by a review
of the SDRG method in Sec. 2.2 and the details of the Monte Carlo simulation in Sec. 2.3. The
numerical results are presented in Sec. 3 and discussed in Sec. 4.

2 The model and methods

2.1 The contact process

We consider the contact process on a d-dimensional lattice (with d = 1 or d = 2), the sites
of which are either active or inactive. The dynamics of the CP is a continuous-time Markov
process with two types of independent transitions. First, active sites become inactive with a
site-dependent, quenched random rate µn. Second, active sites attempt to activate other sites
with rates

λnm = Λnmr−αnm , (5)

whereΛnm = Λmn are quenched random rates and rnm denotes the Euclidean distance between
the source (n) and the target site (m). The parameter α, which we restrict to the range α > d,
characterizes the extent of long-distance dispersal.
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We study two observables of this model, the density of active sites ρ and the persistence
probability π at late times. To measure the latter, the system is initiated from a state in which
sites are active with a probability ρ0 < 1, and the persistence π(t) at time t is defined as the
fraction of sites which remained inactive all the way up to time t.

2.2 The SDRG method

In the SDRG procedure, the maximum Ω of rates present in the system and the number of
effective sites is reduced recursively, step-by-step [19]. In each elimination step, a block of
sites containing the largest rate is replaced by simpler blocks. As the model has two sets of
rates, there are two kinds of elimination steps. If the largest rate is an activation rate, Ω = λnm,
and neighboring deactivation rates are much smaller than Ω, the sites n and m are replaced
by a single effective site (cluster) which has an effective deactivation rate

µ̃nm = κ
µnµm

Ω
, (6)

with κ= 2 in leading order of perturbation calculation. If the largest rate is a deactivation rate
Ω = µn, and the neighboring activation rates are much smaller than this, the site is eliminated,
leaving behind effective transitions between all original neighbors of site n, with rates obtained
perturbatively in the form

λ̃mk =
λmnλnk

Ω
. (7)

When these operations are attempted in d > 1 dimensions, one encounters a difficulty of
arising double activation rates between clusters. We treated this problem by following the
standard ‘maximum rule’, which means that only the larger one of the rates is kept. A further
modification in the rule in Eq. (6) we have done is that κ= 1 has been used instead of κ= 2.
The reason for this is that this modified rule, together with the maximum rule allows us to use
an efficient numerical algorithm of the SDRG procedure developed by one of us [38]. This
implementation of the SDRG method works in a parallel manner, relying on graph algorithms
to obtain equivalent results to the above mentioned conceptual picture, but in nearly linear
time as a function of the number of sites. For the CP with nearest-neighbor dispersal on low-
dimensional lattices, where the critical fixed point of the SDRG transformation is an IDFP, both
the maximum rule and the irrelevance of the value of κ are justified [39]. For the CP with
long-distance (algebraic) dispersal, where the critical fixed point is an FDFP [26], Monte Carlo
results on the dynamical scaling at the critical point in d = 1 and d = 2 confirmed the validity
of these approximations for α > 3

2 d, and also at α= 3
2 d for a high enough dilution [27,29].

The density ρ(t) of active sites and the persistence probability π(t) can be calculated
within the SDRG approach in the following way. The density ρ(t) at time t, if initially each
site was active, is given by the ratio of those sites which are part of an active (not yet decimated)
cluster at rate scale Ω = t−1. The density in the quasistationary state of a finite system in the
active phase is thus given by the ratio of sites contained in the last surviving cluster formed
in the SDRG procedure. The persistence of a given site (n) can be obtained as follows [31].
The deactivation rate at this site is set to zero, µn = 0, then this site remains persistent as
long as it is not merged with another cluster during the SDRG transformation. Performing this
procedure for all sites and counting the fraction of persistent sites at Ω = t−1 provides π(t).

In the numerical calculations, the rates Λnm and µn were drawn from uniform distributions
in the interval (0,1) and (0,µ), respectively. As a control parameter, we used Θ = lnµ. For the
d = 2 model, we set the dispersal exponent to α= 3, which tests the range of validity (α≥ 3

2 d)
of the SDRG method. In this case, the critical point was found to be in an earlier work at
Θc = 2.42(5) [27] by analysing the distribution of sample-dependent critical points [26]. We
considered different system sizes up to L = 64 and used typically 40000 random samples (and
at least 4000 for the largest size of the density calculation).
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Figure 1: Dependence of the global density on the control parameter λ at different
times in the one-dimensional model with α= 2 (a) and α= 3 (b). Data have been ob-
tained by Monte Carlo simulations. The critical control parameters are λc = 2.90(1)
for α = 2 and λc = 5.00(5) for α = 3 [27]. The straight lines are linear fits to the
stationary data having slopes −C = −1.0 (a) and −C = −2.6 (b).

2.3 Monte Carlo simulation

In the simulations, a different type of disorder, which is more frequently used in Monte Carlo
studies [24,25,27], was considered. This is a random dilution of the lattice, by which a fraction
c of sites is randomly deleted. For practical reasons, it is expedient to use high values of c, as
low dilutions induce an undesirable crossover from the critical behavior of the clean system,
shrinking the true asymptotic behavior to the close vicinity of the critical point. Note that, due
to long-distance dispersal, c does not even need to be below the percolation threshold of the
underlying regular lattice.

We applied a sequential update, in which an active site is picked randomly and either made
inactive with a probability 1/(1+ λ) or an activation event is attempted from this site with a
probability λ/(1+ λ). In the latter case, a target site is selected randomly with a probability
proportional to l−α, where l is the Euclidean distance measured from the source site. As control
parameter of the transition we used λ. Technical details of the simulation are the same as in
Ref. [27].

Measurements of the global density ρ(t) were performed in a single large sample for each
value of the control parameter. The size of the sample was L = 109 in one dimension and
the linear size was L = 30000 in two dimensions. Measurements of the persistence in the
inactive phase were performed by starting the process from a random state with a global
density ρ0 = 1/2, simulating until the system reached the fully inactive (absorbing) state. The
fraction of persistent sites was then calculated and averaged typically over results obtained in
100 random samples. The maximal linear system size was L = 108 for d = 1 and L = 40000
for d = 2.

3 Numerical results

3.1 The one-dimensional model

The one-dimensional model has been studied by a simplified, analytically tractable SDRG
scheme which contained a series of approximations [26, 30]. First, at any stage of the renor-
malization, the only interactions that were taken into account were those between adjacent
clusters. Furthermore, these couplings were approximated by the long-range interaction be-
tween the closest constituent sites. Up to this point, the scheme is essentially equivalent to
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Figure 2: Dependence of the persistence probability on the control parameter for
different system sizes in the one-dimensional model. Data have been obtained by
Monte Carlo simulations with α= 2 and c = 0.5. The straight line has a slope 0.499.

the application of the maximum rule. Second, the extension of clusters was neglected com-
pared to the spacings between them. This step is justified in the inactive phase and in the
active phase close to the critical point. This simplified method predicted a smooth vanishing
of the global density in the active phase as given by Eq. (2) [30]. To check the validity of
this asymptotic form, we performed Monte Carlo simulations for α = 2 and α = 3, with a
dilution parameter c = 0.5. Data obtained for different values of the control parameter λ and
at different times are plotted in Fig. 1. Plotting the logarithmic densities lnρ(λ, t) against
∆−1/2, with ∆ = λ−λc , leads to an agreement with Eq. (2), as the late-time densities (which
approached their steady-state values) fit well to a straight line. Here, estimates of the critical
control parameter λc were taken from Ref. [27]. We find the constant C appearing in Eq. (2)
to vary with α.

Next, we measured the persistence probability, which has been found by the SDRG method
to exhibit a mixed-order type of transition given by Eq. (4) [30]. Numerical results obtained
by Monte Carlo simulations in the inactive phase for α = 2, c = 0.5, are plotted in Fig. 2.
Using the critical persistence π(λc) = 0.015 estimated in Ref. [29], we find that data are
compatible with the form given by Eq. (4) and the estimate 0.499 of the exponent β ′

p obtained
by a linear fit to the data on a double logarithmic scale close to the critical point provides a
good agreement with the theoretical value β ′

p = 1/2.

3.2 The two-dimensional model

Unlike in one dimension, the SDRG method is not analytically tractable in higher dimensions,
thus we have no analytical prediction about the scaling of order parameters at our disposal
in two dimensions. Nevertheless, by a relatively simple argument, a relationship between the
models in different dimensions was established in Ref. [27]. This relies on a recursive rear-
rangement of the sites of the d-dimensional model to a one-dimensional chain, after which
distances l between sites of the d-dimensional model are typically scaled to ld . As a conse-
quence, the critical behavior of the d-dimensional model having a dispersal parameter α is
expected to be the same as that of the one-dimensional model with a reduced dispersal pa-
rameter α/d. Thereby, formulae known for the one-dimensional model can be extended to
d > 1 by replacing α by α/d, as well as all distances by their dth power. The precision of
this statement is presumably restricted to the equality of critical exponents and may not hold
for any additional multiplicative logarithmic corrections [27]. Numerical SDRG and Monte
Carlo analyses of the dynamical scaling of the order parameter at criticality in two and three
dimensions have supported this general connection [27,28].
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Figure 4: Dependence of the global density on the control parameter λ at differ-
ent times in the two-dimensional model with α = 3 (a) and α = 3.5 (b). Data
have been obtained by Monte Carlo simulations. The critical control parameters are
λc = 6.00(2) for α = 3 and λc = 5.95(5) for α = 3.5 [27]. The straight lines are
linear fits to the stationary data having slopes −C = −1.26 (a) and −C = −2.60 (b).

Applying this conjecture to the off-critical scaling of the density in Eq. (2), as it contains
neither distances nor the parameter α, leads to the expectation that it holds in the same form
also for d > 1. Therefore, our numerical analysis in two dimensions was guided by this form.
First, we performed a numerical SDRG analysis and measured the fraction of active (non-
decimated) sites m contained in the last cluster, a quantity which is expected to display the
same scaling behavior as the global density. Numerical results for α = 3 are shown in Fig. 3.
As shown in the inset of Fig. 3, the order parameter vanishes smoothly as the critical point
is approached, and, indeed, the main panel of Fig. 3 shows that the data fit well to the form
given by Eq. (2).

Results on the global density obtained by Monte Carlo simulations of the two-dimensional
model with a dilution parameter c = 0.8 and dispersal exponents α = 3 and 3.5 are shown
in Fig. 4. Here, we used again estimates of the location of critical point (λc = 6.00(2) for
α = 3 and λc = 6.95(5) for α = 3.5) from an earlier work [27]. As shown in the figure,
the stationary data fit well to the form in Eq. (2) for both values of α, and the constant C is
different for different α.

Next, we turned to the dependence of persistence probability on the control parameter in
the inactive phase. The conjectured connection between the models in different dimensions
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described above would naïvely predict that a relationship given by Eq. (4) holds to be valid also
for d > 1. The question is, however, which one of its parameters, if any, remains unchanged
when switching to higher dimensions. The leading (constant) term π0 is non-universal, i.e., it
depends on the type of disorder and α, therefore it is not expected to remain unchanged.
The invariance of the exponent β ′

p is also questionable, as it appears in the subleading term.
Therefore, in the numerical analysis, we assumed a mixed-order type of form for the vanishing
of the persistence where π0 and β ′

p are treated as fitting parameters.
Numerical results in the inactive phase obtained by the SDRG method for α= 3 are shown

in Fig. 5. As illustrated, the data are compatible with a mixed-order vanishing and the esti-
mates of the parameters obtained by a fitting to the data for the largest system size (L = 64)
are π0 = 0.72(1) and β ′

p = 0.47(4). Nevertheless, care has to be taken with these estimates
since, as we can see in the figure, the persistences close to the critical point are still consid-
erably affected by the finite size of the system. Thus, the asymptotic (L → ∞) value of π0
may be significantly lower, while β ′

p may be significantly higher than the estimates obtained
for L = 64.

Results of Monte Carlo simulations obtained for α= 3 and α= 3.5 (and a dilution param-
eter c = 0.8) are shown in Fig. 6. These confirm what has been found by the SDRG method:
the vanishing is of mixed-order type. The estimated critical persistences are π0 = 0.043(2)
for α = 3 and π0 = 0.070(2) for α = 3.5. Since the value of β ′

p obtained by fitting is very
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sensitive to the errors of λc and π0, we have rather uncertain estimates on it: β ′
p = 0.7(2)

both for α = 3 and α = 3.5. Note that, just like the two-dimensional SDRG results, these do
not exclude a possible agreement with the value 1/2 obtained by the SDRG method for d = 1.

4 Discussion

In this work, we considered a stochastic lattice model of population dynamics, the contact
process in the simultaneous presence of quenched disorder and long-distance dispersal. We
focused on the off-critical scaling of order parameters, for which an earlier SDRG work pre-
dicted anomalous scaling behavior in one dimension, for large enough dispersal exponents
(α ≥ 3

2 d). Specifically, the global density vanishes smoothly, whereas the persistence prob-
ability vanishes discontinuously when the critical point is approached from the active phase
and the inactive phase, respectively [30]. We provided a numerical confirmation of these
forms by Monte Carlo simulations in one dimension and, making a step toward a more realis-
tic modelling, we addressed this issue in the two-dimensional model. In two dimensions, our
numerical SDRG and Monte Carlo results agree in that the global density follows the same
type of smooth vanishing given in Eq. (2) as found in one dimension. Furthermore, the dis-
continuous, mixed-order type of vanishing of the persistence found in one dimension holds
to be valid also in two dimensions, as it is demonstrated by our numerical SDRG and Monte
Carlo results. Concerning the exponent β ′

p in the subleading term of persistence, our numer-
ical results clearly signal a singularity with β ′

p < 1, but the accessible numerical data are not
conclusive on whether this exponent is different from that of the one-dimensional model (1/2)
or not.

We note that the compatibility of SDRG and Monte Carlo results suggests that the SDRG
method is a valid approach also for the random transverse-field Ising model with long-range
interactions [27, 28]. For that model, the SDRG scheme is formally similar to that of the CP
(with κ = 1), and, as a consequence, the magnetization (corresponding to the global density
of CP) is expected to vanish according to Eq. (2) as the quantum critical point is approached
from the ferromagnetic phase at zero temperature.

The type of extremely smooth vanishing of the density at the extinction threshold charac-
terized formally by β =∞ is in stark contrast to the linear vanishing of the density in the
mean-field theory (βM F = 1) and, especially, with the singular vanishing of the density in
the d = 2 DP universality class, where β = 0.583(4) [5]. Remarkably, in the latter case, the
density tends to zero at the critical point with an infinite slope, while in the model studied in
this work, with a zero slope. We note, that the two-dimensional disordered CP with a short-
range dispersal, for which β = 1.23(4) [38], also displays a zero-slope vanishing similar to
the present model. Nevertheless, unlike in our model, the order-parameter exponent is finite
there, and is just barely greater than 1. The extremely smooth vanishing of the global density
may have a profound impact on the expected lifetime and extinction of finite populations. In
case of a finite exponent β , in particular for β < 1, the population may have a low risk of
extinction even fairly close to the extinction threshold due to the relatively high global density
there. This is, however, not the case for β =∞, where the mean density is rather low even
well above the threshold, and, as a consequence, the population is more easily exterminated
by demographic or environmental fluctuations.

There are several directions in which the investigations performed in this work could be
extended. From a theoretical perspective, one may pose the question whether the anomalous
behavior of order parameters found for d = 1 and d = 2 holds to be valid in higher dimen-
sions, as well. Based on the conjectured connection between different dimensional variants
of the model, we expect qualitatively similar results in three dimensions (with a possibly dif-
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ferent value of β ′
p) in the non-mean-field domain α > 9

2 , where the Harris criterion predicts
weak disorder to be relevant. However, in four dimensions and above, where weak disorder
is irrelevant for any value of the dispersal exponent α, just as for α < 3

2 d in lower dimensions,
we expect the model to exhibit mean-field critical behavior characterised with βMF = 1. With
the scope of ecological modeling, it would be interesting to analyse the model under an en-
vironmental gradient, which is typically realized for plant species living on a hillside, where
the environmental factors become more and more unfavorable with increasing or decreas-
ing altitude [40]. In modeling, this circumstance can be implemented by applying a linear
spatial trend in the rates along a given direction. Intuitively, such trends are expected to trans-
form the control-parameter dependence of global density examined in this paper to a spatial
dependence of the local density along the direction of the gradient. Moreover, the study of
environmental gradients would allow us to confront the predictions of the model with obser-
vational data accessible by satellite images on the spatial variation of the local density of a
given species near the range margin.
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