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A B S T R A C T 

Observed accretion rates onto the Milky Way and other local spirals fall short of that required to sustain star formation for 

cosmological timescales. A potential avenue for this unseen accretion is a rotating inflow in the volume-filling hot phase ( ∼ 10 
6 K ) 

of the circumgalactic medium (CGM), as suggested by some cosmological simulations. Using hydrodynamic simulations and 

a new analytic solution valid in the slow-rotation limit, we show that a hot inflow spins up as it approaches the galaxy, while 

remaining hot, subsonic, and quasi-spherical. Within the radius of angular momentum support ( ∼ 15 kpc for the Milky Way) the 

hot flow flattens into a disc geometry and then cools from ∼ 10 
6 to ∼ 10 

4 K at the disc–halo interface. Cooling affects all hot gas, 

rather than just a subset of individual gas clouds, implying that accretion via hot inflows does not rely on local thermal instability 

in contrast with ‘precipitation’ models for galaxy accretion. Prior to cooling and accretion the inflow completes ≈t cool / t ff radians 

of rotation, where t cool / t ff is the cooling time to free-fall time ratio in hot gas immediately outside the galaxy. The ratio t cool / t ff 
may thus go v ern the dev elopment of turbulence and enhancement of magnetic fields in gas accreting onto low-redshift spirals. 

We show that if rotating hot inflows are common in Milky-Way-size disc galaxies, as predicted, then signatures of the expected 

hot gas rotation profile should be observable with X-ray telescopes and fast radio burst surv e ys. 
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1  I N T RO D U C T I O N  

Observation of neutral gas surrounding the Milky Way and nearby 

spirals suggest accretion rates of 0 . 05 –0 . 2 M � yr −1 , falling short 

of the 1 –2 M � yr −1 required to sustain observed star formation 

rates (SFRs) for cosmological timescales (Sancisi et al. 2008 ; 

Putman, Peek & Joung 2012 ; Kamphuis et al. 2022 ). This ‘missing 

accretion’ is often attributed to predominantly ionized gas clumps 

with temperature ∼ 10 4 K (e.g. Voit et al. 2017 ), observable mainly 

in ultraviolet (UV) absorption. It is ho we ver unclear if this phase 

can provide the necessary fuel for star formation, due to both 

uncertainties in converting UV absorption features to net accretion 

rates (e.g. Fox et al. 2019 ), and since hydrodynamic instabilities may 

disrupt and e v aporate cool gas clumps before they reach the galaxy 

(Heitsch & Putman 2009 ; Armillotta et al. 2017 ; Afruni et al. 2023 ; 

Tan, Oh & Gronke 2023 ). An alternativ e, less e xplored possibility 

is that accretion proceeds via a subsonic inflow in the volume- 

filling hot phase ( ∼ 10 6 K) of the circumgalactic medium (CGM), 

similar to classic ‘cooling flow’ solutions discussed in the context of 

the intracluster medium (ICM, Mathews & Bregman 1978 ; Fabian, 

Nulsen & Canizares 1984 ). Such hot CGM inflows are evident in 

� E-mail: sternjon@tauex.tau.ac.il 

modern cosmological simulations such as FIRE (Stern et al. 2021b ; 

Hafen et al. 2022 ) and TNG (ZuHone et al. 2023 ; see also fig. 9 in 

Nelson et al. 2019 ). 

Since the hot CGM is expected to have a net rotation (e.g. Ro ̌skar 

et al. 2010 ; Stevens et al. 2017 ; Oppenheimer 2018 ; DeFelippis et al. 

2020 ; Huscher et al. 2021 ; Nica et al. 2022 ; Truong et al. 2021 ), an 

inflow will cause it to spin up. Stern et al. ( 2020 ) used an idealized 1- 

D model to show that in Milky Way mass haloes, such a rotating hot 

inflow will remain hot down to the radius where the rotation velocity 

approaches the circular velocity v c = 
√ 

GM ( < r ) /r , at which point 

the gas cools to ∼ 10 4 K and joins the ISM disc. Hafen et al. ( 2022 ) 

demonstrated that this picture applies, and is the dominant accretion 

mode onto z ∼ 0 Milky Way mass galaxies in the FIRE -2 cosmological 

zoom simulations (Hopkins et al. 2018 ). They further showed that 

the flow forms a coherently spinning disc prior to accretion onto the 

galaxy, and that this coherence may be a necessary condition for 

the formation of thin disc galaxies, consistent with conclusions from 

related FIRE -2 analyses (Yu et al. 2021 , 2023 ; Stern et al. 2021a , b ; 

Gurvich et al. 2023 ). It thus appears that a deep understanding of the 

physics of hot and rotating inflows could be crucial for understanding 

the evolution of local star-forming discs. 

In this paper, we complement the cosmological simulation-based 

analysis of hot and rotating CGM inflows in Hafen et al. ( 2022 ), by 

deriving an idealized, 2D axisymmetric solution for inflowing and 

© 2024 The Author(s). 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 

Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 



1712 Stern et al. 

MNRAS 530, 1711–1731 (2024) 

rotating hot CGM. Deriving an idealized solution allows identifying 

its dependence on system parameters and boundary conditions, and 

provides a basis for assessing the effects of additional physics. Our 

deri v ation is built on previous 1D hot inflow solutions, 1 which 

accounted for rotation in a highly approximate manner (Cowie, 

Fabian & Nulsen 1980 ; Birnboim & Dekel 2003 ; Narayan & 

Fabian 2011 ; Stern et al. 2020 ). These 1D studies assumed the 

centrifugal force is directed outward in the spherical radius direction, 

so the solution remained spherically symmetric. Here, we assume 

the centrifugal force is directed outward in the cylindrical radius 

direction, and derive a 2D axisymmetric solution which captures the 

transition from a quasi-spherical flow at large scales where rotational 

support is weak to a disc geometry at small scales where rotational 

support dominates. The idealized nature of our approach implies 

that insights may be applicable also to other astrophysical discs fed 

by spherical inflows, such as active galactic nucleus (AGN) discs 

in galaxy centres (e.g. Quataert & Narayan 2000 ) or protoplanetary 

discs in the centre of star-forming clouds (e.g. Fielding et al. 2015 ). 

The inflowing hot CGM solution derived herein focuses on the 

limit where feedback heating is subdominant to radiatively cooling, 

thus dif fering qualitati vely from radially static hot CGM models (also 

known as ‘thermal balance’ models, e.g. McCourt et al. 2012 ; Sharma 

et al. 2012a ; Faerman, Sternberg & McKee 2017 , 2020 ; Pezzulli, 

Fraternali & Binney 2017 ; Voit et al. 2017 ; Sormani et al. 2018 ), 

and from hot outflow models (Thompson et al. 2016 ; Schneider et al. 

2020 ). Thermal balance models assume that radiative cooling is equal 

to feedback heating, thus inhibiting the hot inflow, while outflow 

models require that feedback heating dominates. Observational 

evidence for thermal balance is strong in the ICM, since the SFR 

at the cluster centre is small relative to the inflow rate Ṁ implied 

by the X-ray emission L X . This is the well-known ‘cooling flow 

problem’, where Ṁ ≈ L X /v 
2 
c � SFR (see McDonald et al. 2018 , for 

a recent revisit). There is, however, no similar cooling flow problem 

in disc galaxies. Upper limits on L X from the hot CGM of Milky 

Way mass galaxies are a few ×10 40 erg s −1 (Li & Wang 2013 ; Li, 

Crain & Wang 2014 ; Anderson et al. 2015 ; Comparat et al. 2022 ), and 

recent results based on eROSITA data indicate the actual emission 

may be comparable to this value (Chadayammuri et al. 2022 ). For 

v c ≈ 200 km s −1 this L X implies Ṁ ≈ 1 M � yr −1 ∼ SFR , in contrast 

with Ṁ � SFR deduced for the ICM. Similarly, estimates of Ṁ in the 

Milky Way halo suggest Ṁ ≈ 0 . 1 − 1 M � yr −1 (Miller & Bregman 

2015 ; Li & Bregman 2017 ; Stern et al. 2019 ), again inconsistent with 

the Ṁ � SFR derived for the ICM. More massive spirals in which 

the hot CGM is detected in individual objects with L X � 10 41 erg s −1 

have SFR ≈ 10 M � yr −1 and hence also satisfy Ṁ ∼ SFR (Anderson, 

Churazov & Bregman 2016 ; Bogd ́an et al. 2017 ; Das et al. 2019 ). A 

cooling flow problem akin to that in the ICM does not exist in the 

CGM of disc galaxies, allowing for the possibility that the hot CGM 

is inflowing. 

The paper is organized as follows. In Section 2 , we discuss the 

structure and properties of hot and rotating CGM using analytic 

considerations, while in Section 3 , we derive a numerical solution. In 

Section 4 , we consider the effect of additional physical mechanisms 

which were not included in the basic analysis, and in Section 5 , we 

1 Also called ‘cooling flows’ in the classic ICM literature, though note that 

this term has been used also to describe flows which cool out in halo (e.g. 

McQuinn & Werk 2018 ), rather than at the disc–halo interface. The hot 

rotating inflow solution in this paper can thus be described as a ‘rotating 

cooling flow’. 

deri ve se veral observ ables of hot rotating CGM. Implications of our 

results are discussed in Section 6 and Section 7 provides a summary. 

2  T H E  STRU CTU RE  O F  H OT  A N D  ROTATING  

C G M  – A NA LY TIC  C O N S I D E R AT I O N S  

The flow equations for radiating, ideal gas with adiabatic index γ = 

5/3 subject to an external gravitational potential � are 

∇ · ( ρv ) = −
∂ ρ

∂ t 
, (1) 

(

∂ 

∂ t 
+ v · ∇ 

)

v = −
1 

ρ
∇ P − ∇ �, (2) 

(

∂ 

∂ t 
+ v · ∇ 

)

ln K = −
1 

t cool 
, (3) 

where ρ, P , and v are, respectively, the gas density, pressure, and 

velocity. We use K ≡ P ρ−5/3 for the ‘entropy’ (up to an exponent and 

a constant) and t cool for the cooling time, defined as 

t cool = 
3 

2 

P 

n 2 H � 
, (4) 

where n H is the hydrogen density, (3/2) P is the energy per unit 

volume, and � is the cooling function defined such that n 2 H � is the 

energy lost to radiation per unit volume per unit time. Equations ( 1 )–

( 3 ) neglect conduction, viscosity and magnetic fields, the potential 

effect of which will be assessed below. We also do not include a 

heating term in equation ( 3 ) since we search for a solution in the 

limit that heating is subdominant to cooling (see Introduction). 

2.1 Hot CGM without angular momentum 

We start with a brief re vie w of steady-state ( ∂ / ∂ t = 0) hot inflow so- 

lutions without angular momentum, which were studied e xtensiv ely 

mainly in the context of the inner ICM (classic ‘cooling flows’, e.g. 

Mathews & Bregman 1978 ) and adapted to galaxy-scale haloes by 

Stern et al. ( 2019 ). When angular momentum is neglected spherical 

symmetry can be assumed, and hence equations ( 1 )–( 3 ) reduce to 

4 πr 2 ρv r = Ṁ , (5) 

1 

2 
v 2 r = −

1 

ρ

d ( P th + P turb ) 

d r 
−

v 2 c 

r 
, (6) 

v r 
d ln K 

d r 
= −

1 

t cool 
, (7) 

where r is the spherical radius, Ṁ is the mass flow rate (constant 

with radius in steady state, down to the radius where stars form), 

P turb = ρσ 2 
turb is the turbulent pressure, and σ turb is the turbulent 

velocity. Multiplying both sides of equation ( 7 ) by the free-fall time 

t ff = 
√ 

2 r/v c (defined as in McCourt et al. 2012 ), we get 
√ 

2 v r 

v c 

d ln K 

d ln r 
= −

t ff 

t cool 
. (8) 

This equation indicates that if t cool � t ff , then either the flow is 

isentropic with dln K /d r ≈ 0 as in the Bondi ( 1952 ) solution, or that 

the inflow velocity is small, that is, 

v r 

v c 
∼

(

t cool 

t ff 

)−1 

	 1 . (9) 

The solutions discussed here correspond to the latter type of solutions 

where v r 	 v c , known as cooling flow solutions in the ICM literature. 

Hydrodynamic simulations show that initially static gas with t cool �
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t ff converges onto a cooling flow solution within a timescale t cool , 

rather than onto an isentropic flow (e.g. Stern et al. 2019 ). 

To derive an analytic approximation, one can neglect in equation 

( 6 ) the small inertial term v 2 r and the turbulent term which is also 

expected to be small P turb ∼ ( v r / v c ) 
2 P th (see Section 4.2 below). 

Further approximating the gravitational potential as isothermal with 

some constant v c then gives (see section 2 in Stern et al. 2019 ): 

c 2 s = 
10 

9 
v 2 c , 

T = 2 . 0 × 10 6 v 2 c , 200 K, 

n H = 0 . 8 × 10 −3 r −1 . 5 
10 v c , 200 Ṁ 

0 . 5 
1 � 

−0 . 5 
−22 cm 

−3 , 

t cool = 370 r 1 . 5 10 v c , 200 Ṁ 
−0 . 5 
1 � 

−0 . 5 
−22 Myr , 

−v r = 
r 

t cool 
= 27 r −0 . 5 

10 v −1 
c , 200 Ṁ 

0 . 5 
1 � 

0 . 5 
−22 km s −1 , 

−M r = 

√ 
9 

20 

t ff 

t cool 
= 0 . 13 r −0 . 5 

10 v −2 
c , 200 Ṁ 

0 . 5 
1 � 

0 . 5 
−22 , (10) 

where c s is the sound speed, T is the temperature, M r ≡ v r /c s is 

the radial Mach number of the flow, and we normalized by the 

follo wing numerical v alues: r 10 = r/ 10 kpc , v c , 200 = v c / 200 km s −1 , 

Ṁ 1 = Ṁ / 1 M � yr −1 , and � −22 = �/ 10 −22 erg cm 
3 s −1 . Equation 

( 10 ) treats Ṁ as the free parameter, though one can also treat the 

CGM mass or density profile normalization as a free parameter, and 

then Ṁ follows from the density relation in equation ( 10 ). 

The numerical values used in equation ( 10 ) are appropriate for the 

Milky Way CGM: Ṁ is taken to be roughly half the SFR of ≈ 1 . 5 −
2 M � yr −1 (Bland-Hawthorn & Gerhard 2016 ), as expected in steady 

state where the ISM mass is constant with time, and ≈ 40 per cent 

of the stellar mass formed is ejected back into the ISM via winds 

and supernovae (e.g. Lilly et al. 2013 ). This Ṁ is also consistent 

with X-ray absorption and emission constraints on the hot CGM of 

the Milky Way (see Introduction). The value of � is appropriate 

for T = 2 × 10 6 K gas with metallicity Z �/3, as measured for the 

Milky Way CGM (Miller & Bregman 2015 ). Equation ( 10 ) reveals 

several properties of the non-rotating solution. The inflow velocity 

v r is equal to r / t cool , so the accretion time equals the cooling time, as 

expected in a cooling flow. This also implies that the entropy drops 

linearly with decreasing radius (see equation 7 ). Additionally, the 

inflow has a temperature which is independent of radius and roughly 

equal to the halo virial temperature, despite radiative losses. This is 

a result of compressive heating during the inflow balancing radiative 

cooling. 

The solution in equation ( 10 ) also highlights that the parameter 

t cool / t ff sets the Mach number of the flow, and thus also the sonic 

radius of the flow where | M r | = 1: 

r sonic ≈ r( t cool = 0 . 7 t ff ) = 0 . 17 v −4 
c , 200 Ṁ 1 � −22 kpc , (11) 

where we approximated 
√ 

9 / 20 ≈ 0 . 7. Note that near and within the 

sonic radius the assumption of a quasi-hydrostatic flow is invalid, 

so the estimate of r sonic is approximate. Equation ( 11 ) indicates that 

r sonic is well within the galaxy for Milky Way parameters, though it 

can be on CGM scales in lower mass galaxies where v c is lower, or at 

higher redshift where Ṁ is higher. In this paper, we focus on systems 

with r sonic smaller than the galaxy scale, so the quasi-hydrostatic 

approximation is valid throughout the CGM. 

Another important scale of cooling flows is the cooling radius 

r cool at which t cool equals the system age or the time since the last 

heating event. This scale is not part of the steady-state solution, 

since a cooling flow develops on a timescale t cool and thus steady 

state is achieved only at r < r cool . A time-dependent solution for 

how the outer boundary of the inflow at r ∼ r cool expands as r cool 

gro ws was deri v ed by Bertschinger ( 1989 ). F or the abo v e parameters 

t cool = 10 Gyr occurs at r = 110 kpc , so when necessary we assume 

r cool = 100 kpc . The present study ho we ver focuses on smaller radii 

of r � 40 kpc where the dynamical effects of angular momentum are 

most pronounced, so t cool is short relative to cosmological timescales 

and thus steady state is more likely to be achieved. This inner CGM 

region is also less susceptible to cosmological effects not included 

in our analysis, such as non-spherical accretion and satellite galaxies 

(Fielding et al. 2020 ). 

2.2 Rotating hot CGM inflows – the circularization radius 

Given some net angular momentum in the hot gas, for example due 

to torques applied by neighbouring haloes, the rotation velocity will 

increase as the gas inflows. We can hence define a circularization 

radius R c as the radius where the rotational velocity equals the circular 

velocity and the flow becomes rotationally supported: 

R c ≡ R( v φ = v c ) , (12) 

where here and henceforth we use R for the cylindrical radius (and r 

for the spherical radius). One can also express R c using the specific 

angular momentum of the hot gas j : 

j = v c ( R c ) R c . (13) 

Cosmological considerations can be used to estimate a typical R c . 

In a � CDM cold dark matter universe, a given dark matter halo is 

expected to have a spin parameter λ which on average equals: 

λ ≡
J 

√ 
2 M vir v vir r vir 

∼ 0 . 035 (14) 

(e.g. Bullock et al. 2001 ; Rodr ́ıguez-Puebla et al. 2016 ), where 

M vir , v vir , r vir , and J correspond to the halo mass, virial velocity, 

virial radius, and angular momentum, correspondingly. Assuming 

the hot CGM has roughly the same spin as the dark matter halo 

as suggested by cosmological simulations (e.g. Stewart et al. 2013 , 

2017 ; DeFelippis et al. 2020 ; Hafen et al. 2022 ), and assuming that 

near the disc v c = f v c v vir with f v c � 1, we get 

R c ≈
√ 

2 λf −1 
v c 

r vir ∼ 15 f −1 
v c 

(

r vir 

300 kpc 

)

kpc . (15) 

Comparison of equation ( 15 ) with equation ( 11 ) implies that R c �
r sonic in Milky Way haloes. Thus, a hot CGM inflow in a Milky 

Way halo is expected to become rotation-supported well before it 

transitions into a supersonic flow. This conclusion is also apparent if 

we estimate the radial Mach number near R c . Using equation ( 10 ), 

we have 

t cool 

t ff 
( R c ) = 6 . 3 

(

R c 

15 kpc 

)0 . 5 

v 2 c , 200 Ṁ 
−0 . 5 
1 � 

−0 . 5 
−22 , (16) 

and hence 

M r ( R c ) ≈ 0 . 7( t cool /t ff ) 
−1 ≈ 0 . 1 . (17) 

The difference between CGM with r sonic < R c and CGM with r sonic 

> R c was discussed by Stern et al. ( 2020 ), and is related to the classic 

distinction between ‘hot mode’ and ‘cold mode’ accretion (White & 

Rees 1978 ; Birnboim & Dekel 2003 ; Fielding et al. 2017 ). In this 

paper, we focus on systems with r sonic < R c so the hot accretion mode 

dominates. 
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2.3 Rotating hot CGM inflows – fluid equations and outer 

boundary condition 

Accounting for angular momentum, and assuming steady state and 

axisymmetry, the r and θ components of the momentum equation ( 2 ) 

reduce to 

∂ P 

∂ r 
= −ρ

v 2 c 

r 
+ ρ�2 r sin 2 θ, (18) 

∂ P 

∂ θ
= ρ�2 r 2 sin θ cos θ, (19) 

where θ is the angle relative to the rotation axis and � = v φ /( r sin θ ) is 

the angular frequency ( v r , v θ , v φ are the velocity vector components). 

We neglect the inertial v 2 r term since its magnitude relative to the 

other terms is of order M 
2 
r ≈ ( t cool /t ff ) 

−2 . We similarly neglect the 

v 2 θ and v r v θ terms, since motion in the θ direction is a result of the 

combination of radial and rotational motions, and hence v θ is of 

the same order as v r or smaller. The momentum equation in the φ

direction is 

v r 
∂ 

∂ r 
( �r 2 sin 2 θ ) = −v θ

∂ 

r ∂ θ
( �r 2 sin 2 θ ) , (20) 

which indicates that the specific angular momentum j = �r 2 sin 2 θ

is conserved along flowlines, as expected under our assumption of 

axisymmetry. The mass and entropy equations ( 1 ) and ( 3 ) reduce to 

1 

r 2 

∂ 

∂ r 
( ρv r r 

2 ) + 
1 

r sin θ

∂ 

∂ θ
( ρv θ sin θ ) = 0 , (21) 

v r 
∂ ln K 

∂ r 
+ v θ

∂ ln K 

r ∂ θ
= −

1 

t cool 
. (22) 

At large radii where the centrifugal terms in equations ( 18 ) and 

( 19 ) are small, the solution will approach the spherical no-angular 

momentum solution discussed in Section 2.1 . In this limit, we also 

expect v θ → 0, so equation ( 20 ) implies that angular momentum is 

independent of radius, that is, it preserves the relation between j and 

θ that exists in the outer boundary of the flow at r ∼ r cool . We denote 

this boundary condition as 

j 1 ( r, θ ) = v c ( R c , max ) R c , max sin 2 θF ( θ ) , (23) 

where R c, max ≡ R c ( θ = π /2) and thus v c ( R c, max ) R c, max is the specific 

angular momentum at θ = π /2 (see equation 13 ), while F is some 

function that satisfies F ( π /2) = 1. The subscript ‘1’ denotes that this 

relation is valid at large radii where v θ → 0. Equi v alently, the angular 

frequency at large radii is 

�1 ( r , θ ) = 
v c ( R c , max ) R c , max 

r 2 
F ( θ ) . (24) 

Equation ( 23 ) implies that the circularization radius of a flowline 

which originates at polar angle θ is ≈R c, max sin 2 θF ( θ ), with this 

expression being exact for constant v c . We show below that flowlines 

accrete onto the disc at a cylindrical radius equal to their circular- 

ization radius. To a v oid flowline intersection, sin 2 θF ( θ ) is assumed 

to monotonically increase at 0 ≤ θ ≤ π /2, and thus the mid-plane 

flowline has the largest circularization radius. 

The function F can be estimated using the results of non-radiative 

cosmological simulations, which provide the initial conditions (ICs) 

in the hot gas before a radiati vely dri ven inflo w de velops. Sharma, 

Steinmetz & Bland-Hawthorn ( 2012b ) found that � is weakly 

dependent on θ in a sample of 10 11 − 10 13 M � haloes in such 

simulations, with differences of ≈ 15 per cent between the mid- 

plane and the rotation axis. This suggests F ( θ ) ≈ 1, so we use F ( θ ) = 

1 as our fiducial value. 

We note that the Sharma et al. ( 2012b ) simulations also suggest 

j ∝ r 0.5 − r 0.7 at 0.1 < r / r vir < 1 (see their fig. 2 ), that is, the initial 

specific angular momentum profile of the hot gas increases outwards. 

We thus expect this increasing j profile to be replaced by a flat j ∝ r 0 

profile (equation 23 ) once the inflow develops. Assuming the outer 

boundary of the inflow expands with time as r cool grows (see Section 

2.1 ), then we expect the normalization of the j profile and hence R c, max 

to increase with time, as the inflow originates from larger radii where 

j is larger. This expected evolution however occurs on a cosmological 

timescale, and thus does not invalidate our steady-state assumption in 

the inner CGM which is achieved on the shorter cooling timescale at 

small CGM radii. Thus, for the purpose of deriving this steady-state 

solution in the inner CGM we treat R c, max as a constant. 

2.4 Analytic solution in the slow rotation limit 

In this section, we derive a solution to equations ( 18 )–( 22 ) which 

is accurate to lowest order in the effects of rotation. A similar 

approach was employed to study meridional flows in the Sun (Sweet 

1950 ; Tassoul 2007 ) and in Bondi flows with r sonic � R c (Cassen & 

Pettibone 1976 ). 

The dynamical effects of rotation on hot CGM inflows increase 

with decreasing r , and become dominant at r � R c, max . To find the 

solution in the slow rotation limit we thus keep only terms which 

depend on R c, max / r to the lowest order. It is straightforward to show 

that there are no terms of order ( r / R c, max ) 
−1 , since the lowest order 

of � is proportional to ( r / R c, max ) 
−2 (equation 24 ) and rotation enters 

the other flow equations only via the term �2 r 2 (equations 18 and 

19 ). We thus define a perturbation parameter 

ε = 

(

r 

R c , max 

)−2 

, (25) 

and search for a solution of the form 

P 1 ( r, θ ) = P 0 ( r) [ 1 + ε( r) f P ( θ ) ] , 

ρ1 ( r, θ ) = ρ0 ( r) 
[

1 + ε( r) f ρ( θ ) 
]

, 

v r, 1 ( r, θ ) = v r, 0 ( r) 
[

1 + ε( r) f v r ( θ ) 
]

, 

v θ, 1 ( r, θ ) = v r, 0 ( r ) ε( r ) f v θ ( θ ) , 

�1 ( r, θ ) = 
v c 

R c , max 
ε( r) . (26) 

Here, a subscript ‘0’ denotes the non-rotating solution (equation 10 ), 

a subscript ‘1’ denotes the approximate solution which we wish to 

find, and f P , f ρ, f v r , f v θ are some functions of θ . The moti v ation 

for the form of v θ , 1 will become apparent below. The solution for 

�1 is equi v alent to equation ( 24 ) assuming F ( θ ) = 1 as suggested by 

non-radiative cosmological simulations. The implications of other 

forms of F ( θ ) on the solution are discussed below. 

We emphasize that the assumption of mild rotation is on top 

of the assumption of quasi-hydrostatic conditions, which allowed 

neglecting the quadratic velocity terms. Together, these assumptions 

imply that we assume the following conditions on timescales in the 

system: 

t sc ≈ t ff , t cool � t ff , t 2 rot � t 2 ff , (27) 

where t sc is the sound crossing time which is approximately equal to 

t ff since the flow is quasi-hydrostatic, and t rot = �−1 is the rotation 

time. The squares on the relation between t rot and t ff follow from the 

relative size of the neglected centrifugal terms, which are of order 

( �r / v c ) 
2 ∼ ( t rot / t ff ) 

−2 (equations 18 and 19 ). 

Using equation ( 26 ) in equation ( 19 ), and keeping only first-order 

terms in ε, we get 

P 0 
d f P 

d θ
= ρ0 v 

2 
c sin θ cos θ , (28) 
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where P 0 can be derived from P = (3 / 5) ρc 2 s and equation ( 10 ): 

P 0 = 
2 

3 
ρ0 v 

2 
c . (29) 

We thus get 

f P = 
3 

4 
sin 2 θ + C , (30) 

where C is a constant of integration to be determined below. Next, 

the first-order terms in equation ( 18 ) give 

f P P 0 
d ( ln ε) 

d r 
+ f P 

d P 0 

d r 
= −f ρρ0 

v 2 c 

r 
+ ρ0 

v 2 c 

r 
sin 2 θ . (31) 

Using equations ( 10 ), ( 25 ), and ( 29 ) then gives 

f ρ = 
11 

4 
sin 2 θ + 

7 

3 
C . (32) 

We can also define T 1 = T 0 (1 + εf T ). Since T ∝ P / ρ, we get to first 

order in ε that 

f T = f P − f ρ = −2 sin 2 θ −
4 

3 
C , (33) 

and similarly defining K 1 = K 0 (1 + εf K ) and using K ∝ P / ρ5/3 , we 

get 

f K = f P −
5 

3 
f ρ = −

23 

6 
sin 2 θ −

26 

9 
C . (34) 

Equations ( 30 ), ( 32 ), and ( 33 ) indicate that the pressure and density 

increase when traversing from the rotating axis to the mid-plane at 

a fixed r , while the temperature decreases. The increase in pressure 

in the mid-plane is due to the higher density, which o v ercomes the 

lo wer ef fecti ve gravity in the mid-plane which tends to decrease the 

pressure. 

In the entropy equation ( 22 ), the second term on the left-hand side 

is of order ε2 (see equation 26 ) and can be neglected. The first-order 

terms of this equation are hence 

v r, 0 f K 
∂ ln ε

∂ r 
+ v r, 0 f v r 

∂ ln K 0 

∂ r 
= −

1 

t cool , 0 

[

f ρ − (1 + l) f T 
]

, (35) 

where we use t cool ∝ T / ρ� , and approximate the temperature 
dependence of the cooling function as a power-law � = � ( T 0 , 

Z )( T / T 0 ) 
−l . Further using K 0 ∝ T 0 /ρ

2 / 3 
0 ∝ r and t cool, 0 = −r / v r , 0 

based on equation ( 10 ), and the abo v e relations for f K , f ρ , f T , we get 

f v r = 

(

−
35 

12 
+ 2 l 

)

sin 2 θ −
(

−
19 

9 
+ 

4 

3 
l 

)

C ≈ −
23 

12 
sin 2 θ −

13 

9 
C . (36) 

In the approximation on the right we use l = 0.5, appropriate for gas 

with T ∼ 10 6 K and a characteristic CGM metallicity of Z ≈ 0.3 Z �
(Miller & Bregman 2015 ). Last, we use the continuity equation ( 21 ) 

to derive v θ , which we cast in the form v θ, 1 = v r, 0 εf v θ (see equation 

26 ). Keeping only first-order terms, we get 

ρ0 εv r, 0 

r sin θ

∂ 

∂ θ

(

f v θ sin θ
)

= −
f ρ + f v r 

r 2 

∂ 

∂ r 

(

ερ0 v r, 0 r 
2 
)

. (37) 

Using the definition of ε and that ρ0 v r , 0 r 
2 is independent of r , we 

then get 

∂ 

∂ θ

(

sin θf v θ
)

= 2 sin θ ( f ρ + f v r ) , (38) 

so 

f v θ = 
1 

sin θ

∫ (
5 

3 
sin 3 θ + 

16 

9 
C sin θ

)

d θ

= 
1 

9 sin θ

[

cos θ
(

5 cos 2 θ − 15 − 16 C 
)

+ D 
]

, (39) 

where D is another constant of integration. We further require 

v θ ( π /2) = v θ (0) = 0, in order to a v oid a discontinuity at the rotation 

axis and to enforce symmetry with respect to the mid-plane. This 

gives D = 0 and C = −5 / 8, and hence 

f v θ = −
5 

18 
sin 2 θ . (40) 

Note that since v r , 0 is ne gativ e, then v θ, 1 = v r, 0 f v θ ε is positive for θ

< π /2 and ne gativ e for θ > π /2, indicating that rotation diverts the 

flo w to wards the disc plane, as expected. 

To summarize our solution we use the derived C = −5 / 8 in 

equations ( 30 ), ( 32 ), ( 33 ), and ( 36 ) and get 

P 1 = P 0 ( r ) 

( 

1 + 
R 

2 
c , max 

r 2 

(

3 

4 
sin 2 θ −

5 

8 

)

) 

, 

ρ1 = ρ0 ( r ) 

( 

1 + 
R 

2 
c , max 

r 2 

(

11 

4 
sin 2 θ −

35 

24 

)

) 

, 

T 1 = T 0 

( 

1 −
R 

2 
c , max 

r 2 

(

2 sin 2 θ −
5 

6 

)

) 

, 

v r, 1 = v r, 0 ( r ) 

( 

1 −
R 

2 
c , max 

r 2 

(

23 

12 
sin 2 θ −

65 

72 

)

) 

, 

v θ, 1 = −v r, 0 ( r ) ·
5 

18 

R 
2 
c , max 

r 2 
sin (2 θ ) , 

�1 = 
v c R c , max 

r 2 
, (41) 

where the zero-order terms are given by equation ( 10 ). For a given 

v c , the solution in equation ( 41 ) depends on three parameters: Ṁ and 

� ( T 0 , Z ) (or equi v alently CGM mass and metallicity) which set the 

non-rotating solution, and R c, max which sets the corrections due to 

rotation. 

The solution in equation ( 41 ) is for an outer boundary condition 

in which �1 is independent of θ (i.e. F ( θ ) = 1). In Appendix A , 

we gi ve se veral solutions for �1 ( θ ) ∝ sin n ( θ ) with integer n , that 

is, the rotation frequency at the outer boundary increases with angle 

from the rotation axis. In these solutions, the θ -dependent term in 

the solution for P 1 is multiplied by a factor of sin 2 n ( θ )/( n + 1) 

relative to that in equation ( 41 ), while the corresponding term for 

T 1 is multiplied by a factor of sin 2 n ( θ ) · ( n + 2)/( n + 1). Thus, the 

result abo v e that P and ρ increase towards the mid-plane, while T 

decreases, holds also when �1 increases with θ . These deviations 

from spherical symmetry ho we ver tend to become weaker, and more 

concentrated near the mid-plane, with increasing n . 

2.5 Number of revolutions in CGM inflows 

The number of revolutions around the rotation axis completed by 

a flowline can be derived from the ratio v φ / v r implied by equation 

( 41 ): 

v φ

v r 
= 

�r sin θ

v r 
= 

v c R c , max sin θ

rv r, 0 
( 1 + O( ε) ) . (42) 

Using v r, 0 = r/t cool (1 + O( ε)) and t ff = 
√ 

2 r/v c , we thus get 

v φ

v r 
= 

√ 

2 
t cool 

t ff 

R c , max 

r 
sin θ ( 1 + O ( ε) ) . (43) 

It is thus evident that in solutions with larger t cool / t ff the flowlines are 

more tightly wound, that is, the flow rotates more prior to accreting 

onto the galaxy. The total number of radians a flowline rotates can 
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be approximated with the following integral 

∫ 

�d t = 

∫ 
v φ

r sin θ

d r 

v r 
≈

√ 

2 

∫ 
t cool 

t ff 

R c , max 

r 2 
dr ≈ 2 

t cool 

t ff 
( R c , max ) , 

(44) 

where in the first approximation we used equation ( 43 ) and in the 

second approximation we used t cool / t ff ∝ r 1/2 (equation 10 ) and 

inte grated o v er the range r / R c, max = 1–7. The upper bound of this 

range corresponds to the cooling radius (see Section 2.1 ), though 

since the integrand scales as r −3/2 most of the rotation happens near 

R c, max , and the choice of upper limit does not significantly affect the 

result. Also, the lower bound of this range implies that neglecting 

the O ( ε) term is not formally justified. Below we validate this 

approximation with a more accurate numerical calculation. Equation 

( 44 ) suggests that the number of rotations is set by t cool / t ff near R c, max , 

where t cool / t ff is estimated by the non-rotating solution (equation 10 ). 

This can be understood intuitively since the cooling time tracks the 

inflow time ( t cool = r / | v r | ) while the free-fall time tracks the rotation 

time near R c, max ( t ff ≈ r / v c = r / v φ( R c, max )). For the Milky Way halo 

in which t cool / t ff ( R c, max ) ≈ 6 (equation 16 ), we get that an accreting 

element rotates ≈12 radians prior to accretion. Furthermore, since 

t cool / t ff increases with v c (see equation 10 ), we generally expect the 

amount of rotation to increase with galaxy mass. 

It is informative to extend the result in equation ( 44 ) also to 

galaxies with halo masses 	 10 12 M �, where t cool < t ff and the 

volume-filling phase is cool and in free-fall with v r ≈ −v c (e.g. 

Stern et al. 2020 ). Using −v r = min ( r / t cool , v c ) in equation ( 44 ) we 

thus get 

∫ 

�d t ≈ max (2 
t cool 

t ff 
( R c , max ) , 1) . (45) 

Equation ( 45 ) demonstrates that only in the hot accretion mode 

where pressure-support slows down accretion relative to free-fall, the 

CGM has time to rotate significantly before accreting. In contrast, 

free-falling cold flows rotate merely by ≈1 radian prior to accretion. 

The ratio t cool / t ff at r = R c, max fully determines the hot rotating 

inflow solution, up to a scaling of the physical dimensions, as we 

show in Appendix B using non-dimensional analysis of the flow 

equations. We similarly show that the solution is fully determined up 

to a scaling by the ratio Ṁ / Ṁ crit , where Ṁ crit is the critical accretion 

rate in which t cool / t ff = 1 at r = R c, max (Stern et al. 2020 ). 

2.6 Disc accretion radius 

The distribution of disc radii at which gas accretes is an important 

input parameter for chemical evolution models and dynamical 

models of galaxy discs (e.g. Sch ̈onrich & Binney 2009 ; Krumholz 

et al. 2018 ; Wang & Lilly 2022 ). In this section, we derive this 

distribution for hot and rotating CGM inflows. 

Since the flow is spherical at large radii it holds that 

d Ṁ 

d θ0 
= 

1 

2 
Ṁ sin θ0 , (46) 

where we use θ0 to denote the polar angle of a flowline at large 

radii. In hot rotating CGM inflows flowlines both conserve angular 

momentum (equation 20 ), and accrete onto the disc at their circular- 

ization radius R c ( θ0 ) (see numerical calculation below). The value 

of R c can be estimated from equation ( 23 ), which for constant v c and 

F ( θ0 ) = 1 implies 

R c ( θ0 ) = R c , max sin 2 θ0 . (47) 

We thus get 

Ṁ disc ( < R) = 2 

∫ θ0 ( R) 

0 

d Ṁ 

d θ ′ 
0 

dθ ′ 
0 = Ṁ (1 − cos θ0 ) 

= 

{

Ṁ 
(

1 −
√ 

1 − R/R c , max 

)

R ≤ R c , max 

Ṁ R ≥ R c , max 

}

, (48) 

where the factor of 2 before the integral accounts for the two sides of 

the disc. Equation ( 48 ) indicates that the median accretion radius is 

(3/4) R c, max , or 11 . 25 kpc for R c , max = 15 kpc , suggesting accretion 

weighted towards large disc radii. A similar conclusion of accretion 

mainly from large disc radii was deduced in FIRE cosmological 

simulations of Milky Way-like galaxies, in which the accretion is 

also dominated by hot rotating inflows (Trapp et al. 2022 ). 

3  T H E  STRU CTU RE  O F  H OT  A N D  ROTATING  

C G M  – N U M E R I C A L  S O L U T I O N  

In this section, we derive numerical solutions for hot and rotating 

CGM inflows. To this end, we run 3D hydrodynamic simulations 

until they converge onto a steady state, where mass continuously 

flows through the hot CGM, cools and accretes onto the disc, and 

forms stars. Using this method to find the numerical solution has 

the advantage that it demonstrates that the solution is an attractor. 

The properties of the numerical solution are then compared to the 

approximate analytic solution derived in the previous section. 

3.1 Setup 

We use the meshless finite-mass (‘MFM’) mode of GIZMO (Hopkins 

2015 ), a Lagrangian method with no inter-element mass flux, which 

enables us to track the history of each resolution element. The 

code accounts for self-gravity of the gas and stars, to which we 

add an acceleration term −( v 2 c /r) ̂ r with v c = 200 km s −1 . This 

term approximates the gravitational field in the inner halo due to 

unmodelled dark matter and stars. Optically thin radiative cooling 

is calculated using the z = 0 tables from Wiersma, Schaye & 

Smith ( 2009 ) down to T = 10 4 K, while optically thick radiative 

cooling to lower temperatures is disabled. All gas resolution elements 

with n SF > 10 cm 
−3 are converted into stellar particles. All stellar 

feedback processes are disabled. 

The density, temperature, and radial velocity of gas is initialized 

with a spherical, non-rotating hot inflow solution from Stern et al. 

( 2019 ), to which we add rotation corresponding to some R c, max . 

This solution is found by integrating the 1D spherically symmetric 

and steady-state flow equations, starting at r sonic = 0 . 1 kpc and 

proceeding outward. The integration uses the same v c = 200 km s −1 

and cooling function with Z = 0 . 3 Z � as in the simulation. The 

1D solution has Ṁ = 1 M � yr −1 and at radii r � r sonic is well 

approximated by equation ( 10 ), with T = 2 × 10 6 K and � −22 = 0.3. 

We then randomly select initial positions in ( r , φ, θ ) for the initial 

location of gas resolution elements, such that the radial mass profile 

reproduces that in the spherically symmetric solution. To add a net 

rotation to the gas, all resolution elements at r > R c, max are initialized 

with v φ = 200 sin θ ( r/R c , max ) 
−1 km s −1 , with R c , max = 15 kpc . This 

addition of rotation implies that the ICs are not in steady state, since 

the initial pressure structure does not account for rotation support. We 

sho w belo w that the simulation adjusts to a ne w steady state within a 

cooling time of < 1 Gyr , with a somewhat larger Ṁ of 1 . 7 M � yr −1 . 

The mass of individual resolution elements is set to m b = 1000 M �
for elements at r < 100 kpc . This mass resolution implies a charac- 

teristic size of ≈ (3 m b / 4 πn H ) 
1 / 3 ≈ 0 . 2 n 

−1 / 3 
−3 kpc for typical hot gas 
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Figure 1. Temperature map (colour) and flowlines (black lines) in a hot rotating CGM inflow. Left and middle panels show the solution in the cylindrical R 

− z and the x − y planes. The right panel depicts three specific flowlines as 3D ‘tubes’, where the cross-section along each tube scales as ( ρv) −1 and hence 

illustrates the compression of the flow. Note that the hot ∼ 10 6 K phase inflows along helical paths, and cools to ∼ 10 4 K just prior to joining the ISM disc. 

densities of ≈ 10 −3 n −3 cm 
−3 near the disc scale, and smaller sizes 

for the denser cool gas. For comparison, the height of the ≈ 10 4 K 

gaseous disc which forms from the cooling of the hot gas is ≈ 1 kpc . 2 

Beyond 100 kpc , the gas does not participate in the inflow since 

cooling times are too long, but needs to be included in the simulation 

in order to confine gas at smaller radii from expanding outward (in a 

realistic halo this confinement is achieved either by such hot gas with 

a long cooling time or by the ram pressure of infalling gas outside the 

accretion shock). To a v oid investing too much computing time in this 

confining outer gas, we sample the spherically symmetric solution 

beyond 100 kpc with resolution elements which masses increase by a 

factor of three every factor of 
√ 

2 in radius, out to 3 . 2 Mpc where the 

sound-crossing time equals 10 Gyr . In total, the CGM is simulated 

with 3.1 × 10 7 resolution elements. 

We also add a galaxy to the ICs, using the MAKEDISK code 

(Springel, di Matteo & Hernquist 2005 ) with the following pa- 

rameters. The stellar disc is initialized with mass M ∗ = 10 8 M �, 

cylindrical radial scale length of R d = R c , max / 4 = 3 . 75 kpc spanning 

0.03 − 4 R d , and a vertical scale length of 0.1 R d . The gaseous disc has 

a mass M disc gas = 0.2 M ∗, and the same exponential distribution as 

stars, and the bulge has a mass M bulge = 2 × 10 7 M � and scale length 

0 . 1 kpc . We include in the MAKEDISK calculation the same isothermal 

gravitational field used in the hydro simulation, and stellar and gas 

particles in the disc have the same m b = 1000 M � resolution as in the 

CGM. The choice of galaxy parameters is inconsequential as long 

as the initial mass is small compared to the accreted mass, which at 

t = 1 Gyr is Ṁ t ∼ 10 9 M �. The simulation is run for 3 . 5 Gyr , with 

snapshots saved every 5 Myr . At all times and radii, the gravitational 

field is dominated by the included isothermal gravitational field with 

v c = 200 km s −1 , rather than by the simulated gas and stars. 

Our setup is loosely based on the setup of Su et al. ( 2019 , 2020 ), 

which simulated the behaviour of gas in group and cluster-sized 

haloes. A similar setup to ours for Milky Way mass haloes was 

employed by Kaufmann et al. ( 2006 ) using a smoothed particle 

hydrodynamics code. This code was later found to o v erpredict 

2 This follows since the disc height to radius ratio is ≈c s / v c , and hence for a 

gaseous disc temperature 10 4 K we get ( c s /v c ) R c , max ≈ 1 kpc . 

artificial clumping of the cool gas (Agertz et al. 2007 ; Kaufmann 

et al. 2009 ). Our use of the MFM code addresses this numerical 

issue (see Hopkins 2015 , for code tests). Additionally, since in our 

simulation all the hot gas cools once it inflows past R c, max (see 

below), the numerical details may affect the distribution of clumps 

and their typical sizes, but not the total mass which cools. 

3.2 Ov er view of results 

Fig. 1 shows temperature maps in the simulation at t > 1 Gyr , after 

the hot CGM phase converged onto an axisymmetric steady-state 

solution within r ≈ 40 kpc . Steady state and axisymmetry are evident 

from the small dispersion in hot CGM properties with time and φ, as 

sho wn belo w. The left and middle panels, respecti vely, sho w the R 

− z and the x − y planes (mass-weighted o v er −10 < z < 10 kpc ). 

The figure shows that the hot gas fills the volume except in the disc 

region at R � R c , max = 15 kpc and | z | � 1 kpc . Black lines depict 

flowlines in the two planes, derived as described below. Three of 

these flowlines are also depicted in the right panel as 3D ‘tubes’, 

rendered using the MAYAVI software (Ramachandran & Varoquaux 

2011 ) on snapshot data. The tube cross-section scales as ( ρv) −1 and 

thus illustrates the compression of the flow. 

Fig. 1 shows that the flowlines in the hot gas are helical, with the 

hot gas spiraling onto the galaxy. While inflowing, the gas initially 

remains hot with T ∼ T vir , and then cools to ∼ 10 4 K just prior 

to joining the ISM disc. This cooling is accompanied with strong 

compression of the flow, as evident from the sharp decrease in the 

width of the flow tubes in the right panel (tube thickness should 

drop to � 0.01 pixels upon cooling according to the ( ρv) −1 scaling, 

though is plotted with one pixel for visibility). 

Fig. 2 plots radial shell-averaged velocities in the simulation after 

steady state is achieved. The top panel shows that at radii r > R c, max 

the sound speed c s (red) approximately equals v c (grey), indicating 

the hot gas is to first order supported against gravity by thermal 

pressure, as indicated also by the slo w inflo w velocities of −v r 	
v c (magenta line). At radii r > R c, max , the rotation velocity increases 

inward roughly as r −1 due to conservation of angular momentum, 

reaching v φ = v c at R c, max . Within R c, max the gas is fully rotationally 

supported and cool with c s 	 v c , and the radial velocity drops to zero. 
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Figure 2. Radially averaged kinematics and geometry of a hot rotating CGM 

inflo w. Top: lines sho w sound speed (red), rotation velocity (blue), and inflow 

velocity (magenta). Bottom: black line shows the average absolute height 

abo v e the mid-plane. Rotation velocity increases inward due to conservation 

of angular momentum. At radii r < R c, max , where the inflow becomes fully 

rotation supported ( v φ = v c ) the hot inflow cools out, the inflow halts ( | v r | 
→ 0), and the geometry transitions from quasi-spherical to a disc. 

The associated change in geometry is evident in the bottom panel, 

which plots the average absolute height abo v e the mid-plane | z| in 
different radial shells. The gas distribution is close to spherically 

symmetric at r > R c, max , in contrast with a thin disc distribution at r 

< R c, max . 

3.3 Accretion of the hot CGM onto the cool ISM 

Fig. 3 provides a Lagrangian view of hot inflowing CGM, by plotting 

median properties of resolution elements versus time since the 

element was at r = 40 kpc . The properties depend on the initial polar 

angle of the flowline θ0 , so for each θ0 in (0.1 π , 0.3 π , 0.4 π , 0.5 π ) 

we group all resolution elements that reside at 40 < r < 41 kpc and 

| θ − θ0 | < 0.025 π at times 1 < t < 1 . 5 Gyr . Then, for each θ0 group 

we plot the median and 16–84 percentile ranges of r , θ , T , and v φ . 

The 16–84 percentile range thus accounts for the dispersion both 

with φ and with t , and specifically a small 16–84 percentile range 

indicates that the solution is axisymmetric and in steady state. 

Fig. 3 shows that at r � 25 kpc (early times in this plot), the gas 

is hot and inflowing, with a somewhat larger inflow velocity in the 

θ0 = 0.1 π flowline near the rotation axis. Rotation is sub-Keplerian 

( v φ < v c ≈ 200 km s −1 ) but growing with time, as also indicated by 

Fig. 2 . The value of θ remains roughly constant and equal to θ0 for a 

gi ven flo wline. Then, when the flo wlines reach radii of r � 20 kpc , 

the gas initially heats up and is diverted to the mid-plane ( θ = π /2), 

and then abruptly cools. The initial heating is more pronounced near 

the rotation axis, and is a result of the compression due to the change 

in geometry from spherical to disc-like (see below). Cooling occurs 

simultaneously with θ reaching π /2, v φ reaching v c ≈ 200 km s −1 , 

Figure 3. Gas properties along flowlines in hot rotating CGM inflows, versus 

time since a fluid element is at r = 40 kpc . Panels show spherical radius, 

polar angle, temperature, and rotation velocity. Different lines and bands 

correspond to medians and 16th–84th percentiles of flowlines with different 

polar angles at large radii θ0 . Vertical dotted lines indicate times where T drops 

to 10 5 K. Initially the flowlines have roughly constant θ ≈ θ0 . About 200 Myr 

prior to cooling the flow geometry flattens ( θ → π /2), and the temperature 

increases mainly in flowlines with small θ0 . Cooling occurs when v φ reaches 

v c ≈ 200 km s −1 , that is, at the circularization radius of the flowline R c ( θ0 ), 

indicating a transition from quasi-thermal pressure support against gravity to 

rotational support. Dispersion in hot gas properties prior to cooling is small, 

demonstrating the hot inflow is steady and axisymmetric. 

and r becoming constant, that is, when the hot gas has achieved 

full rotational support and transitioned to a flat, disc geometry. We 

thus identify the time of cooling also as the time of accretion from 

the hot CGM onto the ISM. A similar relation between cooling and 

accretion was identified by Hafen et al. ( 2022 ) in cosmological zoom 

simulations of z ∼ 0 Milky Way-mass galaxies from the FIRE project. 

Note also that prior to cooling the 16–84 percentile ranges in indi- 

vidual flowlines are small, indicating the hot CGM is axisymmetric 

and in steady state. Furthermore, cooling and accretion happens to 

all hot inflow resolution elements, indicating that cooling is a global 
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Figure 4. Gas properties along flowlines in hot rotating CGM inflows, versus time since gas in the flowline cools. The time of cooling is equal to the time 

of accretion onto the ISM. From left to right and top to bottom the panels plot cylindrical radius, height above the mid-plane, total rotation since r = 40 kpc , 

rotational velocity , density , temperature, pressure, entropy , density dispersion, specific angular momentum, radiative losses per unit mass, and compressive 

heating rate per unit mass. Coloured lines and bands correspond to medians and 16th–84th percentile ranges of flowlines with different polar angles at large 

radii θ0 , except in panel l, where lines denote mean values. At early times t − t(10 5 K) < −200 Myr , the temperature remains roughly constant at ≈ 2 × 10 6 K 

(panel e) since compressive heating and radiative cooling roughly balance (panels k–l). Also, density fluctuations are small (panel i), and the specific angular 

momentum is conserved (panel j). About 200 Myr prior to cooling the geometry of the flow starts to flatten into a disc (panel b). At t ≈ t(10 5 K) rotation velocity 

reaches the circular velocity (panel d), densities increase by × 300 or more (panel f), and density fluctuations become significant (panel i). 

transition in the inflow, rather than occuring only in individual gas 

clumps as in precipitation models (e.g. Maller & Bullock 2004 ; Voit 

et al. 2017 ). 

Fig. 4 plots gas properties along flowlines versus t − t(10 5 K), 

where t(10 5 K) is defined as the time at which the temperature in 

the flowline equals 10 5 K. This time is also marked with vertical 

lines in Fig. 3 , and as mentioned abo v e is equi v alent to the time 

of accretion onto the ISM. The 12 panels show cylindrical radius 

R , z, total rotation φ − φ0 where φ0 ≡ φ( r = 40 kpc ), rotation 

velocity , density , temperature, pressure, entropy, density dispersion, 

specific angular momentum, radiative cooling rate per unit mass 

n 2 H �/ρ, and compressive heating rate per unit mass P d V /d t , where 

V = ρ−1 is the specific volume. The figure shows that while the 

flow is hot (at t < t(10 5 K)), the density and pressure of the hot 
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inflow mildly increase with time, while the temperature is roughly 

constant and the entropy decreases. The increase in density is due 

to the contraction of the inflow, which also causes a compressive 

heating ate of order P d V / d t ≈ 0 . 005 erg s −1 g −1 . This compressive 

heating offsets comparable radiative losses (compare panels k and 

l), thus keeping the temperature roughly constant while the entropy 

decreases. Also, panel (i) shows that density fluctuations are small 

( 〈 δρ/ ̄ρ〉 	 1) as in a non-rotating cooling flow (Balbus & Soker 

1989 ; Stern et al. 2019 ), and panel (j) shows that the specific angular 

momentum is conserved since the system is axisymmetric. Panel (c) 

sho ws that flo wlines rotate 4–8 radians prior to cooling, or roughly 

one full revolution. 

Fig. 4 (f) shows that at t ≈ t(10 5 K) when the flow abruptly cools, 

the density increases by a factor of ≈300 for the flowline in the 

mid-plane ( θ0 = 0.5 π ), and by a larger factor in flowlines with 

smaller θ0 . At the same time j z slightly increases (panel j), likely as 

a result of torques by stars and preexisting disc gas. Also apparent is 

that density fluctuations become strong just before the gas cools (at 

t − t(10 5 K) ≈ −25 Myr ), and remain of order unity after cooling, 

in contrast with the weak density fluctuations when the flow is hot 

(panel i). The transition to a disc geometry starts somewhat earlier, 

at t − t(10 5 K) ≈ −250 Myr (panel b, and also θ panel in Fig. 3 ). 

The eventual drop in temperature from T ≈ 2 × 10 6 to ≈ 10 4 K 

at t(10 5 K) is an inevitable result of the inflow halting due to rotation 

support, which stops compressive heating. Absent any heating 

sources, the gas cools on a cooling timescale, which is ∼ 10 Myr 

at t(10 5 K). This short cooling timescale is a result of the flattening 

to a disc geometry which increases the density to n H � 0 . 01 cm 
−3 

[see zoom-in on t ≈ t(10 5 K) in Fig. C1 ]. This layer where the hot 

inflow cools corresponds to the disc–halo interface (e.g. Fraternali & 

Binney 2008 ; Marasco, Fraternali & Binney 2012 ; Fraternali 2017 ), 

also known as ‘extraplanar gas’, which is further addressed in the 

discussion. 

The result that density fluctuations remain small when the flow 

is hot (Fig. 4 i) is potentially due to the accretion process occurring 

on a timescale comparable or shorter than t cool on which thermal 

perturbations dev elop. F or e xample, at 0 . 5 Gyr prior to accretion (i.e. 

at t − t(10 5 K) = −0 . 5 Gyr ) we find t cool = 1.7, 2.9, 5.3, and 12 Gyr 

in the four flowlines shown in Fig. 4 , with longer t cool closer to the 

rotation axis due to the higher temperature and lower densities. The 

0 . 5 Gyr remaining until accretion is thus insufficient for the thermal 

instability to grow, despite that the hot gas is formally unstable. A 

similar argument explains why significant density perturbations do 

not develop spontaneously in non-rotating cooling flows (Balbus & 

Soker 1989 ). This conclusion is also consistent with the simulations 

in Sormani & Sobacchi ( 2019 ), which found that condensations 

develop only when a heating term is added to part of the hot gas, thus 

increasing the accretion time relative to a cooling flow. 

3.4 Deviations from spherical symmetry in hot inflowing CGM 

Rotational support in the hot CGM is expected to induce lower gas 

densities and higher gas temperatures along the rotation axis relative 

to the mid-plane (Barnab ̀e et al. 2006 ; Pezzulli et al. 2017 ; Sormani & 

Sobacchi 2019 ). In this section, we quantify these deviations from 

spherical symmetry in our simulation of a hot rotating inflow, and 

compare it to the analytic approximation deduced abo v e (equation 

41 ). 

Fig. 5 plots the dependence of hot CGM properties on polar angle 

θ at radii of 45 and 25 kpc . From top to bottom the different rows 

plot angular frequency, temperature, hydrogen density, and thermal 

pressure. Magenta lines denote the non-rotating analytic solution 

Figure 5. Deviations from spherical symmetry in hot rotating CGM inflows. 

Panels show from top to bottom the hot gas angular frequency, temperature, 

hydrogen density, and pressure, versus angle from the rotation axis θ , 

at r = 45 kpc (left) and r = 25 kpc (right). Black lines are based on the 

simulation after steady state is achieved (the same simulation as in Figs 1 –4 ). 

Magenta lines plot the analytic non-rotating solution (equation 10 ), while blue 

lines plot the analytic slow-rotating solution (equation 41 ) which accounts 

only for lowest order terms in ε = ( r / R c, max ) 
−2 (noted on top). In the 

rotating solutions density and pressure increase towards the mid-plane, while 

temperature decreases. 

(equation 10 ), blue lines denote the slow rotating analytic solution 

(equation 41 ), and black lines the solution in the simulation after 

steady state is achieved (the same solution used in Figs 1 –4 ). The 

perturbation parameter ε = ( r / R c, max ) 
−2 defined in equation ( 25 ) is 

noted at the top. The slow-rotating analytic solution accounts only 

for the lowest order terms in this quantity. 

Fig. 5 demonstrates how the properties of the hot gas deviate 

from spherical symmetry due to the rotation, and more so at radii 

approaching R c, max where rotation support is more significant. At 

r = 25 kpc in the numerical solution, the temperature at the rotating 

axis is almost a factor of two lower than in the mid-plane, while the 

density is a factor of two higher. Note also that the slow-rotating 

analytic solution rather accurately reproduces the simulation at r = 

45 kpc where ε = 0.1. At r = 25 kpc , where ε = 0.4 the analytic 

solution is qualitatively consistent with the trends of T , n H , and P 

versus θ , though there are quantitative differences potentially since 

high-order terms in ε are neglected in the analytic solution. 
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Table 1. Parameters of simulations used in Fig. 6 . 

v c R c, max Ṁ Z CGM t cool / t ff at r = R c, max 
( a ) 

[ km s −1 ] [kpc] [ M � yr −1 ] [ Z �] 

200 ( b ) 15 1.7 0.3 9 .3 

200 15 3.2 0.3 6 .5 

200 10 2.7 0.1 8 .5 

200 10 8.3 0.1 4 .9 

200 1 1.8 0.1 3 .3 

200 1 4.2 3.0 0 .5 

200 1 5.4 20 0 .2 

230 18 2.9 0.3 12 .2 

210 18 3.5 0.3 8 .1 

150 10 1.3 0.3 3 .6 

150 10 2.7 0.3 2 .5 

150 10 8.8 0.3 1 .4 

100 5 0.2 0.3 2 .4 

100 5 0.8 0.3 1 .3 

Notes. ( a ) Derived from the four other parameters using equation ( 10 ). 
( b ) Fiducial simulation used also in other figures. 

Figure 6. Total rotation completed by a fluid element in the CGM prior to 

accreting onto the ISM. Markers denote mean values in simulations with 

different t cool / t ff (measured at r = R c, max , see Table 1), while the thin line 

denotes the analytic estimate from equation ( 45 ). The fiducial simulation 

shown in Figs 1 –5 is marked with a circle. Hot CGM with longer t cool 

have slo wer inflo w velocities, and hence fluid elements rotate more prior to 

accretion. 

3.5 Revolutions in inflow versus t cool / t ff 

To test the relation between total rotation in the inflow and t cool / t ff 
measured at R c, max (Section 2.5 ), we run several simulations with 

different combinations of Ṁ , Z CGM , and v c which yield different 

t cool / t ff via equation ( 10 ). The parameters of the simulations are listed 

in Table 1 . For Ṁ , we use the value measured through a shell at 

2 R c, max in snapshots after the simulations achieve steady state, which 

is typically 10 per cent − 75 per cent larger than Ṁ in the ICs (see 

Section 3.1 ). On these snapshots we also measure the average rotation 

�φ = 
∫ 

�d t a fluid element completes as it inflows from 10 R c, max to 

R c, max , and plot them in Fig. 6 . The figure shows that the simulations 

roughly follow the analytic estimate from equation ( 45 ), confirming 

that the number of rotations in hot rotating CGM scales with t cool / t ff . 

Figure 7. Accretion rate onto the disc versus disc radius in hot rotating 

inflows, for R c , max = 15 kpc and total accretion rate Ṁ = 1 . 7 M � yr −1 . The 

solid line is the accretion rate within a cylindrical disc radius R in the fiducial 

simulation. The step at R = R c, max corresponds to horizontal accretion from 

the disc edge. The dashed line is the analytic estimate, which assumes each 

flowline accretes at its circularization radius (equation 48 ), and provides a 

good match to the simulation result. This predicted Ṁ disk profile in hot rotating 

inflows can be useful for chemical evolution models and dynamical models 

of galaxy discs (e.g. Sch ̈onrich & Binney 2009 ; Krumholz et al. 2018 ). 

3.6 Disc accretion radius 

Fig. 7 plots the accretion rate onto the disc within cylindrical disc 

radius R . Solid line is based on the fiducial simulation, which we mea- 

sure by calculating the mass flux through two disc-shaped surfaces 

with radius R located at z = ±1 kpc , in a snapshot after the simulation 

achieved steady state. The step at R = R c , max = 15 kpc corresponds 

to planar accretion from the disc edge, derived from the mass flux 

through a closing vertical surface spanning −1 < z < 1 kpc at R = 

R c, max . The simulation result is close to the analytic estimate in 

equation ( 48 ), which is based on the assumption that each flowline 

in the hot inflow accretes at its circularization radius. 

4  A D D I T I O NA L  C O N S I D E R AT I O N S  

In this section, we consider the effect of additional physical mecha- 

nisms and effects which were not included in the simulation abo v e. 

4.1 Viscosity 

Viscous forces in the flow may in principle cause angular momentum 

transport along directions where there is shear in the flow. In our 

solution � ∝ r −2 up to corrections of order ε (equation 41 ) and thus 

there is shear in the radial direction. Here, we show that for standard 

kinematic viscosity the expected angular momentum transport due 

to this shear is small. 

The specific angular momentum of the flow is j = �r 2 sin 2 θ = 

v c R c, max sin 2 θ (equation 41 ). Viscous forces in the radial direction 

will cause an angular momentum loss per unit time of 

d j 

d t 
= νr 2 sin 2 θ

d 2 �

d r 2 
= 6 ν� sin 2 θ , (49) 
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where ν is the kinematic viscosity (e.g. Fabian et al. 2005 ) 

ν = 0 . 56 T 
5 / 2 

6 

( n H 

10 −3 cm −3 

)−1 

ξν kpc km s −1 , (50) 

and ξ ν is the reduction of the viscosity relative to the Spitzer value. 

We can estimate the fractional angular momentum loss due to viscous 

forces by multiplying d j /d t by the flow time ≈t cool and dividing by j : 

�j visc 

j 
≈

d j 

d t 
·
t flow 

j 
= 

6 �νt cool 

v c R c , max 
≈ 0 . 092 ξνr 10 v 

5 
c , 200 Ṁ 

−1 
1 , (51) 

where we used the analytic solution in equation ( 41 ) and neglected 

corrections of order ( R c, max / r ) 
2 . For typical estimates of ξ ν ∼ 0.1 

(Narayan & Medvedev 2001 ) this value is substantially smaller than 

unity, indicating that viscous forces can generally be neglected. 

4.2 Turbulence 

Assuming that turbulence is seeded at large CGM radii, for example 

by cosmological accretion or due to stirring by subhaloes, what 

would be the fate of these turbulent motions in the inner CGM inflow 

explored here? In a non-rotating inflow, we expect a balance between 

dissipation of turbulence on a timescale t diss = r / σ turb and ‘adiabatic 

heating’ of turbulence due to the contraction of the inflow on a 

timescale t flow = r / v r (Robertson & Goldreich 2012 ). This balance 

suggests that contracting turbulent fluids converge to t flow ∼ t diss and 

hence σ turb ∼ v r , since more rapid turbulent motions will dissipate 

while slower turbulence will heat up (Murray & Chang 2015 ; Murray 

et al. 2017 ). In a steady-state cooling flow where t flow ≈ t cool , we thus 

expect also t diss ∼ t cool . Using t ff ∼ r / v c and v c ≈ c s , it thus follows 

that 

σturb 

c s 
∼

t ff 

t cool 
. (52) 

Since t ff < t cool , equation ( 52 ) suggests that turbulence is subsonic, 

i.e. turbulent support is subdominant to thermal support, as assumed 

in Section 2.1 . Furthermore, this relation suggests that relative 

importance of turbulent motions decreases with increasing t cool / t ff . 

Note that equation ( 52 ) is based on the assumption that the 

dominant turbulence driving mechanism at inner CGM radii is 

adiabatic ‘heating’ of pre-existing turbulence in the inflow. This 

assumption is similar to the underlying assumption of our solution 

that the dominant thermal heating mechanism is compression of the 

CGM inflow, rather than other heating sources such as feedback. 

In a rotating inflow, turbulence may also be induced by the shear 

between adjacent shells. Radial displacements due to such turbulent 

motions are not subject to restoring Coriolis forces, since the non- 

perturbed solution is angular momentum conserving (Fig. 4 ) and 

hence the epicyclic frequency κ is zero. Balbus, Hawley & Stone 

( 1996 ) showed that for a rotationally dominated disc with κ = 0 such 

turbulence develops with an e -folding time roughly equal to an orbit 

time. Given that hot CGM inflows onto Milky Way-like galaxies 

complete � 2 orbits before accretion (Fig. 6 with t cool / t ff ≈ 10) it is 

unclear if shear-induced turbulence has sufficient time to develop. 

As a preliminary test of the effect of turbulence on our hot rotating 

CGM solution, we run another simulation with similar ICs as in our 

fiducial simulation, to which we add a turbulent velocity field with 

amplitude σturb ( t = 0) = 30 km s −1 and a lognormal power spectrum 

peaking at a wavelength of 50 kpc and a logarithmic width of 1. Fig. 

8 compares the results of this simulation after steady state is achieved 

with the results of the fiducial simulation shown in Figs 1 –5 . The top 

panel shows that adding turbulence increases the density fluctuations 

in the hot inflow, though they are still below unity at t < t(10 5 K). The 

bottom panel demonstrates the effect of turbulence on the specific 

Figure 8. The effect of turbulence on hot rotating CGM inflows. The panels 

show density fluctuations (top) and specific angular momentum (bottom) 

along flowlines, versus time, since the hot CGM cools and accretes onto the 

ISM. Dashed lines denote the simulation with fiducial initial conditions (ICs) 

shown also in Figs 1 –5 , while solid lines denote a simulation with turbulent 

ICs. Line colour denotes the initial polar angle of the flowline as in Fig. 4 . Note 

the mild angular momentum loss along flowlines in the turbulent simulation, 

in contrast with the constant angular momentum in the fiducial simulation. 

angular momentum in the flow. The turbulent simulation shows a 

smaller difference in j z between different flowlines than in the fiducial 

simulation, likely as a result of angular momentum transfer between 

flo wlines. Also e vident is the mild ( � 20 per cent ) decrease in j z 
in the turbulent simulation o v er the last 1 . 5 Gyr prior to cooling, 

in contrast with the constant j z in the fiducial simulation. This is 

potentially a result of transport of angular momentum outward during 

the inflow due to the turbulent viscosity between adjacent shells. 

Fig. 8 thus implies that turbulence, at the strength explored, has only 

a mild effect on the angular momentum content of the inflow, and 

specifically � 80 per cent of the angular momentum in the inflowing 

hot CGM accretes onto the ISM. 3 

The development of turbulence in hot and rotating CGM inflows 

also affects the angular momentum distribution of accreting gas, 

since a large σ turb necessary implies a broad angular momentum 

distribution. Hafen et al. ( 2022 ) argued that a narrow angular 

momentum distribution in accreting gas may be necessary for the 

formation of thin disc galaxies seen in the low-redshift Universe. 

This points to the importance of understanding turbulence in hot 

rotating CGM. We defer a detailed analysis to future work. 

3 The turbulent simulation has κ ≈ 0.2 at r � R c, max , in contrast with κ = 0 

in the fiducial simulation. This finite κ is potentially sufficient to prevent any 

further development of hydrodynamic turbulence due to restoring Coriolis 

forces (Balbus et al. 1996 ). 
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Figure 9. Top: predicted centroid shift of the O VII 0 . 56 keV emission line 

in a hot rotating CGM inflow feeding a disc galaxy. CGM rotation assumed 

to be viewed edge-on. Pixel size is 3 kpc × 3 kpc , corresponding to 15 arcsec 

resolution at a distance of 40 Mpc . The calculation is based on the fiducial 

simulation, with the central disc masked. Bottom: difference between line- 

of-sight velocity at opposite sides of the disc, in the mid-plane. Detecting 

the predicted v φ ∼ r −1 rotation profile in the hot CGM would support the 

hypothesis that it is inflowing. 

4.3 Magnetic fields 

The contraction and rotation in hot rotating CGM inflows is expected 

to enhance magnetic fields present at the outer radius of the inflow. 

In Appendix D , we estimate this enhancement using the rotating 

inflow solution derived above, assuming ideal magnetohydrodynam- 

ics (MHD) and ignoring potential dynamical effects of the magnetic 

field on the flow. Defining r 0 as the outer radius of the inflow, and 

assuming an isotropic seed field B r ( r 0 ) = B θ ( r 0 ) = B φ( r 0 ) ≡ B 0 , we 

find that 

B r 

B 0 
= 

(

r 

r 0 

)−2 

, 

B θ

B 0 
= 

(

v r r 

v 0 r 0 

)−1 

, 

B φ

B 0 
= 

√ 

2 
t cool 

t ff 

r 2 0 R c , max 

r 3 
sin θ, (53) 

where we also defined v 0 ≡ v r ( r 0 ). The values of B r / B 0 , B θ / B 0 , and 

B φ / B 0 are accurate up to corrections of order ( R c, max / r ) 
2 . 

The enhancement of the magnetic field in equation ( 53 ) can be 

compared to the enhancement in a non-rotating spherical inflow, 

which was derived by Shapiro ( 1973 ). They found B r ∝ r −2 and 

B θ ∝ B φ ∝ ( v r r ) 
−1 , which can be understood intuitively as a result 

of conservation of magnetic flux through patches moving with the 

flow. Rotation thus mainly affects the enhancement of B φ , due to the 

winding of the field. Equation ( 53 ) shows that the enhancement of 

B φ is a product of ( t cool / t ff · R c, max / r ) and ( r 0 / r ) 
2 , where the former 

tracks the number of radians rotated by the inflow (equation 44 ) and 

the latter tracks the contraction of an inflowing shell. 

For r 0 / R c, max ∼ 6 and t cool / t ff ∼ 6 as expected in the hot Milky Way 

CGM (Section 2 ), equation ( 53 ) suggests an increase in B φ of order 

∼200 by the time the hot gas reaches R c, max , just prior to accreting 

onto the galaxy. For comparison, the thermal pressure increases o v er 

the same range of radii as P ( R c, max )/ P ( r 0 ) ≈ ( R c, max / r 0 ) 
−3/2 ∼ 15 

(equation 10 ), and thus the ratio of thermal to magnetic pressure 

β ∝ P / B 
2 is expected to decrease by a large factor of ∼3000. Current 

upper limits on the magnetic field in the inner CGM of ∼L 
� galaxies 

at z � 0.3 suggest magnetic pressure is subdominant to the thermal 

pressure ( β > 1), at least along the major axis where most of the 

accretion is expected (Prochaska et al. 2019 ; Lan & Prochaska 2020 ; 

Heesen et al. 2023 ). It thus follows that if the hot CGM is accreting 

as suggested in this work, seed magnetic fields are sufficiently small 

that they do not dominate even after the large enhancement induced 

by contraction and rotation. 

The eventual cooling of the inner hot CGM onto the ISM will 

further enhance B . Fig. 4 (f) suggests that the gas density increases 

by a factor of ∼1000 as it cools, which would increase B by a 

further factor ∼1000 2/3 = 100 in the limit of ideal MHD. Another 

potentially interesting implication of the hot CGM solution concerns 

the development of turbulence due to the magnetic-rotational insta- 

bility (MRI). The MRI amplitude growth rate is ∼� (e.g. Balbus & 

Ha wle y 1998 ; Masada & Sano 2008 ), so the result that 
∫ 

�d t ≈
t cool / t ff (Fig. 6 , equation 44 ) implies that prior to accretion MRI can 

grow by e t cool /t ff , that is, a factor of 10 4 for t cool / t ff ≈ 10. The solution 

may thus change considerably as t cool / t ff exceeds some critical value 

where MRI becomes fully developed. We defer analysis of accretion 

via magnetic hot rotating CGM inflows to future work. 

5  OBSERVA  T I O NA L  IMPLICA  T I O N S  

In this section, we discuss se veral observ ational signatures of hot and 

rotating CGM inflows. While it would be challenging to detect the 

predicted slow radial velocities of a few tens of km s −1 (equation 10 ), 

the predicted rotation velocities are faster, reaching v c ∼ 200 km s −1 , 

and indeed evidence for such fast hot gas rotation has been detected 

in the Milky Way CGM (Hodges-Kluck, Miller & Bregman 2016 ). 

Since an inflow imparts a specific rotation profile in the hot gas 

which is flatter ( v φ ∼ r −1 , equation 23 ) than the rotation profile 

expected prior to the development of an inflow ( v φ ∼ r −0.5 , Sharma 

et al. 2012a ; Pezzulli et al. 2017 ; Sormani et al. 2018 ), measuring 

the rotation profile could be used to support or rule out the existence 

of inflows in the hot gas. 

The hot gas rotation pattern can potentially be detected directly 

using X-ray emission line centroiding (Section 5.1 ), or indirectly, 

by identifying the lower densities and higher temperatures along 

the rotation axis relative to the mid-plane (Sections 5.2 and 5.3 ). The 

latter indirect signature would ho we v er hav e to be distinguished from 

qualitatively similar trends induced by feedback (Nica et al. 2022 ; 

Truong et al. 2021, 2023 ; Yang et al. 2024 ). 

Given the idealized nature of the solution, signal strength estimates 

below are at the order of magnitude level. More realistic calculations 

based on cosmological simulations would be a useful next step. 

5.1 Measuring hot gas rotation using line centroiding 

Hodges-Kluck et al. ( 2016 ) analysed the centroids of 37 O VII 

absorption lines in the Milky Way CGM, in the context of a 
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phenomenological hot CGM model with n H ∝ r −1.5 and uniform in- 

flow and rotational v elocities. The y deduced v r = −15 ± 20 km s −1 

and v φ = 180 ± 41 km s −1 , or v r / v c = −0.06 ± 0.08 and v φ = 

0.75 ± 0.17 for a circular velocity of v c = 240 km s −1 measured 

near the Sun. These values are comparable to those expected in 

hot rotating inflows near the disc, since v φ / v c ≈ R c, max / r and v r / v c 
≈ t ff / t cool (Figs 2 , equations 41 and 10 ). Specifically, we calculate 

the O VII absorption-averaged v φ and v r in our fiducial simulation, 

along sightlines starting at ( R, z) = (8 kpc , 0 kpc ) with the same 

distribution of Galactic latitudes and longitudes as in the Popescu 

et al. ( 2004 ). The projection is done on a snapshot after the simulation 

converged onto a steady state. Line emissivity is calculated based on 

the gas density and temperature in the simulation using the PYXSIM 

package (ZuHone & Hallman 2016 ). 4 Pixel size in this panel is 3 kpc , 

corresponding to the planned 15 arcsec resolution of the proposed 

line emission mapper probe (LEM, Kraft et al. 2022 ) for a target 

at a distance of 40 Mpc . 5 The bottom panel shows the line centroid 

difference between the approaching and receding sides of the CGM, 

in the mid-plane. This difference reaches 200 km s −1 near the disc, 

higher than the planned centroiding accuracy of � 70 km s −1 planned 

for LEM. X-ray telescopes with high spectral resolution may thus be 

able to measure the rotation velocity profile in the hot CGM, and test 

whether it is consistent with the inflow solution. 

5.2 Angle dependence of X-ray emission and temperature 

Angular momentum support induces deviations from spherical sym- 

metry in the hot CGM density and temperature (Section 3.4 , Fig. 5 ). 

These are potentially detectable by measuring the dependence of 

CGM X-ray emission on the ‘azimuthal angle’, defined as the 

orientation of the sightline with respect to the galaxy major axis 

(e.g. Kacprzak et al. 2015 ). The top panel in Fig. 10 shows the 

predicted soft X-ray surface brightness versus azimuthal angle and 

impact parameter R ⊥ , assuming CGM rotation is oriented edge-on in 

the plane of the sky. Surface brightness is calculated using PYXSIM on 

the NGC 891-like simulation used also in Fig. 9 . The figure shows 

that the soft X-ray brightness ( ∝ n 2 H ) increases towards the major 

axis at small R ⊥ , since rotation induces a higher CGM density near 

the mid-plane (equation 41 , Fig. 5 ). 

The bottom panel in Fig. 10 shows the luminosity ratio of the 

O VIII Ly α 0.65 keV and O VII He α 0.56 keV emission lines. The ratio 

increases towards the minor axis, by up to 75 per cent at R ⊥ = 30 kpc . 

This follows since this emission line ratio depends mainly on CGM 

temperature which is higher along the rotation axis (see Fig. 5 ). 

5.3 Dispersion measure 

Observations of the dispersion measures to pulsars in the Magellanic 

clouds and towards extragalactic fast radio bursts (FRBs) constrain 

electron column densities in the CGM (e.g. Anderson & Bregman 

2010 ; Prochaska & Zheng 2019 ; Ravi et al. 2023 ; Williams, Khan & 

McQuinn 2023 ). Fig. 11 plots predicted dispersion measures for 

an external galaxy and for the Milky Way CGM, based on our 

fiducial simulation. For external galaxy sightlines we assume an 

inclination i = 77 ◦ similar to M31, and integrate the electron density 

along sightlines with different impact parameters R ⊥ and different 

azimuthal angles. We start and end the integration at a spherical 

4 Version 4.2.0 
5 At smaller redshifts the target line emission would be drowned by line 

emission from the Milky Way, see Kraft et al. ( 2022 ). 

Figure 10. X-ray emission from hot rotating inflows versus azimuthal angle 

(defined as the sightline orientation relative to galaxy major axis), for an edge- 

on galaxy. Different lines denote different impact parameters. Calculations are 

based on the fiducial simulation. Top: predicted soft X-ray surface brightness. 

Surface brightness decreases with angle due to the lower densities near 

the rotation axis induced by angular momentum support. Bottom: O VIII 

Ly α/O VII He α emission line ratio. The ratio increases with angle due to 

higher temperatures near the rotation axis (see Fig. 5 ). 

radius r = 100 kpc , roughly equal to r cool (Section 2.1 ) beyond 

which the hot inflow solution does not apply. Fig. 11 shows that 

the highest dispersion measures of ≈ 30 cm 
−3 pc are found at small 

impact parameters and small azimuthal angles where densities are 

highest (see equation 41 ). For Milky Way sightlines the dispersion 

measures were calculated by integrating from ( R, z) = (8 kpc , 1 kpc ) 

out to r = 100 kpc , for different Galactic latitudes b and Galactic 

longitudes l . We start at z = 1 kpc to a v oid the contribution of the 

cool disc, while the exact choice of outer limit does not significantly 

affect the result since most of the contribution comes from small radii. 

The predicted dispersion measures are 12 − 18 cm 
−3 pc and increase 

to wards lo wer b , again due to higher densities near the disc plane. 

Fig. 11 also shows the upper limit of 23 cm 
−3 pc for the CGM 

dispersion measure from Anderson & Bregman ( 2010 ), deduced 

based on sightlines to pulsars in the LMC (Large Magellanic Cloud, 

though note caveat in Ravi et al. 2023 , which may imply this 

upper limit is too restrictive). This upper limit is consistent with 

our prediction of 14 cm 
−3 pc in sightlines with | b | = 30 ◦ and l = 

270 ◦ when integrating out to an LMC distance of r = 50 kpc . 
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Figure 11. Predicted dispersion measures from a CGM forming a hot rotating 

inflow, for sightlines through an external galaxy CGM (left, assuming M31- 

like inclination) and through the Milky Way CGM (right), based on the 

fiducial simulation. External galaxy sightlines are given as a function of 

impact parameter and azimuthal angle, while Milky Way sightlines as a 

function of Galactic coordinates. Integration is limited to r < 100 kpc where 

a hot inflow is possible. The upper limit from Anderson & Bregman ( 2010 ), 

derived from sightlines to pulsars in the LMC, is noted in the right panel. The 

decrease in dispersion measure with increasing azimuthal angle and b is due 

to the lower densities near the rotation axis. 

6  DISCUSSIO N  

6.1 Comparison to previous hot CGM models 

In the solution described in this work the hot CGM is inflowing, since 

ongoing feedback heating is assumed to be small relative to radiative 

losses. This is in contrast with the typical assumption employed 

by models of the low-redshift CGM, where the hot CGM phase is 

static due to feedback heating balancing radiative losses (e.g. Sharma 

et al. 2012a ; Faerman et al. 2017, 2020 ; Voit et al. 2017 ). Several 

models have accounted also for rotation in the hot CGM (Pezzulli 

et al. 2017 ; Sormani et al. 2018 ; Afruni, Pezzulli & Fraternali 2022 ), 

though also in these latter models the gas is assumed not to flow in the 

radial direction. A third possibility is that feedback heating exceeds 

radiative losses, and the hot CGM forms an outflow (e.g. Thompson 

et al. 2016 ; Schneider et al. 2020 , though note these studies neglected 

a pre-existing CGM). As the mechanics of CGM heating by stellar 

and AGN feedback are currently not well understood, and existing 

X-ray constraints do not rule out an inflow as in the ICM (see 

Introduction), it is currently unclear which of these three paradigms 

is more accurate. 

Despite the qualitative distinction between hot inflows explored 

here and static hot CGM models explored by previous studies, both 

types of models satisfy similar hydrostatic equilibrium constraints. 

This follows since the inflow solution is highly subsonic, and hence 

deviations from hydrostatic equilibrium in the radial direction are 

small, of order ( t cool / t ff ) 
−2 . Indeed, these deviations are neglected in 

the analytic solution derived in Section 2.4 . The assumption of an 

inflo w ho we ver enforces conserv ation of mass, energy, and angular 

momentum between adjacent shells (equations 20 –22 ), while there 

are no similar constraints on static models. The allowed space of 

inflowing hot CGM solutions is thus significantly smaller than that 

of static solutions. For example, deducing the entropy profile in static 

models requires employing another assumption, such that the entropy 

is independent of radius (Faerman et al. 2020 ), or that t cool / t ff is 

independent of radius (Voit et al. 2017 ). In the inflow solution derived 

here the entropy profile is fully determined by the flow equations. 

Inflow solutions are also more specific than static models in the 

predicted rotation profile of the hot CGM. Sormani et al. ( 2018 ) 

used several constraints to derive v φ( r , θ ) in their static hot CGM 

model, mainly the typical CGM angular momentum distribution in 

cosmological simulations and O VII absorption-based estimates of 

Milky Way CGM rotation from Hodges-Kluck et al. ( 2016 ). These 

constraints are ho we ver rather sparse and leave considerable freedom 

for different choices of v φ( r , θ ), as discussed in Stern et al. ( 2021b , 

see fig. 13 there). 

6.2 Accretion via hot inflows versus ‘precipitation’ 

Accretion onto the Milky Way and nearby spirals is likely dominated 

either by ‘precipitation’, where local thermal instability in the hot 

phase creates ∼ 10 4 K gas clumps which lose buoyancy and accrete 

(e.g. Fall & Rees 1985 ; Maller & Bullock 2004 ; Voit et al. 2015 ; 

Armillotta, Fraternali & Marinacci 2016 ), or by the hot ∼ 10 6 K 

inflows discussed in this work (see Introduction). Both accretion 

modes would be considered ‘hot accretion’ in the context of the 

classic distinction between the hot and cold accretion modes, since 

they both originate in the hot phase of the CGM (e.g. Nelson et al. 

2013 ). Ho we ver, in the scenario studied here the CGM inflow remains 

at ∼ 10 6 K down to a cylindrical radius R c , max ∼ 15 kpc and height 

of ∼ kpc abo v e the mid-plane, at which point all the hot gas cools 

and joins the ISM, rather than just a subset of localized clouds. Hot 

inflows are thus a type of ‘quiet accretion’ (Putman et al. 2012 ) –

accretion which becomes accessible to cool gas observations only 

when it cannot be kinematically distinguished from pre-existing disc 

gas. 

We note that at outer CGM radii of r � r cool ∼ 100 kpc a hot 

inflow is not expected since cooling times are long (Section 2.1 ), so 

any infall would likely be dominated by cool ∼ 10 4 K gas. This cool 

inflow at large radii can potentially join a hot inflow at small CGM 

radii if the cool clouds are disrupted by hydrodynamic instabilities 

(e.g. Afruni et al. 2023 ; Tan et al. 2023 ). 

6.3 Hot inflows r equir e that CGM of typical ∼L 
∗ spirals have 

previously expanded due to feedback 

In steady state, we expect a CGM inflow rate of Ṁ ≈ 0 . 6 SFR , which 

is ≈ 1 M � yr −1 for the Milky Way (Section 2.1 ). We show here that 

if this Ṁ originates in a hot inflow, the CGM density must be lower 

than expected in a baryon-complete halo. 

Integrating the density profile in equation ( 10 ) out to the virial 

radius and solving for Ṁ , we get: 

Ṁ = 6 . 6 

(

M CGM 

10 11 M �

)2 (
R CGM 

300 kpc 

)−3 

v −2 
c , 200 � −22 M � yr −1 , (54) 

where we normalized M CGM by the the baryon-complete CGM mass 

of 0 . 16 M halo − M galaxy = 10 11 M � for M halo = 10 12 M � and a galaxy 

mass M galaxy = 6 × 10 10 M �. The CGM size R CGM is normalized 

by r vir ≈ 300 kpc . This predicted Ṁ is higher than the ≈ 1 M � yr −1 

required to sustain star formation in local discs. It thus follows that for 

local discs to be fed by hot CGM inflows, gas originally associated 

with the halo must have expanded beyond r vir . Such an expanded 

CGM is supported by recent thermal Sun yaev–Zeldo vich (tSZ) maps 

of nearby spirals, which indicate that the baryon budget of the halo is 

spread o v er a size of R CGM � 500 kpc (Bre gman et al. 2022 ). Using 
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this larger estimate of R CGM in equation ( 54 ) would suggest Ṁ � 

1 . 5 M �, consistent with observed SFRs. The large R CGM deduced 

by Bregman et al. ( 2022 ) thus supports the scenario that local disc 

galaxies are fed by hot CGM inflows. 

There is ho we ver an inherent challenge in a scenario where discs 

are fed by an inflow from an expanded hot CGM. An expanding 

CGM is apparently contradictory to an inflowing CGM, and re- 

quires feedback heating to dominate radiative cooling, in contrast 

with the abo v e assumption that feedback heating is subdominant. 

This apparent contradiction can be circumvented if the inflow and 

expansion are separated either in time or in space. For example, 

it is plausible that feedback was strong high redshift causing the 

CGM to expand, and has since subsided so the hot CGM develops 

an inflow at low redshift. Such an evolution in feedback strength is 

predicted by FIRE simulations of Milky Way mass galaxies (Muratov 

et al. 2015 ; Faucher-Gigu ̀ere 2018 ; Pandya et al. 2021 ; Stern et al. 

2021b ), and is also consistent with observed stellar winds which are 

strong in z ∼ 2 galaxies but weak in typical ∼L 
� galaxies at z ∼ 0 

(Heckman & Thompson 2017 ). Alternatively, black hole feedback 

or stellar feedback which occur in ‘bursts’ separated by more than 

∼ 1 Gyr would allow a hot inflow to develop between bursts, since 

this timescale is the cooling time in the inner CGM on which a hot 

inflo w de velops. A third possibility is that feedback mainly heats the 

outer CGM, allowing the inner CGM to form an inflow. While this 

may seem counter-intuitive, it is potentially possible if feedback is 

focused on the rotation axis at small CGM radii and isotropizes only 

at large CGM radii, thus allowing the hot inner CGM to inflow from 

the mid-plane. Another option is that feedback energy is propagated 

by weak shocks or sound waves which dissipate and dump heat only 

in the outer CGM. The distribution of feedback energy in space and 

time has been explored extensively in the context of the ICM (e.g. 

Yang & Reynolds 2016 ; Martizzi et al. 2019 ; Donahue & Voit 2022 ), 

but less so in the context of the CGM. A thorough exploration would 

allowing understanding under which conditions the hot CGM inflow 

scenario is viable. 

6.4 Disc–halo interface 

The cooling layer of the hot inflow solution found abo v e, in which 

the gas temperature drops from ≈ 2 × 10 6 to � 10 4 K, occurs at 

| z| � 0 . 5 kpc in our fiducial simulation (see Fig. 1 and Fig. C1 ). 

This simulated cool layer is thinner than the ‘extraplanar’ layers 

of neutral and ionized ∼ 10 4 K gas detected around nearby spirals, 

which extend to | z| ≈ several kpc (e.g. Gaensler et al. 2008 ; Sancisi 

et al. 2008 ). Also, the mass flow rate through this layer in our 

simulation is Ṁ ≈ 1 M � yr −1 ∼ SFR , in contrast with ∼10 × SFR 

in observed extraplanar gas layers (e.g. Marasco et al. 2019 ). 

Extraplanar gas is often assumed to be dominated by fountain 

flows (Shapiro & Field 1976 ; Bregman 1980 ), in which cool clouds 

driven upward by feedback penetrate into the hot CGM and then 

fall back onto the disc (Fraternali & Binney 2006 , 2008 ; Marasco 

et al. 2012 ; Fraternali 2017 ). Fountain flows thus both increase 

the vertical extent of the cool gas and the total mass circulating 

through the extraplanar gas layer. These models usually assume the 

hot CGM is not inflowing, which as mentioned abo v e requires a 

delicate balance between feedback heating and cooling, a balance 

especially hard to achieve in the inner CGM where cooling times are 

short (see also discussion of this issue in Sormani & Sobacchi 2019 ). 

It would thus be beneficial to study how fountain flows interact 

with the inflowing hot CGM solution derived herein. Specifically, 

one could use the angular momentum structure of a hot inflow 

deriv ed abo v e to understand how fountain orbits are affected by 

angular momentum exchange with the hot CGM, an interaction that 

has observable implications (e.g. Fraternali 2017 ). Also it would be 

useful to understand how this fountain – hot CGM interaction affects 

the accretion rate profile onto the disc (compare Fig. 7 abo v e with 

fig. 9 in Marasco et al. 2012 ). 

We note that some of the abo v e studies argued that fountain flows 

are required for accretion from the hot CGM, since they trigger cool 

cloud condensation in the hot gas. Our simulations show that the hot 

CGM cools and can fuel star formation even without fountain flows. 

Cooling in our solution is ho we ver a steady process which affects 

the entire hot inflow as it reaches the disc–halo interface, rather than 

a result of condensation of localized cool clouds. 

6.5 Truncation of thin discs at R ≈ R c, max 

For discs fed by hot rotating inflows, R c, max corresponds to the 

maximum cylindrical radius at which gas cools and accretes onto 

the ISM (Fig. 7 ). This is also evident as a sharp edge of the cool gas 

disc at R = R c, max in the temperature maps shown in Fig. 1 , and is a 

result of hot CGM inflows cooling and accreting only when v φ = v c 
(Fig. 4 d). Similar behaviour has been identified in FIRE cosmological 

simulations of low-redshift Milky Way mass galaxies which are also 

fed by hot rotating inflows (Hafen et al. 2022 ; Trapp et al. 2022 ). 

The predicted maximum accretion radius at R c, max is similar to 

the observed truncation radius R trunc of nearby disc galaxies, beyond 

which the stellar and H I surface densities drop (e.g. van der Kruit 

2007 ). Such a truncation is observed in 60 per cent − 80 per cent 

of thin discs at R trunc ≈ 3.5–4 R d where R d is the disc scale length 

(Kregel, van der Kruit & de Grijs 2002 ; Comer ́on et al. 2012 ; Mart ́ın- 

Navarro et al. 2012 ). 6 When an H I warp is present it also often starts 

at R ≈ R trunc (van der Kruit 2007 ). Using R trunc = 3.5 R d ≈ 0.04 r vir 

based on the R d –r vir relation from Kravtsov ( 2013 ) and R c, max ≈
0.05 r vir (equation 15 ), we get R c, max ≈ R trunc . It is thus plausible that 

observed disc truncations are ultimately a result of the abrupt cut in 

gas accretion beyond this radius, as suggested by Trapp et al. ( 2022 ). 

In the context of hot rotating CGM inflows this maximum radius of 

accretion is set by R c, max . 

7  SUMMARY  

In this work, we derive an axisymmetric, steady-state solution for hot 

and rotating CGM inflows, focusing on Milky Way mass galaxies at 

z ∼ 0. We demonstrate that such accretion flows transition from 

a spherical, hot ( ∼ 10 6 K) radial inflow to a cool ( � 10 4 K) disc 

supported by rotation. This cooling occurs at the disc–halo interface, 

within a cylindrical radius equal to the maximum circularization 

radius of the flow R c , max ∼ 15 kpc and at heights | z| � kpc abo v e the 

disc. Such hot inflows are expected in the CGM if radiative cooling 

has dominated o v er feedback heating for a cooling timescale. This 

condition is easier to satisfy at inner CGM radii where cooling times 

can be substantially shorter than the Hubble time. 

We find both a new analytic solution for hot inflows in the slow 

rotation limit, which is valid in the limit ( r / R c, max ) 
2 � 1 (Section 

2.4 ), and a numerical solution applicable also at r � R c, max (Section 

3 ). These solutions provide an idealized version of the hot CGM 

inflows identified by Hafen et al. ( 2022 ) in FIRE simulations of Milky 

6 The derived fraction of thin discs which exhibit a truncation is based on discs 

observed edge-on, since at low inclination stellar haloes make the truncation 

harder to observe (Mart ́ın-Navarro et al. 2014 ). 
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Way mass galaxies at z ∼ 0. The main properties of these solutions 

can be summarized as follows: 

(i) Due to a balance between radiative cooling and compressive 

heating, hot inflows remain hot down to where they become rotation- 

ally supported, at which point the inflow and compressive heating 

stop and the entire flow cools (Figs 1 –4 ). Hot inflows thus differ 

qualitatively from ‘precipitation’ in which accretion proceeds via a 

subset of clouds formed due to thermal instability. 

(ii) Angular momentum of accreting gas is conserved during the 

inflow due to the axisymmetry of the solution (Fig. 4 j), yielding an 

accretion flow which feeds the disc mainly from its outskirts (Fig. 7 , 

Section 2.6 ). Conservation of angular momentum also suggests 

v φ ∝ r −1 in the hot CGM at radii R c, max < r < r cool (Fig. 2 ), flatter 

than the v φ ∝ r 0.5 − r 0.7 suggested by non-radiative cosmological 

simulations (Sharma et al. 2012b ). This predicted rotation profile 

could potentially be detected with X-ray microcalorimeters which 

can centroid emission lines to � 100 km s −1 (Fig. 9 ). 

(iii) Gas accreting via hot CGM inflows revolves ≈t cool / t ff radians 

prior to accretion (Fig. 6 ), where t cool / t ff is estimated in gas just 

outside the galaxy ( ∼6 in the Milky Way). This in contrast with only 

≈1 radian of revolution in gas accreting via cold flows. Enhancement 

of magnetic fields and development of turbulence in the hot CGM 

thus likely depend on the value of t cool / t ff (Sections 4.2 and 4.3 ). 

(iv) Rotational support induces deviations from spherical sym- 

metry in the density and temperature structure of hot CGM inflows 

(Fig. 5 ), qualitatively similar to the rotating but radially static models 

of Sormani et al. ( 2018 ). These deviations may be detectable with 

X-ray telescopes (Fig. 10 ), or with dispersion measures derived from 

FRB surv e ys (Fig. 11 ). 

(v) Observed SFRs in local spirals constrain typical hot inflow 

accretion rates to Ṁ � 1 − 2 M � yr −1 . In the absence of ongoing 

feedback heating as assumed here, such accretion rates require that 

the halo baryon budget is spread o v er � 2 r vir in order to reduce CGM 

densities and cooling rates. Bregman et al. ( 2022 ) recently reported 

evidence for such expanded CGM using tSZ maps around nearby 

spirals. 

(vi) By analysing the centroids of O VII absorption lines in the 

Milky Way CGM, Hodges-Kluck et al. ( 2016 ) deduced a hot CGM 

rotation velocity of v φ ≈ 180 ± 40 km s −1 and a marginal inflow 

velocity of v r ≈ −15 ± 20 km s −1 . Both values are consistent with 

those expected if the hot Milky Way CGM forms a rotating inflow 

(Section 5.1 ). 

The solution derived herein provides an analytic basis for un- 

derstanding the structure of the inner hot CGM, in the presence 

of angular momentum and radiative cooling. It would be beneficial 

for future studies to further develop this framework with additional 

rele v ant physical processes and complications applicable to the real 

Universe, including polar-angle dependent feedback heating, foun- 

tain flows, turbulence (briefly discussed in Section 4.2 ), magnetic 

fields (Section 4.3 ), and misalignments between the rotation axes of 

the hot CGM, disc, and dark matter halo. 
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APPENDIX  A :  θ -DEPENDENT  ROTAT I O N  

PROFILES  

In this section, we give analytic solutions for hot CGM inflows 

in the slow-rotation limit as derived in Section 2.4 , for different 

assumptions on how the gas rotates at large radii. This dependence 

of �1 on θ is set by the outer boundary condition of the solution and 

is parametrized using the function F ( θ ) (see equation 26 ): 

�1 = 
v c 

R c , max 

(

r 

R c , max 

)−2 

F ( θ ) , (A1) 

where F ( π /2) = 1. The solution in the main text (equation 41 ) is for 

F ( θ ) = 1. For F = sin θ , we find 

f P = 
3 

8 
sin 4 ( θ ) −

3 

10 
, 

f ρ = 
15 

8 
sin 4 ( θ ) −

7 

10 
, 

f T = −
3 

2 
sin 4 ( θ ) + 

2 

5 
. (A2) 

For F ( θ ) = sin 2 θ , we get 

f P = 
1 

4 
sin 6 ( θ ) −

1 

5 
, 

f ρ = 
19 

12 
sin 6 ( θ ) −

7 

15 
, 

f T = −
4 

3 
sin 6 ( θ ) + 

4 

15 
, (A3) 

while for F ( θ ) = sin 3 θ , we get 

f P = 
3 

16 
sin 8 ( θ ) −

16 

105 
, 

f ρ = 
23 

16 
sin 8 ( θ ) −

16 

45 
, 

f T = −
5 

4 
sin 8 ( θ ) + 

64 

315 
. (A4) 

APPENDIX  B:  DIMENSIONLESS  FLOW  

E QUAT I O N S  

The flow equations ( 18 )–( 22 ) can be dedimensionalized, if we ap- 

proximate the cooling function as a power law � = � 10 6 ( T / 10 6 ) −l . 

We define the dimensionless variables as 

r ′ ≡
r 

R c , max 
, 

{ v ′ r , v 
′ 
θ , v 

′ 
φ, c ′ s } ≡

{ v r , v θ , v φ, c s } 
v c 

, 

ρ ′ ≡
ρ

ρ� 
, P 

′ ≡
P 

3 
5 ρ

� v 2 c 

, (B1) 

with the density normalization equal to 

ρ� = 
9 m 

2 
p v 

3 + 2 l 
c 

10 X 2 � 10 6 R c , max 
, (B2) 

where m p / X = ρ/ n H ( m p and X are the proton mass and hydrogen 

mass fraction, respectively). This gives for the flow equations 

∂ P 
′ 

∂ r ′ 
= −

ρ ′ 

r ′ 
+ 

v ′ 2 φ

r ′ 
, 

∂ P 
′ 

∂ θ
= −ρ ′ v ′ 2 φ

cos θ

sin θ
, 

v ′ r 
∂ ( v ′ φr ′ sin θ ) 

∂ r ′ 
+ v ′ θ

∂ ( v ′ φr ′ sin θ ) 

r ′ ∂ θ
= 0 , 

1 

r ′ 2 
∂ ( ρ ′ v ′ r r 

′ 2 ) 

∂ r ′ 
+ 

1 

r ′ sin θ

∂ ( ρ ′ v ′ θ r 
′ 2 ) 

∂ θ
= 0 , 

v ′ r 
∂ ( ln K) 

∂ r ′ 
+ v ′ θ

∂ ( ln K) 

r ′ ∂ θ
= ρ ′ c ′−2(1 + l) 

s . (B3) 

These dimensionless equations imply that changing R c, max and/or v c 
does not change the solution beyond a scaling, if the gas density is 

also scaled by ρ� . 

The value of ρ� is related to the critical accretion rate Ṁ crit 

discussed in Stern et al. ( 2020 ): 

4 πR 
2 
c , max ρ

� v c = 
18 πm 

2 
p v 

4 + 2 l 
c R c , max 

5 X 2 � 10 6 
= Ṁ crit ( R c , max , v c ) (B4) 

(see equation 8 there). 7 When Ṁ = Ṁ crit , the ratio t cool / t ff equals 

unity at r = R c, max in the spherical solution (equation 10 ), and hence 

the sonic radius of the flow coincides with the circularization radius. 

The relation ( B4 ) between ρ� and Ṁ crit thus implies that changing 

R c, max and/or v c does not change the solution beyond a scaling, if 

Ṁ is also scaled by Ṁ crit . Hot rotating inflows thus form a family 

of solutions characterized by a single parameter, Ṁ / Ṁ crit , up to a 

scaling of the physical dimensions. 

AP PENDIX  C :  G A S  PROPERTIES  N E A R  T H E  

TIME  O F  C O O L I N G  A N D  AC C R E T I O N  

Fig. C1 plots gas properties along flowlines as in Fig. 4 , zoomed in 

on times near t(10 5 K), which corresponds to the time of accretion 

from the hot CGM onto the cool ISM. 

7 In Stern et al. ( 2020 ), we ef fecti vely assumed l = 0 and neglected a factor 

of 9/10 in the calculation of Ṁ crit . 
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Figure C1. Gas properties along flowlines as in Fig. 4 , zoomed-in on times near the time of cooling. Colour denotes flowlines originating at different polar 

angles θ0 . Solid lines and bands correspond to medians and 16th–84th percentiles. Top panels show R , z, T , and v φ , while bottom panels show n H , 〈 δρ/ ̄ρ〉 , P / k , 

and j z . The R and z panels demonstrate that cooling occurs just abo v e the disc, at the ‘disc–halo interface’. Except for the mid-plane flowline ( θ0 = 0.5 π ) the 

flow direction is almost vertical at the shown times, with z decreasing by 2 − 4 kpc and R changing by � 0 . 5 kpc . At ≈ 20 Myr prior to cooling gas densities 

start to increase while density fluctuations become significant. This rapidly shortens the cooling time which allows the eventual drop in temperature to occur 

o v er a short timescale of ∼ 10 Myr , as can be seen in the T panel. 

APPENDIX  D :  MAGNETIC  FIELDS  IN  H OT  A N D  

ROTATING  C G M  INFLOW S  

In this section, we derive an estimate of the magnetic field B in 

a rotating hot CGM inflow, by assuming ideal MHD conditions 

and neglecting any potential dynamical effects of the field on the 

flow. We employ the analytic solution in equation ( 41 ), disre- 

garding terms of order ( R c, max / r ) 
2 or higher. Combined with the 

assumption of axisymmetry and steady state we then have v θ = 

∂ / ∂ φ = ∂ / ∂ t = 0, and the ideal MHD equations for the magnetic 

field 

∇ · B = 0 , ∇ × ( v × B ) = 
∂ B 

∂ t 
(D1) 

reduce to 

1 

r 2 

∂ 

∂ r 
( r 2 B r ) = −

1 

r sin θ

∂ 

∂ θ
( B θ sin θ ) , 

∂ 

∂ r 
( v r B θ r) = 0 , 

∂ 

∂ θ
( v r B θ sin θ ) = 0 , 

∂ 

∂ r 
( v φB r r − v r B φr) = −

∂ ( v φB θ ) 

∂ θ
. (D2) 

Assuming for simplicity that the field is isotropic at the outer radius 

of the inflow r 0 with B r ( r 0 ) = B θ ( r 0 ) = B φ( r 0 ) ≡ B 0 , the first two 

equations imply 

B r = B 0 

(

r 

r 0 

)−2 

, (D3) 

B θ = B 0 

(

v r r 

v r ( r 0 ) r 0 

)−1 

. (D4) 

Equations ( D3 ) and ( D4 ) are the same as in a non-rotating, spherical 

inflow solution (Shapiro 1973 ). To solve for B φ , we note that the 

right-hand side in the last equation in ( D2 ) equals zero. This follows 

from the third condition in equation ( D2 ) together with v φ ∝ sin θ and 

∂ v r / ∂ θ = 0 [equation ( 41 ), up to corrections of order ( r / R c, max ) 
−2 ]. 

It thus follows that 

∂ ( v φB r r − v r B φr) 

∂ θ
= 0 , (D5) 

and integrating we get 

v φB r r − v r B φr = B 0 r 0 ( v φ( r 0 ) − v r ( r 0 )) . (D6) 

Using equation ( D3 ) for B r then gives 

B φ = B 0 

(

v r r 

v r ( r 0 ) r 0 

)−1 [

1 + 
v φr 0 

v r ( r 0 ) r 
−

v φ( r 0 ) 

v r ( r 0 ) 

]

. (D7) 

For v φ = 0, equation ( D7 ) reduces to B φ ∝ ( v r r ) 
−1 , as in the Shapiro 

( 1973 ) non-rotating solution. For finite v φ , the second term in the 

brackets scales as ≈r −3/2 (since at large radii v φ ∼ r −1 and v r ∼ r −0.5 ), 

and hence for r somewhat smaller than r 0 this term will dominate the 

other two terms. We thus get 

B φ ≈ B 0 
v φ

v r 

(

r 

r 0 

)−2 

= 

√ 

2 
t cool 

t ff 

r 2 0 R c , max 

r 3 
sin θ , (D8) 

where in the last approximation, we use v φ = v c R c, max sin θ / r , v r = 

r / t cool , and t ff = 
√ 

2 r/v c . Specifically, at r ≈ R c, max just prior to 
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accretion we get 

B φ( R c , max ) 

B 0 
≈

√ 

2 
t cool 

t ff 
( R c , max ) 

(

R c , max 

r 0 

)−2 

sin θ . (D9) 

This result suggests that the enhancement of B φ at R c, max is 

a product of t cool / t ff ( R c, max ) and ( r 0 / R c, max ) 
2 , where the for- 

mer tracks the number of radians rotated by the inflow (equa- 

tion 44 ) and the latter tracks the contraction of an inflowing 

shell. 
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