of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 530, 1711-1731 (2024)
Advance Access publication 2024 March 20

https://doi.org/10.1093/mnras/stae824

Accretion onto disc galaxies via hot and rotating CGM inflows

Jonathan Stern ”,'* Drummond Fielding *',> Zachary Hafen *,* Kung-Yi Su,? Nadav Naor,'

Claude-André Faucher-Giguere *',* Eliot Quataert > and James Bullock 3

LSchool of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

2 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

3Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, CA 92697, USA

4Department of Physics and Astronomy and CIERA, Northwestern University, 1800 Sherman Ave, Evanston, IL 60201, USA
3 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

Accepted 2024 March 18. Received 2024 March 17; in original form 2023 May 31

ABSTRACT

Observed accretion rates onto the Milky Way and other local spirals fall short of that required to sustain star formation for
cosmological timescales. A potential avenue for this unseen accretion is a rotating inflow in the volume-filling hot phase (~ 10° K)
of the circumgalactic medium (CGM), as suggested by some cosmological simulations. Using hydrodynamic simulations and
a new analytic solution valid in the slow-rotation limit, we show that a hot inflow spins up as it approaches the galaxy, while
remaining hot, subsonic, and quasi-spherical. Within the radius of angular momentum support (~ 15 kpc for the Milky Way) the
hot flow flattens into a disc geometry and then cools from ~ 10° to ~ 10* K at the disc—halo interface. Cooling affects all hot gas,
rather than just a subset of individual gas clouds, implying that accretion via hot inflows does not rely on local thermal instability
in contrast with ‘precipitation’ models for galaxy accretion. Prior to cooling and accretion the inflow completes Xt/ radians
of rotation, where o0/t 1S the cooling time to free-fall time ratio in hot gas immediately outside the galaxy. The ratio .01/t
may thus govern the development of turbulence and enhancement of magnetic fields in gas accreting onto low-redshift spirals.
We show that if rotating hot inflows are common in Milky-Way-size disc galaxies, as predicted, then signatures of the expected

hot gas rotation profile should be observable with X-ray telescopes and fast radio burst surveys.

Key words: galaxies: disc — galaxies: evolution — galaxies: formation — galaxies: haloes —intergalactic medium.

1 INTRODUCTION

Observation of neutral gas surrounding the Milky Way and nearby
spirals suggest accretion rates of 0.05-0.2Mg yr~', falling short
of the 1-2Mg yr~! required to sustain observed star formation
rates (SFRs) for cosmological timescales (Sancisi et al. 2008;
Putman, Peek & Joung 2012; Kamphuis et al. 2022). This ‘missing
accretion’ is often attributed to predominantly ionized gas clumps
with temperature ~ 10* K (e.g. Voit et al. 2017), observable mainly
in ultraviolet (UV) absorption. It is however unclear if this phase
can provide the necessary fuel for star formation, due to both
uncertainties in converting UV absorption features to net accretion
rates (e.g. Fox et al. 2019), and since hydrodynamic instabilities may
disrupt and evaporate cool gas clumps before they reach the galaxy
(Heitsch & Putman 2009; Armillotta et al. 2017; Afruni et al. 2023;
Tan, Oh & Gronke 2023). An alternative, less explored possibility
is that accretion proceeds via a subsonic inflow in the volume-
filling hot phase (~ 10°K) of the circumgalactic medium (CGM),
similar to classic ‘cooling flow” solutions discussed in the context of
the intracluster medium (ICM, Mathews & Bregman 1978; Fabian,
Nulsen & Canizares 1984). Such hot CGM inflows are evident in
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modern cosmological simulations such as FIRE (Stern et al. 2021b;
Hafen et al. 2022) and TNG (ZuHone et al. 2023; see also fig. 9 in
Nelson et al. 2019).

Since the hot CGM is expected to have a net rotation (e.g. Roskar
etal. 2010; Stevens et al. 2017; Oppenheimer 2018; DeFelippis et al.
2020; Huscher et al. 2021; Nica et al. 2022; Truong et al. 2021), an
inflow will cause it to spin up. Stern et al. (2020) used an idealized 1-
D model to show that in Milky Way mass haloes, such a rotating hot
inflow will remain hot down to the radius where the rotation velocity
approaches the circular velocity v. = «/GM(< r)/r, at which point
the gas cools to ~ 10* K and joins the ISM disc. Hafen et al. (2022)
demonstrated that this picture applies, and is the dominant accretion
mode onto z ~ 0 Milky Way mass galaxies in the FIRE-2 cosmological
zoom simulations (Hopkins et al. 2018). They further showed that
the flow forms a coherently spinning disc prior to accretion onto the
galaxy, and that this coherence may be a necessary condition for
the formation of thin disc galaxies, consistent with conclusions from
related FIRE-2 analyses (Yu et al. 2021, 2023; Stern et al. 2021a, b;
Gurvich et al. 2023). It thus appears that a deep understanding of the
physics of hot and rotating inflows could be crucial for understanding
the evolution of local star-forming discs.

In this paper, we complement the cosmological simulation-based
analysis of hot and rotating CGM inflows in Hafen et al. (2022), by
deriving an idealized, 2D axisymmetric solution for inflowing and
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rotating hot CGM. Deriving an idealized solution allows identifying
its dependence on system parameters and boundary conditions, and
provides a basis for assessing the effects of additional physics. Our
derivation is built on previous 1D hot inflow solutions,! which
accounted for rotation in a highly approximate manner (Cowie,
Fabian & Nulsen 1980; Birnboim & Dekel 2003; Narayan &
Fabian 2011; Stern et al. 2020). These 1D studies assumed the
centrifugal force is directed outward in the spherical radius direction,
so the solution remained spherically symmetric. Here, we assume
the centrifugal force is directed outward in the cylindrical radius
direction, and derive a 2D axisymmetric solution which captures the
transition from a quasi-spherical flow at large scales where rotational
support is weak to a disc geometry at small scales where rotational
support dominates. The idealized nature of our approach implies
that insights may be applicable also to other astrophysical discs fed
by spherical inflows, such as active galactic nucleus (AGN) discs
in galaxy centres (e.g. Quataert & Narayan 2000) or protoplanetary
discs in the centre of star-forming clouds (e.g. Fielding et al. 2015).

The inflowing hot CGM solution derived herein focuses on the
limit where feedback heating is subdominant to radiatively cooling,
thus differing qualitatively from radially static hot CGM models (also
known as ‘thermal balance’ models, e.g. McCourt et al. 2012; Sharma
et al. 2012a; Faerman, Sternberg & McKee 2017, 2020; Pezzulli,
Fraternali & Binney 2017; Voit et al. 2017; Sormani et al. 2018),
and from hot outflow models (Thompson et al. 2016; Schneider et al.
2020). Thermal balance models assume that radiative cooling is equal
to feedback heating, thus inhibiting the hot inflow, while outflow
models require that feedback heating dominates. Observational
evidence for thermal balance is strong in the ICM, since the SFR
at the cluster centre is small relative to the inflow rate M implied
by the X-ray emission Ly. This is the well-known ‘cooling flow
problem’, where M &~ Ly /v? 3> SFR (see McDonald et al. 2018, for
a recent revisit). There is, however, no similar cooling flow problem
in disc galaxies. Upper limits on Ly from the hot CGM of Milky
Way mass galaxies are a few x10* erg s~ (Li & Wang 2013; Li,
Crain & Wang 2014; Anderson et al. 2015; Comparat et al. 2022), and
recent results based on eROSITA data indicate the actual emission
may be comparable to this value (Chadayammuri et al. 2022). For
ve A~ 200km s~! this Ly implies M ~ 1 Mg yr~' ~ SFR, in contrast
with M > SFR deduced for the ICM. Similarly, estimates of M in the
Milky Way halo suggest M ~ 0.1 — 1 Mg yr~! (Miller & Bregman
2015; Li & Bregman 2017; Stern et al. 2019), again inconsistent with
the M > SFR derived for the ICM. More massive spirals in which
the hot CGM is detected in individual objects with Ly > 10* ergs™!
have SFR ~ 10 M, yr~! and hence also satisfy M ~ SFR (Anderson,
Churazov & Bregman 2016; Bogdan et al. 2017; Das et al. 2019). A
cooling flow problem akin to that in the ICM does not exist in the
CGM of disc galaxies, allowing for the possibility that the hot CGM
is inflowing.

The paper is organized as follows. In Section 2, we discuss the
structure and properties of hot and rotating CGM using analytic
considerations, while in Section 3, we derive a numerical solution. In
Section 4, we consider the effect of additional physical mechanisms
which were not included in the basic analysis, and in Section 5, we

I Also called ‘cooling flows’ in the classic ICM literature, though note that
this term has been used also to describe flows which cool out in halo (e.g.
McQuinn & Werk 2018), rather than at the disc-halo interface. The hot
rotating inflow solution in this paper can thus be described as a ‘rotating
cooling flow’.
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derive several observables of hot rotating CGM. Implications of our
results are discussed in Section 6 and Section 7 provides a summary.

2 THE STRUCTURE OF HOT AND ROTATING
CGM - ANALYTIC CONSIDERATIONS

The flow equations for radiating, ideal gas with adiabatic index y =
5/3 subject to an external gravitational potential ¢ are

dp

V. =—— 1
(pv) o ey
0 1

(—+v~V)v:—7VP—Vd>, 2)
ot P
O v v)mk=-" 3)
ot v ! N Icool,

where p, P, and v are, respectively, the gas density, pressure, and
velocity. We use K = Pp~>" for the ‘entropy’ (up to an exponent and
a constant) and 7o for the cooling time, defined as

3 P

53 )
2niA

teool =
where ny is the hydrogen density, (3/2)P is the energy per unit
volume, and A is the cooling function defined such that n A is the
energy lost to radiation per unit volume per unit time. Equations (1)-
(3) neglect conduction, viscosity and magnetic fields, the potential
effect of which will be assessed below. We also do not include a
heating term in equation (3) since we search for a solution in the
limit that heating is subdominant to cooling (see Introduction).

2.1 Hot CGM without angular momentum

We start with a brief review of steady-state (0/9¢ = 0) hot inflow so-
lutions without angular momentum, which were studied extensively
mainly in the context of the inner ICM (classic ‘cooling flows’, e.g.
Mathews & Bregman 1978) and adapted to galaxy-scale haloes by
Stern et al. (2019). When angular momentum is neglected spherical
symmetry can be assumed, and hence equations (1)—(3) reduce to

dwripv, = M, 5)
lvgz_lM_£ ©)
2 P dr r
dinK 1
v, - @)
dr Teool

where r is the spherical radius, M is the mass flow rate (constant
with radius in steady state, down to the radius where stars form),
Puy, = potﬁrb is the turbulent pressure, and o, is the turbulent
velocity. Multiplying both sides of equation (7) by the free-fall time
ty = 2 /v (defined as in McCourt et al. 2012), we get

ﬁv, din K . I
Ue dinr - Teool '

®

This equation indicates that if ..o > f5, then either the flow is
isentropic with dln K/dr & 0 as in the Bondi (1952) solution, or that
the inflow velocity is small, that is,

-1
r Ie
UL (L"l) <«1. )
Ve Ii

The solutions discussed here correspond to the latter type of solutions
where v, < v., known as cooling flow solutions in the ICM literature.
Hydrodynamic simulations show that initially static gas with 7¢o0 >
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tr converges onto a cooling flow solution within a timescale #coo1,
rather than onto an isentropic flow (e.g. Stern et al. 2019).

To derive an analytic approximation, one can neglect in equation
(6) the small inertial term vf and the turbulent term which is also
expected to be small Py ~ (v/ve)* Py, (see Section 4.2 below).
Further approximating the gravitational potential as isothermal with
some constant v, then gives (see section 2 in Stern et al. 2019):

10
C? = 3113 )
T =20 x 10°v 5 K,

ny = 0.8 x 1073 rliol‘svcyzooM?'SA:g'zs cm’3,

1.5 r—0.5 A —0.5
teool = 370 o UC,ZOOMl A_22 Myr,
r

_ _ —0.5, ~1 2705405 -1
—Ur = = 27119 "V 200M " ATy kms™,

Tcool

ti

9 .
My =55 = 0.13 1o v 300 M7 A%, (10)

Tcool
where c¢; is the sound speed, T is the temperature, M, = v, /cs is
the radial Mach number of the flow, and we normalized by the
following numerical values: r1o = r/10kpc, v¢ 200 = v./200 km s!,
M;=M/1Mgyr~', and A_p = A/1072ergcm®s~!. Equation
(10) treats M as the free parameter, though one can also treat the
CGM mass or density profile normalization as a free parameter, and
then M follows from the density relation in equation (10).

The numerical values used in equation (10) are appropriate for the
Milky Way CGM: M is taken to be roughly half the SFR of &~ 1.5 —
2 Mg, yr~! (Bland-Hawthorn & Gerhard 2016), as expected in steady
state where the ISM mass is constant with time, and =~ 40 per cent
of the stellar mass formed is ejected back into the ISM via winds
and supernovae (e.g. Lilly et al. 2013). This M is also consistent
with X-ray absorption and emission constraints on the hot CGM of
the Milky Way (see Introduction). The value of A is appropriate
for T =2 x 10°K gas with metallicity Zo/3, as measured for the
Milky Way CGM (Miller & Bregman 2015). Equation (10) reveals
several properties of the non-rotating solution. The inflow velocity
v, 1s equal to r/t.o, SO the accretion time equals the cooling time, as
expected in a cooling flow. This also implies that the entropy drops
linearly with decreasing radius (see equation 7). Additionally, the
inflow has a temperature which is independent of radius and roughly
equal to the halo virial temperature, despite radiative losses. This is
aresult of compressive heating during the inflow balancing radiative
cooling.

The solution in equation (10) also highlights that the parameter
teool/tir sets the Mach number of the flow, and thus also the sonic
radius of the flow where | M, | = 1:

T'sonic ~ r(tcool = 0-7lff) =0.17 vcigooMlAfZZ kPC ) (11)

where we approximated +/9/20 & 0.7. Note that near and within the
sonic radius the assumption of a quasi-hydrostatic flow is invalid,
so the estimate of rsonic 1S approximate. Equation (11) indicates that
T'sonic 18 Well within the galaxy for Milky Way parameters, though it
can be on CGM scales in lower mass galaxies where v, is lower, or at
higher redshift where M is higher. In this paper, we focus on systems
with rgonic Smaller than the galaxy scale, so the quasi-hydrostatic
approximation is valid throughout the CGM.

Another important scale of cooling flows is the cooling radius
Teool At Which 7.0 €quals the system age or the time since the last
heating event. This scale is not part of the steady-state solution,
since a cooling flow develops on a timescale 7., and thus steady
state is achieved only at r < 7. A time-dependent solution for
how the outer boundary of the inflow at » ~ r. expands as reool
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grows was derived by Bertschinger (1989). For the above parameters
teool = 10 Gyr occurs at r = 110 kpc, so when necessary we assume
reool = 100 kpc. The present study however focuses on smaller radii
of r < 40 kpc where the dynamical effects of angular momentum are
most pronounced, so #. is short relative to cosmological timescales
and thus steady state is more likely to be achieved. This inner CGM
region is also less susceptible to cosmological effects not included
in our analysis, such as non-spherical accretion and satellite galaxies
(Fielding et al. 2020).

2.2 Rotating hot CGM inflows — the circularization radius

Given some net angular momentum in the hot gas, for example due
to torques applied by neighbouring haloes, the rotation velocity will
increase as the gas inflows. We can hence define a circularization
radius R, as the radius where the rotational velocity equals the circular
velocity and the flow becomes rotationally supported:

R. = R(vy = o), (12)

where here and henceforth we use R for the cylindrical radius (and r
for the spherical radius). One can also express R. using the specific
angular momentum of the hot gas j:

j = Ve(Re)R. . (13)

Cosmological considerations can be used to estimate a typical R..
In a ACDM cold dark matter universe, a given dark matter halo is
expected to have a spin parameter A which on average equals:

J

A= —— ~0.035 14

\/EMvirvvirrvir ( )
(e.g. Bullock et al. 2001; Rodriguez-Puebla et al. 2016), where
Mir, Vyir, Tvir, and J correspond to the halo mass, virial velocity,
virial radius, and angular momentum, correspondingly. Assuming
the hot CGM has roughly the same spin as the dark matter halo
as suggested by cosmological simulations (e.g. Stewart et al. 2013,
2017; DeFelippis et al. 2020; Hafen et al. 2022), and assuming that

near the disc v, = f, vyir With f,, 2 1, we get
Re ~ N2of,  rye ~ 15 £, (300Vi;pc) kpe . (15)

Comparison of equation (15) with equation (11) implies that R, >
Tsonic 10 Milky Way haloes. Thus, a hot CGM inflow in a Milky
Way halo is expected to become rotation-supported well before it
transitions into a supersonic flow. This conclusion is also apparent if
we estimate the radial Mach number near R.. Using equation (10),
we have

Leool R \* 2 05405

P (R.)=6.3 I5kpe Vo p00My CATY (16)
and hence
M (Re) ~ 0.7(teont /tir) "' A 0.1 (17)

The difference between CGM with rypic < R, and CGM with ropic
> R, was discussed by Stern et al. (2020), and is related to the classic
distinction between ‘hot mode’ and ‘cold mode’ accretion (White &
Rees 1978; Birnboim & Dekel 2003; Fielding et al. 2017). In this
paper, we focus on systems with 7sonic < R, so the hot accretion mode
dominates.

MNRAS 530, 1711-1731 (2024)
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1714 Stern et al.
2.3 Rotating hot CGM inflows - fluid equations and outer
boundary condition

Accounting for angular momentum, and assuming steady state and
axisymmetry, the » and 6 components of the momentum equation (2)
reduce to

oP 2

= —p% + pQrsin6, (18)
op 2.2

20 = pS2°r<sinf cos 6, (19)

where 6 is the angle relative to the rotation axis and = v,4/(rsin 6) is
the angular frequency (v, vy, vy are the velocity vector components).
We neglect the inertial v> term since its magnitude relative to the
other terms is of order M? = (teo01/tir) 2. We similarly neglect the
vg and v,vg terms, since motion in the 6 direction is a result of the
combination of radial and rotational motions, and hence vy is of
the same order as v, or smaller. The momentum equation in the ¢
direction is

0 2.2 0 22
v, —(Qrsin“ ) = —vy—(Qr-sin” 0) , (20)
or roo

which indicates that the specific angular momentum j = Qr?sin 26
is conserved along flowlines, as expected under our assumption of
axisymmetry. The mass and entropy equations (1) and (3) reduce to

1o, 1 o

ﬁa(lovrr )+ T ing @(pve sing) = 0, 21
0lnK 0lnK 1

Py Y0 T "ol | (22)

At large radii where the centrifugal terms in equations (18) and
(19) are small, the solution will approach the spherical no-angular
momentum solution discussed in Section 2.1. In this limit, we also
expect vy — 0, so equation (20) implies that angular momentum is
independent of radius, that is, it preserves the relation between j and
0 that exists in the outer boundary of the flow at r ~ r.o,. We denote
this boundary condition as

J1(r,0) = Ve(Re max) Re max sin> 0 F(0) (23)

where R¢ max = Rc(0 = /2) and thus ve(R., max)Rc, max 18 the specific
angular momentum at & = /2 (see equation 13), while F is some
function that satisfies F(;7r/2) = 1. The subscript ‘1’ denotes that this
relation is valid at large radii where vy — 0. Equivalently, the angular
frequency at large radii is

vc(Rc,max)Rc,max

Qi(r,0) = 2 F@). (24)

Equation (23) implies that the circularization radius of a flowline
which originates at polar angle 6 is RR. maxSin 20F(0), with this
expression being exact for constant v.. We show below that flowlines
accrete onto the disc at a cylindrical radius equal to their circular-
ization radius. To avoid flowline intersection, sin 26 F(8) is assumed
to monotonically increase at 0 < 6 < m/2, and thus the mid-plane
flowline has the largest circularization radius.

The function F can be estimated using the results of non-radiative
cosmological simulations, which provide the initial conditions (ICs)
in the hot gas before a radiatively driven inflow develops. Sharma,
Steinmetz & Bland-Hawthorn (2012b) found that Q is weakly
dependent on # in a sample of 10'' — 103 My haloes in such
simulations, with differences of & 15 per cent between the mid-
plane and the rotation axis. This suggests F(6) ~ 1, so we use F(0) =
1 as our fiducial value.

We note that the Sharma et al. (2012b) simulations also suggest
joc ¥ — 07 at 0.1 < r/ryi < 1 (see their fig. 2), that is, the initial

MNRAS 530, 1711-1731 (2024)

specific angular momentum profile of the hot gas increases outwards.
We thus expect this increasing j profile to be replaced by a flat j oc °
profile (equation 23) once the inflow develops. Assuming the outer
boundary of the inflow expands with time as ., grows (see Section
2.1), then we expect the normalization of the j profile and hence R, max
to increase with time, as the inflow originates from larger radii where
Jjis larger. This expected evolution however occurs on a cosmological
timescale, and thus does not invalidate our steady-state assumption in
the inner CGM which is achieved on the shorter cooling timescale at
small CGM radii. Thus, for the purpose of deriving this steady-state
solution in the inner CGM we treat R; max as a constant.

2.4 Analytic solution in the slow rotation limit

In this section, we derive a solution to equations (18)—(22) which
is accurate to lowest order in the effects of rotation. A similar
approach was employed to study meridional flows in the Sun (Sweet
1950; Tassoul 2007) and in Bondi flows with r,;c > R. (Cassen &
Pettibone 1976).

The dynamical effects of rotation on hot CGM inflows increase
with decreasing r, and become dominant at r S R max. To find the
solution in the slow rotation limit we thus keep only terms which
depend on R. max/7 to the lowest order. It is straightforward to show
that there are no terms of order (r/R, max) ', since the lowest order
of  is proportional to (7/R., max) ™2 (equation 24) and rotation enters
the other flow equations only via the term Q%7 (equations 18 and
19). We thus define a perturbation parameter

2
e= (-~ (25)
Rc,max ’

and search for a solution of the form

Pi(r,0) = Po(r)[1 + e(r) fp(0)],

pi(r, 0) = po(r) [1+ €(r) £,(0)] .
V1 (r,0) = v,0(r) [1 + €(n) £,0)]
Vo,1(r, 0) = v, 0(r)e(r) £, (6),

Q. 0) = — €(r). 26)

C,max

Here, a subscript ‘0’ denotes the non-rotating solution (equation 10),
a subscript ‘1’ denotes the approximate solution which we wish to
find, and fp, f,. f,, fu, are some functions of 6. The motivation
for the form of vy ; will become apparent below. The solution for
2, is equivalent to equation (24) assuming F(0) = 1 as suggested by
non-radiative cosmological simulations. The implications of other
forms of F(6) on the solution are discussed below.

We emphasize that the assumption of mild rotation is on top
of the assumption of quasi-hydrostatic conditions, which allowed
neglecting the quadratic velocity terms. Together, these assumptions
imply that we assume the following conditions on timescales in the
system:

~ 2 2
foe R i, teool > tir, Ly > lip (27)

where . is the sound crossing time which is approximately equal to
tir since the flow is quasi-hydrostatic, and o, = Q! is the rotation
time. The squares on the relation between f,, and g follow from the
relative size of the neglected centrifugal terms, which are of order
(Rr/ve)? ~ (tiotir) 2 (equations 18 and 19).

Using equation (26) in equation (19), and keeping only first-order
terms in €, we get

dfe

Py = pov2 sinf cosé (28)
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where Py can be derived from P = (3/ 5),0cs2 and equation (10):

2 5
P() = g,()()UC . (29)
We thus get

3
fpzzsinze—l-c, (30)

where C is a constant of integration to be determined below. Next,
the first-order terms in equation (18) give

d(ne) dP v2 v2
frPo + = —fppo-S + po— sin6 . 31)
dr dr r r
Using equations (10), (25), and (29) then gives
11 7
fo = - sin? 6 + gc ) (32)

We can also define Ty = To(1 + €fr). Since T o P/p, we get to first
order in € that

4
fr =fp—fp=—231n29—§C, (33)

and similarly defining K; = Ky(1 + €fk) and using K o< P/p>", we
get

23
6
Equations (30), (32), and (33) indicate that the pressure and density
increase when traversing from the rotating axis to the mid-plane at
a fixed r, while the temperature decreases. The increase in pressure
in the mid-plane is due to the higher density, which overcomes the
lower effective gravity in the mid-plane which tends to decrease the
pressure.

In the entropy equation (22), the second term on the left-hand side
is of order € (see equation 26) and can be neglected. The first-order
terms of this equation are hence

Olne n f 0In K 1
VeoJv, —(3 — = —
or 0Jvr

5 .5 26
fK:fP_gfﬂz_ sln@—gc. (34)

[fo = +Dfr], (35)

vr0fk
tcoo],()

where we use f.0 o T/pA, and approximate the temperature
dependence of the cooling function as a power-law A = A(Ty,

Z)(T/Ty)~". Further using K, o To/,og/3 o< r and fepor0 = —HVr g
based on equation (10), and the above relations for fx, f,, fr, we get

_(.® 2o (“ 20t e Bge B

f,,,—( 12+21>sm0 ( 9+3Z)C 12sm9 9C. (36)
In the approximation on the right we use / = 0.5, appropriate for gas
with T ~ 10° K and a characteristic CGM metallicity of Z~ 0.3 Z

(Miller & Bregman 2015). Last, we use the continuity equation (21)

to derive vg, which we cast in the form vg,; = v, o€ f,, (see equation
26). Keeping only first-order terms, we get
POEV, 0 0 . fp+fv— 0 2

YRYL 0) =————F—= r . 37
rsinf 00 (i 5in) rz  or (eovvr.or) 37)

Using the definition of € and that pov,.,or2 is independent of r, we
then get

0 , . .
% (sinb f,,) = 2sin6(f, + fo,), (38)
SO

1 5 . 16 .
fvg = m (g SlI‘l3 0 =+ EC Sln@) do

1 2

= —15—-1 D
Song [cos6 (5cos*0 — 15 —16C) + D] , (39)
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where D is another constant of integration. We further require
vy (/2) = v4(0) = 0, in order to avoid a discontinuity at the rotation
axis and to enforce symmetry with respect to the mid-plane. This
gives D = 0 and C = —5/8, and hence

5
fu == 1gsin20. (40)

Note that since v,. ¢ is negative, then vy | = v, o fy, € is positive for 6
< m/2 and negative for 6 > m/2, indicating that rotation diverts the
flow towards the disc plane, as expected.

To summarize our solution we use the derived C = —5/8 in
equations (30), (32), (33), and (36) and get

Rgmax 3 .2 5
P1=P0(r)<l+ 2 <ZSIH 9—8)>,

R2 /11 . 35
PIZPO(V)(1+}J(4SIH 9—24>>,

R?m'x . 5
=T (1 - % (2s1n29 — 6)) ,
R? 23 65
V1 = Vro(r) (1 - ;";ax (E sin? @ — 72)) ,
SR
Vg1 = —V,0(r) - I Cr"zmx sin(26),
'R'mix
Q == ;2’ =, (41)

where the zero-order terms are given by equation (10). For a given
v, the solution in equation (41) depends on three parameters: M and
A(Ty, Z) (or equivalently CGM mass and metallicity) which set the
non-rotating solution, and R, max Which sets the corrections due to
rotation.

The solution in equation (41) is for an outer boundary condition
in which €, is independent of 6 (i.e. F(¢) = 1). In Appendix A,
we give several solutions for €2(f) « sin”(#) with integer n, that
is, the rotation frequency at the outer boundary increases with angle
from the rotation axis. In these solutions, the 6-dependent term in
the solution for P; is multiplied by a factor of sin?'(8)/(n + 1)
relative to that in equation (41), while the corresponding term for
T, is multiplied by a factor of sin2"(6) - (n + 2)/(n + 1). Thus, the
result above that P and p increase towards the mid-plane, while T
decreases, holds also when 2; increases with 6. These deviations
from spherical symmetry however tend to become weaker, and more
concentrated near the mid-plane, with increasing n.

2.5 Number of revolutions in CGM inflows

The number of revolutions around the rotation axis completed by
a flowline can be derived from the ratio vy/v, implied by equation
(41):

Vg Qr sin 6 Ve Re max SIn 0

(14 O)) . (42)

Uy Uy rvr o

Using v, 0 = r/feooi(1 + O(€)) and tir = ~/2r /ve, we thus get

feool R
Yo _ pleod Remax o6 (1 4 O(e)) . (43)
v, tee r

It is thus evident that in solutions with larger 7.,/ the flowlines are
more tightly wound, that is, the flow rotates more prior to accreting
onto the galaxy. The total number of radians a flowline rotates can
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be approximated with the following integral

v, dr teool R te
/th / ¢ bl 2/ cool f\¢ max d}" ~ 2 cool (Rc,max) .
rsinf v, ty 12 te

(44)

where in the first approximation we used equation (43) and in the
second approximation we used fcoo/tsr X ri2 (equation 10) and
integrated over the range r/R. max = 1-7. The upper bound of this
range corresponds to the cooling radius (see Section 2.1), though
since the integrand scales as r~*> most of the rotation happens near
R max, and the choice of upper limit does not significantly affect the
result. Also, the lower bound of this range implies that neglecting
the O(e) term is not formally justified. Below we validate this
approximation with a more accurate numerical calculation. Equation
(44) suggests that the number of rotations is set by fcoo1/?ir n€Ar Re, max,
where 7,401/t 1 estimated by the non-rotating solution (equation 10).
This can be understood intuitively since the cooling time tracks the
inflow time (., = #/|v,|) while the free-fall time tracks the rotation
time near R max (r = 1/ve = r/vg(Re, max)). For the Milky Way halo
in which 7.o01/t(Rc, max) & 6 (equation 16), we get that an accreting
element rotates ~12 radians prior to accretion. Furthermore, since
teool/ter increases with v, (see equation 10), we generally expect the
amount of rotation to increase with galaxy mass.

It is informative to extend the result in equation (44) also to
galaxies with halo masses < 10'2 Mg, where f.0 < t and the
volume-filling phase is cool and in free-fall with v, & —v. (e.g.
Stern et al. 2020). Using —v, = min (#/#.401, V) in equation (44) we
thus get

/ Qdr ~ max(2 °°°1< emax)s 1). 45)
ff

Equation (45) demonstrates that only in the hot accretion mode
where pressure-support slows down accretion relative to free-fall, the
CGM has time to rotate significantly before accreting. In contrast,
free-falling cold flows rotate merely by ~1 radian prior to accretion.

The ratio feool/ts at ¥ = R max fully determines the hot rotating
inflow solution, up to a scaling of the physical dimensions, as we
show in Appendix B using non-dimensional analysis of the flow
equations. We similarly show that the solution is fully determined up
to a scaling by the ratio M /M., where M. is the critical accretion
rate in which fo0/tis = 1 at r = R, max (Stern et al. 2020).

2.6 Disc accretion radius

The distribution of disc radii at which gas accretes is an important
input parameter for chemical evolution models and dynamical
models of galaxy discs (e.g. Schonrich & Binney 2009; Krumholz
et al. 2018; Wang & Lilly 2022). In this section, we derive this
distribution for hot and rotating CGM inflows.

Since the flow is spherical at large radii it holds that

ML i sing 46

g, 2 Mm “46)
where we use 6 to denote the polar angle of a flowline at large
radii. In hot rotating CGM inflows flowlines both conserve angular
momentum (equation 20), and accrete onto the disc at their circular-
ization radius R.(f() (see numerical calculation below). The value
of R, can be estimated from equation (23), which for constant v, and
F(6p) = 1 implies

Rc(e()) = Rc,max Sinz 90 . (47)
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We thus get
. 60 qMm )
Mawe(< R) =2 / 15 400 = M(1 — cos )
0 0
_ [ M (1= /T=R/Rema) R =< Remn )
M R Z Rc,max ’

where the factor of 2 before the integral accounts for the two sides of
the disc. Equation (48) indicates that the median accretion radius is
(3/4)Rc, max, or 11.25kpc for R. max = 15kpc, suggesting accretion
weighted towards large disc radii. A similar conclusion of accretion
mainly from large disc radii was deduced in FIRE cosmological
simulations of Milky Way-like galaxies, in which the accretion is
also dominated by hot rotating inflows (Trapp et al. 2022).

3 THE STRUCTURE OF HOT AND ROTATING
CGM - NUMERICAL SOLUTION

In this section, we derive numerical solutions for hot and rotating
CGM inflows. To this end, we run 3D hydrodynamic simulations
until they converge onto a steady state, where mass continuously
flows through the hot CGM, cools and accretes onto the disc, and
forms stars. Using this method to find the numerical solution has
the advantage that it demonstrates that the solution is an attractor.
The properties of the numerical solution are then compared to the
approximate analytic solution derived in the previous section.

3.1 Setup

We use the meshless finite-mass (‘MFM’) mode of GizMO (Hopkins
2015), a Lagrangian method with no inter-element mass flux, which
enables us to track the history of each resolution element. The
code accounts for self-gravity of the gas and stars, to which we
add an acceleration term —(vc2 /r)# with v, =200km s~'. This
term approximates the gravitational field in the inner halo due to
unmodelled dark matter and stars. Optically thin radiative cooling
is calculated using the z = 0 tables from Wiersma, Schaye &
Smith (2009) down to T = 10* K, while optically thick radiative
cooling to lower temperatures is disabled. All gas resolution elements
with ngg > 10cm™ are converted into stellar particles. All stellar
feedback processes are disabled.

The density, temperature, and radial velocity of gas is initialized
with a spherical, non-rotating hot inflow solution from Stern et al.
(2019), to which we add rotation corresponding to some R, max.
This solution is found by integrating the 1D spherically symmetric
and steady-state flow equations, starting at rypie = 0.1kpc and
proceeding outward. The integration uses the same v, = 200 km s~!
and cooling function with Z = 0.3Z¢ as in the simulation. The
1D solution has M = 1 Mgyr~! and at radii r > rype is well
approximated by equation (10), with 7 =2 x 10° Kand A 5, =0.3.
We then randomly select initial positions in (r, ¢, 6) for the initial
location of gas resolution elements, such that the radial mass profile
reproduces that in the spherically symmetric solution. To add a net
rotation to the gas, all resolution elements at r > R nax are initialized
with vy = 200 sin O(r/Re.max)”  km s™!, with R max = 15 kpe. This
addition of rotation implies that the ICs are not in steady state, since
the initial pressure structure does not account for rotation support. We
show below that the simulation adjusts to a new steady state within a
cooling time of < 1 Gyr, with a somewhat larger M of 1.7 Mg yr~!

The mass of individual resolution elements is set to m;, = 1000 M,
for elements at r < 100 kpc. This mass resolution implies a charac-
teristic size of ~ (3my, /47 ny)"/* ~ 0.2n"} kpc for typical hot gas
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Figure 1. Temperature map (colour) and flowlines (black lines) in a hot rotating CGM inflow. Left and middle panels show the solution in the cylindrical R
— z and the x — y planes. The right panel depicts three specific flowlines as 3D ‘tubes’, where the cross-section along each tube scales as (pv)~! and hence
illustrates the compression of the flow. Note that the hot ~ 10° K phase inflows along helical paths, and cools to ~ 10* K just prior to joining the ISM disc.

densities of ~ 10~3n_3 cm™ near the disc scale, and smaller sizes

for the denser cool gas. For comparison, the height of the ~ 10* K
gaseous disc which forms from the cooling of the hot gas is ~ 1kpc.?

Beyond 100 kpc, the gas does not participate in the inflow since
cooling times are too long, but needs to be included in the simulation
in order to confine gas at smaller radii from expanding outward (in a
realistic halo this confinement is achieved either by such hot gas with
along cooling time or by the ram pressure of infalling gas outside the
accretion shock). To avoid investing too much computing time in this
confining outer gas, we sample the spherically symmetric solution
beyond 100 kpc with resolution elements which masses increase by a
factor of three every factor of +/2 in radius, out to 3.2 Mpc where the
sound-crossing time equals 10 Gyr. In total, the CGM is simulated
with 3.1 x 107 resolution elements.

We also add a galaxy to the ICs, using the MAKEDISK code
(Springel, di Matteo & Hernquist 2005) with the following pa-
rameters. The stellar disc is initialized with mass M, = 108 Mg,
cylindrical radial scale length of Ry = R max/4 = 3.75 kpc spanning
0.03 — 4Ry, and a vertical scale length of 0.1R,. The gaseous disc has
a mass Misc gas = 0.2M, and the same exponential distribution as
stars, and the bulge has a mass Mg = 2 x 107 M, and scale length
0.1 kpc. We include in the MAKEDISK calculation the same isothermal
gravitational field used in the hydro simulation, and stellar and gas
particles in the disc have the same m; = 1000 M, resolution as in the
CGM. The choice of galaxy parameters is inconsequential as long
as the initial mass is small compared to the accreted mass, which at
t = 1Gyr is Mt ~ 10° M. The simulation is run for 3.5 Gyr, with
snapshots saved every 5 Myr. At all times and radii, the gravitational
field is dominated by the included isothermal gravitational field with
v. = 200km s~!, rather than by the simulated gas and stars.

Our setup is loosely based on the setup of Su et al. (2019, 2020),
which simulated the behaviour of gas in group and cluster-sized
haloes. A similar setup to ours for Milky Way mass haloes was
employed by Kaufmann et al. (2006) using a smoothed particle
hydrodynamics code. This code was later found to overpredict

2This follows since the disc height to radius ratio is ~c,/v., and hence for a
gaseous disc temperature 10* K we get (¢s/vc)Re,max & 1 kpe.

artificial clumping of the cool gas (Agertz et al. 2007; Kaufmann
et al. 2009). Our use of the MFM code addresses this numerical
issue (see Hopkins 2015, for code tests). Additionally, since in our
simulation all the hot gas cools once it inflows past R. max (see
below), the numerical details may affect the distribution of clumps
and their typical sizes, but not the total mass which cools.

3.2 Overview of results

Fig. 1 shows temperature maps in the simulation at ¢ > 1 Gyr, after
the hot CGM phase converged onto an axisymmetric steady-state
solution within r & 40 kpc. Steady state and axisymmetry are evident
from the small dispersion in hot CGM properties with time and ¢, as
shown below. The left and middle panels, respectively, show the R
— z and the x — y planes (mass-weighted over —10 < z < 10kpc).
The figure shows that the hot gas fills the volume except in the disc
region at R < Remax = 15kpe and |z| < 1kpe. Black lines depict
flowlines in the two planes, derived as described below. Three of
these flowlines are also depicted in the right panel as 3D ‘tubes’,
rendered using the MAYAVI software (Ramachandran & Varoquaux
2011) on snapshot data. The tube cross-section scales as (ov)~! and
thus illustrates the compression of the flow.

Fig. 1 shows that the flowlines in the hot gas are helical, with the
hot gas spiraling onto the galaxy. While inflowing, the gas initially
remains hot with 7 ~ Ty, and then cools to ~ 10*K just prior
to joining the ISM disc. This cooling is accompanied with strong
compression of the flow, as evident from the sharp decrease in the
width of the flow tubes in the right panel (tube thickness should
drop to < 0.01 pixels upon cooling according to the (pv)~! scaling,
though is plotted with one pixel for visibility).

Fig. 2 plots radial shell-averaged velocities in the simulation after
steady state is achieved. The top panel shows that at radii 7 > R, max
the sound speed ¢, (red) approximately equals v, (grey), indicating
the hot gas is to first order supported against gravity by thermal
pressure, as indicated also by the slow inflow velocities of —v, K
v, (magenta line). Atradii r > R max, the rotation velocity increases
inward roughly as 7~ due to conservation of angular momentum,
reaching vy = V¢ at Re max. Within Re, max the gas is fully rotationally
supported and cool with ¢; < v, and the radial velocity drops to zero.
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Figure 2. Radially averaged kinematics and geometry of a hot rotating CGM
inflow. Top: lines show sound speed (red), rotation velocity (blue), and inflow
velocity (magenta). Bottom: black line shows the average absolute height
above the mid-plane. Rotation velocity increases inward due to conservation
of angular momentum. At radii 7 < R, max, Where the inflow becomes fully
rotation supported (vy = v.) the hot inflow cools out, the inflow halts (|v,|
— 0), and the geometry transitions from quasi-spherical to a disc.

The associated change in geometry is evident in the bottom panel,
which plots the average absolute height above the mid-plane |z| in
different radial shells. The gas distribution is close to spherically
symmetric at r > R max, i0 contrast with a thin disc distribution at r
< R¢, max-

3.3 Accretion of the hot CGM onto the cool ISM

Fig. 3 provides a Lagrangian view of hot inflowing CGM, by plotting
median properties of resolution elements versus time since the
element was at = 40 kpc. The properties depend on the initial polar
angle of the flowline 6, so for each 6 in (0.1m, 0.3, 0.47, 0.57)
we group all resolution elements that reside at 40 < » < 41 kpc and
|6 — 6y <0.0257 attimes 1 < ¢ < 1.5 Gyr. Then, for each 6 group
we plot the median and 16-84 percentile ranges of r, 6, T, and v,.
The 16-84 percentile range thus accounts for the dispersion both
with ¢ and with 7, and specifically a small 16-84 percentile range
indicates that the solution is axisymmetric and in steady state.

Fig. 3 shows that at r = 25 kpc (early times in this plot), the gas
is hot and inflowing, with a somewhat larger inflow velocity in the
0o = 0.1z flowline near the rotation axis. Rotation is sub-Keplerian
(vp < vc &~ 200km s~!) but growing with time, as also indicated by
Fig. 2. The value of 6 remains roughly constant and equal to 9 for a
given flowline. Then, when the flowlines reach radii of r < 20kpc,
the gas initially heats up and is diverted to the mid-plane (6 = 7/2),
and then abruptly cools. The initial heating is more pronounced near
the rotation axis, and is a result of the compression due to the change
in geometry from spherical to disc-like (see below). Cooling occurs
simultaneously with 6 reaching 7/2, vy reaching v, ~ 200 km s~!,
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Figure 3. Gas properties along flowlines in hot rotating CGM inflows, versus
time since a fluid element is at » = 40kpc. Panels show spherical radius,
polar angle, temperature, and rotation velocity. Different lines and bands
correspond to medians and 16th—84th percentiles of flowlines with different
polar angles at large radii 6. Vertical dotted lines indicate times where T drops
to 10° K. Initially the flowlines have roughly constant 6 ~ 6. About 200 Myr
prior to cooling the flow geometry flattens (6 — n/2), and the temperature
increases mainly in flowlines with small 6. Cooling occurs when vy reaches
ve &~ 200km s~ !, that is, at the circularization radius of the flowline R¢(6¢),
indicating a transition from quasi-thermal pressure support against gravity to
rotational support. Dispersion in hot gas properties prior to cooling is small,
demonstrating the hot inflow is steady and axisymmetric.

and r becoming constant, that is, when the hot gas has achieved
full rotational support and transitioned to a flat, disc geometry. We
thus identify the time of cooling also as the time of accretion from
the hot CGM onto the ISM. A similar relation between cooling and
accretion was identified by Hafen et al. (2022) in cosmological zoom
simulations of z ~ 0 Milky Way-mass galaxies from the FIRE project.

Note also that prior to cooling the 16-84 percentile ranges in indi-
vidual flowlines are small, indicating the hot CGM is axisymmetric
and in steady state. Furthermore, cooling and accretion happens to
all hot inflow resolution elements, indicating that cooling is a global
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Figure 4. Gas properties along flowlines in hot rotating CGM inflows, versus time since gas in the flowline cools. The time of cooling is equal to the time
of accretion onto the ISM. From left to right and top to bottom the panels plot cylindrical radius, height above the mid-plane, total rotation since r = 40 kpc,
rotational velocity, density, temperature, pressure, entropy, density dispersion, specific angular momentum, radiative losses per unit mass, and compressive
heating rate per unit mass. Coloured lines and bands correspond to medians and 16th—84th percentile ranges of flowlines with different polar angles at large
radii 6, except in panel 1, where lines denote mean values. At early times t — #(10° K) < —200 Myr, the temperature remains roughly constant at &~ 2 x 10° K
(panel e) since compressive heating and radiative cooling roughly balance (panels k-1). Also, density fluctuations are small (panel i), and the specific angular
momentum is conserved (panel j). About 200 Myr prior to cooling the geometry of the flow starts to flatten into a disc (panel b). At t ~ #(10° K) rotation velocity
reaches the circular velocity (panel d), densities increase by x 300 or more (panel f), and density fluctuations become significant (panel i).

transition in the inflow, rather than occuring only in individual gas
clumps as in precipitation models (e.g. Maller & Bullock 2004; Voit
et al. 2017).

Fig. 4 plots gas properties along flowlines versus ¢ — #(10° K),
where #(10° K) is defined as the time at which the temperature in
the flowline equals 10° K. This time is also marked with vertical
lines in Fig. 3, and as mentioned above is equivalent to the time

of accretion onto the ISM. The 12 panels show cylindrical radius
R, z, total rotation ¢ — ¢o where ¢9 = ¢p(r = 40kpc), rotation
velocity, density, temperature, pressure, entropy, density dispersion,
specific angular momentum, radiative cooling rate per unit mass
n%A/p, and compressive heating rate per unit mass PdV/dt, where
V = p~! is the specific volume. The figure shows that while the
flow is hot (at t < t(10° K)), the density and pressure of the hot
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inflow mildly increase with time, while the temperature is roughly
constant and the entropy decreases. The increase in density is due
to the contraction of the inflow, which also causes a compressive
heating ate of order PdV /dt & 0.005ergs™' g~!. This compressive
heating offsets comparable radiative losses (compare panels k and
1), thus keeping the temperature roughly constant while the entropy
decreases. Also, panel (i) shows that density fluctuations are small
({(6p/p) < 1) as in a non-rotating cooling flow (Balbus & Soker
1989; Stern et al. 2019), and panel (j) shows that the specific angular
momentum is conserved since the system is axisymmetric. Panel (c)
shows that flowlines rotate 4-8 radians prior to cooling, or roughly
one full revolution.

Fig. 4(f) shows that at t & t(10° K) when the flow abruptly cools,
the density increases by a factor of 2300 for the flowline in the
mid-plane (69 = 0.57), and by a larger factor in flowlines with
smaller 0. At the same time j, slightly increases (panel j), likely as
aresult of torques by stars and preexisting disc gas. Also apparent is
that density fluctuations become strong just before the gas cools (at
t — t(10° K) &~ —25 Myr), and remain of order unity after cooling,
in contrast with the weak density fluctuations when the flow is hot
(panel i). The transition to a disc geometry starts somewhat earlier,
att — t(10° K) ~ —250 Myr (panel b, and also 6 panel in Fig. 3).

The eventual drop in temperature from T ~ 2 x 10° to ~ 10* K
at £(10° K) is an inevitable result of the inflow halting due to rotation
support, which stops compressive heating. Absent any heating
sources, the gas cools on a cooling timescale, which is ~ 10 Myr
at t(10° K). This short cooling timescale is a result of the flattening
to a disc geometry which increases the density to ny > 0.01 cm™3
[see zoom-in on ¢ ~ ¢(10° K) in Fig. C1]. This layer where the hot
inflow cools corresponds to the disc-halo interface (e.g. Fraternali &
Binney 2008; Marasco, Fraternali & Binney 2012; Fraternali 2017),
also known as ‘extraplanar gas’, which is further addressed in the
discussion.

The result that density fluctuations remain small when the flow
is hot (Fig. 4i) is potentially due to the accretion process occurring
on a timescale comparable or shorter than 7., on which thermal
perturbations develop. For example, at 0.5 Gyr prior to accretion (i.e.
att — 1(10° K) = —0.5 Gyr) we find too; = 1.7, 2.9, 5.3, and 12 Gyr
in the four flowlines shown in Fig. 4, with longer ., closer to the
rotation axis due to the higher temperature and lower densities. The
0.5 Gyr remaining until accretion is thus insufficient for the thermal
instability to grow, despite that the hot gas is formally unstable. A
similar argument explains why significant density perturbations do
not develop spontaneously in non-rotating cooling flows (Balbus &
Soker 1989). This conclusion is also consistent with the simulations
in Sormani & Sobacchi (2019), which found that condensations
develop only when a heating term is added to part of the hot gas, thus
increasing the accretion time relative to a cooling flow.

3.4 Deviations from spherical symmetry in hot inflowing CGM

Rotational support in the hot CGM is expected to induce lower gas
densities and higher gas temperatures along the rotation axis relative
to the mid-plane (Barnabe et al. 2006; Pezzulli et al. 2017; Sormani &
Sobacchi 2019). In this section, we quantify these deviations from
spherical symmetry in our simulation of a hot rotating inflow, and
compare it to the analytic approximation deduced above (equation
41).

Fig. 5 plots the dependence of hot CGM properties on polar angle
0 at radii of 45 and 25 kpc. From top to bottom the different rows
plot angular frequency, temperature, hydrogen density, and thermal
pressure. Magenta lines denote the non-rotating analytic solution
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Figure 5. Deviations from spherical symmetry in hot rotating CGM inflows.
Panels show from top to bottom the hot gas angular frequency, temperature,
hydrogen density, and pressure, versus angle from the rotation axis 6,
at r = 45kpc (left) and r = 25kpc (right). Black lines are based on the
simulation after steady state is achieved (the same simulation as in Figs 1-4).
Magenta lines plot the analytic non-rotating solution (equation 10), while blue
lines plot the analytic slow-rotating solution (equation 41) which accounts
only for lowest order terms in € = (r/R., max) 2 (noted on top). In the
rotating solutions density and pressure increase towards the mid-plane, while
temperature decreases.

(equation 10), blue lines denote the slow rotating analytic solution
(equation 41), and black lines the solution in the simulation after
steady state is achieved (the same solution used in Figs 1-4). The
perturbation parameter € = (#/R., max) > defined in equation (25) is
noted at the top. The slow-rotating analytic solution accounts only
for the lowest order terms in this quantity.

Fig. 5 demonstrates how the properties of the hot gas deviate
from spherical symmetry due to the rotation, and more so at radii
approaching R. max Where rotation support is more significant. At
r = 25 kpc in the numerical solution, the temperature at the rotating
axis is almost a factor of two lower than in the mid-plane, while the
density is a factor of two higher. Note also that the slow-rotating
analytic solution rather accurately reproduces the simulation at r =
45kpc where € = 0.1. At r = 25kpc, where € = 0.4 the analytic
solution is qualitatively consistent with the trends of 7, ny, and P
versus 6, though there are quantitative differences potentially since
high-order terms in € are neglected in the analytic solution.

20z AInf 21 uo3senb Aq £//2€92/1 1 21/2/0€G/2101HE/SBIUW/WOD dNO"DlWapedk//:sd)y Wolj papeojumoq



Table 1. Parameters of simulations used in Fig. 6.

Ve Re, max M Zcom teool/tif at r = R, max @
kms™'1  [kpel [Moyr'l [Zol

200 15 1.7 0.3 9.3
200 15 32 0.3 6.5
200 10 2.7 0.1 8.5
200 10 8.3 0.1 49
200 1 1.8 0.1 33
200 1 42 3.0 0.5
200 1 5.4 20 0.2
230 18 29 0.3 12.2
210 18 3.5 0.3 8.1
150 10 13 0.3 3.6
150 10 2.7 0.3 25
150 10 8.8 0.3 1.4
100 5 0.2 0.3 24
100 5 0.8 0.3 13
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Figure 6. Total rotation completed by a fluid element in the CGM prior to
accreting onto the ISM. Markers denote mean values in simulations with
different zco01/tr (measured at r = R max, see Table 1), while the thin line
denotes the analytic estimate from equation (45). The fiducial simulation
shown in Figs 1-5 is marked with a circle. Hot CGM with longer fcool
have slower inflow velocities, and hence fluid elements rotate more prior to
accretion.

3.5 Revolutions in inflow versus 7.,/

To test the relation between total rotation in the inflow and #.o01/fs
measured at R. max (Section 2.5), we run several simulations with
different combinations of M, Zcgum, and ve which yield different
teool/tr Via equation (10). The parameters of the simulations are listed
in Table 1. For M, we use the value measured through a shell at
2R., max in snapshots after the simulations achieve steady state, which
is typically 10 percent — 75 per cent larger than M in the ICs (see
Section 3.1). On these snapshots we also measure the average rotation
A¢ = [Qdr a fluid element completes as it inflows from 10R, max to
R., max, and plot them in Fig. 6. The figure shows that the simulations
roughly follow the analytic estimate from equation (45), confirming
that the number of rotations in hot rotating CGM scales with f¢oo1/#s.

R [kpc]

Figure 7. Accretion rate onto the disc versus disc radius in hot rotating
inflows, for R max = 15 kpc and total accretion rate M =1.7Mg yr‘l. The
solid line is the accretion rate within a cylindrical disc radius R in the fiducial
simulation. The step at R = R, max corresponds to horizontal accretion from
the disc edge. The dashed line is the analytic estimate, which assumes each
flowline accretes at its circularization radius (equation 48), and provides a
good match to the simulation result. This predicted M ;s profile in hot rotating
inflows can be useful for chemical evolution models and dynamical models
of galaxy discs (e.g. Schonrich & Binney 2009; Krumholz et al. 2018).

3.6 Disc accretion radius

Fig. 7 plots the accretion rate onto the disc within cylindrical disc
radius R. Solid line is based on the fiducial simulation, which we mea-
sure by calculating the mass flux through two disc-shaped surfaces
withradius R located at z = %1 kpc, in a snapshot after the simulation
achieved steady state. The step at R = R, max = 15 kpc corresponds
to planar accretion from the disc edge, derived from the mass flux
through a closing vertical surface spanning —1 <z < lkpc at R =
R. max- The simulation result is close to the analytic estimate in
equation (48), which is based on the assumption that each flowline
in the hot inflow accretes at its circularization radius.

4 ADDITIONAL CONSIDERATIONS

In this section, we consider the effect of additional physical mecha-
nisms and effects which were not included in the simulation above.

4.1 Viscosity

Viscous forces in the flow may in principle cause angular momentum
transport along directions where there is shear in the flow. In our
solution € o 72 up to corrections of order € (equation 41) and thus
there is shear in the radial direction. Here, we show that for standard
kinematic viscosity the expected angular momentum transport due
to this shear is small.

The specific angular momentum of the flow is j = Qr?sin20 =
VR, maxSin 20 (equation 41). Viscous forces in the radial direction
will cause an angular momentum loss per unit time of

; 2
dj = vr? sin? Od—g = 6vQsin®0 ,

dr dr? “9
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where v is the kinematic viscosity (e.g. Fabian et al. 2005)
ny
103 cm—3
and £, is the reduction of the viscosity relative to the Spitzer value.
We can estimate the fractional angular momentum loss due to viscous
forces by multiplying dj/dz by the flow time ~#,0 and dividing by j:
6QVtc00]

Ve Rc,max

-1
v =0567." ( ) £ kpckm s~ (50)

Ajvisc ~ dif . Tow _
J e j

~ 0.092£,r102 500 M7 ", 1)

where we used the analytic solution in equation (41) and neglected
corrections of order (R., max/r)?. For typical estimates of &, ~ 0.1
(Narayan & Medvedev 2001) this value is substantially smaller than
unity, indicating that viscous forces can generally be neglected.

4.2 Turbulence

Assuming that turbulence is seeded at large CGM radii, for example
by cosmological accretion or due to stirring by subhaloes, what
would be the fate of these turbulent motions in the inner CGM inflow
explored here? In a non-rotating inflow, we expect a balance between
dissipation of turbulence on a timescale #4iss = #/0 p and ‘adiabatic
heating’ of turbulence due to the contraction of the inflow on a
timescale tq.w = /v, (Robertson & Goldreich 2012). This balance
suggests that contracting turbulent fluids converge to oy ~ t4iss and
hence oy ~ v,, since more rapid turbulent motions will dissipate
while slower turbulence will heat up (Murray & Chang 2015; Murray
etal. 2017). In a steady-state cooling flow where tgow ~ t001, We thus
expect also t4iss ~ teool. Using tg ~ r/v. and v, & cg, it thus follows
that

Juy 10 (52)
Cs Tcool

Since t < fco01, €quation (52) suggests that turbulence is subsonic,

i.e. turbulent support is subdominant to thermal support, as assumed

in Section 2.1. Furthermore, this relation suggests that relative

importance of turbulent motions decreases with increasing #.oo1/t.

Note that equation (52) is based on the assumption that the
dominant turbulence driving mechanism at inner CGM radii is
adiabatic ‘heating’ of pre-existing turbulence in the inflow. This
assumption is similar to the underlying assumption of our solution
that the dominant thermal heating mechanism is compression of the
CGM inflow, rather than other heating sources such as feedback.

In a rotating inflow, turbulence may also be induced by the shear
between adjacent shells. Radial displacements due to such turbulent
motions are not subject to restoring Coriolis forces, since the non-
perturbed solution is angular momentum conserving (Fig. 4) and
hence the epicyclic frequency « is zero. Balbus, Hawley & Stone
(1996) showed that for a rotationally dominated disc with x = 0 such
turbulence develops with an e-folding time roughly equal to an orbit
time. Given that hot CGM inflows onto Milky Way-like galaxies
complete < 2 orbits before accretion (Fig. 6 with f.01/t ~ 10) it is
unclear if shear-induced turbulence has sufficient time to develop.

As a preliminary test of the effect of turbulence on our hot rotating
CGM solution, we run another simulation with similar ICs as in our
fiducial simulation, to which we add a turbulent velocity field with
amplitude oy (t = 0) = 30km s~! and a lognormal power spectrum
peaking at a wavelength of 50 kpc and a logarithmic width of 1. Fig.
8 compares the results of this simulation after steady state is achieved
with the results of the fiducial simulation shown in Figs 1-5. The top
panel shows that adding turbulence increases the density fluctuations
in the hot inflow, though they are still below unity at¢ < #(10° K). The
bottom panel demonstrates the effect of turbulence on the specific
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Figure 8. The effect of turbulence on hot rotating CGM inflows. The panels
show density fluctuations (top) and specific angular momentum (bottom)
along flowlines, versus time, since the hot CGM cools and accretes onto the
ISM. Dashed lines denote the simulation with fiducial initial conditions (ICs)
shown also in Figs 1-5, while solid lines denote a simulation with turbulent
ICs. Line colour denotes the initial polar angle of the flowline as in Fig. 4. Note
the mild angular momentum loss along flowlines in the turbulent simulation,
in contrast with the constant angular momentum in the fiducial simulation.

angular momentum in the flow. The turbulent simulation shows a
smaller difference in j, between different flowlines than in the fiducial
simulation, likely as a result of angular momentum transfer between
flowlines. Also evident is the mild (< 20 per cent) decrease in j,
in the turbulent simulation over the last 1.5 Gyr prior to cooling,
in contrast with the constant j, in the fiducial simulation. This is
potentially a result of transport of angular momentum outward during
the inflow due to the turbulent viscosity between adjacent shells.
Fig. 8 thus implies that turbulence, at the strength explored, has only
a mild effect on the angular momentum content of the inflow, and
specifically = 80 per cent of the angular momentum in the inflowing
hot CGM accretes onto the ISM.?

The development of turbulence in hot and rotating CGM inflows
also affects the angular momentum distribution of accreting gas,
since a large o, necessary implies a broad angular momentum
distribution. Hafen et al. (2022) argued that a narrow angular
momentum distribution in accreting gas may be necessary for the
formation of thin disc galaxies seen in the low-redshift Universe.
This points to the importance of understanding turbulence in hot
rotating CGM. We defer a detailed analysis to future work.

3The turbulent simulation has k =~ 0.2 at r 2 Re, max, in contrast with k =0
in the fiducial simulation. This finite « is potentially sufficient to prevent any
further development of hydrodynamic turbulence due to restoring Coriolis
forces (Balbus et al. 1996).
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Figure 9. Top: predicted centroid shift of the O viI 0.56 keV emission line
in a hot rotating CGM inflow feeding a disc galaxy. CGM rotation assumed
to be viewed edge-on. Pixel size is 3 kpc x 3 kpc, corresponding to 15 arcsec
resolution at a distance of 40 Mpc. The calculation is based on the fiducial
simulation, with the central disc masked. Bottom: difference between line-
of-sight velocity at opposite sides of the disc, in the mid-plane. Detecting
the predicted vy ~ ! rotation profile in the hot CGM would support the
hypothesis that it is inflowing.

4.3 Magnetic fields

The contraction and rotation in hot rotating CGM inflows is expected
to enhance magnetic fields present at the outer radius of the inflow.
In Appendix D, we estimate this enhancement using the rotating
inflow solution derived above, assuming ideal magnetohydrodynam-
ics (MHD) and ignoring potential dynamical effects of the magnetic
field on the flow. Defining ry as the outer radius of the inflow, and
assuming an isotropic seed field B,(ry) = By(ro) = By (ro) = By, we
find that

B, r\ 72
)
By v F -l
Fo_(voro> ’

B teool TE R
0 (Rl 0T g, (53)
By e r3

where we also defined vy = v,(ry). The values of B,/By, By/By, and
By4/B, are accurate up to corrections of order (R, max/1).

The enhancement of the magnetic field in equation (53) can be
compared to the enhancement in a non-rotating spherical inflow,
which was derived by Shapiro (1973). They found B, o r~? and
By o By (v,#)~!, which can be understood intuitively as a result
of conservation of magnetic flux through patches moving with the
flow. Rotation thus mainly affects the enhancement of By, due to the
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winding of the field. Equation (53) shows that the enhancement of
By is a product of (fcool/tir - Re, max/7) and (ro/r)?, where the former
tracks the number of radians rotated by the inflow (equation 44) and
the latter tracks the contraction of an inflowing shell.

For ro/Rc, max ~ 6 and z.o01/tir ~ 6 as expected in the hot Milky Way
CGM (Section 2), equation (53) suggests an increase in By of order
~200 by the time the hot gas reaches R. max, just prior to accreting
onto the galaxy. For comparison, the thermal pressure increases over
the same range of radii as P(Re. max)/P(r0) ~ (R, max/T0) > ~ 15
(equation 10), and thus the ratio of thermal to magnetic pressure
B oc PIB? is expected to decrease by a large factor of ~3000. Current
upper limits on the magnetic field in the inner CGM of ~L* galaxies
at z S 0.3 suggest magnetic pressure is subdominant to the thermal
pressure (8 > 1), at least along the major axis where most of the
accretion is expected (Prochaska et al. 2019; Lan & Prochaska 2020;
Heesen et al. 2023). It thus follows that if the hot CGM is accreting
as suggested in this work, seed magnetic fields are sufficiently small
that they do not dominate even after the large enhancement induced
by contraction and rotation.

The eventual cooling of the inner hot CGM onto the ISM will
further enhance B. Fig. 4(f) suggests that the gas density increases
by a factor of ~1000 as it cools, which would increase B by a
further factor ~1000%* = 100 in the limit of ideal MHD. Another
potentially interesting implication of the hot CGM solution concerns
the development of turbulence due to the magnetic-rotational insta-
bility (MRI). The MRI amplitude growth rate is ~2 (e.g. Balbus &
Hawley 1998; Masada & Sano 2008), so the result that f Qdr ~
teoot/tir (Fig. 6, equation 44) implies that prior to accretion MRI can
grow by e'eo/!t that is, a factor of 10* for f,q/tir & 10. The solution
may thus change considerably as .../ exceeds some critical value
where MRI becomes fully developed. We defer analysis of accretion
via magnetic hot rotating CGM inflows to future work.

5 OBSERVATIONAL IMPLICATIONS

In this section, we discuss several observational signatures of hot and
rotating CGM inflows. While it would be challenging to detect the
predicted slow radial velocities of a few tens of km s~! (equation 10),
the predicted rotation velocities are faster, reaching v, ~ 200kms™~!,
and indeed evidence for such fast hot gas rotation has been detected
in the Milky Way CGM (Hodges-Kluck, Miller & Bregman 2016).
Since an inflow imparts a specific rotation profile in the hot gas
which is flatter (vy ~ r~!, equation 23) than the rotation profile
expected prior to the development of an inflow (v4 ~ =%, Sharma
et al. 2012a; Pezzulli et al. 2017; Sormani et al. 2018), measuring
the rotation profile could be used to support or rule out the existence
of inflows in the hot gas.

The hot gas rotation pattern can potentially be detected directly
using X-ray emission line centroiding (Section 5.1), or indirectly,
by identifying the lower densities and higher temperatures along
the rotation axis relative to the mid-plane (Sections 5.2 and 5.3). The
latter indirect signature would however have to be distinguished from
qualitatively similar trends induced by feedback (Nica et al. 2022;
Truong et al. 2021, 2023; Yang et al. 2024).

Given the idealized nature of the solution, signal strength estimates
below are at the order of magnitude level. More realistic calculations
based on cosmological simulations would be a useful next step.

5.1 Measuring hot gas rotation using line centroiding

Hodges-Kluck et al. (2016) analysed the centroids of 37 OvI
absorption lines in the Milky Way CGM, in the context of a
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phenomenological hot CGM model with ny oc ¥~ and uniform in-
flow and rotational velocities. They deduced v, = —15 £ 20km s~
and vy, = 180 = 41km s™!, or v, /v, = —0.06 £ 0.08 and vy =
0.75 £ 0.17 for a circular velocity of v, = 240km s~! measured
near the Sun. These values are comparable to those expected in
hot rotating inflows near the disc, since vy/ve X Re max/r and v,/v.
=~ tlteoor (Figs 2, equations 41 and 10). Specifically, we calculate
the O VII absorption-averaged v, and v, in our fiducial simulation,
along sightlines starting at (R, z) = (8 kpc, Okpc) with the same
distribution of Galactic latitudes and longitudes as in the Popescu
etal. (2004). The projection is done on a snapshot after the simulation
converged onto a steady state. Line emissivity is calculated based on
the gas density and temperature in the simulation using the PYXSIM
package (ZuHone & Hallman 2016).* Pixel size in this panel is 3 kpc,
corresponding to the planned 15 arcsec resolution of the proposed
line emission mapper probe (LEM, Kraft et al. 2022) for a target
at a distance of 40 Mpc.? The bottom panel shows the line centroid
difference between the approaching and receding sides of the CGM,
in the mid-plane. This difference reaches 200 km s~! near the disc,
higher than the planned centroiding accuracy of < 70km s~! planned
for LEM. X-ray telescopes with high spectral resolution may thus be
able to measure the rotation velocity profile in the hot CGM, and test
whether it is consistent with the inflow solution.

5.2 Angle dependence of X-ray emission and temperature

Angular momentum support induces deviations from spherical sym-
metry in the hot CGM density and temperature (Section 3.4, Fig. 5).
These are potentially detectable by measuring the dependence of
CGM X-ray emission on the ‘azimuthal angle’, defined as the
orientation of the sightline with respect to the galaxy major axis
(e.g. Kacprzak et al. 2015). The top panel in Fig. 10 shows the
predicted soft X-ray surface brightness versus azimuthal angle and
impact parameter R | , assuming CGM rotation is oriented edge-on in
the plane of the sky. Surface brightness is calculated using PYXSIM on
the NGC 891-like simulation used also in Fig. 9. The figure shows
that the soft X-ray brightness (o n}) increases towards the major
axis at small R, , since rotation induces a higher CGM density near
the mid-plane (equation 41, Fig. 5).

The bottom panel in Fig. 10 shows the luminosity ratio of the
O v Ly 0.65 keV and O vil Hex 0.56 keV emission lines. The ratio
increases towards the minor axis, by up to 75 per centat R, = 30kpc.
This follows since this emission line ratio depends mainly on CGM
temperature which is higher along the rotation axis (see Fig. 5).

5.3 Dispersion measure

Observations of the dispersion measures to pulsars in the Magellanic
clouds and towards extragalactic fast radio bursts (FRBs) constrain
electron column densities in the CGM (e.g. Anderson & Bregman
2010; Prochaska & Zheng 2019; Ravi et al. 2023; Williams, Khan &
McQuinn 2023). Fig. 11 plots predicted dispersion measures for
an external galaxy and for the Milky Way CGM, based on our
fiducial simulation. For external galaxy sightlines we assume an
inclination i = 77° similar to M31, and integrate the electron density
along sightlines with different impact parameters R, and different
azimuthal angles. We start and end the integration at a spherical

4Version 4.2.0
5At smaller redshifts the target line emission would be drowned by line
emission from the Milky Way, see Kraft et al. (2022).
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Figure 10. X-ray emission from hot rotating inflows versus azimuthal angle
(defined as the sightline orientation relative to galaxy major axis), for an edge-
on galaxy. Different lines denote different impact parameters. Calculations are
based on the fiducial simulation. Top: predicted soft X-ray surface brightness.
Surface brightness decreases with angle due to the lower densities near
the rotation axis induced by angular momentum support. Bottom: O vIII
Lya/O vl Hea emission line ratio. The ratio increases with angle due to
higher temperatures near the rotation axis (see Fig. 5).

radius r = 100kpc, roughly equal to r.o (Section 2.1) beyond
which the hot inflow solution does not apply. Fig. 11 shows that
the highest dispersion measures of &~ 30 cm™> pc are found at small
impact parameters and small azimuthal angles where densities are
highest (see equation 41). For Milky Way sightlines the dispersion
measures were calculated by integrating from (R, z) = (8 kpc, 1 kpc)
out to r = 100 kpc, for different Galactic latitudes b and Galactic
longitudes [. We start at z = 1 kpc to avoid the contribution of the
cool disc, while the exact choice of outer limit does not significantly
affect the result since most of the contribution comes from small radii.
The predicted dispersion measures are 12 — 18 cm ™ pc and increase
towards lower b, again due to higher densities near the disc plane.

Fig. 11 also shows the upper limit of 23 cm~2 pc for the CGM
dispersion measure from Anderson & Bregman (2010), deduced
based on sightlines to pulsars in the LMC (Large Magellanic Cloud,
though note caveat in Ravi et al. 2023, which may imply this
upper limit is too restrictive). This upper limit is consistent with
our prediction of 14cm™ pc in sightlines with |b| = 30° and [ =
270° when integrating out to an LMC distance of r = 50kpc.
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Figure 11. Predicted dispersion measures from a CGM forming a hot rotating
inflow, for sightlines through an external galaxy CGM (left, assuming M31-
like inclination) and through the Milky Way CGM (right), based on the
fiducial simulation. External galaxy sightlines are given as a function of
impact parameter and azimuthal angle, while Milky Way sightlines as a
function of Galactic coordinates. Integration is limited to » < 100 kpc where
a hot inflow is possible. The upper limit from Anderson & Bregman (2010),
derived from sightlines to pulsars in the LMC, is noted in the right panel. The
decrease in dispersion measure with increasing azimuthal angle and b is due
to the lower densities near the rotation axis.

6 DISCUSSION

6.1 Comparison to previous hot CGM models

In the solution described in this work the hot CGM is inflowing, since
ongoing feedback heating is assumed to be small relative to radiative
losses. This is in contrast with the typical assumption employed
by models of the low-redshift CGM, where the hot CGM phase is
static due to feedback heating balancing radiative losses (e.g. Sharma
et al. 2012a; Faerman et al. 2017, 2020; Voit et al. 2017). Several
models have accounted also for rotation in the hot CGM (Pezzulli
et al. 2017; Sormani et al. 2018; Afruni, Pezzulli & Fraternali 2022),
though also in these latter models the gas is assumed not to flow in the
radial direction. A third possibility is that feedback heating exceeds
radiative losses, and the hot CGM forms an outflow (e.g. Thompson
etal. 2016; Schneider et al. 2020, though note these studies neglected
a pre-existing CGM). As the mechanics of CGM heating by stellar
and AGN feedback are currently not well understood, and existing
X-ray constraints do not rule out an inflow as in the ICM (see
Introduction), it is currently unclear which of these three paradigms
is more accurate.

Despite the qualitative distinction between hot inflows explored
here and static hot CGM models explored by previous studies, both
types of models satisfy similar hydrostatic equilibrium constraints.
This follows since the inflow solution is highly subsonic, and hence
deviations from hydrostatic equilibrium in the radial direction are
small, of order (f.,01/tir) 2. Indeed, these deviations are neglected in
the analytic solution derived in Section 2.4. The assumption of an
inflow however enforces conservation of mass, energy, and angular
momentum between adjacent shells (equations 20-22), while there
are no similar constraints on static models. The allowed space of
inflowing hot CGM solutions is thus significantly smaller than that
of static solutions. For example, deducing the entropy profile in static
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models requires employing another assumption, such that the entropy
is independent of radius (Faerman et al. 2020), or that foo/ts iS
independent of radius (Voit et al. 2017). In the inflow solution derived
here the entropy profile is fully determined by the flow equations.

Inflow solutions are also more specific than static models in the
predicted rotation profile of the hot CGM. Sormani et al. (2018)
used several constraints to derive vy(r, 0) in their static hot CGM
model, mainly the typical CGM angular momentum distribution in
cosmological simulations and OVII absorption-based estimates of
Milky Way CGM rotation from Hodges-Kluck et al. (2016). These
constraints are however rather sparse and leave considerable freedom
for different choices of vy4(r, 0), as discussed in Stern et al. (2021b,
see fig. 13 there).

6.2 Accretion via hot inflows versus ‘precipitation’

Accretion onto the Milky Way and nearby spirals is likely dominated
either by ‘precipitation’, where local thermal instability in the hot
phase creates ~ 10* K gas clumps which lose buoyancy and accrete
(e.g. Fall & Rees 1985; Maller & Bullock 2004; Voit et al. 2015;
Armillotta, Fraternali & Marinacci 2016), or by the hot ~ 10°K
inflows discussed in this work (see Introduction). Both accretion
modes would be considered ‘hot accretion’ in the context of the
classic distinction between the hot and cold accretion modes, since
they both originate in the hot phase of the CGM (e.g. Nelson et al.
2013). However, in the scenario studied here the CGM inflow remains
at ~ 10% K down to a cylindrical radius R m.x ~ 15kpc and height
of ~ kpc above the mid-plane, at which point all the hot gas cools
and joins the ISM, rather than just a subset of localized clouds. Hot
inflows are thus a type of ‘quiet accretion’ (Putman et al. 2012) —
accretion which becomes accessible to cool gas observations only
when it cannot be kinematically distinguished from pre-existing disc
gas.

We note that at outer CGM radii of r 2 re0 ~ 100kpc a hot
inflow is not expected since cooling times are long (Section 2.1), so
any infall would likely be dominated by cool ~ 10* K gas. This cool
inflow at large radii can potentially join a hot inflow at small CGM
radii if the cool clouds are disrupted by hydrodynamic instabilities
(e.g. Afruni et al. 2023; Tan et al. 2023).

6.3 Hot inflows require that CGM of typical ~L* spirals have
previously expanded due to feedback

In steady state, we expect a CGM inflow rate of M ~ 0.6 SFR, which
is & 1 Mg, yr~! for the Milky Way (Section 2.1). We show here that
if this M originates in a hot inflow, the CGM density must be lower
than expected in a baryon-complete halo.

Integrating the density profile in equation (10) out to the virial
radius and solving for M, we get:

Mcon \* [ Rcom
10" Mg, 300 kpc

where we normalized Mcgwm by the the baryon-complete CGM mass
of 0.16 Mpato — Mgaiaxy = 10" Mg for My = 10'2 M, and a galaxy
mass Mggjaxy = 6 X 10'°Mg. The CGM size Rcgy is normalized
by rvir & 300 kpc. This predicted M is higher than the ~ 1 Mg, yr™!
required to sustain star formation in local discs. It thus follows that for
local discs to be fed by hot CGM inflows, gas originally associated
with the halo must have expanded beyond ry;,. Such an expanded
CGM is supported by recent thermal Sunyaev—Zeldovich (tSZ) maps
of nearby spirals, which indicate that the baryon budget of the halo is
spread over a size of Rcgm 2 500 kpe (Bregman et al. 2022). Using

-3
M=6.6 ( ) VoA Meyr™',  (54)
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this larger estimate of Regy in equation (54) would suggest M <
1.5Mg, consistent with observed SFRs. The large Rcgm deduced
by Bregman et al. (2022) thus supports the scenario that local disc
galaxies are fed by hot CGM inflows.

There is however an inherent challenge in a scenario where discs
are fed by an inflow from an expanded hot CGM. An expanding
CGM is apparently contradictory to an inflowing CGM, and re-
quires feedback heating to dominate radiative cooling, in contrast
with the above assumption that feedback heating is subdominant.
This apparent contradiction can be circumvented if the inflow and
expansion are separated either in time or in space. For example,
it is plausible that feedback was strong high redshift causing the
CGM to expand, and has since subsided so the hot CGM develops
an inflow at low redshift. Such an evolution in feedback strength is
predicted by FIRE simulations of Milky Way mass galaxies (Muratov
et al. 2015; Faucher-Giguere 2018; Pandya et al. 2021; Stern et al.
2021b), and is also consistent with observed stellar winds which are
strong in z ~ 2 galaxies but weak in typical ~L* galaxies at z ~ 0
(Heckman & Thompson 2017). Alternatively, black hole feedback
or stellar feedback which occur in ‘bursts’ separated by more than
~ 1 Gyr would allow a hot inflow to develop between bursts, since
this timescale is the cooling time in the inner CGM on which a hot
inflow develops. A third possibility is that feedback mainly heats the
outer CGM, allowing the inner CGM to form an inflow. While this
may seem counter-intuitive, it is potentially possible if feedback is
focused on the rotation axis at small CGM radii and isotropizes only
at large CGM radii, thus allowing the hot inner CGM to inflow from
the mid-plane. Another option is that feedback energy is propagated
by weak shocks or sound waves which dissipate and dump heat only
in the outer CGM. The distribution of feedback energy in space and
time has been explored extensively in the context of the ICM (e.g.
Yang & Reynolds 2016; Martizzi et al. 2019; Donahue & Voit 2022),
but less so in the context of the CGM. A thorough exploration would
allowing understanding under which conditions the hot CGM inflow
scenario is viable.

6.4 Disc-halo interface

The cooling layer of the hot inflow solution found above, in which
the gas temperature drops from =~ 2 x 10° to < 10*K, occurs at
|z] £ 0.5kpc in our fiducial simulation (see Fig. 1 and Fig. Cl).
This simulated cool layer is thinner than the ‘extraplanar’ layers
of neutral and ionized ~ 10* K gas detected around nearby spirals,
which extend to |z| & several kpc (e.g. Gaensler et al. 2008; Sancisi
et al. 2008). Also, the mass flow rate through this layer in our
simulation is M =~ 1 Mg yr*l ~ SFR, in contrast with ~10 x SFR
in observed extraplanar gas layers (e.g. Marasco et al. 2019).
Extraplanar gas is often assumed to be dominated by fountain
flows (Shapiro & Field 1976; Bregman 1980), in which cool clouds
driven upward by feedback penetrate into the hot CGM and then
fall back onto the disc (Fraternali & Binney 2006, 2008; Marasco
et al. 2012; Fraternali 2017). Fountain flows thus both increase
the vertical extent of the cool gas and the total mass circulating
through the extraplanar gas layer. These models usually assume the
hot CGM is not inflowing, which as mentioned above requires a
delicate balance between feedback heating and cooling, a balance
especially hard to achieve in the inner CGM where cooling times are
short (see also discussion of this issue in Sormani & Sobacchi 2019).
It would thus be beneficial to study how fountain flows interact
with the inflowing hot CGM solution derived herein. Specifically,
one could use the angular momentum structure of a hot inflow
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derived above to understand how fountain orbits are affected by
angular momentum exchange with the hot CGM, an interaction that
has observable implications (e.g. Fraternali 2017). Also it would be
useful to understand how this fountain — hot CGM interaction affects
the accretion rate profile onto the disc (compare Fig. 7 above with
fig. 9 in Marasco et al. 2012).

‘We note that some of the above studies argued that fountain flows
are required for accretion from the hot CGM, since they trigger cool
cloud condensation in the hot gas. Our simulations show that the hot
CGM cools and can fuel star formation even without fountain flows.
Cooling in our solution is however a steady process which affects
the entire hot inflow as it reaches the disc—halo interface, rather than
a result of condensation of localized cool clouds.

6.5 Truncation of thin discs at R & R ax

For discs fed by hot rotating inflows, R max corresponds to the
maximum cylindrical radius at which gas cools and accretes onto
the ISM (Fig. 7). This is also evident as a sharp edge of the cool gas
disc at R = R max in the temperature maps shown in Fig. 1, and is a
result of hot CGM inflows cooling and accreting only when v, = v,
(Fig. 4d). Similar behaviour has been identified in FIRE cosmological
simulations of low-redshift Milky Way mass galaxies which are also
fed by hot rotating inflows (Hafen et al. 2022; Trapp et al. 2022).

The predicted maximum accretion radius at R max 1S similar to
the observed truncation radius Ry, of nearby disc galaxies, beyond
which the stellar and H1 surface densities drop (e.g. van der Kruit
2007). Such a truncation is observed in 60 per cent — 80 per cent
of thin discs at Ryyne & 3.5-4R4 where Ry is the disc scale length
(Kregel, van der Kruit & de Grijs 2002; Comerdn et al. 2012; Martin-
Navarro et al. 2012).° When an H1 warp is present it also often starts
at R & Ryyye (van der Kruit 2007). Using Ryune = 3.5Rq = 0.04ry;;
based on the Ry—ryir relation from Kravtsov (2013) and R; max &
0.05ryir (equation 15), we get Re. max = Rywunc. It is thus plausible that
observed disc truncations are ultimately a result of the abrupt cut in
gas accretion beyond this radius, as suggested by Trapp et al. (2022).
In the context of hot rotating CGM inflows this maximum radius of
accretion is set by R max-

7 SUMMARY

In this work, we derive an axisymmetric, steady-state solution for hot
and rotating CGM inflows, focusing on Milky Way mass galaxies at
z ~ 0. We demonstrate that such accretion flows transition from
a spherical, hot (~ 10°K) radial inflow to a cool (< 10*K) disc
supported by rotation. This cooling occurs at the disc—halo interface,
within a cylindrical radius equal to the maximum circularization
radius of the flow R. m.x ~ 15 kpc and at heights |z| < kpc above the
disc. Such hot inflows are expected in the CGM if radiative cooling
has dominated over feedback heating for a cooling timescale. This
condition is easier to satisfy at inner CGM radii where cooling times
can be substantially shorter than the Hubble time.

We find both a new analytic solution for hot inflows in the slow
rotation limit, which is valid in the limit (#/R., max)> > 1 (Section
2.4), and a numerical solution applicable also at r < R max (Section
3). These solutions provide an idealized version of the hot CGM
inflows identified by Hafen et al. (2022) in FIRE simulations of Milky

OThe derived fraction of thin discs which exhibit a truncation is based on discs
observed edge-on, since at low inclination stellar haloes make the truncation
harder to observe (Martin-Navarro et al. 2014).
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Way mass galaxies at z ~ 0. The main properties of these solutions
can be summarized as follows:

(i) Due to a balance between radiative cooling and compressive
heating, hot inflows remain hot down to where they become rotation-
ally supported, at which point the inflow and compressive heating
stop and the entire flow cools (Figs 1—4). Hot inflows thus differ
qualitatively from ‘precipitation’ in which accretion proceeds via a
subset of clouds formed due to thermal instability.

(ii)) Angular momentum of accreting gas is conserved during the
inflow due to the axisymmetry of the solution (Fig. 4j), yielding an
accretion flow which feeds the disc mainly from its outskirts (Fig. 7,
Section 2.6). Conservation of angular momentum also suggests
Vg X r~!in the hot CGM at radii R, max < 7 < Feool (Fig. 2), flatter
than the vy, o %3 — 7 suggested by non-radiative cosmological
simulations (Sharma et al. 2012b). This predicted rotation profile
could potentially be detected with X-ray microcalorimeters which
can centroid emission lines to < 100km s~! (Fig. 9).

(iii) Gas accreting via hot CGM inflows revolves R.q01/t radians
prior to accretion (Fig. 6), where f.,0/t; is estimated in gas just
outside the galaxy (~6 in the Milky Way). This in contrast with only
~1 radian of revolution in gas accreting via cold flows. Enhancement
of magnetic fields and development of turbulence in the hot CGM
thus likely depend on the value of 7./ (Sections 4.2 and 4.3).

(iv) Rotational support induces deviations from spherical sym-
metry in the density and temperature structure of hot CGM inflows
(Fig. 5), qualitatively similar to the rotating but radially static models
of Sormani et al. (2018). These deviations may be detectable with
X-ray telescopes (Fig. 10), or with dispersion measures derived from
FRB surveys (Fig. 11).

(v) Observed SFRs in local spirals constrain typical hot inflow
accretion rates to M < 1 —2Mgyr~'. In the absence of ongoing
feedback heating as assumed here, such accretion rates require that
the halo baryon budget is spread over 2 2r;; in order to reduce CGM
densities and cooling rates. Bregman et al. (2022) recently reported
evidence for such expanded CGM using tSZ maps around nearby
spirals.

(vi) By analysing the centroids of OVII absorption lines in the
Milky Way CGM, Hodges-Kluck et al. (2016) deduced a hot CGM
rotation velocity of vy ~ 180 40km s™! and a marginal inflow
velocity of v, &~ —15 £ 20km s~'. Both values are consistent with
those expected if the hot Milky Way CGM forms a rotating inflow
(Section 5.1).

The solution derived herein provides an analytic basis for un-
derstanding the structure of the inner hot CGM, in the presence
of angular momentum and radiative cooling. It would be beneficial
for future studies to further develop this framework with additional
relevant physical processes and complications applicable to the real
Universe, including polar-angle dependent feedback heating, foun-
tain flows, turbulence (briefly discussed in Section 4.2), magnetic
fields (Section 4.3), and misalignments between the rotation axes of
the hot CGM, disc, and dark matter halo.
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APPENDIX A: 0-DEPENDENT ROTATION
PROFILES

In this section, we give analytic solutions for hot CGM inflows
in the slow-rotation limit as derived in Section 2.4, for different
assumptions on how the gas rotates at large radii. This dependence
of € on 0 is set by the outer boundary condition of the solution and
is parametrized using the function F(6) (see equation 26):

v, r -2
Q= F(6 Al
! Rc,max ( R&,max > ( ) ’ ( )

where F(7r/2) = 1. The solution in the main text (equation 41) is for
F(@) = 1. For F = sin#, we find

fr= 2 sin ) — 3

8 10°
15 . 7
fp = §SIH4(9)— TO’
fr= 38' L o)+ : (A2)
T = ) 1mn 5 .

For F(6) = sin %6, we get

1 1
fr = 5 sin® @) - <.,

4
19 . 7
fo = 50" @) =~ 15,
fr= 2t @)+ (A3)
= ——sin —,
T 3 15

while for F(9) = sin 36, we get

3 16
= — 9 —_—
fr =156 = 155
23 16
fo =g sin* @ — =,
5 . 64
fr = —Zsms (GHE' (A4)

APPENDIX B: DIMENSIONLESS FLOW
EQUATIONS

The flow equations (18)—(22) can be dedimensionalized, if we ap-
proximate the cooling function as a power law A = A s(T/10%)~".
We define the dimensionless variables as

, r
r = N
Rc,max
Uy, Vg, Vg, Cs
{U;,vé,v;,cg} = M,
Ve
P P
P’E;, P = Eposel (B1)

5 [
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with the density normalization equal to
. Imov+?
P (B2)

= 10X2A 106 Romax

where m,/X = p/ny (m, and X are the proton mass and hydrogen
mass fraction, respectively). This gives for the flow equations

oP"  p U;,z
N r’
oP’ , pcosf
00 = % Gne’
" a(v(;r/ sin 6) o 6(v(;r’ sin ) _
T oo '
1 a(p'vir?) 1 A vyr?) —0
2 or r'sin 06 -
3(In K) 3(In K) i
v ™ v, 0 p'ct . (B3)

These dimensionless equations imply that changing R. max and/or v,
does not change the solution beyond a scaling, if the gas density is
also scaled by p*.

The value of p* is related to the critical accretion rate M
discussed in Stern et al. (2020):

187rmgv§+2’ Re.max

5X2A106 = Mcrit(Rc,max, vc) (B4)

47'[R02mm/)*vC =
(see equation 8 there).” When M = M.y, the ratio .. /ty equals
unity at r = R max in the spherical solution (equation 10), and hence
the sonic radius of the flow coincides with the circularization radius.
The relation (B4) between p* and M thus implies that changing
R., max and/or v, does not change the solution beyond a scaling, if
M is also scaled by M. Hot rotating inflows thus form a family
of solutions characterized by a single parameter, M /Mg, up to a
scaling of the physical dimensions.

APPENDIX C: GAS PROPERTIES NEAR THE
TIME OF COOLING AND ACCRETION

Fig. C1 plots gas properties along flowlines as in Fig. 4, zoomed in
on times near #(10° K), which corresponds to the time of accretion
from the hot CGM onto the cool ISM.

In Stern et al. (2020), we effectively assumed [ = 0 and neglected a factor
of 9/10 in the calculation of Mcm.
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Figure C1. Gas properties along flowlines as in Fig. 4, zoomed-in on times near the time of cooling. Colour denotes flowlines originating at different polar
angles 0. Solid lines and bands correspond to medians and 16th—84th percentiles. Top panels show R, z, T, and vy, while bottom panels show ny, (5p/p), Pk,
and j,. The R and z panels demonstrate that cooling occurs just above the disc, at the ‘disc—halo interface’. Except for the mid-plane flowline (8¢ = 0.57) the
flow direction is almost vertical at the shown times, with z decreasing by 2 — 4kpc and R changing by < 0.5kpc. At & 20 Myr prior to cooling gas densities
start to increase while density fluctuations become significant. This rapidly shortens the cooling time which allows the eventual drop in temperature to occur

over a short timescale of ~ 10 Myr, as can be seen in the T panel.

APPENDIX D: MAGNETIC FIELDS IN HOT AND
ROTATING CGM INFLOWS

In this section, we derive an estimate of the magnetic field B in
a rotating hot CGM inflow, by assuming ideal MHD conditions
and neglecting any potential dynamical effects of the field on the
flow. We employ the analytic solution in equation (41), disre-
garding terms of order (R max/r)* or higher. Combined with the
assumption of axisymmetry and steady state we then have vy =
0/0¢ = 9/0t = 0, and the ideal MHD equations for the magnetic
field

oB

V-B:O,Vx(va):E (D1)
reduce to
L0 (r*B,) 0 (Bg sin6)
—_ r) = — - -— mndo),
rzarr rsind 00 68
0
a(vrBGr) =0,
0 (v, By sinf) = 0
— (v, By sinf) = 0,
6
0 a(U¢BQ)
a(vqurr — v Byr) = — 0 (D2)

Assuming for simplicity that the field is isotropic at the outer radius
of the inflow ro with Br(}’()) = Bg(ro) = B¢(I‘0) = By, the first two
equations imply

-2
B, = By <i> , (D3)

ro
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v r -t
By = By . (D4)
(vr("o)ro)

Equations (D3) and (D4) are the same as in a non-rotating, spherical
inflow solution (Shapiro 1973). To solve for By, we note that the
right-hand side in the last equation in (D2) equals zero. This follows
from the third condition in equation (D2) together with vy o< sin 6 and
dv, /96 = 0 [equation (41), up to corrections of order (#/Re, max) 2]
It thus follows that

0(vy Byr — v, Byr)
06 B
and integrating we get

0, (D5)

Vs Byr — v Byr = Boro(vg(ro) — v, (ro)) - (D6)

Using equation (D3) for B, then gives

-1
vr Vo T
B=Bo< 4 ) {1+ o0
¢
v, (ro)ro v, (ro)r
For vy = 0, equation (D7) reduces to By (v,r)~!, as in the Shapiro
(1973) non-rotating solution. For finite v,, the second term in the
brackets scales as ~r~¥? (since at large radii vy ~ = and v, ~ 799,

and hence for r somewhat smaller than r this term will dominate the
other two terms. We thus get

vy (ro)
Ur(rO) ’

(D7)

Vg r - Tcool l’g Rc max .
By =~ By— | — =2 —— sin6 , (D8)
T t r3
r 0 ff

where in the last approximation, we use vy = VR maxSIiné/r, v, =
rlteool, and tg = V2 /vc. Specifically, at r & R max just prior to
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accretion we get mer tracks the number of radians rotated by the inflow (equa-
5 tion 44) and the latter tracks the contraction of an inflowing

B¢(Rc max) Teool Rc.max .

OO 2 V2N (Reman) | —2 ) sind (D9)  shell.

By tgf ro

This result suggests that the enhancement of B, at R max iS

a product of feooi/ter(Re, max) and (ro/Re, max)z, where the for- This paper has been typeset from a TEX/IATEX file prepared by the author.
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