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ABSTRACT
In a companion paper, we reported the formation of quasar accretion disks with inflow rates ∼ 10 M⊙ yr−1

down to < 300 Schwarzschild radii from cosmological radiation-magneto-thermochemical-hydrodynamical
galaxy and star formation simulations. We see the formation of a well-defined, steady-state accretion disk
which is stable against star formation at sub-pc scales. The disks are optically thick, with radiative cooling
balancing accretion, but with properties that are distinct from those assumed in most previous accretion disk
models. The pressure is strongly dominated by (primarily toroidal) magnetic fields, with a plasma 𝛽 ∼ 10−4

even in the disk midplane. They are qualitatively distinct from magnetically elevated or arrested disks. The disks
are strongly turbulent, with trans-Alfvénic and highly super-sonic turbulence, and balance this via a cooling
time that is short compared to the disk dynamical time, and can sustain highly super-Eddington accretion rates.
Their surface and 3D densities at ∼ 103−105 gravitational radii are much lower than in a Shakura-Sunyaev disk,
with important implications for their thermo-chemistry and stability. We show how the magnetic field strengths
and geometries arise from rapid advection of flux with the inflow from much weaker galaxy-scale fields in these
“flux-frozen” disks, and how this stabilizes the disk and gives rise to efficient torques. Re-simulating without
magnetic fields produces catastrophic fragmentation with a vastly smaller, lower- ¤𝑀 Shakura-Sunyaev-like disk.
Subject headings: quasars: general — accretion, accretion disks — quasars: supermassive black holes —

galaxies: active — galaxies: evolution — galaxies: formation

1. INTRODUCTION
Accretion disks are important in a wide variety of astro-

physical contexts, ranging from supermassive black hole (BH)
growth and evolution to star and planet and satellite formation
to X-ray binaries and neutron-star mergers. Around supermas-
sive BHs in particular, these disks are believed to be the engine
that powers quasars, the most luminous sources in the Universe
(Schmidt 1963; Salpeter 1964), as well as less-luminous active
galactic nuclei (AGN). As such, they funnel mass at enormous
rates even exceeding ≳ 10 M⊙ yr−1 to the BH, and ultimately
provide most of the mass in SMBHs today (Soltan 1982). The
radiation, outflows, and jets launched from the inner regions of
such disks (Laor et al. 1997; Crenshaw et al. 2000; Dunn et al.
2010; Sturm et al. 2011; Faucher-Giguère & Quataert 2012;
Faucher-Giguère et al. 2012; Zakamska et al. 2016; Williams
et al. 2017) – collectively “AGN feedback” – are also widely
believed to explain (Silk & Rees 1998; King 2003; Di Matteo
et al. 2005; Murray et al. 2005; Hopkins et al. 2005a,b; Torrey
et al. 2020) the observed remarkable correlations between BH
and host galaxy properties (Magorrian et al. 1998; Ferrarese &
Merritt 2000; Gebhardt et al. 2000; Hopkins et al. 2007b; Aller
& Richstone 2007; Kormendy et al. 2011) and to dramatically
influence galaxy formation and evolution (Croton et al. 2006;

∗E-mail: phopkins@caltech.edu
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Hopkins et al. 2006, 2008; Wellons et al. 2022; Mercedes-Feliz
et al. 2023; Cochrane et al. 2023). Understanding the nature,
origins, and dynamics of quasar accretion disks, therefore,
remains a crucial challenge in theoretical astrophysics.

Since the seminal work by Shakura & Sunyaev (1973,
SS73) (and others like Novikov & Thorne 1973), much of
the work on quasar accretion disks has assumed as a start-
ing point some variation of the “SS73 𝛼-disk” model: this
takes disks to be geometrically thin (height 𝐻 ≪ 𝑅), opti-
cally thick (black-body like), sub-sonically turbulent (sonic
Mach number M𝑠 < 1), slowly cooling (𝑡cool ≫ 𝑡dyn = 1/Ω),
thermal-pressure-dominated (plasma 𝛽 ≡ 𝑐2

𝑠/𝑣2
𝐴
> 1), radia-

tively efficient, well-ionized, and parameterized by an effec-
tively constant-𝛼 viscosity, where 𝛼 ∼ (𝛿𝑣)2/𝑐2

𝑠 < 1 repre-
sents some Maxwell or Reynolds stresses and the kinematic
viscosity scales as 𝜈 ≡ 𝛼𝑐2

𝑠/Ω. Numerous variations have
been introduced, including e.g. radiatively inefficient and/or
advection-dominated, optically thin disks believed to be rel-
evant for very low accretion rates (e.g. Narayan & Yi 1995);
radiatively inefficient but still optically-thick “slim” disks at
super-Eddington accretion rates (Paczyńsky & Wiita 1980);
magnetically “elevated” disks with upper atmospheres (at
multiple scale-heights above the midplane) or coronae with
𝛽 |z |≫H ≲ 1 (Miller & Stone 2000); magnetically “arrested”
disks where magnetic pressure halts accretion near the in-
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nermost stable circular orbit (ISCO) at low accretion rates
(Tchekhovskoy et al. 2011); gravitoturbulent disks relevant at
low values of Toomre𝑄 (Gammie 2001); and many others (for
reviews, see e.g. Pringle 1981; Frank et al. 2002; Abramowicz
& Fragile 2013; Jafari 2019). Yet for typical quasars ac-
creting around the Eddington limit, some form of SS73-like
𝛼-model (whether “thin” or “slim” disk in flavor) is still over-
whelmingly the “default” model of reference. Likewise, it is
usually assumed (for typical quasars) that the effective vis-
cosity in the disk is dominated by a combination of Maxwell
and Reynolds stresses produced by the weak-field (𝛽 ≫ 1)
magneto-rotational instability (MRI; Balbus & Hawley 1998).

This leaves some crucial questions unresolved, however.
For one, it has been known for decades that if one simply
extrapolates an SS73 disk to large radii with quasar-level
luminosities, then outside a few hundred gravitational radii
(∼ 10−4 −10−3 pc, much smaller than typical ISM or even ob-
scuring “torus” scales), it would naively become gravitation-
ally unstable and should rapidly fragment rather than fueling
the BH (Shlosman & Begelman 1989; Shlosman et al. 1990;
Goodman 2003). Moreover, the properties of the disks in the
models above (including both analytic models and traditional
“accretion disk” simulations which can only extend to some
modest number of gravitational radii from the BH), and even
“which type of disk” one actually has, depend fundamentally
on the “outer boundary conditions” set by larger-scale inflows
into the accretion disk region. Most notably, the accretion
rate ¤𝑀 itself is simply taken as some constant input, and this
has a major effect on the qualitative properties of the disks
in the models above. But even for a fixed ¤𝑀 , one can imag-
ine different distributions of angular momentum of inflowing
material, which can produce qualitatively distinct phenomena
(including e.g. warps, precessions, flips, or dynamical instabil-
ities, if not highly coherent and close-to-circular; see Scheuer
& Feiler 1996; Nayakshin 2005; Hobbs & Nayakshin 2009).
And both the magnetic flux and geometry of the magnetic
fields (e.g. primarily toroidal or poloidal, tangled or coherent)
generally must be assumed. Likewise, many other possible
boundary condition effects are often ignored – for example,
the effects of global gravitational modes (e.g. coherent eccen-
tric/lopsided disk modes) sourced by external perturbations or
collective effects of stars at larger radii outside the disk (Hop-
kins & Quataert 2010a,b; Anglés-Alcázar et al. 2021). As a
result, historical simulations of “strongly magnetized disks”
(for example Gaburov et al. 2012; Forgan et al. 2017; Ju et al.
2017; White et al. 2019; Mishra et al. 2020; Kudoh et al.
2020), while crucial for understanding the internal evolution,
structure, dynamics, and variability of such disks, must adopt
critical parameters like the magnetic flux ad-hoc in their ini-
tial conditions and so cannot answer the question of whether
or not such disks should or even could arise in real quasars
and AGN. Doing so would require a self-consistent predictive
model that follows the gas flows and magnetic field dynamics,
star formation and feedback on much larger (galactic and in-
tergalactic) scales, all the way down to the BH accretion disk
scales.

Motivated by this, in Hopkins et al. (2023a) (henceforth
Paper I) we presented the first simulations to follow all of
these physical and dynamical effects in a single simulation
around a SMBH, from cosmological simulations (using a
super-Lagrangian hyper-refinement technique) down to scales
of ∼ 80 au (less than ∼ 300 𝑅schw). We observed the for-
mation of a true (𝑄 ≫ 1) “accretion disk.” In Paper I, we

focused on the hierarchy of processes driving angular momen-
tum loss and gas inflow from scales as large as ≳Mpc onto the
galaxy, through the galactic nucleus, the BH radius of influence
(BHROI), torus-like regions, all the way down to the accretion-
disk scales. We also studied how turbulence, magnetic fields,
and radiation-hydrodynamics produced star formation on large
scales and lead to the suppression of star formation on small
scales (≲ 0.1−1 pc) around the SMBH, allowing for the condi-
tions to transition naturally from “galactic-type” or “ISM-like”
conditions at ≳ pc scales to “accretion-disk-like” at ≪ pc.

Here, in Paper II of the series, we focus on the emergent
properties of the accretion disks in these simulations, and
the physics that give rise to their key behaviors. Specifi-
cally, we show that the simulations naturally produce disks
that are strongly magnetically dominated (𝛽 ≪ 1, with values
much smaller in the midplane than usually assumed in his-
torical models), specifically dominated by a toroidal magnetic
field (but with substantial “turbulent,” radial, and poloidal
field components), with vigorous trans-Alfvénic, highly super-
sonic turbulence, large coherent eccentricities and coherent
global modes, as well as gravito-turbulence and spiral arm-like
structures. All together these produce rapid radiatively effi-
cient and potentially super-Eddington accretion. We show that
the fields are amplified by simple flux-freezing – or similarly,
that the toroidal field dynamo is “closed” by rapid advection
of new magnetic flux – with completely “normal” ISM mag-
netic field strengths (themselves built up from extremely small
trace cosmological fields). We therefore refer to them as “flux-
frozen disks” for simplicity. In a companion paper (Hopkins
2023a; hereafter Paper III), we further demonstrate that these
ideas are supported by a simple analytic accretion disk model.
As such, while this is just one simulation, we might expect
these behaviors to be quite common. Moreover, we show that
the local turbulence may not, in fact, be dominated by the tra-
ditional weak-field MRI, but perhaps by distinct instabilities
or variants of the MRI that arise when the magnetic fields are
extremely strong.

In § 2 we summarize the numerical methods, and Table 1
defines some useful variables we will refer to throughout.
In § 3 we summarize the basic conditions and properties of
the ISM predicted on sub-pc scales to set the context here,
including the connection to large radii in § 3.1, basic gas
properties in § 3.2, and (lack of) star formation in § 3.3. In § 4
we examine the magnetic structure of the disks in more detail,
discussing both the strength and detailed structure (§ 4.1) and
physical origins (§ 4.2) of the strong magnetic fields. In § 5
we consider the same for the velocity field structure in the
midplane (§ 5.1) and out-of-plane (§ 5.2), its relation to global
coherent eccentric/lopsided disk modes (§ 5.3) and the details
of the turbulent structure (§ 5.4), its physical origins/driving
(§ 5.5), and the (relatively weak) role of turbulent resistivity
(§ 5.6). In § 6 we discuss the vertical structure and profiles of
various thermo-chemical and magnetic disk properties (§ 6.1)
and their (weak) stratification (§ 6.2) as well as the physics
behind this (§ 6.3). In § 7, we explore the physical torques
and angular momentum exchange processes in the disk (§ 7.1)
and their relation to different stresses including traditional
Maxwell and Reynolds stresses (§ 7.2). With this in mind,
§ 8 compares to a variety of previous literature models of
magnetized accretion disks, including magnetically arrested
(§ 8.1), magnetically elevated (§ 8.2), galactic/star-forming
(§ 8.3), toroidal-field dominated (§ 8.4), and decaying (§ 8.5)
disks. We briefly describe how the disks are likely to be
mis-aligned with the pre-existing BH spin in § 9. In § 10, we
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TABLE 1
Some common variables used throughout this manuscript (others are defined throughout where relevant).

𝑅, 𝜙, 𝑧 Cylindrical radial, azimuthal, and vertical coordinates (centered on the SMBH, aligned with the inner disk)
𝑟 Spherical (3D) distance 𝑟 ≡ |r | from the SMBH

B, 𝐵𝑖 Magnetic field B and components 𝐵𝑖 (e.g. radial, toroidal, poloidal components 𝐵𝑅 , 𝐵𝜙 , 𝐵𝑧)
v, 𝑣𝑖 Gas velocity v and components 𝑣𝑖 (e.g. radial, azimuthal, vertical components 𝑣𝑅 , 𝑣𝜙 , 𝑣𝑧)
𝛿B, 𝛿v Fluctuating part of B or v (value relative to mean in some annulus/region, e.g. 𝛿B ≡ B − ⟨B⟩)

𝜌, 𝑛gas, Σgas Gas 3D density 𝜌 or number density 𝑛gas (in particles cm−3), and projected surface density Σgas
𝑇 , 𝑐𝑠 Gas temperature 𝑇 (𝑇rad, 𝑇dust denote radiation and dust temperatures) and thermal sound speed 𝑐𝑠 ≡

√︁
𝑘𝐵 𝑇/𝜇 𝑚𝑝

𝑣𝐴, 𝑣𝐴, 𝑖 Alfvén speed 𝑣𝐴 ≡ |B |/
√︁

4𝜋𝜌, and component-wise 𝑣𝐴, 𝑖 ≡ 𝐵𝑖/
√︁

4𝜋𝜌
𝛽, M𝑠 , M𝐴 Plasma 𝛽 ≡ 𝑐2

𝑠/𝑣2
𝐴

parameter, sonic M𝑠 ≡ | 𝛿v |/𝑐𝑠 and Alfvén M𝐴 ≡ | 𝛿v |/𝑣𝐴 Mach numbers
𝐻 Gas disk vertical scale-height 𝐻 (defined within a given annulus 𝑅)
j, 𝝉 Specific angular momentum vector j ≡ r × v and specific torque vector 𝝉 ≡ r × a

𝑉𝑐 , 𝑣K Total circular velocity 𝑉2
𝑐 ≡ 𝐺 𝑀enclosed (< 𝑟 )/𝑟 (including all mass), Keplerian speed 𝑣K ≡ 𝐺 𝑀BH/𝑟 (so 𝑉𝑐 → 𝑣K as 𝑟 → 0)

𝑀BH, ¤𝑀𝑖 SMBH mass 𝑀BH and inflow/outflow/SF rates ¤𝑀𝑖 = ¤𝑀in, ¤𝑀out, ¤𝑀∗, respectively
𝚷𝑎

𝑖 𝑗
Stress tensor 𝚷: tensor component 𝑖 𝑗, 𝑎 denotes different physical contributions (e.g. magnetic, kinetic, thermal 𝚷mag, 𝚷kin, 𝚷therm)

𝑄𝑖 Effective Toomre 𝑄 parameter 𝑄𝑖 ≡ 𝜎𝑖 𝜅ep/𝜋 𝐺 Σgas where 𝜎𝑖 = 𝑐𝑠 , 𝑣𝐴, | 𝛿𝑣𝑅 | , (𝑐2
𝑠 + 𝑣2

𝐴
+ 𝛿𝑣2

𝑅
)1/2 appear in

the thermal 𝑄therm, magnetic 𝑄mag, turbulent 𝑄turb, and “total” 𝑄eff parameters, respectively (and 𝜅2
ep ≡ (2Ω/𝑅) 𝜕𝑅 (𝑅2Ω))

Ω, 𝑡dyn, 𝑡cool Orbital frequency Ω ≡ 𝑉𝑐/𝑟 , dynamical time 𝑡dyn ≡ Ω−1, and gas cooling time 𝑡cool
|𝑎𝑚 | Mode amplitude for non-axisymmetric modes with azimuthal integer wavenumber 𝑚 (e.g. eccentricity |𝑎1 |)

𝑅𝑔 , 𝑅schw, 𝑅BHROI BH gravitational radius 𝑅𝑔 ≡ 𝐺 𝑀BH/𝑐2, Schwarzschild radius 𝑅schw ≡ 2 𝑅𝑔 , and BH radius of influence
𝑅BHROI ≡ 𝐺 𝑀BH/𝜎2

gal (where 𝜎gal represents the “parent” galactic velocity dispersion)

contrast a simulation without magnetic fields and describe how
this leads to runaway nuclear star formation (§ 10.1), orders-
of-magnitude lower accretion rates (§ 10.2), and a razor-thin,
much smaller and lower-mass gravitoturbulent 𝛼 disk (§ 10.3).
We summarize and conclude in § 11.

2. METHODS
2.1. Physics & Resolution

The simulations studied here are presented and extensively
described in Paper I. Briefly, we begin from a ∼ (100 cMpc)3

cosmological periodic box at redshift 𝑧 ∼ 100 with a pri-
mordial trace magnetic field, and follow it as a cosmological
galaxy formation simulation following the full combined Feed-
back In Realistic Environments (FIRE; Hopkins et al. 2018,
2023b) and STARFORGE (Grudić et al. 2021; Guszejnov et al.
2021) physics in the code GIZMO1 (Hopkins 2015). We evolve
the simulation with a modest refinement (target mass resolu-
tion ∼ 4000 M⊙ in the galaxy, or spatial resolution ∼ 10 pc
in the galaxy nucleus) until a redshift 𝑧 ∼ 4.4 when a period
of violent merging and starburst activity induces large inflows
into the central ∼ kpc of the galaxy. We then initiate an addi-
tional hyper-refinement layer (as in e.g. Anglés-Alcázar et al.
(2021)) to go to higher and higher resolution following the
gas inflows, to reach sufficient resolution to resolve individual
(proto)star formation, accretion and evolution and protostellar
disk structure in the central ≲ 10 − 100 pc of the galaxy. We
continue to refine to a target resolution of Δ𝑚 < 0.01 M⊙ in
the central ≲ 10 pc, to follow gas inflows and disk formation
down to < 300 Schwarzschild radii around the super-massive
black hole of mass ∼ 1.3 × 107 M⊙ . Figs. 1-2 show some
illustrative images of the circum-BH disk which forms in the
fiducial simulation.

The simulations include a wide range of physics including
magnetic fields (see Fig. 3), using the high-order constrained-
gradient method from Hopkins & Raives 2016; Hopkins 2016,
with kinetic (anisotropic Braginskii viscosity and conduction)
and non-ideal (Ohmic, ambipolar, Hall) effects (Su et al.

1 A public version of GIZMO is available at http://www.tapir.
caltech.edu/~phopkins/Site/GIZMO.html

2017; Hopkins 2017); cosmic ray transport and coupling to
gas dynamics (Hopkins et al. 2022b; Hopkins 2022; Hopkins
et al. 2022c,d); self-gravity with adaptive softenings scaling
with the resolution and high-order Hermite integrators capa-
ble of accurately integrating ≳ 105 orbits in hard binaries
(Grudić & Hopkins 2020; Grudić et al. 2021; Grudić 2021;
Hopkins et al. 2022a); metal enrichment and dust destruc-
tion/sublimation (Ma et al. 2017; Gandhi et al. 2022; Choban
et al. 2022); super-massive black hole seed formation and
growth via gravitational capture of gas (Hopkins et al. 2016;
Shi et al. 2022; Wellons et al. 2022); (proto)star formation and
accretion and explicit feedback from stars in the form of pro-
tostellar jets, main-sequence stellar mass-loss, radiation, and
supernovae (Grudić et al. 2022; Guszejnov et al. 2022b,c,a).
They include explicit multi-band M1 radiation-hydrodynamics
with adaptive-wavelength bands (Hopkins et al. 2020a; Hop-
kins & Grudić 2019; Grudić et al. 2021) coupled explic-
itly to all the thermo-chemical processes, radiative cooling
and thermo-chemistry incorporating cosmic backgrounds, ra-
diation from local stars, re-radiated cooling radiation, dust,
molecular, atomic, metal-line, and ionized species opacities
and processes, cosmic rays, and other processes allowing us
to robustly model the thermochemistry and opacities in gas
with densities from 𝑛 ∼ 10−8 − 1016 cm−3 and temperatures
∼ 1 − 1010 K in a range of radiation and cosmic ray envi-
ronments. A pure inflow/accretion boundary is enforced at
≈ 80 au from the central SMBH – we do not model any flux
from e.g. jets or radiation emerging from the inner region, as
these should depend on the accretion disk properties them-
selves. Fig. 2 illustrates some of the complex phase structure
that emerges even in just the nuclear regions.

We stress that the entire simulation uses the identical, full
physics – there is no discontinuous change in the equations
integrated in space nor time. Instead, as described in Pa-
per I, we evolve the full self-gravitating radiation-magneto-
thermochemical-hydrodynamics for all gas cells, and simply
allow the code to form two distinct types of star particles:
(1) FIRE “stellar population” particles which form from star-
forming gas in the low-resolution cells (resolution ≫ 1 M⊙),
and therefore sample an assumed stellar initial mass function

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
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Fig. 1.— Image of the gas surface density in our fiducial cosmological simulation. We show projected gas density on a logarithmic scale (increasing dark-to-bright,
dynamic range rescaled in each panel from a median 𝑁𝐻 ∼ 1019 cm−2 at the largest scale to ∼ 108 times larger at the smallest scale). Multiple scales are shown
to illustrate the dynamic range of the simulation, which zooms in down to ≈ 80 au scales around a ∼ 107 𝑀⊙ SMBH in the center of a massive galaxy at redshift
𝑧 ≈ 4.4 in a ∼ (100 Mpc)3 cosmological box. The simulations include explicit multi-band radiation-magnetohydrodynamics, detailed thermochemistry/cooling,
self-gravity with resolved individual (proto)star formation, accretion, evolution, and feedback, and many other physical processes (§ 2). Tidally captured gas
streams from an encounter with a massive star-forming cloud complex triggered via gravitational torques in a galaxy-scale merger fall into the BH radius of
influence (BHROI) at a few ∼ pc and circularize at ∼ 0.1 − 1 pc to form an accretion disk which we follow down to ∼ 300 BH Schwarzschild radii.

(IMF) and calculate IMF-integrated rates for stellar feedback;
and (2) STARFORGE “individual star” particles which form in
the high-resolution cells (≪ 1 M⊙) and therefore evolve along
individual (proto)stellar+main sequence evolutionary tracks.

Some of these physics are not important on the scales we
will study here, although they may play a crucial role in deter-
mining the boundary conditions via their role on larger scales.
On all scales we study in detail in this paper, the refinement
has reached the target resolution of < 0.01 M⊙ (we briefly
re-ran with refinement a factor ∼ 8 higher, and see no differ-
ence in our results), and in the densest regions just outside
our inner boundary condition we reach local spatial resolution

∼ 10− 20 au and time resolution as small as ∼ days. The most
relevant physics on these scales are gravity, (ideal) MHD, and
explicit radiation-thermodynamics.

2.2. Analysis and Definitions
Table 1 defines a number of variables we use through-

out. In this manuscript, we will often refer to cylindrical
radial/azimuthal/vertical coordinates 𝑅, 𝜙, 𝑧, defined with re-
spect to the angular momentum vector of the inner accretion
disk (e.g. gas at 𝑟 < 0.01 pc) and centered on the SMBH, so 𝑧

points along the angular momentum vector and 𝜙 points in the
rotation direction. We distinguish the spherical radius/distance
𝑟 (with spherical radial/polar/azimuthal angles 𝑟, 𝜃, 𝜙 defined
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Fig. 2.— As Fig. 1, showing face-on (top) and edge-on (bottom) projections (relative to the nuclear disk) with order-of-magnitude different spatial scales
(dynamic range a factor of ∼ 100 in each panel, rescaled as Fig. 1). We focus on sub-pc scales; for discussion of the dynamics on larger scales driving these flows
see Paper I. The dashed circle at right denotes the inner accretion boundary at 𝑟 < 80 au. We see the disk circularization radius from the inflowing filament. The
disk is thin but has complex structure with spiral arms and multiple warps and some large-scale arms at different angles tracing new inflow with slightly different
impact parameter.

in the same way so that 𝑧 = 𝑟 cos 𝜃) from the cylindrical radius
𝑅. Given our focus, we will generally use the terms toroidal
and azimuthal interchangeably (and likewise for poloidal and
vertical).

The instantaneous values of fluctuating quantities like
𝛿B(x, 𝑡) ≡ B(x, 𝑡) − ⟨B(x, 𝑡)⟩ are defined by respect to
their appropriately weighted averages ⟨B⟩ ≡ ⟨B(x, 𝑡)⟩x ≡
(
∫
𝑤 B(x, 𝑡) 𝑑3x)/(

∫
𝑤 𝑑3x) = (∑𝑖 B𝑖 𝑤𝑖 Vol𝑖)/(

∑
𝑖 𝑤𝑖 Vol𝑖)

at a given time (with 𝑤 the chosen weight, and the summa-
tion over all cells 𝑖). For example, unless otherwise specified
we will define volume-weighted averages in radial annuli, i.e.
𝑤 = 1 for 𝑟 or 𝑅 (whichever is plotted) within some narrow log-
arithmic radial annulus of width ∼ 0.1 dex, and 𝑤 = 0 outside
the annulus (though we have checked that the exact choice
of bin widths makes no appreciable differences to any plot
here). We will sometimes compare mass-weighted (𝑤 = 𝜌)
or other explicitly weighted distributions, where stated. We
also define the corresponding weighted 90% (5 − 95%) or
±1𝜎 (16 − 84%) inclusion intervals, as e.g. the values of B
above/below which correspond to the appropriate fraction of
the total weight (

∫
𝑤 𝑑3x). We note below that the stress tensor

𝚷 can be written in terms of a mean and fluctuating compo-
nent, e.g. ⟨𝚷kin

𝑅𝜙⟩ = ⟨𝜌 𝑣𝑅 𝑣𝜙⟩ + ⟨𝜌 𝛿𝑣𝑅 𝛿𝑣𝜙⟩, so will specify
throughout whether we refer to the “total” or “fluctuating”
components.

As described below, we consider a few different definitions
of the (gas mass) scale height 𝐻 and show they give nearly
identical results, including measuring the mass-weighted me-

dian |𝑧 | in annuli, the mass-weighted rms ⟨𝑧2⟩1/2, or fitting
a vertical Gaussian or sech2 profile to the density. Projected
quantities like Σgas are defined as the sum within cylindrical
annuli. For vector/tensor quantities like B, v, 𝚷, we follow
usual convention and define them in terms of cylindrical com-
ponents. However, we have remade all salient plots of these
quantities, instead (1) defining in terms of the spherical com-
ponents (e.g. ⟨𝐵𝑟 , 𝜃 , 𝜙̃⟩ instead of 𝐵𝑅, 𝑧, 𝜙); (2) plotting versus
spherical radius 𝑟 instead of cylindrical 𝑅; (3) allowing the 𝑧
axis to vary in annuli (defining it with respect to the angular
momentum axis in each annulus instead of a global, fixed co-
ordinate system); and (4) re-defining them in eccentric annuli
or similarly subtracting the mean 𝑚 = 1 non-axisymmetric
component (defined and plotted below) from the fluctuating
components. Unless we explicitly state otherwise for specific
quantities in the text below, these choices do not qualitatively
change any of our conclusions or comparisons.

Because we are interested in various non-equilibrium prop-
erties and dynamics and their time evolution, we will focus
on specific representative times chosen after the simulation
reaches steady-state, to represent the range of instantaneous
behaviors. However we have surveyed hundreds of snapshots
of the simulations and confirm that quantities studied here such
as the accretion rates and mass profiles are representative of
the range over all times after the simulation reaches its highest
refinement level. We explicitly show this for several properties
(showing their time evolution) below. For radial profiles of
positive-definite quantities like 𝜌 or ⟨|B|2⟩, we show in Paper
I and Paper III that their time-averaged behaviors over the en-
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Fig. 3.— Magnetic field strengths as a function of BH-centric radius 𝑟 .
We measure ⟨ |B |2 ⟩1/2 in spherical annuli from our inner boundary at ∼
80 au to >Mpc scales, and show the corresponding ⟨𝐵2

𝑖
⟩1/2 for the radial,

toroidal, and poloidal components of the field (with directions defined relative
to the angular momentum vector of the BH accretion disk at 𝑟 < 0.1 pc).
Inside ≪ 10 pc, the resolution is uniformly < 0.01 𝑀⊙ and star formation
follows the STARFORGE individual-resolved-stars physics. Outside of
this radius the resolution is lower and the FIRE prescriptions form stellar
population particles representing multiple stars sampling an assumed IMF
(see § 2). Intergalactic sub-nG magnetic fields are amplified by the turbulent
and galactic dynamo to “typical” ISM magnetic field strengths of ∼ 1−15 𝜇G
at ∼ 1 − 10 kpc (labeled), but the fields are amplified and approach kG at
𝑟 ∼ 100 au. At most radii the fields are roughly isotropic (representing the
dis-ordered ISM and CGM without a preferred direction), with a mild radial
bias in the infall region, before becoming predominantly toroidal where the
clear rotating thin BH accretion disk forms (see Fig. 1).

tire simulation lie well within the scatter we plot at a given
time and radius. For many signed quantities, like the toroidal
and radial magnetic fields, time-averaging the profiles would
artificially obscure the interesting behaviors.

3. BASIC PROPERTIES & CONDITIONS ON SUB-PC
SCALES

3.1. Morphology and Connection to Larger Scales
Figs. 1-2 illustrate the nuclear disk, which forms from cos-

mological initial conditions. We see the disk forms within
a chaotic, clumpy, massive high-redshift (𝑧 ≈ 4.5) starburst
(galaxy-integrated SFR > 100 M⊙ yr−1) galaxy, where a mas-
sive star-forming cloud complex has a close passage to the
∼ 107 M⊙ SMBH in the galaxy nucleus. This outer galaxy
is studied in Paper I. Some of the material from the cloud is
tidally stripped by the SMBH around its radius of influence
(BHROI, a few pc, interior to which the BH dominates the
potential) and falls in initially in a radial stream (a tidal tail)
and we see it circularize at ∼ 0.1 − 1 pc. As expected given
the large cloud size and inhomogeneous structure, not all the
inflowing gas has an identical impact parameter, so some falls
in at slightly different angles (giving rise to warps and eccen-
tricity in the outer disk).

Fig. 3 illustrates the scaling of the magnetic fields with BH-
centric radius, showing the full dynamic range of the simula-
tion. We will study scales within the disk below but, because
we will argue below that the magnetic flux carried into the
disk is important, we wish to highlight that the fields grow ul-
timately from sub-nG intergalactic magnetic fields, with ISM
magnetic fields on scales ∼ 1−10 kpc, which have completely
“typical” values of ∼ 1 − 15 𝜇G (Beck 2015), similar to those
observed in the local ISM of the Milky Way (despite this be-

ing a massive, high-redshift galaxy). The magnetic fields (and
other properties like gas densities) grow relatively smoothly
down to disk scales, without a sharp discontinuity at some par-
ticular radius. We also identify the range of scales where our
simulation reaches maximum target resolution (𝑟 ≲ 10 pc),
to make it clear that the entire dynamic range we study here
uniformly has mass resolution < 0.01 M⊙ .

Fig. 4 visualizes several different properties in a projected
2D image over a dynamic range of a factor ≳ 1000 in radius,
now focusing just on the innermost regions of our simulation
from 10−3 − 1 pc where the disk forms. These include: 3D
gas density 𝑛gas, temperature 𝑇 , plasma 𝛽 ≡ 𝑐2

𝑠/𝑣2
𝐴
, ratio of

toroidal to total field strength |𝐵tor |/|B|, ratio of azimuthal
to total velocity |𝑣𝜙 |/|v|, ratio of magnetic pressure 𝑃B to
total non-rotational kinetic/turbulent ram pressure 𝑃turb, and
“effective” total local Toomre 𝑄eff parameter (including ther-
mal+magnetic+turbulent support). Fig. 5 complements this,
showing the 1D (averaged in concentric radial shells) radial
profiles of different properties out to ∼ pc scales.

3.2. Radial Trends and Basic Scalings in the Disk
On sub-pc scales, Figs. 4-5 show:

1. Inflow is systematically larger than outflow, and star
formation is largely negligible (note the three can co-
exist, as the medium is clearly not spherically symmet-
ric, nor in strict long-term equilibrium), with an order-
of-magnitude constant ¤𝑀in ∼ 20−30 M⊙ yr−1 sustained
into the central ∼ 80 au around the SMBH.

2. The gas densities increase towards the center, with a
slightly more shallow profile than a singular isothermal
sphere (𝜌 ∝ 𝑟−2), with clumpiness evident in the visual
projection and in the mass-weighted spherical profile.

3. The radiation and thermal energy densities are in rough
equilibrium (with the radiation, dust, and gas kinetic
temperatures coming into increasing equilibrium at 𝑟 ≪
pc, and the dust mostly sublimated at ≲ pc as shown in
Paper I), but with both of their energy densities well
below the magnetic energy density in the disk, with 𝛽

ranging from 10−6−10−2 depending on the local phase.
The temperature is dominated by cold and warm atomic
media (with some warm ionized gas), and rises weakly
towards the center.

4. The kinetic energy of the gas is uniformly larger than
magnetic, but most of that on scales ≪ pc is the disk
rotation, i.e. |v| ∼ 𝑣𝜙 ∼ 𝑉𝑐 (𝑟), and the disk is
rotation-dominated within ≲ 0.1 pc. The remaining
non-rotational or “turbulent” kinetic energy density is
more comparable to magnetic energy densities, with
𝑃B/𝑃turb ranging from ∼ 0.01−10 depending on the lo-
cal phase sub-structure and density of the gas. In other
words, the turbulence is broadly trans-Alfvénic.

5. The magnetic fields are stronger in the center, with |B|
increasing slightly steeper than 𝑟−1, and the toroidal
component of the field dominating inside the radii where
the disk is ordered and rotation-dominated.

6. A combination of turbulence and magnetic pressure
support the measured disk scale height (i.e. the disk
is in approximate vertical equilibrium) with 𝐻/𝑅 ∼ 0.1
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Fig. 4.— Wedge plot showing various disk properties (colormaps labeled) including: 3D gas density 𝑛gas, gas temperature 𝑇 , plasma 𝛽 ≡ 𝑐2
𝑠/𝑣2

𝐴
, ratio of

toroidal to total field strength |𝐵tor |/|B |, ratio of azimuthal to total velocity |𝑣𝜙 |/|v |, ratio of magnetic pressure 𝑃B to total non-rotational kinetic/turbulent ram
pressure 𝑃turb, and “effective” total (including thermal+magnetic+turbulent support) local Toomre 𝑄eff parameter. The plot shows cylindrical coordinates 𝑅, 𝜙,
but with the cylindrical radius 𝑅 stretched on a log scale from ∼ 80 au to ∼ 2 pc (labeled), to show the behavior over a large range of scales. All quantities are
mass-weighted averages within each image pixel, in a slice through the disk midplane ( |𝑧 |/𝑅 < 0.1). Densities increase inwards; temperatures vary but tend to be
mostly cold-to-warm at these scales; 𝛽 ≪ 1 and decreases in the inner disk 𝑅 ≲ 0.01 pc; the toroidal field and azimuthal (rotational) velocities dominate inside
≲ 0.1 pc; the magnetic pressure is crudely of order turbulent pressure but varies locally from ∼ 0.01 − 10 times its value; and the effective stability parameter
𝑄eff ≫ 1 on all these scales.

in the central regions (and quasi-spherical structure at
∼ pc, outside the rotation-dominated region). At all
radii ≪ pc, the “effective’ Toomre 𝑄 parameter in-
cluding thermal+magnetic+turbulent support is large.
But even the pure-thermal Toomre 𝑄thermal ∼ 10 from
𝑟 ∼ 10−2 − 10−1 pc inside the disk and rises rapidly to
𝑄thermal ≫ 10 at 𝑟 < 0.01 pc.

Given that the accretion rates at ∼ 80 au (our inner bound-
ary) correspond to super-Eddington accretion if they remained
constant down to horizon scales with a fixed radiative effi-
ciency of 𝜖𝑟 = 0.1, predicting in detail the quasar luminosities

requires radiation-GRMHD simulations which can extend the
disk simulations here to those scales (e.g. Jiang et al. 2019).
If we assume that the accretion becomes radiatively inefficient
(or strong outflows suppress ¤𝑀 on near-horizon scales) so that
the luminosity remains limited to Eddington (Abramowicz
et al. 1988), we would predict 𝐿bol ∼ 𝐿Edd ∼ 1045 erg s−1, if on
the other hand the radiative efficiency remains high (𝜖𝑟 ∼ 0.1)
and ¤𝑀 remains constant to the horizon (essentially an upper
limit), we would predict 𝐿bol ∼ 1047 erg s−1. At the redshift
𝑧 ≈ 4.5 here, this range brackets the “knee” of the observed
bolometric quasar luminosity function (Hopkins et al. 2007a;
Shen et al. 2020), so in terms of luminosities, this should
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Fig. 5.— Radial profiles of properties versus spherical BH-centric distance 𝑟 , from < 10−3 pc to ∼ 1 pc (properties are mass-averaged in concentric shells
unless otherwise stated; for discussion of properties on larger (extra)galactic scales, see Paper I). Top left: Inflow rate (summing all gas with 𝑣𝑟 < 0), outflow rate
(𝑣𝑟 > 0), and star formation rate (stellar mass formed/accreted within the last dynamical time, in each shell). We see consistent inflow at up to ∼ 20 M⊙ yr−1.
Top right: Toomre 𝑄 parameter for the gas alone, separating thermal support (𝑐𝑠), magnetic (𝑣𝐴), turbulent (𝑣turb) and total (𝛿𝑣2

𝑟, eff ≡ 𝑐2
𝑠 + 𝑣2

𝐴
+ 𝑣2

turb). The
system is stable on all these scales, but the relatively modest thermal-only 𝑄 produces some of the large-scale gravitoturbulence and some (very slow/weak) star
formation. Middle left: Gas density (lines show mean, shaded range ∼ 90% inclusion interval) weighted by mass (spikes correspond to denser arms/clumps) or
volume. Middle right: Total contribution to the stress/pressure tensor (Frobenius norm of each tensor, lines show volume-weighted mean, shaded range ∼ 90%
interval), for kinetic (𝜌 v v), magnetic ( |B |2 I/8𝜋 −BB/4𝜋), thermal (𝑛 𝑘 𝑇 I), and radiation (

∫
d𝜈 𝑒𝜈 D𝜈) energies. The thermal and radiation terms are in rough

equilibrium as expected (the disk is optically thick) but are strongly dominated by magnetic and kinetic terms. Note the kinetic energy is primarily rotation of the
disk, the turbulent kinetic energy is order-of-magnitude comparable to magnetic (turbulence is broadly trans-Alfvénic). Bottom left: Scale height 𝐻/𝑅 directly
measured (median or rms 𝑧, as labeled), and expected (≈ 𝜎/𝑉𝑐) from turbulent/magnetic/thermal support. Given the above, we see turbulent+magnetic support
clearly dominate the disks’ vertical structure. Bottom right: Magnetic field strength (rms volume-weighted value in solid, shaded shows 90% range for total field
strength), for total and by toroidal/poloidal/radial component. The fields rise to very large values at small 𝑟 , and are toroidal-dominated in the disk but with
non-negligible poloidal+radial terms. In a companion paper (Paper III) we note that all of these scalings can be reasonably approximated with a simple analytic
similarity model.



FORGE’d in FIRE II 9

correspond to a “typical” quasar at the redshifts simulated.
Because we will refer to it below, we note that Paper III

compares these profiles to those predicted for a Shakura &
Sunyaev (1973) or SS73 𝛼-disk with the same accretion rate
¤𝑀 , to show they differ by orders of magnitude. Briefly, SS73

and other “weakly-magnetized” models assume 𝛽 ≳ 1, so the
vertical support in the outer disk comes only from thermal
pressure (𝐻/𝑅 ∼ 𝑐𝑠/𝑉𝑐), with an effective viscosity (𝜈 ∝
𝛼 𝑐𝑠 𝐻) provided by some Reynolds/Maxwell stresses with
𝛼 ∼ 𝛿𝑣2

turb/𝑐
2
𝑠 ∼ 𝑣2

𝐴
/𝑐2

𝑠 ∼ 1/𝛽 ≪ 1 leading to inflow ( ¤𝑀 ∝
𝜈 Σgas). So 𝐻/𝑅, 𝑣𝐴/𝑉𝑐, and 𝛿𝑣turb/𝑉𝑐 are predicted by SS73
to be smaller by factors of ∼ 100 − 1000 than the values here,
while (for the same2 ¤𝑀)Σgas would be larger in SS73 by factors
∼ 104 − 106. Correspondingly, the midplane density (𝜌 ∝
Σgas/𝐻) is larger and effective Toomre 𝑄 (∝ 𝛿𝑣eff Ω/𝐺 Σgas ∝
𝐻Ω2/Σgas) is smaller by factors∼ 106−108 in SS73 compared
to these simulations.

3.3. Stability and (Lack of) Star Formation
As noted above, the SFR interior to ≲ pc is much smaller

than inflow rates. The physics of this suppression is discussed
in Paper I, but as we will see below in our tests without MHD,
magnetic fields play an important role (raising 𝑄, preventing
local collapse perpendicular to the mean toroidal field, and
promoting faster torques and more rapid accretion). For our
purposes here, we show therein and in Hopkins (2023b) (where
the properties of the few stars that do form in the outer accretion
disk are studied) that the density or total mass of stars on
these scales is very small compared to the gas mass, and
that the stars contribute negligibly to the dynamics or stresses
(momentum/energy flux or turbulence driving) or heating in
the disk either via their gravitational influence or via their
stellar “feedback” effects (jets, winds, radiation). Indeed, if
we re-start the simulations from a snapshot and simply delete
all stars at < 1 pc (and disable new star formation at these radii)
and run for ∼ 10− 20 dynamical times, we see no appreciable
difference in any of the properties we study on these scales.

So we are justified in neglecting stars and stellar feedback in
our discussion of the accretion disk structure, on these scales.
This is distinct from larger, more “ISM-like” scales, where
stars dominate the mass and dynamics (see e.g. Hopkins &
Quataert 2011; Anglés-Alcázar et al. 2021).

4. STRUCTURE AND ORIGINS OF THE MAGNETIC
FIELDS

4.1. Overview of Properties & Transition to Toroidal
Now we turn to study of the magnetic fields in the simula-

tions. Fig. 3 and its “zoomed-in” version, Fig. 5, show that
the total magnetic field strength rises to values approaching
∼ kG at ≲ 10−3 pc, somewhat steeper than |B| ∝ 𝑟−1, from
∼ pc scales. We see directly in Fig. 3 that something like
⟨|B|⟩ ∝ 𝑟−1 also describes the field strength (very crudely) at
> pc scales out to ≳ kpc. Defining the poloidal, toroidal, and
radial components of the field,3 we see in Figs. 3, 4, & 5 a clear
transition from an isotropic or slightly radially-biased field at

2 We compare at fixed ¤𝑀 because this is the key boundary condition which
determines the SS73 solution properties for quantities like Σgas, and is set by
our cosmological/galaxy ISM-scale inflows.

3 Throughout this paper, we consider a fixed angular momentum axis at any
given time defined by the net angular momentum of gas interior to 𝑟 < 0.01 pc,
though our results are not particularly sensitive to exactly where we define this
cutoff radius so long as it is within the visually-obvious disk. The poloidal and
toroidal and radial field components and azimuthal, vertical, radial velocity

≳ 0.1 pc (which Fig. 3 shows is true at much larger radii as
well) to a toroidal-dominated field at smaller radii, coinciding
with the visually well-ordered disk in Fig. 1.

Fig. 6 plots the projected structure of the field lines in
the disk plane (taking a slice through the midplane, so in
cylindrical 𝑅-𝜙 coordinates considering a wedge of some
width in |𝑧 |/𝑅) and edge-on (in cylindrical 𝑅-𝑧 coordinates
considering a wedge of some width in 𝜙), in one example
time snapshot within the ordered disk (𝑅 ≲ 0.1 pc). Fig. 7
considers the face-on field structure at three different scales
𝑅 ≲ (0.01, 0.1, 1) pc. Fig. 8 shows the edge-on field-line
structure on the smaller scales ≲ 0.01 pc at two different times,
to illustrate how they can change, and Fig. 9 shows the field
lines overplotted on an edge-on density map to see how illus-
trate the relation to the density substructure within the disk.

In the face-on projections, we see the fields are fairly well
ordered, with a clear transition from more radial field lines
pointing along the direction of gas infall onto the nuclear disk,
circularizing where the disk forms, to become toroidal, with
increasing order in the toroidal field at smaller radii (by eye, it
becomes closer to purely azimuthal). We also see clear repeat-
ing sign flips in the toroidal field joined by field reversals (oc-
casionally breaking off into large-scale loop-type structures),
with some intermediate turbulent zones. However, the inflow
continues to be traced even as the toroidal field strengthens
as we see a spiral-type structure (i.e. non-negligible coherent
radial field components pointing inwards). We also plainly
visually see an anti-correlation in the signs of 𝐵𝜙 and 𝐵𝑅, as
expected if the toroidal field is sourced by radial flux.

In the edge-on projections we see less large-scale coher-
ence. In the midplane there is a (much weaker) coherent ra-
dial/vertical field component in the 𝑅-𝑧 projection, and there
is some vaguely “jet like” vertical bipolar field in 𝑅-𝑧 (the
vertical/conical fields at small 𝑅 with coherent 𝐵𝜙 and 𝐵𝑅

but oppositely-signed 𝐵𝑧 above/below the disk). Interestingly,
looking at the sign of the toroidal field in the edge-on pro-
jection, we see that there can be sign flips of 𝐵tor at different
vertical heights, as well as at different radial intervals; but,
these are generally at |𝑧 | ≳ 𝐻 – i.e. outside the body of the
disk (with coherence lengths ≳ 𝐻). It is worth noting that
there is no sign flip of 𝐵𝜙 across the midplane, as is often
seen if 𝐵𝜙 were sourced by a much stronger mean poloidal
field (although there can be exceptions to this). We see clear
evidence for some mode structure in 𝐵𝑅 and 𝐵𝑧 interior to the
disk, with wavelength ∼ 𝐻.

In Fig. 10 we examine the magnetic field profile on these
scales somewhat more quantitatively. Here, we consider a
1D profile (averaged in spherical shells), plotting both the
mass-weighted mean-field values of the cylindrical 𝑅, 𝜙, 𝑧
components, as well as their ∼ 1𝜎 range.4 We plot these
both in absolute units, as well as in units of the Alfvén
speed 𝑣𝐴, 𝑖 ≡ 𝐵𝑖/

√︁
4𝜋 𝜌, relative to the circular velocity

components are defined with respect to this. Our sign convention is such
that for a toroidal/azimuthal field, a positive value indicates prograde fields
(aligned with the gas rotation).

4 To be robust against outliers from e.g. small-scale structure in small
sub-volumes containing nascent protostellar disks, for example, we define the
∼ 1𝜎 value of the value of each magnetic component as 1/2 of the 16 − 84%
mass-weighted inclusion interval. If we simply consider the usual RMS
⟨𝐵2

𝑖
⟩1/2 we see similar trends, but slightly systematically larger values, indi-

cating that the “tails” of the distribution are somewhat fatter than Gaussian,
as well as slightly more noise owing to some sub-structure. The exact quan-
titative values also vary somewhat if we mass or volume or magnetic-energy
weight the results, but this does not change any of our relative comparisons
or conclusions.
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Fig. 6.— The nuclear disk in a ±0.1 pc box, showing the magnetic field lines (grey) in a face-on slice through the midplane (left; lines show the in-plane
𝐵𝑅 − 𝐵𝜙 field, in gas with |𝑧/𝑅 | < 0.1) or edge-on slice through the disk in cylindrical 𝑅-𝑧 coordinates (right; lines show the in-plane 𝐵𝑅 − 𝐵𝑧 field, in gas
with | sin 𝜙 | < 0.1). For each, colors denote the sign of toroidal/azimuthal (𝐵𝜙 ; top), radial (𝐵𝑅 ; middle), or poloidal/vertical (𝐵𝑧 ; bottom) field. Our sign
convention is that 𝑧̂ and 𝜙̂ point in the direction of the angular momentum vector and direction of co-rotation of the inner gas disk (so 𝐵𝜙 > 0 is prograde), and
𝑅̂ points away from the BH. We see large-scale ordered structure tracing the radial inflows from scales outside the BHROI being wrapped around the center as
the disk circularizes at ∼ 0.1 pc, with sign changes on large scales determined by the large-scale inflow structure (and reversals or occasional loops forming at the
sign change boundaries). There is also an obvious anti-correlation in the sign of 𝐵𝜙 and 𝐵𝑅 .
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Fig. 7.— Field lines as Fig. 6, in face-on projection of the midplane on three different spatial scales: ±1 pc (left), ±0.1 pc (middle), ±0.01 pc (right). We more
clearly see the field lines transition from a somewhat less coherent and radially-biased flow with the filamentary inflow on the largest ∼ 1 pc scales to the more
ordered and more clearly azimuthal field geometry on ≪ 0.01 pc scales. We also see the expected 𝐵𝜙 − 𝐵𝑅 anti-correlation on all scales, with a somewhat less
correlated/more turbulent 𝐵𝑧 .
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Fig. 8.— Field lines as Fig. 6, in edge-on projection on smaller ±0.01 pc scales, at two different times (earlier at left, later at right), separated by ∼ 2 × 104

dynamical times at the innermost boundary radius. The times are chosen to represent times before (left) and after (right) the sign-flip in 𝐵𝜙 on small scales
accretes through our inner boundary at < 80 au, leaving a somewhat larger coherent toroidal field at the late time (but still with successive sign-flips on larger
scales). In both cases we see some 𝐵𝜙 − 𝐵𝑅 anti-correlation but at the later time it is less obvious (but would become more obvious if we subtract the coherent
mean-field 𝐵𝜙 and plot the fluctuations 𝛿𝐵𝜙 ≡ 𝐵𝜙 − ⟨𝐵𝜙 (𝑅) ⟩ and 𝛿𝐵𝑅). Coherent modes with wavenumber 𝑘𝑧 ∼ 𝑘𝑅 ∼ 1/𝐻 are obvious and especially
prominent in 𝐵𝑧 at the later time. We denote the 𝑧 = 0 and 𝑅 = 0 axes with the thin white dotted line for clarity: we see no evidence for a sign switch in 𝐵𝜙 at
𝑧 = 0 as would be predicted if the toroidal 𝐵𝜙 were ultimately sourced by a dominant mean-field 𝐵𝑧 .
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Fig. 9.— Field lines (as Fig. 8; grey) superimposed on an edge-on gas density projection (colors, 𝜌 as labeled) in 𝑅-𝑧 coordinates, in a narrow wedge (sin 𝜙 < 0.1).
There is a large-scale asymmetry in the disk density, reflecting the coherent large-scale eccentric disk (Figs. 1-2). Insets show higher-resolution examples of
a couple of regions (top-left inset zooms in on the midplane gas just below in the image). There is considerable density substructure, consistent with highly
super-sonic and trans-Alfvénic turbulence in the disk, and tangled internal disk fields. We see clear radial/vertical field structure and cells/loops with scale length
∼ 𝐻. Approaching 𝑅 → 0, the disk becomes relatively thick, while being thinner at intermediate radii.
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Fig. 10.— Magnetic field strength and Alfvén speed (defined by 𝑣𝐴, 𝑖 ≡ 𝐵𝑖/
√︁

4𝜋 𝜌) relative to circular velocity 𝑉𝑐 ≡
√︁
𝐺 𝑀enc (< 𝑟 )/𝑟 in spherical annuli at

BH-centric radii 𝑟 out to ∼ 1 pc. We compare two different well-separated times (left and right) corresponding to the two times shown in Fig. 8. Top: 𝑣𝐴, 𝑖/𝑉𝑐 ,
showing the (mass-weighted) mean ⟨𝐵𝑖 ⟩ (line) and ±1𝜎 (16− 84%) range (shaded) in each annulus. Dotted green line shows 𝐵 = 0 for reference. We clearly see
that the toroidal field is dominated by the mean component in the ordered disk region (𝑟 ≲ 0.1 pc), with coherent sign flips, while the radial and poloidal fields
are dominated by the fluctuating component (that vary in time). The toroidal field also becomes non-negligible compared to gravity at the smallest radii. Middle:
|𝑣𝐴, 𝑖 |/𝑉𝑐 on a logarithmic scale, showing the mean | ⟨𝐵𝑖 ⟩ | (dotted) and fluctuating rms component 𝛿𝐵𝑖 ≡ 𝐵𝑖, 84% − 𝐵𝑖, 16% ∼ ⟨ |𝐵𝑖 − ⟨𝐵𝑖 ⟩ |2 ⟩1/2 (solid; we
use a percentile-based definition to avoid biasing the component from a few dense star-forming cells with much-larger |B |). We see only the toroidal field is
dominated by the mean component, and even then always has a non-negligible fluctuating component; the fluctuating radial and poloidal fields are comparable to
each other but smaller than 𝛿𝐵𝜙 by a factor of a few in the inner disk (outside the disk region, | 𝛿𝐵 | ≫ | ⟨𝐵⟩ | and all components are comparable, indicating a
turbulence-dominated system). 𝐵𝑅 has mean comparable to 𝛿𝐵𝑅 in the inner regions, while | ⟨𝐵𝑧 ⟩ | ≪ | 𝛿𝐵𝑧 |. Bottom: As middle, but plotting the components
𝐵𝑖 in Gauss. The field strength rises crudely as ∝ 𝑟−1.
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Fig. 11.— Comparison of the analytic predictions for the amplification
of B versus radius for the set of models motivated by simple flux-freezing
considerations for the toroidal and radial flux, as described in the text (§ 4.2.1;
Eqs. 1-4). These successfully reproduce the key behaviors in the simulations.
We compare the mass-weighted simulation mean (thick line) value and 90%
inclusion range (shaded) of |B | in spherical annuli to the value |Bpredicted |
predicted by the models (labeled), versus radius 𝑟 . We show one early time
(top) and one late time (bottom), matching the times in Figs. 8 & 10. These
different scalings, which make slightly different assumptions about how the
gas is compressed as it accretes, all predict |B | within factors ∼ 2 without a
large systematic residual or offset.

𝑉c ≡
√︁
𝐺 𝑀enc (< 𝑟)/𝑟 at each radius. We see the same

rise in the field values as Fig. 5, and the increasing pref-
erence for toroidal fields within the disk as above, but now
more quantitatively see the transition from a primarily turbu-
lent field (the rms/dispersion component larger than mean)
to more coherent (mean similar to or even larger than dis-
persion, for 𝐵𝜙). The mean ⟨𝐵𝜙⟩ dominates at the inner
disk, but the “turbulent” or rms components are not vastly
smaller. There appears to be a robust sort of “hierarchy”
of the different field components in the inner disk, with
|⟨𝐵𝜙⟩| ≳ |𝛿𝐵𝜙 | ≳ |𝛿𝐵𝑅 | ∼ |𝛿𝐵𝑧 | ≳ |⟨𝐵𝑅⟩| ≳ |⟨𝐵𝑧⟩|, i.e.
the mean toroidal and vertical fields are the strongest and
weakest, respectively, with the fluctuating toroidal second-
strongest, followed by the fluctuating radial and vertical fields.
This is independent of whether we define these components in
a global cylindrical coordinate system (shown), or a spherical
coordinate system, or a spatially-variable coordinate system
where we rotate each annulus independently to correspond to
the angular momentum axis of gas just in that annulus, and/or
whether we subtract the mean 𝑚 = 1 component in each an-
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Fig. 12.— As in Fig. 11, but comparing alternative previously proposed
analytic models for amplification of |B |, which are not based on advec-
tion/freezing of toroidal/radial magnetic flux (see § 4.2.2, scalings (2), (3),
(5), and (6)). We see that these do not accurately describe the simulations,
especially noting the much larger vertical axis range here compared to Fig. 11.
The model used for most previous discussions of toroidal magnetically dom-
inated disks is the predicted saturation value of the linear (local, unstratified)
MRI at 𝑣pred

𝐴
∼ √

𝑐𝑠 𝑣K from Pessah & Psaltis (2005), but we see that the
mean fields here are already well above this value at all nuclear radii, the
scatter is very large, and there is a systematic trend in the median with ra-
dius (so no simple re-normalization leads to agreement). The same is true
for constant-𝛽 models or models with |B | ∝ Σgas sometimes invoked in the
literature. A model where 𝑣𝐴 saturates at ∼ 𝑣K fares somewhat better but still
shows a systemic deviation with radius and a normalization offset from the
simulations.

nulus (to control for a coherent eccentric mode). We also see
that the sign flips in the disk clearly evolve, as mass is accreted
through the disk, but the magnitude of the total field stays
broadly consistent over tens of thousands of disk dynamical
times.

As discussed above (§ 3.2), the magnetic pressure domi-
nates the vertical support of the disk but with O(1) contri-
bution from trans-Alfvénic turbulence: this is reflected both
in direct comparison of the turbulent velocity components to
the various 𝑣𝐴, 𝑖 below; or from the kinetic energy densities,
or relative contribution to the effective stability parameter 𝑄,
or comparison of the disk 𝐻/𝑅 to 𝑣𝐴/𝑉𝑐 in Fig. 5. In other
words, 𝜌 𝑣2

turb ∼ ⟨|B|2⟩ broadly speaking, as we quantify in
more detail below. Of course, both 𝑣𝐴 and 𝑣turb are much
larger in the simulations than in an SS73 disk which assumes
𝛽 ≫ 1.
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Fig. 13.— Magnetic field strength |B | versus gas density 𝜌. Top: All gas cells
within 𝑟 < 100 pc at a fixed time (Eulerian), showing mass-weighted median
(solid line) and 90% interval (shaded). We compare an analytic |B | ∝ 𝜌2/3

scaling motivated by flux-freezing of the mean midplane toroidal/radial fields
as they accrete (§ 4.2.1-4.2.2). Middle: Evolution of |B | and 𝜌 over time for
fixed Lagrangian gas elements (points; the line shows running median). We
select random cells that are close to being accreted (within 𝑟 < 100 au) in the
final simulation time 𝑡1, and trace each back to an earlier time 𝑡0 (∼ 5000Ω−1

inner
dynamical times earlier), to plot |B(𝑡1 ) |/|B(𝑡0 ) | versus 𝜌(𝑡1 )/𝜌(𝑡0 ) . As
expected for a mean-field-dominated disk in steady-state with most of the
mass in midplane inflow, this traces a similar power-law |B | ∝ 𝜌2/3. Bottom:
Variation in |B | with 𝜌 at a given radius (narrow radial annuli at the different
𝑟 shown). To compare we normalize |B | and 𝜌 to their mean within each
annulus. Here variation in |B | in an annulus is not dominated by global
compression of the mean field, so is not expected to obey the same power-
law, and instead varies weakly (∝ 𝜌0.2−0.3), as expected if fluctuations are
generally modest relative to the mean field. The tail to high 𝜌/⟨𝜌(𝑟 ) ⟩ is
dominated by rare sites of star-formation, so this reflects the physics of local
collapse (along field lines).
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Fig. 14.— Top: Gas mass-weighted magnetic field strength ⟨ |B |2 ⟩1/2 and
mean toroidal field ⟨𝐵𝜙 ⟩ in the innermost region of the simulation (radii
80 au < 𝑟 < 120 au), as a function of time. The time is in units of the
dynamical time 1/Ωinner ≡

√︃
𝑟3
inner/𝐺 𝑀enc (< 𝑟inner ) ≈

√︃
𝑟3
inner/𝐺 𝑀BH,

with 𝑟inner ≡ 80 au (the time zero-point is arbitrary). We zoom in to show
times a few thousand dynamical times before and after a sign flip event where
the innermost gas with ⟨𝐵𝜙 ⟩ > 0, as evident in e.g. Fig. 6, is accreted, with
gas from larger radii with ⟨𝐵𝜙 ⟩ < 0 moving in towards these smaller radii.
We see that the magnitude of both ⟨ |B |2 ⟩1/2 and | ⟨𝐵𝜙 ⟩ | recover quickly
after sign-flip events and remain stable for ≳ 104 dynamical times. Bottom:
Accretion rate into the central < 80 au, averaged in Δ𝑡 ∼ 2 yr (∼ 50Ω−1

inner)
increments.

4.2. Physical Origins of the Field Strength & Structure
4.2.1. Origins of the Mean Field in Flux-Freezing/Advection of

Flux with Accreting Gas

We find that the qualitative behavior of the dominant mean
toroidal field ⟨𝐵𝜙⟩ can be understood primarily from simple
flux-freezing considerations. Below, we test and validate this
in more detail, but first let us describe the qualitative scenario
and key behaviors in the simulations. To begin, recall that
the gas forming the disk is tidally captured from a close pas-
sage by a molecular cloud complex to the BHROI (Figs. 1-2),
so behaves as an initially “cold” (weakly pressurized) tidal
filament/stream, akin to satellite galaxy encounters on large
scales (Hernquist & Mihos 1995; Bullock & Johnston 2005;
Younger et al. 2008; Moster et al. 2010) and similarly analo-
gous to some of the behaviors seen in simulations of magnetic
fields in stellar tidal disruption events (TDEs) (Bonnerot et al.
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Fig. 15.— Mean toroidal ⟨𝐵𝜙 ⟩ in azimuthal annuli (as Fig. 10), versus
the expected leading-order term from the induction equation for amplifica-
tion of the toroidal field via advection/stretching of radial magnetic flux 𝐵𝑅

(𝜕⟨𝐵𝜙 ⟩/𝜕𝑡 ≈ 𝜕(𝑣𝜙 𝐵𝑅 )/𝜕𝑅+ ...), multiplied by the dynamical time Ω−1 at
each radius. We show two times (top and bottom), before and after the sign flip
in Fig. 14. We see a more quantitative version of the 𝐵𝜙 −𝐵𝑅 anti-correlation
and that this leading-order average roughly predicts the correct mean toroidal
field. Together with the previous figures, this suggests that the strong toroidal
field arises primarily from flux conservation (advection of radial flux “closes
the dynamo loop”).

2017; Guillochon & McCourt 2017).
As shown in Fig. 3, the gas at large radii (e.g. in the sub-kpc

galactic nucleus) has broadly isotropic turbulent fields, with
magnetic energy density a few percent of the kinetic energy
density (see also Fig. 9 in Paper I), as expected for the super-
sonic dynamo in both idealized (Federrath et al. 2014; Rieder
& Teyssier 2017) and multi-phase galaxy formation simula-
tions (Martin-Alvarez et al. 2022; Guszejnov et al. 2020; Seta
& Federrath 2022). When some portion of this is captured
and falls in (with tangential velocity below 𝑉c), it is tidally
stretched into a radial stream of length ℓ and width 𝑤 (as we
see occurring in Figs. 6-7). For 𝐵𝑧 and 𝐵𝜙 , the perpendicular
areas – (Δ𝑟) (𝑟 Δ𝜙) ∼ ℓ 𝑤 and (Δ𝑟) (Δ𝑧) ∼ ℓ 𝑤, respectively –
are increased by the stretching5 so these components are weak-
ened; in contrast, 𝐵𝑅 is amplified, owing to the perpendicular

5 For pure radial infall in a Keplerian potential, the perpendicular extent𝑤 is
tidally compressed with a transverse acceleration, Δ𝑎⊥ = 𝑤 𝜕𝑎grav,⊥/𝜕𝑤 =

−Ω2 𝑤, while the radial extent ℓ is stretched with a parallel accelera-
tion, Δ𝑎∥ = ℓ 𝜕𝑎grav, ∥/𝜕ℓ = 2Ω2 ℓ. If one begins from small coherent
shear/expansion velocities, this means the perpendicular areas for 𝐵𝑧 and 𝐵𝜙

(∼ ℓ 𝑤) will increase while the perpendicular area for 𝐵𝑅 (∼ 𝑤2) decreases.

compression (perpendicular area (𝑟 Δ𝜙) (Δ𝑧) ∼ 𝑤2). Equiv-
alently we can think of the field lines as being “stretched” in
the radial direction as they are dragged. The expected ampli-
fication of 𝐵𝑅 ranges between 𝑟−0 (for e.g. an infalling clump
with 𝑤 ≪ 𝑟, or no radial motion) to 𝑟−2 (maximal case where
𝑤 ∼ 𝑟 and pure-radial inflow), depending on the efficiency of
the perpendicular compression. This agrees with the behavior
seen in Figs. 5 & 10.

The infalling gas has non-zero impact parameter 𝑏 and
circularizes at ∼ 0.1 pc (plainly visible in Figs. 2 & 4).
The “initially” radial field therefore follows the gas flow and
wraps/winds up to become toroidal (Fig. 10). Equivalently the
compression ratios rotate as shear now means that the elonga-
tion direction is azimuthal, so the mean azimuthal field ⟨𝐵𝜙⟩
is amplified strongly while the mean radial and vertical fields
grow less rapidly (remaining sub-dominant to their fluctuat-
ing field components). Since the field was initially tangled
and isotropic (with |𝛿𝐵𝑖 | ≳ |⟨𝐵𝑖⟩| for all components of B) at
radii outside of the BHROI, there are sign flips in the “initial”
field which is now stretched into some mean ⟨𝐵𝜙⟩ as it was
radially accreted – these become the successive sign flips in
the radial direction. Indeed, following the fluid over time in
Fig. 8, we note below that the sign flips in 𝐵𝜙 simply reflect
these frozen-in trends and are advected inwards with the fluid
as it accretes. In steady-state, even if there is some damping
of the coherent toroidal field owing to turbulent resistivity or
buoyant escape, ⟨𝐵𝜙⟩ is constantly replenished by the steady
supply of radial magnetic flux into and through the disk.

For flux-freezing, the compression in the 𝑧 direction sug-
gests 𝐵 ∼ 𝐵𝜙 ∝ 1/𝐻 (Machida et al. 2006). Meanwhile direct
analysis of the simulations or simple analytic considerations
give weak compression in the 𝑅 direction.6 As shown below, a
yet simpler isotropic-flux-freezing expectation 𝐵 ∝ 𝜌2/3 works
equally well in explaining the evolution of the field strengths
both in time (following a Lagrangian parcel) or space (fit-
ting the radial profile). Checking the normalization of |B|,
if we fit 𝐵 ∝ 𝜌2/3 to the simulations using the midplane
values of ⟨|B|2⟩1/2 and ⟨𝜌midplane⟩ (Figs. 3 & 5), we obtain
|B| ∼ (2 − 8) 𝜇G (𝑛/cm−3)2/3 (depending on how we weight
it; or |B| ∼ (2 − 6) 𝜇G (𝑟/10 kpc)−1) – i.e. at Galactic radii
this extrapolates to typical mundane values of |B|, consis-
tent with our direct estimates from the simulations in Fig. 3.
Moreover, as discussed below and in Paper III, the absolute
field strengths here (in Gauss) are actually smaller than in an
SS73-like 𝛼 ∼ 0.1 disk with the same ¤𝑀 (even though 𝛽 ≪ 1
is much smaller). Thus no extreme fields at large radii are
needed to sustain these strong fields in the disk.

This is consistent with the global field geometry, and at
least qualitatively explains the sign flips in the toroidal field
in successive radial annuli (as this reflects field reversals from
the turbulent fields at much larger radii, before amplification).
The idea also explains the lack of systematic sign flips in ⟨𝐵𝜙⟩
at 𝑧 = 0 (i.e. reversals of ⟨𝐵𝜙⟩ as one vertically crosses the
midplane), as well as the broad anti-correlation between 𝐵𝜙

and 𝐵𝑅. The relative amplification versus suppression above
also explains why we see a dominant mean ⟨𝐵𝜙⟩ component
with much weaker mean ⟨𝐵𝑅⟩ and ⟨𝐵𝑧⟩ components (Fig. 10;
note also that ⟨𝐵𝑧⟩ seems to grow somewhat more slowly

6 This is expected if the solution is wind-like (constant 𝑣𝑟 ), free-fall-like,
spherical (𝐻 ∼ 𝑟 , akin to the Solar wind), or simply circularizing while
conserving specific angular momentum from a broad/flat initial distribution
(for some uniform initial bulk velocity dispersion of the captured cloud,
𝑑𝑟 ∝ 𝑑𝑏).
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Fig. 16.— Instability parameter space map, following e.g. Fig. 3 of Pessah & Psaltis (2005). We select gas in the warm, volume-filling phases (excluding gas
with 𝑇 < 1000 K) in a radial annulus (factor of ∼ 2 range of 𝑅 centered on 𝑅 = (0.001, 0.01, 0.1, 1) pc, corresponding to the different panels, as labeled),
within the disk midplane ( |𝑧 | < 𝐻 at each 𝑅), and plot the volume-weighted histogram (with a linear scale, increasing from 0 in black to 1 in white) of the
gas in the space of the toroidal 𝑣𝐴, 𝜙/𝑐𝑠 ≡ 𝐵𝜙/(𝑐𝑠

√︁
4𝜋 𝜌) versus vertical “effective minimum wavenumber” 𝑘eff

𝑧 𝑟 𝑣𝐴, 𝑧/𝑐𝑠 ∼ (2𝜋 𝑟/𝐻 ) (𝐵𝑧/(𝑐𝑠
√︁

4𝜋 𝜌) ) .
Dashed and dotted white lines show the critical wavenumbers 𝑘𝑐1

𝑧 and 𝑘𝑐2
𝑧 defined in Pessah & Psaltis (2005) which separate the different regimes of instability

labeled (for an analytic, linear, laminar, unstratified system). The bottom-left quadrant corresponds to the classical (linear, unstratified, weak-field) MRI, top-left
to a stable regime, while the top-right and bottom-right to the “Type II” and “Type III” (bouyancy-related) instabilities defined therein (or the suprathermal slow
mode instability [SSMI] and suprathermal hybrid mode instability [SHMI], respectively, in Das et al. 2018). We see that the volume-filling midplane phases
in the simulations reside well into the Type II/III (SSMI/SHMI) regime, with the largest wavelengths (∼ 𝐻) broadly similar to the dividing line between those
modes, i.e. the toroidal field is stronger than the maximum amplitude at which the linear MRI grows under the usual laminar, unstratified disk assumptions
(𝑣max, MRI

𝐴, 𝜙
∼ √

𝑐𝑠 𝑣K, as shown in Fig. 12 above). Colder-phase gas (not shown here) shifts diagonally to the upper right, further into the Type II/SSMI region.

than ⟨𝐵𝑅⟩). Instead, the radial and poloidal fields are more
dominated by their turbulent/fluctuating components, whose
amplitudes are of order |𝛿𝐵𝑅, 𝑧 | ∼ |𝛿(𝑣𝑅, 𝑧/𝑣𝐴) ⟨𝐵𝜙⟩| – i.e.
consistent with field lines being stretched, distorted, and per-
haps modestly amplified by turbulence within the disk (as we
appear to see occurring in Figs. 8-9).

We stress that, as discussed in the numerical tests in Paper
I, microphysical resistivity is not expected to play a significant
role here owing to the fact that the gas is still relatively diffuse
and, in the nuclear regions of importance, still highly ionized
with ionization fraction ≳ 0.01 (so ideal MHD remains a good
approximation). This owes to a combination of high temper-
atures (≳ 1000 K), dust destruction, high cosmic-ray energy
densities and ionization rates (even in the Milky Way cen-
ter, these exceed typical Solar circle values by several orders
of magnitude; see Indriolo et al. 2015), and high interstellar
radiation field densities due to the concentrated intense star
formation (≳ 100 M⊙ yr−1 in the central ∼ 100 pc; see Paper

I). This is unlike accretion of magnetic fields onto a protostar
via a protostellar disk, where ionized fractions are expected to
be in the range ≲ 10−17 −10−15 in much of the disk.7 In § 5.6,
we discuss the role of turbulent resistivity in detail and show
that it is also sub-dominant: damping of the dominant radial
and toroidal fields via turbulent resistivity is generically slower
than their growth via flux-freezing and advection, though such
damping may be important for the less-coherent poloidal field.
Thus our discussion in this section does not assume weak tur-
bulence and indeed we have assumed trans-Alfvénic or even

7 Calculating the generalized Elsasser number 𝑁E ≡ 𝐵2/(𝜌 𝜂Ω) ∼
𝑣2
𝐴
𝑡orbit/𝜂, where 𝜂 is the largest of e.g. ambipolar, Hall, or Ohmic re-

sistivities, and plugging in numbers for typical values in the simulations at
≲ pc scales gives 𝑁E ≳ 1013 through most of the inner disk, while 𝑁E ≲ 1
is required for resistivity to have a large global effect (or for e.g. ambipo-
lar diffusion to generate substantial “drift” between ions and neutrals on
the timescales of interest). That would generally require an ion fraction
𝑥𝑖 ∼ 𝑛𝑖/𝑛neutral ≪ 10−15 in the accretion disk.
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modestly super-Alfvénic (and highly super-sonic) turbulence
could be present throughout (§ 5.6), so long as the turbu-
lence is sub-virial (𝑣turb ≲ 𝑉𝑐), so that the turbulent coherence
length is smaller than the characteristic radial distance ≳ 𝑟
over which the field lines are being stretched as part of the
tidal inflow/stream.

4.2.2. Validating that the Mean Field is Indeed Driven by
Flux-Freezing and Advected Flux

We now consider various quantitative tests of the picture
described above in § 4.2.1, to validate more rigorously that
it is a reasonable description of the simulations. Moreover,
one might imagine several alternative scenarios/models that
attempt to explain or predict strong magnetic fields in an ac-
cretion disk, but we find most of these do not reproduce the
behaviors seen in our simulation. Consider the following pos-
sibilities:

1. Flux-freezing of the radial/azimuthal magnetic flux, the sce-
nario from § 4.2.1. Here ⟨𝐵𝜙⟩ is sourced by flux-frozen
accreted fields, and the mean toroidal field originates from
advection of radial flux with the radially-infalling gas from
outside the BHROI. Its evolution following the description
in § 4.2.1 (Eqs. 1-4 below).

2. Flux-freezing of a dominant mean dipolar/poloidal field.
One could instead assume that the magnetic field was dom-
inated by a mean poloidal/vertical/dipolar field ⟨𝐵𝑧⟩, which
was flux-frozen as mass advected inwards in a laminar disk
(e.g. torqued by magnetic braking). Then the fixed flux-
to-mass ratio would predict |Bpred | ∼ |⟨𝐵𝑧⟩| ∝ Σgas in the
disk.

3. Traditional MRI-Driven Fields (following Begelman &
Pringle 2007). If the fields (including the mean field) were
primarily driven by the traditional weak-field MRI (sourced
as usually assumed by some initial poloidal field), then
this would predict that the maximum saturation value of
the magnetic field strength should be given by the value
above which the MRI ceases to grow efficiently. For the
analytic models of magnetically-dominated disks in Begel-
man & Pringle (2007), this is taken to be 𝑣

pred
𝐴

≈ √
𝑐𝑠 𝑣K,

or 𝐵pred ∼
√︁

4𝜋 𝜌 𝑐𝑠 𝑣K (the value derived for linear MRI
growth in a laminar, unstratified, local analysis in Pessah &
Psaltis 2005).8

4. The Small-Scale Super-Sonic, Rapidly-Cooling Turbulent
Dynamo. In the standard super-sonic turbulent dynamo, the
fields saturate with magnetic energy a few percent the tur-
bulent kinetic energy (i.e. Alfvén Mach numbers ∼ 3− 10),
with isotropic, tangled fields, and fluctuating components
much larger than mean (|𝛿Bpred | ≫ |B|).

5. The Small-Scale Sub-Sonic, Gravitational/Protostellar Dy-
namo. Various models for the local dynamo in more slowly

8 Technically, following the more general dispersion relation in
Pessah & Psaltis (2005), this should be modified to 𝑣

pred
𝐴

≈√︁
𝑐𝑠 𝑣K/|1 + 𝜕 ln 𝐵𝜙/𝜕 ln 𝑅 | in the presence of radial magnetic stratification

(see discussion in Begelman & Armitage 2023). This correction generally
makes a small (tens of percent) difference, but even in the annulus where the
correction is maximized (near ∼ 0.002 pc where 𝜕 ln 𝐵𝜙/𝜕 ln 𝑅 is close to
−1) the correction never exceeds a factor of ∼ 2.5, so does not change any of
our conclusions.

cooling dense gas in molecular clouds/clumps/cores col-
lapsing to proto-stellar disks have argued for saturation at
fixed 𝛽 ∼ 1, giving 𝑣

pred
𝐴

∼ 𝑐𝑠 (Mocz et al. 2017), again
with isotropically tangled fields (|𝛿Bpred | ≫ |B|).

6. “Arrested” Fields. If the field simply saturated at a value
where it would dynamically arrest further inflow (as in e.g.
“magnetically arrested disks”, discussed further below), we
might expect 𝑣pred

𝐴
∼ 𝑉𝑐

First, we note that the measurements of the different mean
and fluctuating components (e.g. which components are dom-
inant where, and the ratio of mean-to-fluctuating compo-
nent amplitudes), as well as the presence/absence of differ-
ent sign flips, shown in Figs. 6-10, are all consistent with
our favored flux-freezing picture (i), as described in § 4.2.1.
The field geometry we see is immediately inconsistent with
model (ii) (which assumes the field is dominated by a mean
poloidal/vertical field) and models (iii), (iv) and (v) (which all
predict that the mean toroidal field should be much smaller
than the fluctuating field). Moreover, phenomena such as the
sign flips are either not predicted or predicted to have qualita-
tively different behaviors in models (ii)-(vi).

Second, in Figs. 11-12, we specifically compare the mea-
sured |B| (𝑟) in the simulation to the value predicted by the
different simple assumptions/models above (at two different
times). To begin, in Fig. 11 we compare a group of models for
|B| ∼ |⟨𝐵𝜙⟩| motivated by the simple flux-freezing consider-
ations of model (i) as described in § 4.2.1. We see that these
reasonably reproduce the absolute magnitude and radial trend
of |B| with relatively little scatter. If we compare

𝐵pred ∝ 𝑟−1 (1)

or

𝐵pred ∝ 𝐻−1 (2)

(both noted in § 4.2.1), the 𝐵pred ∝ 𝐻−1 scaling clearly exhibits
even smaller scatter and more accurate prediction of the mean
|B| compared to 𝐵pred ∝ 𝑟−1. We obtain almost as good a fit
with the simpler expression

𝐵pred ∝ ⟨𝜌mid⟩2/3 (3)

(shown explicitly in Fig. 13).9 We can also assume ⟨|𝐵𝜙 |⟩ ∝
𝐻−1

𝐴
where 𝐻𝐴 ≈ ⟨𝑣𝐴, 𝜙⟩/Ω ≈ ⟨|𝐵𝜙 |/(Ω

√︁
4𝜋 𝜌) is the scale

height set by the magnetic pressure (specifically focusing on
the toroidal component providing the vertical support). This
gives

𝐵pred ∝ 𝜌1/4 𝑟−3/4 , (4)

which also provides a good fit.
To compare, Fig. 12 plots the predicted value of |Bpred | from

models (ii), (iii), (v), and (vi). We see that all of these models
fail to correctly predict the magnitude of the typical fields and
their dependence on radius within the disk (not just the field

9 Note this does more accurately predict |B | than assuming |B | ∝ 𝜌2/3

for all 𝜌 within a given disk annulus, as some of the dense, cold and/or hot,
diffuse gas phases actually have more similar |B | if they are at the same radial
annulus near the midplane, owing to the fact that their |B | is dominated by the
mean ⟨𝐵𝜙 ⟩ component and collapse/expansion can occur along these field
lines. So locally on small scales within the disk isotropic flux-freezing is not
always a good approximation, even if it is not a bad approximation for the
global behavior of the mass in the disk on large scales.
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geometries and more detailed structure). Models (ii), (iii),
and (v) fare especially poorly, predicting huge variations in
the local value of |B| at a given annulus that we do not see in
the simulations, predicting the incorrect radial trend (there is a
systematic trend in the mean offset from the actual simulation
|B|), and predicting the incorrect normalization of |B|. Model
(vi) fares somewhat better but is still notably offset from the
actual field strengths (and the fact that the disk is actually ac-
creting appears to immediately contradict model (vi)). Model
(iv) is not shown here because we have not explicitly separated
the turbulent velocity fields/kinetic energies, but we show be-
low (§ 5.4) that the typical Alfvén Mach numbers in the disk
at ≲ 0.1 pc are M𝐴 ∼ 0.3 − 1 – i.e. the saturation magnetic
field strength in the simulation is an order-of-magnitude larger
than model (iv) would predict (and, again, the field geometry
is completely different). Nonetheless, it is worth noting model
(iv) appears perfectly reasonable as a description of both the
field geometry and strength at much larger radii 𝑅 ≫ pc, far
outside the disk (in the ISM). Thus we see that the model
(i) variants clearly provide a much better fit to the simulated
values of |B|, compared to other hypotheses (ii)-(vi) above.

Third, in Fig. 13 we have followed the Lagrangian time evo-
lution of individual fluid elements (since this is a Lagrangian
code, this is numerically trivial), and verified that they obey
the approximate model-(i) scalings and behaviors in time, as
well as in space. This is expected if the disk is in steady state
with steady inwards accretion, and ⟨𝜌⟩ or 𝐻 are monotonic
functions of 𝑅, but it is important to validate. It also allows
us to confirm that the evolution occurs continuously as the
material advects, and not, for example, only after it reaches
some critical radius. We can also immediately confirm that the
mean toroidal field is not amplified from some trace/turbulent
seed field as models (iii), (iv), and (vi) predict.

Fourth, by examining different snapshots, we have verified
that the sign flips in 𝐵𝜙 move with Lagrangian fluid elements
over time exactly as expected in model (i), as opposed to
oscillating as they would if they arose from e.g. instabilities
like the MRI (model (iii)) or the turbulent dynamo (models
(iv) and (v)). We see this directly in Figs. 8 and Fig. 10, as
well as via the fact that when following Lagrangian parcels we
do not see sign flips. We illustrate this physics more explicitly
in Fig. 14, where we follow the gas at the inner radii of the
simulation just before it is accreted. This Figure illustrates a
number of important properties: (1) that the magnetic field
strength, toroidal field prominence, and accretion rate into
< 80 au are stable (to within a factor of a couple) over tens
of thousands of dynamical times at our inner radii; (2) that
sign flips occur, on a timescale comparable to the accretion
timescale (∼ ¤𝑀in/𝑀gas (< 𝑟)), as new gas moves from larger
radii into the annulus of interest; (3) that the field strength
at a given radius is robust to these flips and restores quickly
“through” the flip. We also see this in Fig. 15, where at two
different times more closely separated than the times in Fig. 10
we more plainly see the sign reversals in ⟨𝐵𝜙⟩ systematically
propagating inwards with the gas. As noted above, the form of
the sign flips is also qualitatively inconsistent with model (ii).

Fifth, Fig. 15 compares the mean toroidal field ⟨𝐵𝜙⟩ with
its expected growth if it was ultimately sourced primarily
from advection of radial flux – as predicted by model (i)
– in a close-to-Keplerian disk. In particular, we approxi-
mate the induction equation for ⟨𝐵𝜙⟩, 𝜕𝑡 ⟨𝐵𝜙⟩ = ⟨𝜕𝑧 (𝐵𝑧𝑣𝜙 −
𝐵𝜙𝑣𝑧)⟩ + ⟨𝜕𝑅 (𝐵𝑅𝑣𝜙 − 𝐵𝜙𝑣𝑅)⟩, to include only the term that
accounts for the stretching of the radial field by the toroidal
flow 𝜕𝑡 ⟨𝐵𝜙⟩ ≈ 𝜕𝑅 ⟨𝑣𝜙 𝐵𝑅⟩. Note the pure radial 𝐵𝜙 transport

term 𝜕𝑅 ⟨𝐵𝜙 𝑣𝑅⟩ is usually smaller, but not always negligi-
ble, while the vertical flux divergence 𝐵𝑧 𝑣𝜙 vanishes and the
vertical inflow term 𝐵𝜙 𝑣𝑧 is small. In any case we see this
approximation works well at describing quantitatively the sign
flips and trends in ⟨𝐵𝜙⟩. This behavior is generally distinct
from the predictions of the alternative models (ii)-(vi) above.
Moreover, if we multiply 𝜕𝑅 ⟨𝐵𝜙 𝑣𝑅⟩ by the characteristic dy-
namical time 𝑡dyn = Ω−1, this appears to provide a remarkably
good order-of-magnitude estimate of the saturation ⟨𝐵𝜙⟩ –
this is expected if either (i) the accretion is dynamical (so the
amplification time is limited to some multiple of Ω−1) or (ii)
if the disk is trans-Alfvénically turbulent (so 𝐻 ∼ 𝑣turb/Ω by
definition in vertical equilibrium, and the turbulent magnetic
dissipation time is ∼ Ω−1) or (iii) if the midplane toroidal
flux is lost via buoyancy on the vertical buoyancy timescale
(a few to tens of times Ω−1). In any of these cases, provided
the disk support is dominated by a mean toroidal field and
Maxwell stresses with trans-Alfvénic turbulence (as we have
here), the dimensional expectation for the rate at which flux
is “lost” through a fixed Eulerian annulus is similar, and we
can think of it as being “replenished” by advection of new ra-
dial+toroidal flux with the inflow from larger radii. So we can
say – effectively equivalently to our description above – that
the dynamo is “closed” by advection of mean radial+toroidal
magnetic flux from the inflowing gas.

Together, all of these comparisons quantitatively (and quali-
tatively) support our argument from § 4.2.1 that the mean field
is ultimately sourced via flux-freezing (model (i) here), rather
than via some other scenario (e.g. models (ii)-(vi)).

4.2.3. Discriminating Between Models for the “Turbulent” Field

Now we consider the sub-dominant, but still not negligible,
fluctuating or “turbulent” field components 𝛿B. Given the
observed strength of the turbulent velocity fields, which are
trans-Alfvénic and crudely isotropic, the typical magnitude of
the fluctuating field components 𝛿𝐵𝑖 in Fig. 10 are consistent
with the usual trans/sub-Alfvénic relation |𝛿𝐵|/|B| ∼ |𝛿𝑣 |/𝑣𝐴,
as expected. This implies that the origins of the turbu-
lent/fluctuating magnetic-field components are likely related
to the origins of the turbulence in the disk, which we will
examine in detail in the next section.

However, one important question is whether we are in the
regime of the “traditional” MRI. As shown in Fig. 12, the
typical magnetic-field strength in the disk (both |⟨𝐵𝜙⟩| and
|B|) is an order-of-magnitude or more larger than the charac-
teristic strength 𝑣𝐴 ∼ √

𝑐𝑠 𝑣K at which the linear growth rate
of the MRI is usually assumed to vanish following the ana-
lytic analysis in e.g. Pessah et al. (2006). And Figs. 6-9 do
not show obvious magnetic morphological signatures of the
MRI (e.g. channel modes). We further show below that the
ratio of Maxwell to Reynolds stress differs significantly from
commonly-quoted saturated weak-seed-field MRI simulation
results through much of the disk (Brandenburg et al. 1995).

But it is well known that for fields stronger than the
commonly-quoted MRI limit (𝑣𝐴 ≳

√
𝑐𝑠 𝑣K), magnetized

disks are still unstable – the instabilities can simply change in
character (Pitts & Tayler 1985; Terquem & Papaloizou 1996;
Kim & Ostriker 2000; Pessah & Psaltis 2005; Hirabayashi &
Hoshino 2016; Das et al. 2018). We therefore follow Pes-
sah & Psaltis (2005) and plot the simulations on the “mode
diagram” shown in e.g. Fig. 3 therein, in our Fig. 16. Specifi-
cally, those authors show that the parameter space of different
characteristic unstable modes – at least in a simplified ana-
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Fig. 17.— Velocity streamlines in a cylindrical wedge inside < 0.1 pc, as in Fig. 6, face-on in the midplane (left, showing 𝑣𝑅-𝑣𝜙) and edge-on (right, showing
𝑣𝑅-𝑣𝑧), colored by the sign of the (spherical) 𝑣𝑟 ≡ v · r̂ (where the rest frame of the system is defined as the velocity of the SMBH). Compared to the magnetic
field, the velocity fields are much more clearly dominated by coherent rotation in the disk (there are no sign flips), and vertical infall onto the disk. Gas pileups at
spiral shocks forming the arms in Figs. 1-2 are obvious, with increasing order inside < 0.01 pc. The next-order inflow/outflow motion in the midplane is clearly
dominated by a coherent, large-scale eccentric disk (𝑚 = 1) “slow mode” which propagates inwards from large 𝑟 where the disk is self-gravitating, but the shocks
and turbulence break the exact cancellation of this motion and lead to net angular momentum loss. In the edge-on midplane, we more clearly see the turbulent
internal disk dynamics. The eccentric disk slowly precesses around the SMBH lagging the path of the infalling cloud from which it is forming, as expected.

Fig. 18.— Velocity streamlines (as Fig. 17), but now with the lines color-
coded by the sign of the radial velocity (inflow/outflow) and super-imposed
on a face-on projected density map of the gas in the disk midplane (as Figs. 1-
2) and on somewhat larger scales. This highlights the flows that form the
disk from captured gas initially beyond the BHROI in a massive star-forming
complex. As generically expected in tidal capture/disruption events, a large-
scale stream falls in primarily radially, shocking on self-intersection, and
circularizes to form the disk, with an order-unity fraction of the complex mass
not bound and instead in a large unbound tidal stream or outflow “fan.” The
inflow, being tidally compressed, forms the denser filamentary structure while
the outflow becomes lower-density gas. Within the inflowing filament in this
“free fall” zone before it circularizes, the flow is not highly turbulent: there is
both outflow and inflow (so the variance in 𝑣𝑅 can be large, at a given 𝑅), but
these clearly reflect large-scale, geometrically separate structures rather than
turbulent local motions.

lytic linear stability analysis of a laminar, unstratified disk –
can be, to leading order, represented in a two-dimensional
plot of dimensionless vertical wavenumber 𝑘̃𝑧 ≡ 𝑘𝑧 𝑟 𝑣𝐴, 𝑧/𝑐𝑠
(with 𝑣𝐴, 𝑖 ≡ |𝐵𝑖 |/

√︁
4𝜋 𝜌) versus a measure of the dimen-

sionless toroidal magnetic field strength 𝑣𝐴, 𝜙/𝑐𝑠 . The pa-
rameter space is then divided into four characteristic regimes
based on the intersection of two critical wavenumbers: 𝑘̃𝑐1

𝑧 ≡
𝑘𝑐1
𝑧 𝑟 𝑣𝐴, 𝑧/𝑐𝑠 ≈ (𝑉𝑐/𝑐𝑠)

√︁
−2 d lnΩ/d ln 𝑟 ≈

√
3 𝑣K/𝑐𝑠 , and

𝑘̃𝑐2
𝑧 ≡ 𝑘𝑐2

𝑧 𝑟 𝑣𝐴, 𝑧/𝑐𝑠 ≈ (𝑉𝑐/𝑐𝑠)
[
𝑣4
𝐴, 𝜙

/𝑐2
𝑠 𝑉

2
𝑐 − 𝜅2/Ω2

]1/2
≈√︃

(𝑣𝐴, 𝜙/𝑐𝑠)4 − (𝑣K/𝑐𝑠)2. Modes with 𝑘̃𝑧 > MAX( 𝑘̃𝑐1
𝑧 , 𝑘̃𝑐2

𝑧 )
are stable; those with 𝑘̃𝑐2

𝑧 < 𝑘̃𝑧 < 𝑘̃𝑐1
𝑧 are unstable to the tra-

ditional MRI (with the near-vertical part of 𝑘̃𝑐2
𝑧 defining the

upper limit 𝑣𝐴, 𝜙 <
√
𝑐𝑠 𝑣K above which, for the conditions

considered in Pessah & Psaltis 2005, the MRI growth rate van-
ishes);10 those with 𝑘̃𝑐1

𝑧 < 𝑘̃𝑧 < 𝑘̃𝑐2
𝑧 are unstable to a second

or “Type II” instability; and those with 𝑘̃𝑧 < MIN( 𝑘̃𝑐1
𝑧 , 𝑘̃𝑐2

𝑧 )
are unstable to a third or “Type III” instability.11 Note that
the “Type II” and “Type III” instabilities in Pessah & Psaltis
(2005) are also called axisymmetric toroidal buoyancy (ATB)
mode[s] in Kim & Ostriker (2000), or superthermal slow mode
instability (SSMI) and suprathermal hybrid mode instability
(SHMI) in Das et al. (2018) – while there are subtle but im-
portant differences in these analyses, the order-of-magnitude
dividing criteria between the different instability regimes and

10 If we retain the radial stratification term 𝐵̂𝜙 ≡ 𝜕 ln 𝐵𝜙/𝜕 ln 𝑅, then

𝑘̃𝑐2
𝑧 is modified to

√︃
(1 + 𝐵̂𝜙 )2 (𝑣𝐴, 𝜙/𝑐𝑠 )4 − (𝑣K/𝑐𝑠 )2, so the boundary

for MRI-like behavior shifts to 𝑣𝐴, 𝜙 <

√︃
𝑐𝑠 𝑣K/|1 + 𝐵̂𝜙 |. If we include this

|1 + 𝐵̂𝜙 |−1/2 correction in Fig. 16, the effect is small here: the 𝑘̃𝑐2
𝑧 boundary

between MRI and “Type III” shifts upwards by a factor ∼ 1.1 − 1.4 in each
panel, which has no effect on our conclusions. Although 𝐵̂𝜙 is broadly similar
to −1 on average in Fig. 3, evaluating this correction term in factor ∼ 2 radial
intervals from ∼ 80 au to ∼ 10 pc, we find that |1 + 𝐵̂𝜙 |−1/2 never exceeds a
factor of ∼ 3.

11 Technically, in Pessah & Psaltis (2005) there is a small stable “strip”
just interior to the boundaries of the “Type III” parameter space. However
on the (large) dynamic range plotted in Fig. 16, this occupies a negligibly
small fraction of the parameter space and is unimportant for our comparison.
Moreover, Das et al. (2018) argue this strip vanishes (the full Type-III regime
is unstable) in a global mode analysis.



22 Hopkins et al.

key behaviors are, for our purposes, identical. We plot the
simulation gas in the disk, at each of several radii, on this dia-
gram, assuming that the characteristic minimum wavenumber
of interest (and wavenumber containing most of the power)
is 𝑘𝑧 ∼ 2𝜋/𝐻. We see that the simulations lie solidly in
the “Type II/III range,” even if we focus only on the warmer
(higher-𝛽) volume-filling phases of the gas in the disk where
it is multi-phase (in the colder, denser gas, 𝛽 is even smaller
and the simulations lie even further from the traditional MRI
regime). This confirms our intuition and quantitative state-
ment that 𝑣𝐴, 𝜙 ≫ √

𝑐𝑠 𝑣K above.
These specific modes are fundamentally related to radial

magnetic buoyancy (see references above), operating near the
midplane, but as noted in Pessah & Psaltis (2005) they generi-
cally involve comparable in-plane and vertical displacements.
Moreover, given that the disk is vertically stratified at some
level (see § 5.2), additional buoyancy modes in a manner
potentially similar to that discussed in idealized simulation
studies such as Johansen & Levin (2008). While the analytic
models of such modes are somewhat less clear in the regime
here (non-constant 𝛽 ≪ 1, non-isothermal d𝑇/d|𝑧 | > 0,
strongly differentially rotating), dimensional considerations
and simpler versions of said instabilities suggest that the
fastest-possible growth timescales (a few times the vertical
Alfvén crossing time, ∼ a fewΩ−1) at the characteristic scales
∼ 𝐻 should be order-of-magnitude similar to the Type II/III
modes above (see e.g. Foglizzo & Tagger 1994; Vishniac
1995; Rodrigues et al. 2016; Salvesen et al. 2016a, and refer-
ences therein). Together this would naturally explain why we
see broadly similar turbulent vertical and radial components
|𝛿𝐵𝑧 | ∼ |𝛿𝐵𝑅 | (Fig. 10) with similar-scale structures (Fig. 6).
The Type III/SHMI instability in particular is also robust to the
different vertical and radial density/pressure/magnetic stratifi-
cation terms and range of mode propagation angles considered
in Pessah & Psaltis (2005); Das et al. (2018). It depends on
differential rotation in a similar manner to the traditional MRI
and its linear eigenvectors feature a broadly similar structure:
notably the linear Type III/SHMI instability, like the linear
MRI, always produces both Maxwell and Reynolds stresses
which transport angular momentum outwards (dominated by
the 𝑅𝜙 component), although the linear mode Reynolds-to-
Maxwell ratio can be higher or lower than the traditional MRI
over the parameter space spanned by the simulations. And
its growth rate peaks at relatively long wavelengths. In fact,
if we insert values of the simulation parameters (including
the radial gradients in 𝜌 and 𝐵𝜙) from Fig. 16 into the equa-
tions from Pessah & Psaltis (2005), we find the simulations
can often be in a parameter space which produces an even
faster-growing, longer-wavelength version of their Type III in-
stability (Maxwell-stress dominated, with peak growth rate of
∼ (|𝑣𝐴, 𝑧 |/𝑣K)1/3 Ω at wavenumber 𝑘 ∼ 1/𝐻 ∼ Ω/𝑣𝐴, 𝜙). Al-
together, this suggests these modes could play an important
role in driving turbulence and angular momentum transport,
but clearly further non-linear simulation studies are needed.12

Briefly, the fact that the simulation modes with wavelength
∼ 𝐻 reside order-of-magnitude around the Type II/III (or
SHMI/SSMI) dividing line (𝑘̃𝑐1

𝑧 ) is not actually surprising:
when (2𝜋 𝑟/𝐻) (𝑣𝐴, 𝑧/𝑐𝑠) ∼ 𝑘̃𝑐1

𝑧 ∼
√

3 𝑣K/𝑐𝑠 in a disk dom-

12 In contrast, the Type II/SSMI instabilities operate on much shorter wave-
lengths, do not depend on differential rotation, and their linear eigenmodes
feature weak Maxwell and Reynolds stresses with anti-aligned/opposing angu-
lar momentum transport, so in this sense they are more akin to local convective
instabilities.

inated by toroidal magnetic pressure with 𝐻 ∼ 𝑣𝐴, 𝜙/Ω, the
Type II/III dividing line is equivalent to 𝑣𝐴, 𝜙 ∼ 4 𝑣𝐴, 𝑧 . So
residing broadly “near” this line is simply a statement that the
typical |𝐵𝜙 | is not orders-of-magnitude larger than the typical
|𝐵𝑧 | in a cell. Note that we use the value of |𝐵𝜙 | and |𝐵𝑧 |
in each cell for this histogram (to define 𝑣𝐴, 𝜙 and 𝑣𝐴, 𝑧) – if
we instead replaced these values with the mean field |⟨𝐵𝜙⟩|,
|⟨𝐵𝑧⟩| (closer to the assumption in Pessah & Psaltis 2005) then
𝑣𝐴,𝜙 and the horizontal position of the simulation changes very
little (since this is mean-field dominated per Fig. 10), but 𝑣𝐴, 𝑧
is reduced by a factor of ∼ 3 − 10. This places modes with
wavelength∼ 𝐻 more firmly in the lower-wavelength or “Type
III/SHMI” regime (these modes more strongly depend on, and
interact with, the differential rotation). But if we considered
a somewhat larger wavenumber |𝑘𝑧 | > 1/𝐻, then the verti-
cal position of the simulations would instead shift upwards
by a corresponding factor towards the more local-mode “Type
II/SSMI” regime.

Briefly, some other instabilities may be less likely to drive
the magnetic fluctuations we see. As discussed in a num-
ber of previous studies Machida et al. (2006); Begelman &
Pringle (2007); Oda et al. (2009); Sądowski (2016); Habibi &
Abbassi (2019), magnetically-dominated disks such as these
are generically stable against the usual (linear) viscous and
thermal instabilities. The disks here are also (linearly) sta-
ble against the short-wavelength (k ⊥ B) Parker-like mag-
netic convective/Rayleigh-Taylor/interchange modes, as these
require 𝑑 ln ( |𝐵|/𝜌)/𝑑𝑧 < 0 (for 𝑧 > 0 and 𝛽 ≪ 1; Tayler
1973; Terquem & Papaloizou 1996; Kim et al. 2002), i.e. that
the magnetic scale-height is smaller than the density scale-
height, which we plainly show in § 5.2 is not satisfied. And
although the long-wavelength Parker instability requires only
a vertically-decreasing |B| (𝑑 ln 𝐵2/𝑑𝑧 < 0), the characteristic
wavelengths 𝜆 ≳ 𝜆crit ∼ (5− 10) ×𝐻 (Parker 1966; Kim et al.
1997; Lee & Hong 2007) are extremely large (> 𝑅, given
the relatively large 𝐻 here), and the trans-Alfvénic magnetic
fluctuations are much larger than commonly-quoted thresholds
above which the instability may be strongly suppressed (see
Kim & Ryu 2001, and references therein), so it is not clear if
these modes can actually exist (at a minimum, a global analytic
treatment is required).

Of course, all of these analytic “dividing lines” are pred-
icated on analytic linear stability analysis, with a number of
simplifying assumptions (e.g. that the disk is azimuthally sym-
metric, laminar, and adiabatic, and that various vertical and
radial stratification terms can be neglected). It is not obvious,
therefore, how much can be applied to simulations like ours
with complicated stratification, fully-developed strong turbu-
lence, cooling, and highly non-linear modes. And other in-
stabilities or variants of those discussed above may be present
as well. For example, as discussed in Begelman & Armitage
(2023), the “traditional” MRI can persist in a supra-thermal
form if 𝜕 ln 𝐵𝜙/𝜕 ln 𝑅 is very close to −1 (interestingly sim-
ilar to the “average” slope we see in Fig. 3), although from
the linear analysis in Pessah & Psaltis (2005) this would re-
quire |1 + 𝜕 ln 𝐵𝜙/𝜕 ln 𝑅 | < 𝛽 (𝑣K/𝑣𝐴, 𝜙)2 ∼ 𝛽 (𝐻/𝑅)−2 ≪
0.01 − 0.1 for the disk parameters here, so if it is occurring
here it may be a transient phenomenon in space and/or time.
It is difficult to speculate further – our intent here is to moti-
vate more exploration in both analytic studies and non-linear
but idealized numerical simulations of magnetic instabilities
in the strong toroidal field parameter space of interest here,
and to highlight that the field strengths here are not in fact
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restricted to the sometimes-quoted value of 𝑣𝐴 ≲
√
𝑐𝑠 𝑣K (as

assumed in e.g. Begelman & Pringle 2007).

4.2.4. Comparison to Field Strengths in “Traditional” 𝛼 Disks

As shown in Paper III, if we take the scalings for the outer ac-
cretion disk from Shakura & Sunyaev (1973) for an SS73-like
“weakly-magnetized” (𝛽 ≪ 1)𝛼-disk, then building up a suffi-
cient Maxwell stress to produce the canonical𝛼 ∼ 𝑣2

𝐴
/𝑐2

𝑠 ∼ 0.1
in such a disk would actually require magnetic fields whose
absolute strength (in Gauss) is approximately a factor of
∼ 10 larger than those seen in our simulations (e.g. from
SS73 Eq. 2.19 therein, 𝐵SS73 ∼ 5000 G (𝑅/0.001 pc)−1.3 for
¤𝑀 ∼ 20 − 30 M⊙ yr−1 and 𝑀BH ∼ 107 M⊙). Essentially,

“weakly-magnetized” models such as SS73, as well as the vast
majority of historical accretion disk simulations, make the im-
plicit assumption that the disk “initially” formed with negligi-
ble vertical magnetic support (i.e. vanishingly small or strictly
vertical magnetic fields). This implies the disk would collapse
to much smaller scale-heights 𝐻/𝑅 ∼ 𝑐𝑠/𝑉𝑐, with midplane
densities 𝜌 a factor of ∼ 106 − 108 larger than those seen here
(§ 3.2). This in turn would require some process like the MRI
to very efficiently amplify |B| up to quite large absolute values
to produce even a modest Alfvén speed 𝑣𝐴 ∼ |B|/

√︁
4𝜋 𝜌, as

needed to produce a Maxwell stress that is any appreciable
fraction of 𝜌𝑉2

𝑐 .
This of course has important consequences for the obser-

vational properties of disks like those simulated here: even
though 𝑣𝐴/𝑐𝑠 and 𝑣𝐴/𝑉𝑐 are much larger here than in a tradi-
tional SS73-like disk, |B| can actually be significantly smaller.
It also re-emphasizes that the absolute field strengths in our
simulations are not particularly extreme or implausible (§ 4.1).
And it further suggests that if one “initially” forms the disk
from gas with more realistic ISM magnetic field strengths
(with non-trivial toroidal and/or radial fields), it will likely
reach a magnetically-dominated state akin to the simulations
here, well before it could actually collapse to extreme densities
like those assumed for “weakly-magnetized” SS73-like disks.

5. STRUCTURE OF THE VELOCITY FIELDS
5.1. Overview

In Figs. 17-19 we plot the structure of the velocity fields
(face-on and edge-on). We clearly see radial infall at large
𝑟, circularizing and forming the disk (Figs. 17-18). Face-on,
the disk appears highly ordered, but with an obvious coherent
eccentric disk mode present in Fig. 17. Edge-on, we see
vertical inflow onto the disk, with a thick turbulent midplane
layer evident in Fig. 19. Note that edge-on, since we show
below |𝛿𝑣𝑅 | ≳ |𝑣𝑅 | and |𝛿𝑣𝑧 | ≳ |𝑣𝑧 |, this is essentially the
same as a plot of the velocity fluctuations. This shows, as
we saw above in the morphology and B, that the midplane
is not a uniform, perfectly rigid layer but features a complex
internal density structure with many warps and even streams
with somewhat different orientations at large radii. Fig. 20
plots the radial profile of the different velocity components (in
absolute units and relative to 𝑉c (𝑟)), showing both the mean
and fluctuating velocities.

As discussed in Paper I, at radii ≫ pc, outside the BHROI,
the velocity structure in the nucleus is primarily turbulent
with quasi-isotropic velocity fields – we see this already at
≳ 0.3 pc in Figs. 17-20, where the incoherent or “turbulent”
velocity components dominate over the mean velocities, and
are comparable both to one-another and to the circular velocity

𝛿𝑣𝑖 = ⟨|v𝑖 − ⟨v𝑖⟩|2⟩1/2 ∼ 𝑉c ≫ ⟨v𝑖⟩. At ≲ 0.1 pc, we see the
disk clearly in kinematic space, with ⟨𝑣𝜙⟩ ≈ 𝑉c much larger
than other components, which have a dispersion∼ 0.1 𝑣𝜙 . The
kinematics of the disk are much more coherent compared to B
above: there is a global smooth rotation-dominated flow with
no sign flips (i.e. all the material is rotating the same direction,
as expected).

5.2. Vertical Structure
Vertically we see infall from above/below onto the disk,

at most radii; but we stress this does not dominate the total
inflow rate, most of which occurs through the thicker and
denser midplane. This may change if we modeled emergent
“feedback” (e.g. jets or high-velocity outflows) from the un-
resolved portions of the accretion disk at < 80 au.

We discuss stratification in greater detail below, but we do
not see any evidence for coherent stratification of the velocity
structure within the disk (at −𝐻 ≲ 𝑧 ≲ 𝐻).

5.3. The Eccentric Disk
Following the system in time, we see the initial inflows

as the gas captured first falls into the center and circular-
izes to form an eccentric, lopsided structure with a clear
shock/compression region as orbits self-intersect (Fig. 18).
This “settles” over some tens of dynamical times into a
smoother structure with more coherent velocity structure vis-
ible in Fig. 17. The eccentricity does not disappear even over
many thousands of dynamical times. Rather, the system settles
into a coherent 𝑚 = 1 eccentric disk mode, where we clearly
see the eccentricities of individual gas orbits align, and the
entire eccentric structure precesses with a slow pattern speed
(pattern speed Ω𝑝 ∼ Ω(𝑟max) where 𝑟max ∼ pc, so at smaller
radii Ω𝑝 ≪ Ω(𝑟 ≪ 𝑟max)). The amplitude of the eccentricity
declines weakly as 𝑟 → 0. Fig. 21 plots the amplitude of
the eccentric (𝑚 = 1) and higher-𝑚 modes in the gas surface
density in the face-on surface density projection of the disk,
as a function of radius, which demonstrates this explicitly.

These are exactly the predicted structures for “slow” 𝑚 = 1
modes in nearly-Keplerian potentials, which are well-studied
and (at least in linear theory) can persist indefinitely (Tremaine
2001; Bacon et al. 2001; Hopkins 2010). It is important to note
that these are unique among global/large-scale modes in the
orbit structure: other modes, e.g. 𝑚 = 2 bars or higher 𝑚 > 2,
are damped as 𝑟 → 0, but for slow 𝑚 = 1 modes there is es-
sentially zero energetic cost of the mode propagating inwards
as it just involves coherent alignment of already-eccentric or-
bits. The pattern speed is set by the “driving” of the eccentric
mode: namely, the motion of the parent gas complex which is
being tidally stripped by the SMBH to fuel the accretion event
and form the disk in the first place. That complex both torques
the disk directly (as its mass is larger than that of the SMBH
and most of the complex lies outside the BHROI), and pro-
vides the newly-infalling gas which follows the trajectory of
its parent cloud (itself on an effectively hyperbolic orbit) as it
passes through some impact parameter or pericenter 𝑏complex.
The cloud complex therefore drives a characteristic (lagging)
pattern frequency Ωeff ∼ |𝛿𝑣 |/𝑏complex ∼ 𝜎galaxy/𝑏complex ∼
200 km s−1/a few pc ∼ 10−12 s−1, i.e. precession on a∼ 104 yr
timescale.

This means that in an instantaneous sense, for a given gas
parcel in the outer disk, its radial (inflow/outflow) velocity is
dominated by where it is instantaneously in its eccentric orbit.
This is clear in the face-on projections of the velocity stream-
lines in Figs. 17-18. But to leading order, these orbits are of
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Fig. 19.— Velocity field line structure on top of a gas density projection, as Fig. 9. We see clear radial motion through the midplane of the disk carrying most
of the mass (more obviously showing mean velocity in this direction, as compared to the magnetic field line structure in Fig. 9), and vertical inflow onto the disk
from the tenuous atmosphere. Interior to the disk we see turbulent cells of size ∼ 𝐻.

course closed and their radial flow cancels over the course of
the full orbit, so we stress that this should not be conflated
with the systematic or net inflows feeding accretion or out-
flows ejecting material from the nucleus. Instead, as expected,
the combination of some shocks/dissipation (which break the
exact symmetries of the eccentric orbits), plus non-zero lo-
cal turbulent/Reynolds/Maxwell stresses, means that there is
a non-zero torque on the gas which causes a systematic net
inflow/accretion of gas. But it is worth noting that the leading-
order description of the outermost disk is not a perturbed circu-
lar disk, but a perturbed eccentric disk. However, the fact that
there is also clearly less-coherent/global more “turbulence”-
like cells or eddies in the inner disk (𝑅 ≲ 0.01 pc) with coher-

ence length ∼ 𝐻 in the midplane and |𝛿v𝑧 | ∼ |𝛿v𝑅 | is evident
in the edge-on projections in Figs. 17 & 19.

We can attempt to separate the coherent eccentric motion in
our definition of 𝛿v (see § 2.2), by subtracting the best fit𝑚 = 1
component from 𝛿𝑣𝑖 (𝑅, 𝜙). We have done so (fitting this
independently in each radial annulus, which we caution may
over-estimate the coherent component), and find that it has a
modest effect most notably on 𝛿𝑣𝑅 in the outer disk (0.01 pc ≲
𝑅 ≲ 0.1 pc), reducing it by a factor of ∼ 2 (and a much smaller
effect at smaller or larger radii, as expected). Interestingly after
doing so, the residual velocity fluctuations in the outer disk
become closer to isotropic, suggesting the more traditionally
“turbulent” component is indeed close-to-isotropic. We show
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Fig. 20.— Mean velocity with its dispersion (top), and separation of the mean ⟨v𝑖 ⟩ and fluctuating 𝛿v𝑖 velocity components in both units of 𝑉𝑐 (middle) and
km s−1 (bottom), in the same style and showing the same two times (left and right) as Fig. 10. We see quantitatively that the velocity fields are more ordered
than the magnetic fields. Inside the disk (≲ 0.1 pc) the velocity is clearly dominated by rotational motion, with the turbulent/fluctuating components broadly all
similar to each other in magnitude at 𝛿v𝑖 ∼ 0.1𝑉𝑐 . Almost always we see ⟨𝑣𝑅 ⟩ < 0, indicating inflow, as expected, with modest amplitude. For 𝑣𝑧 we show
⟨𝑣𝑧 · 𝑧/|𝑧 | ⟩, so that a value of > 0 or < 0 indicates vertical outflow or inflow respectively (regardless of whether the gas parcel happens to be “above” or “below”
the midplane), showing weak vertical inflows as well.
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Fig. 21.— Amplitude of the asymmetric modes in the gas density distribution:
fitting the (face-on) projected surface gas density to Σgas (𝑅) = Σ0 (𝑅) [1 +∑∞

𝑚=1 𝑎𝑚 (𝑟 ) cos (𝑚 𝜙 + 𝜙0, 𝑚 [𝑅] ) ] and plotting |𝑎𝑚 |. Here |𝑎1−8 | sums
the first 8 modes in quadrature, showing this is dominated by the global 𝑚 = 1
mode at all the radii shown. The relatively large values of 𝑎𝑚 clearly indicate
that the disk has strong spiral and coherent eccentric disk structure that can
drive shocks and inflow, as clearly evident in the velocity field lines in Fig. 17.

below (§ 10) that this is quite different from the case where
we re-run without magnetic fields, where the disk is much
thinner and exhibits much more extreme anisotropic structure
and higher eccentricities, with much weaker Reynolds stresses
and lower inflow rates. Of course, in either case, the eccentric
motions have no measureable effect on the vertical 𝛿𝑣𝑧 .

5.4. Turbulent/Velocity Fluctuation Structure
From Fig. 20 we see the turbulence or more general velocity

fluctuations, while sub-dominant to rotation, are still vigorous,
with ⟨𝛿𝑣2⟩1/2 ∼ 0.1𝑉c ∼ 𝑣𝐴. Comparison of Figs. 10 & 20
immediately shows turbulent ram pressure is comparable to
magnetic pressure and, from Figs. 4-5, we see both are much
larger than thermal or radiation pressure within the disk (i.e.
the turbulence is broadly trans-Alfvénic, but highly super-
sonic). Fig. 22 shows this more explicitly, plotting the typical
sonic and Alfvénic Mach numbers of the velocity fluctuations
in different radial annuli.

Figs. 20 & 22 also show that the typical velocity fluctuation
𝛿𝑣 is generally larger than the mean velocities in 𝑧 or 𝑅 direc-
tions, and not strongly anisotropic (|𝛿𝑣𝜙 | ∼ |𝛿𝑣𝑅 | ∼ |𝛿𝑣𝑧 |, to
within a factor of ∼ 2 − 3 or so, though note that the apparent
transient dominance of e.g. 𝛿𝑣𝑧 at small 𝑟 in Fig. 20 owes as
much to the presence of coherent warps/bends in the disk as to
actual “local” small-scale vertical turbulence). This promotes
strong mixing and turbulent structure within −𝐻 < 𝑧 < 𝐻,
contributing to the complex edge-on structure (as compared
to well ordered face-on structure), as well as the Reynolds
stresses (analyzed below).

Of course, the velocity fluctuations here are much stronger
than in a typical SS73-like 𝛼-disk, where (by assumption)
the sonic Mach number M𝑠 ∼ |𝛿𝑣 |/𝑐𝑠 ∼ 𝛼1/2 < 1 (i.e. the
non-circular motions are always sub-sonic).

5.5. What Drives the Turbulence (Or sets its Amplitude)?
5.5.1. Does Anything Actually Need to Drive The Turbulence

Interior to the Disk?

Given these vigorous super-sonic and quasi-isotropic veloc-
ity dispersions, it is natural to ask what their “driving mech-
anism” may be. However, it is not necessarily obvious that a

driving mechanism for the velocity fluctuations – in the usual
specific sense of some local instability constantly amplify-
ing turbulent modes on some driving scale ≲ 𝐻 – is strictly
necessary. If the turbulence is Alfvénic, simple arguments
(Völk & Aplers 1973) show that the effective “adiabatic in-
dex” of a group of passively-advected13 Alfvén wave packets
is 3/2 (i.e. we expect |𝛿B| ∝ 𝜌3/4 moving with a Lagrangian
parcel, or equivalently d𝑡 ⟨𝛿B2⟩ ∼ −(3/2) ⟨𝛿B2⟩ (∇ · ⟨v⟩)).
Similarly, if we instead consider purely hydrodynamic turbu-
lence, many authors have shown the Euler equations in glob-
ally compressed turbulence (if dissipation is slow) give rise
to a Lagrangian quasi-adiabatic behavior with |𝛿v| ∝ 𝜌1/3

(i.e. d𝑡 ⟨𝜌 𝛿v2⟩ ∼ −(5/3) ⟨𝜌 𝛿v2⟩ (∇ · ⟨v⟩); see e.g. Vazquez-
Semadeni & Gazol 1995; Robertson & Goldreich 2012). So
given that we saw approximately |B| ∝ 𝜌2/3 for the mean-field
from flux-freezing above (d𝑡 ⟨B⟩2 ∼ −(4/3) ⟨B⟩2 (∇· ⟨v⟩)), we
would have |𝛿B|/|B| ∝ |𝛿v|/𝑣𝐴 ∝ 𝜌1/12−1/6 increasing with
a (weak) positive power of 𝜌 as gas accretes inwards and 𝜌
increases. This suggests that advection alone could sustain
M𝐴 ∼ 1 in principle, even with some damping/dissipation.

The challenge here is the turbulent dissipation time: if
the turbulence dissipates on a timescale ∼ 𝑡turb, diss, then
the expressions above should be modified to d𝑡 ⟨𝜌 𝛿v2⟩ ∼
−𝐶 ⟨𝜌 𝛿v2⟩ (∇ · ⟨v⟩) − ⟨𝜌 𝛿v2⟩/𝑡turb, diss (where 𝐶 can be in the
range from 3/2 to 5/3 depending on the regime, as described
above). Noting that |∇ · ⟨v⟩| ∼ 𝑟/|⟨𝑣𝑟 ⟩| ∼ (𝑣K/|⟨𝑣𝑟 ⟩|)Ω is the
inverse of the accretion timescale, this becomes d𝑡 ln ⟨𝜌 𝛿v2⟩ ∼
𝐶 (𝑣K/|⟨𝑣𝑟 ⟩|)Ω − 𝑡−1

turb, diss, so it is clear that the scalings
outlined in the previous paragraph require that the accre-
tion/advection timescale is comparable to, or faster than, the
turbulent damping timescale at each radius. For hydrody-
namic, supersonic turbulence with 𝑡cool ≪ 𝑡dyn, the expected
dissipation time is of order a couple of turnover times at the
driving scale 𝑡turb, diss ∼ 𝑡turnover ∼ 𝐿drive/𝑣drive ∼ 𝐻/|𝛿vturb | ∼
Ω−1 ∼ 𝑡dyn (Thompson et al. 2005; Pan & Scannapieco 2010;
Hopkins 2013); the expectation is similar for magnetized
trans-Alfvénic but subsonic/incompressible turbulence (Gol-
dreich & Sridhar 1995). But the inflow time ∼ 𝑀gas/ ¤𝑀 is
∼ (𝑣K/|⟨𝑣𝑟 ⟩|)Ω−1 ∼ (𝑣𝑡/𝑣K)−2 𝑡dyn. While the accretion here
is very fast compared to more traditional 𝛼-disk models (as
we discuss below), inserting typical values from e.g. Fig. 20
into the above still gives an inflow time ∼ 30 − 100 𝑡dyn or
∼ 5 − 15 𝑡orbit. So we would naively expect the gas to sit too
long at a given 𝑟 , meaning the fluctuations will damp faster
than they are amplified via compression.

However, we stress that we use the term “turbulence” rather
loosely here, encompassing any non-zero rms fluctuating mo-
tions/fields 𝛿v ≡ v−⟨v⟩. So some of the power in these fluctu-
ations could be in structures which are not strictly “turbulent”
in the classical sense (i.e. not part of some cascade) and there-
fore potentially dissipate on slower timescales. For example,
in addition to the eccentric motions discussed above, recent
idealized studies (Skalidis et al. 2021, 2022; Beattie et al. 2020,
2022) of randomly-forced super-sonic but sub/trans-Alfvénic
motions (akin to what we see here; Fig. 22) have argued that
most of the kinetic energy at the driving scale ends up nei-
ther going into shocks (as it would with weaker fields) nor
a classical MHD cascade (as in the sub-sonic case) but into

13 In the configuration we consider, wave packets propagating radially
inwards faster than the bulk accretion flow will have | 𝛿B | decay relative to
|B |, but those moving along the mean field or otherwise transverse, or with
the accretion flow, will be amplified.
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structures such as compressive transverse non-linear magne-
tosonic modes (e.g. ram pressure of flows transverse to B
with |B · 𝛿B| ∼ 𝜌 𝛿𝑣2), which do not dissipate rapidly. So
the damping time for these types of motions could be much
longer and potentially remain in balance with amplification
via inflow, obviating the need for an explicit “driving” mech-
anism. A more detailed analysis of the dissipation and power
spectrum/structure functions of the velocity field is therefore
an interesting subject for future work.

5.5.2. Viable Driving Mechanisms

That said, there are multiple viable driving mechanisms
operating here in principle. As expected given the lack
of e.g. strong star formation and therefore stellar feedback
from within the disk, the ultimate source of energy for the
turbulence on these scales is the gravitational energy of
the gas. We see this reflected in the fact that the inflows
obey the usual Reynolds/Maxwell energy balance condition
Σgas 𝑣

2
𝑡 Ω ∼ ¤𝑀 Ω2 (at least at the order-of-magnitude level;

this is discussed in detail below). But this does not immedi-
ately provide a local mechanism.

One obvious possibility is the strong global eccentric mode
discussed above (quantified in Fig. 21). Per Noguchi (1988);
Barnes & Hernquist (1996); Hopkins & Quataert (2011), we
would expect this to excite non-circular motions of the or-
der 𝑣𝑡/𝑉c ∼ |𝑎𝑚=1 | ∼ 0.1, which is not far from what we
see. Given that the mode is a slow mode (pattern speed
small compared to 𝑉c), gas will intersect the compressive
orbit crossing/pileup locations in Fig. 17 once per orbit, so
the turbulence can be rapidly “rejuvenated” on a timescale by
definition comparable to its decay/damping time, even in the
fast-decay (𝑡decay ∼ 1/Ω) limit.

Another possibility is local gravito-turbulence. This is dis-
tinct from the global-eccentric-mode driving discussed above
in that it depends on the local self-gravity of the gas collaps-
ing on itself and driving high-𝑚 (𝑘 ≳ 1/𝐻) modes in Fig. 21,
while the global mode is driven by an external perturbation (in
this case, the self-sustaining asymmetric distribution at large-
𝑟). This would naturally give rise to turbulence of the form
Σgas 𝑣

2
𝑡 Ω ∼ ¤𝑀 Ω2 (Gammie 2001).

Both of these are likely playing some role, especially at
larger radii (≫ 0.01 pc), where Reynolds stresses dominate
over Maxwell stresses and the turbulence is modestly super-
Alfvénic. This is further reinforced by our comparisons in
§ 10 below to simulations without magnetic fields. However,
at smaller radii in the disk (≲ 0.03 pc), it seems unlikely that
these dominate the turbulence at saturation, for several reasons.
The growth/driving rates of these modes are independent of
B and neither therefore provides an obvious reason the tur-
bulence should saturate at trans-Alfvénic values in Fig. 22.
Moreover we show below that the Reynolds stresses at these
radii are much weaker (and often opposite in sign) if we re-run
without magnetic fields, whereas the gravitoturbulence and
disk asymmetry are stronger. For the eccentric mode, exam-
ining the spatial pattern of the turbulent torques, we see a hint
at the largest radii that these may trace the eccentric shock
but comparing Fig. 17 it is clear that the torques in the inner
disk are dominated by less coherent (non-global) structures.
Moreover, such a mechanism would not efficiently drive out-
of-plane turbulence (leading to a large anisotropy, unlike what
we see; see e.g. Hopkins et al. 2012b and discussion below).
It is possible the vertical turbulence is instead driven by the
weak vertical inflows but again this would not explain why

it is roughly isotropic with the radial/azimuthal turbulence,
and moreover it is challenging to explain how the turbulent
velocity would be much larger than the mean inflow velocity
as seen at most radii in Fig. 20. For gravitoturbulence, as
discussed in Paper I, at small radii 𝑄thermal is too large, and
the magnetic field strength much too large, to actually sustain
vigorous gravitoturbulence (see Kim & Ostriker 2001; Lizano
et al. 2010; Riols & Latter 2016; Forgan et al. 2017). Further,
such vigorous gravitoturbulence would also be inconsistent
with the low star formation rates we actually see at these radii.

As discussed in detail in § 4.2.3, the “traditional” weak-field
MRI – at least in the simplest linear form usually invoked –
does not appear viable as the primary turbulent driving mech-
anism. Specifically, as shown above (there and § 4.2.2), the
toroidal 𝐵𝜙 is sufficiently large that the system should be sta-
ble against the standard MRI in the usual idealized context
where it has been studied (i.e. for the mean-field parameters
here, the standard weak seed-field MRI modes should gen-
erally be quenched and linearly stable, at least for a laminar,
azimuthally-symmetric, unstratified system; see Terquem &
Papaloizou 1996; Kim & Ostriker 2000; Pessah & Psaltis 2005;
Lin 2014; Hirabayashi & Hoshino 2016; Das et al. 2018). Also
when we analyze the structure of the torques in more detail
below, neither the mode morphology nor ratio of Reynolds to
Maxwell stresses agrees quantitatively with the predictions of
some previous saturated MRI simulations in similarly simpli-
fied/idealized shearing boxes (compare e.g. Brandenburg et al.
1995; Pessah et al. 2006). But as reviewed in § 4.2.3, while this
particular form of the MRI is stabilized under such conditions
at sufficiently high 𝐵𝜙 , this just means that different linear in-
stabilities appear. Specifically, even under those conditions, at
𝐵𝜙 above the threshold where the MRI growth rate vanishes,
in a 𝛽 ≪ 1 disk, the Type II/III (Pessah & Psaltis 2005) or
ATB (Kim & Ostriker 2000) or SSMI/SHMI (Das et al. 2018)
modes appear (see Fig. 16). As shown in those studies, these
modes are essentially radial buoyancy modes driven by the
competition between dominant magnetic pressure support of
the gas and the Keplerian gravity/differential rotation around
the BH. For the conditions here, these have rapid growth rates
(∼ (𝑣𝐴/𝑣K)Ω for the largest-wavelength unstable modes with
𝑘 ∼ 1/𝐻), are at least plausibly consistent with the turbu-
lent morphologies and Reynolds stresses below, and – given
their dependence on the mean-field direction/structure – would
plausibly saturate at trans-Alfvénic turbulence. Likewise ver-
tical buoyancy modes, if unstable, should have broadly similar
growth rates for modes with 𝑘 ∼ 1/𝐻, potentially explaining
(at least at the order-of-magnitude level) the broadly isotropic
turbulent velocity and magnetic field structure. And modi-
fied (supra-thermal) versions of the MRI could exist where
𝜕 ln 𝐵𝜙/𝜕 ln 𝑅 is very close to −1 (Begelman & Armitage
2023). Of course, it is also plausible that other, distinct insta-
bilities appear, or even that some alternative modified versions
of the MRI persist, under the more complicated conditions
present in our simulations (e.g. allowing for eccentricity, strat-
ification, different equations-of-state, turbulence, non-linear
perturbations, etc.). It therefore seems likely that some un-
stable modes are at least present, and could play an important
role in the accretion dynamics.

Unfortunately, identifying a “unique” driver in fully non-
linear, saturated, multi-physics and multi-scale simulations
like these (as opposed to more idealized controlled numerical
experiments) is challenging, and will require additional work
with different simulations motivated by the discussion above to
isolate the distinct mechanisms discussed above in more con-
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trolled circumstances. Importantly, however, this has allowed
us to identify a relatively small list of likely processes which
are occurring, in order to guide said simulations. We also
wish to stress that there is no smooth or laminar “initial” phase
from which the turbulence and/or magnetic field strengths in
the disk amplify – in idealized simulations, such a phase is an
artifact of artificially smooth initial conditions. Instead, the
system here begins from a highly out-of-equilibrium gas con-
figuration as the disk forms from infall, with strong turbulence
and magnetic flux already well above the commonly-quoted
MRI saturation threshold and inhomogeneity in the velocity,
density, temperature, and magnetic fields, before relaxing into
a steady-state strongly-turbulent disk.

In potential future, more idealized/controlled numerical ex-
periments with initial and boundary conditions motivated by
these simulations, our discussion above also demonstrates that
global simulations may be necessary to properly capture the
magnetic curvature effects and low-𝑘 “Type III” as well as ec-
centric modes, as well as the inflow of gas and magnetic flux.
But our discussion above also shows that such studies could be
made more simplified in various ways – e.g. by replacing the
explicit radiation-hydrodynamics and thermochemistry with
more idealized models, or neglecting star formation and stel-
lar dynamics – and still be used to explore e.g. the effects of
self-gravity and different instabilities. It would be particularly
interesting to study these in the context of angular momentum
transfer in the disk. While this has been studied more ex-
tensively (under more idealized conditions) for the weak-field
MRI, gravito-turbulence, and global gravity (eccentric/spiral)
modes (all of which are known to produce efficient angular
momentum exchange), there has been much less study of the
non-linear buoyancy modes we discuss above (let alone other
instabilities that may be present here).

At least in linear theory, the longer-wavelength “Type
III/SHMI” instabilities (active at wavenumbers |𝑘𝑧 | ≲ 𝑘𝑐1

𝑧 )
appear to depend on differential rotation in a similar manner to
the MRI (Pessah & Psaltis 2005), and the linear mode eigen-
vectors of the Type III/SHMI instabilities are similar to the
(compressible) MRI both in the relative magnitude of the den-
sity/velocity/magnetic field perturbation components and in
the fact that both the resulting Maxwell and Reynolds stresses
always transport angular momentum outwards (although the
Maxwell-to-Reynolds ratio can vary with respect to the MRI).
This suggests that their non-linear behavior and ability to
produce efficient angular momentum transport may also be
similar to the MRI. On the other hand, the short-wavelength
“Type II/SSMI” modes are more local and persist without dif-
ferential rotation (and their linear eigenvectors involve weak
Maxwell/Reynolds stresses with angular momentum transport
of opposing signs), so may be more akin to e.g. convective in-
stabilities in their non-linear behavior. But further study will
be needed for more rigorous conclusions.

5.6. What Is the “Turbulent Resistivity” and Why Does It
Not Destroy Flux-Freezing?

Since we have shown that the magnetic fields in the accretion
disk are largely “sourced” by simple flux-freezing/advection
(§ 4) and that microphysical resistivity is negligible (§ 4.2.1),
it is worth briefly discussing the role of the effective turbulent
resistivity 𝜂turb, and whether this could destroy flux-freezing in
the disk (see e.g. Lubow et al. 1994, for a detailed discussion
of this for pure-poloidal fields, although this is the opposite of
the regime of interest here).

Consider first the radial field component 𝐵𝑅, as we ar-
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Fig. 22.— Turbulent Mach numbers of the gas in radial annuli, at two times
as Figs. 10 & 20. We take the velocity dispersion 𝛿𝑣𝑖 estimated as 1/2 the
16 − 84% range (to avoid being pulled by outliers) of 𝑣𝑖 , weighted by gas
mass, in radial annuli restricting to gas within |𝑧 |/𝑟 < 0.3 of the midplane,
for each component of 𝑣 in cylindrical coordinates. We then define the sonic
Mach number M𝑠, 𝑖 ≡ 𝛿𝑣𝑖/⟨𝑐𝑠 ⟩ and Alfvén M𝐴, 𝑖 ≡ 𝛿𝑣𝑖/⟨𝑣𝐴⟩. The
turbulence is broadly trans-Alfvénic and highly super-sonic (reflecting 𝛽 ≪ 1
in the disk). In the inner disk, the turbulence becomes mildly sub-Alfvénic
(𝛿𝑣𝑅, 𝜙, 𝑧 ∼ 0.3 𝑣𝐴, so 𝛿𝑣total ∼ 0.5 𝑣𝐴) – this closely maps to the radii
where the mean toroidal field ⟨𝐵𝜙 ⟩ becomes larger than the fluctuating field
in Fig. 10, as expected. The radius of this transition can fluctuate by a factor
of a few as new magnetic flux advects into and through the disk (Figs. 14-15).

gue this sources 𝐵𝜙 , following a Lagrangian parcel of
gas. The turbulent resistivity should damp the field as
dturb
𝑡 𝐵𝑅 ∼ −𝜂turb 𝑘

2
𝐵𝑅

𝐵𝑅, where 𝑘𝐵𝑅
gives some inverse

gradient scale length of 𝐵𝑅 and 𝜂turb ∼ 𝑣turb/𝑘 turb. Mak-
ing the standard assumption that genuinely turbulent eddies
with crossing time larger than ∼ Ω−1 will be sheared out
(which appears to be valid in the simulations) we have14

𝑘 turb 𝑣turb ∼ Ω so 𝜂turb ∼ 𝑣2
turb/Ω. Meanwhile, flux-freezing

will grow 𝐵𝑅 on the inflow/compression timescale ∼ 𝑟/⟨𝑣𝑟 ⟩,
so15 dadv

𝑡 𝐵𝑅 ∼ −(⟨𝑣𝑟 ⟩/𝑟) 𝐵𝑅. For turbulence to completely

14 We will ignore O(1) prefactors here but note that 𝜂turb could be much
smaller by a factor ∼ 10 − 100 than this estimate (see e.g. Salvesen et al.
2016a, who find a prefactor ∼ 0.3/Pr ∼ 0.01 − 0.1 in terms of the turbulent
Prandtl number Pr). So we are effectively considering the maximum possible
effect of turbulent resistivity.

15 Again we ignore order-unity coefficients but these can be derived from
the induction equation for specific geometries, e.g. we show in § 4.2 that for
a tidally captured radially infalling stream, the compression in the 𝑧̂ and 𝜙̂

directions (𝑅−1 𝜕𝜙 ⟨𝐵𝑅 𝑣𝜙 ⟩ and 𝜕𝑧 ⟨𝐵𝑅 𝑣𝑧 ⟩) give a coefficient = 2. So, we
are again being conservative and assuming a somewhat weaker growth via
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destroy flux-freezing, clearly we require |dturb
𝑡 𝐵𝑅 | ≫ |dadv

𝑡 𝐵𝑅 |,
or 𝑣2

turb ≫ |⟨𝑣𝑟 ⟩| 𝑘−2
𝐵𝑅

Ω/𝑟 .
With this in mind, is it helpful to divide the simulation into

three regimes or “zones” based on distance to the SMBH,
which exhibit three qualitatively different behaviors:

1. The outer/ISM/turbulent “zone” well outside the BHROI
and accretion disk (𝑅 ≫ pc). Here the physics are “ISM-
like” (per above): there is no disk or any coherent BH
“accretion flow” to speak of (the BH by definition does not
dominate the potential). Instead we see self-gravitating,
collapsing, rapidly star-forming GMC-like gas complexes
“stirred” by stellar feedback, with super-Alfvénic internal
turbulence (these can globally lose angular momentum and
get closer to the galactic nucleus, but are not systemati-
cally “accreting”). In this regime (see e.g. Fig. 3 and Pa-
per I) the magnetic fields are tangled and quasi-isotropic,
mean fields are much smaller than fluctuating fields, and
“global” compression (with coherent infall towards 𝑅 → 0)
is small compared to compression of gas internal to the
cloud via shocks and self-gravity. So inserting values we
naturally find |dturb

𝑡 𝐵𝑅 | ≫ |dadv
𝑡 𝐵𝑅 |: as discussed in Paper

I, the clouds internally reach the expected saturation for the
small-scale dynamo with turbulent amplification balancing
turbulent resistivity (magnetic energy a few percent of tur-
bulent energy).16

2. The intermediate/capture/free-fall zone inside the BHROI
(𝑅 ∼ 0.1−a few pc). Here we see a complex is tidally dis-
rupted on close passage to the SMBH, leading to a tidally
elongated, radially free-falling stream of bound gas towards
the SMBH (see § 3). We stress that while the rms ⟨𝛿𝑣𝑅⟩2

might appear large in e.g. Fig. 20 at these radii, a cursory
examination of the visual morphology of the gas stream
(Fig. 1) or velocity fields (Figs. 17-18) or magnetic field
lines (Fig. 7), or a more rigorous quantitative diagnostic of
the local, genuinely turbulent components of v, immedi-
ately makes it obvious that the flow is locally coherent and
strongly dominated by radial motion stretching the radial
field lines, as opposed to turbulence (§ 4.1). The large rms
⟨𝛿𝑣𝑅⟩2 does not reflect local turbulence, but the fact that
just like in any tidal disruption event, of order half the mass
is unbound, so there is a free-falling stream inwards and a
large unbound stream/fan being ejected. Within the accret-
ing filament (which dominates the gas supply so is what
actually matters here), the gas is effectively free-falling ra-
dially onto the SMBH, so 𝑣𝑟/𝑟 ∼ 𝑣freefall/𝑟 ≳ Ω reaches
its maximum possible value, while 𝑣turb is relatively weak
(≪ 𝑣freefall), hence the net effect is stretching 𝑘𝐵𝑅

→ 1/𝑟 .
So in this regime, |dturb

𝑡 𝐵𝑅 | ≪ |dadv
𝑡 𝐵𝑅 | is easily ensured

even if the gas supply at larger radii is turbulent.

3. The accretion disk zone at radii ≲ 0.1 pc, where the gas
circularizes and an ordered accretion disk forms. This is
the regime of interest and unlike the previous zones, the be-
havior is not trivial. Here, the relations noted above should
hold for |dturb

𝑡 𝐵𝑅 | and |dadv
𝑡 𝐵𝑅 | so flux-freezing is destroyed

flux-freezing by neglecting such order-unity factors.
16 It is worth noting that the bulk velocity of individual clouds/complexes is

larger than their internal turbulence, as expected for any clouds that are smaller
than the galaxy in which they are embedded. This is important insofar as it
explains why on a close passage to the SMBH, complexes will be tidally
disrupted and an O(1) fraction of the mass will be strongly bound and begin
to radially free-fall with relatively small impact parameter.

if 𝑣2
turb ≫ |⟨𝑣𝑟 ⟩| 𝑘−2

𝐵𝑅
Ω/𝑟 . In our simulation (Figs. 6-10

& 15) we clearly have 𝑘𝐵𝑅
∼ 1/𝑅 in this regime, which

should be expected analytically from the boundary con-
ditions forming the disk (from zone (ii) above), and – if
flux-freezing is valid – will be maintained by the disk17

as 𝑅 → 0. This means that the resistivity condition be-
comes 𝑣2

turb ≫ |⟨𝑣𝑟 ⟩| 𝑣K. But for a system dominated by
Maxwell and Reynolds stresses we expect and measure in
the simulation |⟨𝑣𝑟 ⟩| ∼ (ΠReynolds + ΠMaxwell)/(𝜌 𝑅Ω) ∼
(𝑣2

turb + 𝑣2
𝐴
)/𝑣K (see § 7 and Figures therein below, as well

as Paper III), so this is impossible to satisfy for 𝑣2
𝐴
> 0, and

hence flux-freezing/advection should not be strongly mod-
ified by turbulent resistivity (though the resistivity is likely
to be a non-negligible correction).

Note that for the accretion disk zone (iii), if we had made
the more common accretion disk assumption – opposite the
behavior we actually see in the simulations – that the disk
“begins” from negligible mean 𝐵𝑅 (e.g. a strictly poloidal
field with all of 𝐵𝑅 sourced from the MRI), then 𝑘𝐵𝑅

would
necessarily be ∼ 𝑘 turb ∼ Ω/𝑣turb. In this case, the condition
|dturb

𝑡 𝐵𝑅 | ≫ |dadv
𝑡 𝐵𝑅 | or 𝑣2

turb ≫ |⟨𝑣𝑟 ⟩| 𝑘−2
𝐵𝑅

Ω/𝑟 would simply
reduce to |⟨𝑣𝑟 ⟩| ≪ 𝑣K, which is always true in the disk. Thus
there are two qualitatively distinct but each internally self-
consistent regimes: (i) the “traditional” weakly-magnetized
assumption where 𝐵𝑅 is sourced primarily by a poloidal
field and turbulent resistivity invalidates flux-freezing, and (ii)
the flux-frozen and therefore hyper-magnetized regime where
there is some coherent 𝐵𝑅 being “fed” to the disk, ensuring that
flux-freezing remains a valid assumption throughout.18 The
regime of interest clearly depends on the disk outer bound-
ary condition: thus even though the dynamic range of the
“free-fall” zone in radius 𝑅 is quite small compared to the
“ISM zone” or “accretion disk zone,” it plays a crucial role in
establishing these conditions.

We can repeat these arguments for the toroidal 𝐵𝜙 and
reach similar conclusions in the disk zone where 𝐵𝜙 is
already dominant, but it is more interesting to consider
the “sourcing” of 𝐵𝜙 from 𝐵𝑅 which we demonstrated in
§ 4.2.1. Motivated by Fig. 15, if we compare turbulent re-
sistivity d𝑡𝐵𝜙 ∼ −𝜂turb 𝑘

2
𝐵𝜙

𝐵𝜙 to the source term d𝑡𝐵𝜙 ∼
𝜕𝑅 ⟨𝑣𝜙 𝐵𝑅⟩ ∼ −Ω 𝐵𝑅, then (given that it is even more obvious
that 𝑘𝐵𝜙

∼ 1/𝑅 is coherent in the disk zone) turbulent resistiv-
ity is a small effect so long as |⟨𝐵𝜙⟩| ≲ (𝑣K/𝑣turb)2 |⟨𝐵𝑅⟩| ∼
100 |⟨𝐵𝑅⟩| (inserting typical 𝑣turb from Fig. 20). This is eas-
ily satisfied in the disk (Fig. 10); indeed, |⟨𝐵𝜙⟩| never really
reaches this upper limit because other terms dominate (e.g. the

17 If the disk begins from an initial condition with 𝑘𝐵𝑅
∼ 1/𝑅 with flux-

freezing valid, then we can approximate the evolution of 𝑘𝐵𝑅
through the disk

analytically via the stretching between two gas elements in the radial direction.
The radial distance between two elements Δ𝑅 evolves in a Lagrangian manner
as they migrate radially (in the midplane of a steady azimuthally-symmetric
accretion flow) as d𝑅Δ𝑅 = 𝑣𝑅 (𝑅 + Δ𝑅) − 𝑣𝑅 (𝑅) ≈ Δ𝑅𝜕𝑅𝑣𝑅 , and noting
in this limit we can replace d𝑡 with 𝑣𝑅 𝜕𝑅 , this becomes 𝜕𝑅 (lnΔ𝑅) ≈
𝜕𝑅 (ln [−𝑣𝑅 ] ) . So if we begin from 𝑘𝐵𝑅

∼ 1/𝑅, 𝑘𝐵𝑅
≲ 1/𝑅 will be

preserved so long as |𝑣𝑅 | ∝ 𝑅𝛼 with 𝛼 ≤ 1. This is easily satisfied in the
simulation in a time-averaged sense (ignoring obvious transient features; see
Fig. 20), and in the analytic model presented in Paper III this is automatically
ensured not just for our default trans-sonic flow assumption (𝜁 ∼ 1/3 in the
variables defined therein) but for any 𝜁 >= −1/4 (where any physical solution
requires 𝜁 > 0, so this condition is always met).

18 This has some features in common with the scenario discussed in Jo-
hansen & Levin (2008), though we stress that the source and coherence of
𝐵𝑅 , and resulting relative magnitude of the terms here, are qualitatively and
physically distinct.
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gas and field line advection/accretion time is short enough that
this is balancing the induction term, rather than resistivity).

Distinct from the usual assumption for magnetized accretion
disks, the relevant interactions here are between 𝐵𝑅 and 𝐵𝜙:
the poloidal field plays a sub-dominant dynamical role in either
(though it does provide some additional stability and source
for 𝐵𝑅 and 𝐵𝜙 , see Salvesen et al. 2016b). This is consistent
with the relatively weak, more turbulence-dominated poloidal
fields we see in the midplane (Fig. 10). However we caution
that this does not mean the behaviors of interest here could
be captured in a strictly 2D simulation: phenomena such as
turbulence and vertical compression of the disk (𝐻 → 0 as
𝑅 → 0, contributing to the flux-freezing amplification of both
𝐵𝜙 and 𝐵𝑅) still depend on 3D structure.

6. VERTICAL STRUCTURE & THERMO-CHEMICAL
PROPERTIES OF THE DISK

Briefly, we examine the vertical and thermo-chemical struc-
ture of the disk. The details of the thermo-chemistry as a
function of scale are discussed in much greater detail in Paper
I to which we refer interested readers, because it is of great
potential importance to the cessation of star formation in the
disk. But, because 𝛽 ≪ 1, the thermal properties of the disk
actually play relatively little role in the accretion dynamics.
We thus only briefly discuss them here insofar as they are
useful to inform our understanding of the disk structural prop-
erties and to help distinguish the behaviors we observe from
some other possible models (as with e.g. the amplitude of |B|
as discussed above).

6.1. General Structure & Vertical Density Profiles
Recall, Fig. 4 shows various thermo-chemical properties

such as the temperature and plasma 𝛽 in face-on projection.
Edge-on, Fig. 23 shows more detailed quantitative vertical
profiles at a variety of BH-centric radii 𝑅 (we use cylindrical 𝑅,
𝜙, 𝑧 coordinates, and azimuthally average over 𝜙 in cylindrical
rings). We see a broad radial trend in Fig. 4 where the gas
becomes less dramatically multi-phase at smaller radii, and
starts to become somewhat warmer in denser regions towards
small 𝑅, as expected in an optically thick disk (though much
of the disk at the radii resolved here is still atomic with modest
ionization fraction ∼ 1 − 10%; see Paper I). In Fig. 23, the
obvious take-away is that the thermal and magnetic properties
of the disk are quite weakly stratified.

In detail, in Fig. 23, we see that the vertical density profile
follows a very typical “disk+halo/corona” profile. Specifically
we can fit 𝜌(𝑅, 𝑧) fairly well with the sum of a “disk” and
“halo” component. The disk is Gaussian or sech2, 𝜌disk ≈
𝜌mid sech2 (𝑧/𝛼H 𝐻), as is standard in the resolved/galactic disk
literature (Van der Kruit 1988; the constant 𝛼H ∼ 1 depends
on whether we define 𝐻 as an rms, median, half-mass height,
etc.). The halo follows a power-law 𝜌halo ∝ 𝑟−𝛼halo with lower
normalization, 𝛼halo between 2 − 4, and 𝑟2 = 𝑅2 + 𝑧2. This is
quite generic to disks with extended gaseous halos, coronae,
or outflows, and very similar to the profiles typically used to
fit e.g. edge-on gas densities in galaxies or protostellar disks.
The disk is clearly evident here, as it should be given its
morphological presence in e.g. Fig. 2. There is significant
skewness/asymmetry especially at large radii owing to the
asymmetric inflow, but following Lagrangian parcels in time
we typically see the vertical profile of “new” material settle
into this profile over just a couple of dynamical times once it
reaches its circularization radius (inside e.g. ≲ 0.1 pc).

6.2. Weak or Inverse Stratification of |B|, 𝑇 , and 𝛽

Comparing the magnetic field strength versus height 𝑧 in
Fig. 23, we see notably weaker vertical stratification com-
pared to the gas density. At various radii we see that a ∼ 3 dex
decrease in 𝜌 from midplane to large heights |𝑧 | ≳ 2 𝑅 corre-
sponds to a < 1 dex change in |B|. This means that, as noted
in § 4.2.2, although we can approximate the midplane scaling
of ⟨|B|⟩midplane ∝ ⟨𝜌⟩2/3

midplane, we cannot assume |B| ∝ 𝜌2/3

everywhere outside the disk. Interestingly, we can actually
model the vertical |B| profiles in Fig. 23 fairly well if we as-
sume |B| (𝑧) scales with the “halo” or “coronal” component of
𝜌 as defined in § 6.1, as |B| ∝ 𝜌

2/3
halo – i.e. if the shape of |B| (𝑧)

only follows the diffuse/slowly varying “corona” component,
with a normalization scaling as ⟨|B|⟩ ∝ ⟨𝜌mid⟩2/3, such that
the “disk” component and stratification effectively disappears
when we consider |B|. As noted below, this is naturally con-
nected to the strong turbulence in the disk, itself potentially
related to strong magnetic buoyancy, convective, and other
instabilities producing effective vertical motions.

Turning to the gas temperature 𝑇 , we again do not see
any strong stratification within the disk in Fig. 23 – i.e. at
|𝑧 |/𝑅 ≲ 0.3 or so where we see clear structure in 𝜌(𝑧). And
the (weaker) stratification between the entire disk “zone” and
extended halo at |𝑧 | > 𝑅 is inverted – i.e. we see higher temper-
atures at large |𝑧 |/𝑅. The absolute values of the temperatures
we obtain depends on how we weight the average in each annu-
lus (a generic expectation if there is any multi-phase structure,
since most of the thermal energy often resides in phases that
do not dominate the total gas mass), and the trend is more
clear if we weight by thermal energy as compared to e.g. gas
mass.19

The inverse stratification we see in Fig. 23 is generic to al-
most all diffuse coronae/halo type-systems, and is seen in e.g.
AGN accretion disk coronae, proto-planetary disks, stellar at-
mospheres and their coronae, and galactic disk-halo (or CGM)
interface regions. Indeed it has also been seen in other ide-
alized simulations of magnetized disks not unlike those here
(Kudoh et al. 2020). Like in all these other systems, in the
more diffuse gas at |𝑧 | ≳ 𝑅, the absorption optical depth is low
and the gas is far from LTE. The diffuse gas cools relatively
inefficiently and is heated by a wide range of non-equilibrium
and/or non-local processes, including shocks and turbulent
dissipation, magnetic reconnection, radiation from the disk,
external radiation from starlight in the galaxy, the galactic
cosmic ray background, and stellar feedback (e.g. jets, winds,
supernovae) from the stars further out in the disk.

Combining these trends, we see that 𝛽 is both ≪ 1 every-
where, and inversely or weakly stratified (with 𝛽 lower near
the midplane). Unsurprisingly the absolute value of the mean
𝛽 and precise degree of inverse stratification depend system-
atically on the averaging method. For example, weighting
by thermal energy will give the highest ⟨𝛽⟩, magnetic energy
is biased towards the lowest ⟨𝛽⟩, gas mass gives results in
between, or one could also use ⟨𝛽⟩ ≡ ⟨𝑐2

𝑠⟩/⟨𝑣2
𝐴
⟩. But the

qualitative results are the same for all weightings.

19 We caution that care is required in interpreting the exact thermal prop-
erties of some of the gas at very low temperatures in the midplane, where 𝛽
can locally be extremely small. For extremely-low 𝛽 the thermal energy of
the gas (being just a tiny fraction of the total internal energy) can be affected
significantly by numerical integration error, or even machine roundoff errors,
in the energy solutions to the Riemann problem.
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Fig. 23.— Vertical profile of disk properties (§ 6): gas density 𝜌 (top left), magnetic field strength |B | (top right), temperature 𝑇 (bottom left), and plasma
𝛽 (bottom right). For each, we mass or energy-average in cylindrical annuli at radius 𝑅 (line colors, labeled) in factor ∼ 3 intervals from ∼ 100 au to ∼ 1 pc.
The density is stratified as expected for 𝐻/𝑅 ∼ 0.1 − 0.3 at this range of radii; magnetic field strengths peak in the midplane but are more weakly stratified.
The temperatures are coolest in the midplane and rise in the diffuse, more optically-thin corona, leading to the plasma 𝛽 also rising (weakly) with scale height.
Energy-weighted thermal averages appear more “noisy” owing to physical multi-phase structure (the average can be dominated by e.g. hot gas in shocks or
SNe at large radii). In the density plot, we illustrate for one radius (∼ 5000 𝑅schw) a decomposition into a two-component “disk” (Gaussian/exponential or
𝜌 ∝ sech2 (𝑧/𝛼H 𝐻 ) here; thin dotted) plus power-law “halo/coronal” (𝜌 ∝ (𝑅2 + 𝑧2 )−𝛼halo with 𝛼halo ∼ 3.5 here; thick dotted) profile. In this decomposition,
the disk component with 𝐻/𝑅 ∼ 0.1 contains most of the mass, but there is clearly an extended vertical gas distribution beyond the extrapolation of the vertical
profile from smaller 𝑧. The vertical thermal structure is expected for a more tenuous corona/atmosphere above the disk, but the weak stratification within the disk
of 𝑇 and |B | owes to a combination of optical depth effects and strong super-sonic turbulence driving efficient vertical mixing (§ 6.3).

6.3. Physics of the Weak Disk Stratification
The lack of strong vertical stratification in |B| and 𝑇 within

the disk is a prediction distinct from e.g. a classic weakly-
magnetized, weakly-turbulent Shakura & Sunyaev (1973) 𝛼-
disk, but should be expected for the disks here, given the
vigorous turbulence present. As noted above (Fig. 22), the
disk is exhibits super-sonic and trans-Alfvénic, quasi-isotropic
turbulence. This means, essentially by definition, that an
order-unity fraction of the turbulent power will be in verti-
cal flows with coherence length ∼ 𝐻, crossing/turnover time
∼ 𝐻/𝑣t ∼ Ω−1 ∼ 𝑡dyn, and ram pressure comparable to or
greater than the total (thermal+radiation+magnetic) pressure
in the disk.

As discussed in more detail in Paper I and above, we also
should not expect LTE to apply in the diffuse gas above the
disk nor in the outermost regions of the disk. In the in-
ner disk midplane, the behavior does begin to resemble more
blackbody-like LTE behavior. As we showed in Paper I, the
radiation temperature and gas temperature begin to converge
in the dense gas with optical depth ≫ 1, and the gas radi-
ation flux roughly balances the change in gas energy from

accretion – but this really only applies to the most dense, nu-
clear midplane gas. And even that gas features rapid cooling
(𝑡cool ≪ 𝑡dyn), and is primarily atomic with abundances of
important species such as H− and free electrons far from the
naive Saha equation estimate, owing to the large deviations
from LTE and large contribution to ionization and reactions
from terms like external irradiation, shocks, cosmic rays, and
other processes described above.

7. STRUCTURE OF THE TORQUES AND STRESSES
WITHIN THE DISK

We now explore the origins and physics of the
torques/stresses/angular momentum transfer processes in these
disks in more detail.

7.1. The Torques and Net Angular Momentum Change of the
Gas

First, consider the torques themselves. We directly compute
and record the “true” in-code instantaneous specific torque
𝝉 ≡ r × a on every Lagrangian gas element in the simulations
(where r is the vector distance from the center and a is the
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Fig. 24.— Map of the net torque 𝝉 ≡ r × a (taken directly from the simulation) on each gas element 𝑖 (inside 𝑟 < 0.1 pc left, or < 0.01 pc right), in the direction
of the local angular momentum vector j ≡ r × v: |𝝉𝑖 · ĵ |/𝑉2

𝑐 (from −1 in blue to +1 in red). The image is a face-on projection of the disk midplane, as in Fig. 6-7.
The torques are clearly dominated by a fluctuating component, involving non-axisymmetric/tightly-wound modes with wavenumbers 𝑘 𝐻 ∼ a few. This is broadly
expected if a combination of Reynolds & Maxwell stresses dominate the torques, potentially originating from the instabilities considered in Fig. 16.
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Fig. 25.— Quantitative properties of the torques from Fig. 24. We plot
the instantaneous value of the torques (𝝉 ≡ r × a) in cylindrical annuli
(restricting to gas with |𝑧 | < 0.3 𝑅), divided into two components (sep-
arating the acceleration a into said components as they are operator-split
in-code): the “MHD” torque (all terms solved in the Riemann problem in-
cluding magnetic+kinetic+thermal stresses), and the “gravitational” torque
(from agrav = g). Other terms (§ 7.1) such as the torque from radiation pres-
sure, cosmic rays, or microphysical viscosity fall below the plotted range and
are negligible here. As in Fig. 24 we take the component of the torque in the
angular momentum [AM] direction 𝝉 · ĵ (so values < 0 [solid] indicate AM
loss, while values > 0 [dotted] indicate AM gain) , and normalize to 𝑉2

𝑐 (𝑟 )
so that a value ∼ 1 indicates an order-unity change in AM in a dynamical
time. We show the mean (line) in each annulus and 90% range of individual
cell values (shaded). While Paper I showed gravitational torques dominate at
≳ pc scales, MHD torques clearly dominate here on smaller scales within the
disk, and generate net angular momentum loss within the disk. There is large
cell-to-cell scatter in the instantaneous torque, consistent with the fluctuating
picture in Fig. 24. We compare (green dashed) the instantaneous net inflow
rate ¤𝑀/3𝜋𝑅𝑉𝑐Σgas measured (Fig. 5): this should be ∼ |𝜏 |/𝑉2

𝑐 for a thin,
homogeneous, steady-state, axisymmetric disk on slowly-decaying circular
orbits with constant 𝝉. Given the large deviations from these assumptions the
two agree fairly well.

acceleration of the parcel).20 We compare this to the in-code
specific angular momentum j ≡ r × v, to calculate the change
in the scalar specific angular momentum 𝝉 · ĵ. It is conve-
nient to express this in units of 𝑅𝑉c Ω = 𝑉2

c , with 𝝉 · ĵ/𝑉2
c

representing the fractional angular momentum loss of a quasi-
circular orbit per dynamical time. These are shown in a two-
dimensional projection in the disk in Fig. 24. We clearly see
that the torques follow a complicated structure in space, with
turbulent/fluctuating and non-axisymmetric modes dominat-
ing (with wavenumbers 𝑘 𝐻 ∼ a few and 𝑘𝜙 ≳ 𝑘𝑅, 𝑘𝑧 ≳ 𝑘𝑅).
In a local, instantaneous sense, there is a broadly comparable
volume with 𝝉 · ĵ > 0 and 𝝉 · ĵ < 0, though of course the mean
torque causes angular momentum loss. This must be the case
given the steady inflow and inwards radial flow seen above,
and is consistent with the mean Reynolds and Maxwell-type
stresses as we show below.

Fig. 25 plots the azimuthally-and-vertically-averaged
torques as a function of cylindrical radius 𝑅, now separating
by components. We again in-code separate different contribu-
tions to the torques, so this is decomposing exactly the con-
tributions to the torque seen by the gas cells. Specifically, we
divide the acceleration (and therefore resulting torque) into
several terms: the gravitational term (from all gravitational
forces), the “MHD” term (from all MHD forces), the radiative
term (from radiation pressure/photon momentum), the cosmic
ray term (from cosmic ray pressure forces/scattering) and the
viscous term (from physical molecular, atomic, and Spitzer-
Braginskii viscosity). Since the computation of these terms
is operator-split in GIZMO, their decomposition is straightfor-

20 Note that we define our coordinate system centered on the BH, not
the center-of-mass of the material inside |r |. At small radii where the BH
dominates the potential this produces negligible effects, but at ∼ pc scales the
offset can start to become significant. However re-computing all our measures
for either choice produces identical qualitative conclusions.
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ward here.21 The dominant component on-average at 𝑟 ≪ pc
is clearly the “MHD torque,” which includes all the terms
from the Riemann problem solved in-code (essentially, the
sum of torques from magnetic stresses, thermal pressure gra-
dients, kinetic/Reynolds stresses or winds/outflows, etc). This
shows a very large variance and (per Fig. 24) often local sign
changes, but the net torque, azimuthally averaged, is negative
(i.e. causing a net loss of angular momentum). The variation
of the instantaneous torques in time (whether we consider a
given location x or Lagrangian parcel) is comparable to their
variation in space shown in Figs. 24-25, and the variation of
the spatially-averaged torque at a given annulus 𝑅 is a factor
of a few, as the various “bumps” and “dips” seen in Fig. 25
appear and disappear.

Given these broad fluctuations, the range of torques are
consistent with the measured instantaneous inflow rates at a
given time and radius, to within a factor of a few. But since,
as noted above, neither is in exact steady state and both show
inhomogeneity in space and time, we do not expect perfect
agreement. The agreement improves of course, as it must, if
we average over time as well as space.

The “gravitational torque” (torques arising from the grav-
itational forces themselves directly, in a non-axisymmetric
potential) are much weaker but the next-strongest on aver-
age. At large radii ≳ pc, these torques actually dominate, and
they are extensively discussed in Paper I as a result (see also
Anglés-Alcázar et al. 2021). However, a dominant gravita-
tional torque relies on (a) the non-BH contributions to the
potential being non-negligible (i.e. terms that could conceiv-
ably be non-axisymmetric), and (b) the presence of a dominant
collisionless (in this case stellar) disk, with mass much larger
than the gas disk at a given radius, which can efficiently torque
the gas disk (thus giving rise to torques that are stronger than
would appear with a gas disk alone). The cessation of efficient
star formation at scales ≲ pc therefore produces the transition
to MHD torques dominating. In addition to being relatively
weak, the gravitational torque is quite smooth (being domi-
nated by the external 𝑚 = 1 mode of the stellar disk at ≳ pc
scales) and flips sign (so actually spins up the disk) at sub-pc
scales (as predicted and discussed in Paper I). So it cannot be
the dominant source of inflow.

The radiative torques from radiation pressure forces are
much smaller at all radii plotted. Also not shown because
they fall entirely off the plot, but computed nonetheless in our
simulations, are the torques from the micro-physical Spitzer-
Braginskii and atomic/molecular viscosities (many orders-of-
magnitude smaller than those here) and anisotropic cosmic ray
forces.

It is also easy to verify – and indeed, is expected due to the
very low values of 𝛽 ≪ 1 in the disk – that the thermal pressure
gradient contribution to the MHD torque, is negligible. So the
net torque inside the disk is dominated by some combination
of the magnetic and kinetic stresses.

7.2. Contributions to the Magnetic and Kinetic Stresses
7.2.1. Which Components of the Kinetic/Magnetic Stress Regulate

Angular Momentum Transfer?

Given that the torques are dominated by a combination
of magnetic and kinetic stresses, we now turn to examine

21 One caveat is that, given our hierarchical timestepping scheme, we must
be careful to synchronize/drift the forces to the same instant in time in the
outputs, rather than simply using the value from the last “kick” update for
each cell.

those stresses directly. Recall, the gas momentum equation
can be written 𝜕 (𝜌v)/𝜕𝑡 + ∇ · 𝚷internal = S + 𝜌 g, with S
being a source term representing e.g. non-hyperbolic terms
from CR and radiation partial-coupling (which are small in
the disk region of interest) and g = −∇Φ the gravitational
acceleration. 𝚷internal ≡ 𝚷kin + 𝚷mag + 𝚷therm + 𝚷visc +
𝚷cr + 𝚷rad represents the usual pressure tensor decomposed
into kinetic (𝚷kin ≡ 𝜌vv), magnetic (𝚷mag ≡ (|B|2I/2 −
BB)/4𝜋), thermal/“hydrodynamic” (𝚷therm = 𝑛 𝑘B 𝑇 I), vis-
cous (𝚷visc ≡ (𝜈visc/3) (3B̂B̂ − I) (3B̂B̂ − I) : (∇v)),
cosmic-ray (𝚷cr ≡

∫
pcr vcr (pcr) 𝑓cr (pcr) 𝑑3pcr) and radia-

tion (𝚷rad ≡
∫

𝑒rad, 𝜈
3 D𝜈 d𝜈) components respectively. As

shown in Figs. 4, 5, 25, and discussed further in § 7.1,
the thermal/hydrodynamic, viscous, cosmic-ray, and radiation
stresses, as well as the source terms S, are small compared to
the leading-order magnetic 𝚷mag and kinetic 𝚷kin terms (and
of course gravity). Fig. 26 therefore plots the average value of
each component of𝚷kin ≡ 𝜌vv and𝚷mag ≡ (|B|2I/2−BB)/4𝜋
in radial annuli around the BH, where again we directly extract
the stress tensor from the simulation at each time.

As expected (per Fig. 20), within the disk (≲ 0.1 pc), the ro-
tational/centrifugal/angular momentum term ⟨𝚷kin

𝜙𝜙⟩ ≡ ⟨𝜌 𝑣2
𝜙
⟩

dominates, and provides the dominant support versus the radial
gravitational force from the SMBH. The next-most-prominent
term, at least in the inner disk, is the azimuthal/toroidal mag-
netic term ⟨𝚷mag

𝜙𝜙
⟩ ≡ −⟨𝐵2

𝜙
⟩/8𝜋, which, as we showed above,

dominates the internal disk pressure and provides most of the
vertical support (Figs. 5 & 10). Then there are a group of
broadly order-of-magnitude comparable terms (as anticipated
from Figs. 10 & 20) including the 𝑅𝑅, 𝑧𝑧, 𝑅𝜙, and 𝑧𝜙 terms.
These reflect the not-extremely-anisotropic fluctuating veloc-
ity and magnetic field terms seen in Figs. 10 & 20, and of
course the 𝑅𝑅 and 𝑧𝑧 terms are just dominated by the normal
radial and vertical dispersions. The 𝑅𝑧 term is often signifi-
cantly weaker in the disk.

Of course, these are the total stresses, so for example
⟨𝚷kin

𝑅𝜙⟩ = ⟨𝜌 𝑣𝑅𝑣𝜙⟩ = ⟨𝜌⟩⟨𝑣𝑅⟩⟨𝑣𝜙⟩ + ⟨𝜌𝛿𝑣𝑅𝛿𝑣𝜙⟩ includes
both the “mean field” term ⟨𝜌⟩⟨𝑣𝑅⟩⟨𝑣𝜙⟩ and the “fluctuating”
or traditional Reynolds stress term ⟨𝛿𝚷kin

𝑅𝜙⟩ ≡ ⟨𝜌𝛿𝑣𝑅𝛿𝑣𝜙⟩
(where 𝛿𝑣𝑖 ≡ 𝑣𝑖 − ⟨𝑣𝑖⟩). ⟨𝚷kin

𝑅𝜙⟩ is negative therefore, as ex-
pected in any system with net inflow, because it is dominated
by the mean term with ⟨𝑣𝜙⟩ > 0 (the rotational motion) and
⟨𝑣𝑅⟩ < 0 (inflow). We therefore also plot the separation of
each component of 𝚷 into fluctuating components, which al-
lows us to more clearly see (1) the crudely isotropic turbulent
fluctuations,22 (2) the fact that the Reynolds stress ⟨𝛿𝑣𝑅𝛿𝑣𝜙⟩
and both the total and fluctuating Maxwell stresses are almost
always positive (indicating angular momentum loss, given our
sign convention), and (3) that in the rotationally-dominated
disk at ≪ 0.1 pc, the dominant torque should come from
the traditional Maxwell stress ⟨𝚷mag

𝑅𝜙
⟩. As discussed below

(§ 7.2.2), in the inner disk the Maxwell stress is itself dom-
inated by the mean component, but with non-negligible con-
tribution from the fluctuating (⟨−𝛿𝐵𝜙𝛿𝐵𝑅⟩/4𝜋) component.
The magnitude of the fluctuating components in both cases is

22 As discussed in § 5.3, if we subtract the best fit 𝑚 = 1 component
from each 𝛿𝑣𝑖 (𝑅, 𝜙) to attempt to remove the effects of coherent eccentric
motion, this has at most a modest (order-unity) effect reducing the kinetic
⟨𝛿𝚷kin

𝑅𝑅
⟩ and ⟨𝛿𝚷kin

𝜙𝜙
⟩, and almost no effect on the most relevant Reynolds

stress ⟨𝛿𝚷kin
𝑅𝜙

⟩.
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Fig. 26.— Magnetic (𝚷mag ≡ ( |B |2I/2 − BB)/4𝜋; top) and kinetic (𝚷kin ≡ 𝜌vv; bottom) contributions to the total stress tensor 𝚷tot. Left: We plot the mean
⟨𝚷⟩ (within the disk, excluding dense star-forming clumps where present) of each component of 𝚷 in radial annuli, as a function of distance to the SMBH,
normalized to ⟨𝜌𝑉2

𝑐 ⟩. Right: Same, but plotting just the fluctuating terms: 𝛿𝚷mag ≡ ( | 𝛿B |2I/2 − 𝛿B𝛿B)/4𝜋, 𝛿𝚷kin ≡ 𝜌𝛿v𝛿v (where 𝛿B ≡ B − ⟨B⟩,
𝛿v ≡ v − ⟨v⟩ in each annulus). Positive (negative) terms are shown as solid (dotted) lines. In the disk the rotation/centrifugal term Πkin

𝜙𝜙
is the most important

as expected, followed by the toroidal magnetic term Π
mag
𝜙𝜙

, which provides most of the pressure. The 𝑅𝑅, 𝑧𝑧, 𝑅𝜙, and 𝑧𝜙 terms are broadly order-of-magnitude
comparable, with 𝑅𝑧 generally smaller. Of the terms that can drive angular momentum transfer (𝚷mag

𝑖𝜙
and 𝛿𝚷kin

𝑖𝜙
), the 𝑅𝜙 (traditional Maxwell/Reynolds) terms

not only appear most important, but consistently > 0 (indicating angular momentum transfers outwards and material accretes) – the 𝑧𝜙 component for example
is generally smaller but also much more clearly oscillating in sign (often driving weak angular momentum gain via vertical accretion onto the disk).

consistent with the properties of the turbulence discussed in
§ 5.4 (e.g. ⟨𝜌𝛿𝑣𝜙𝛿𝑣𝑅⟩ ∼ ⟨𝜌⟩ ⟨𝛿𝑣2

turb⟩).
Briefly, it is worth noting that the sign and efficiency of

the Maxwell stresses are expected here, given the strong anti-
correlation between 𝐵𝜙 and 𝐵𝑅, as demonstrated in § 4. Re-
call that this results from the simple fact that the toroidal
field is supplied by radial fields in the disk plane (given the
induction equation; see Fig. 15 and § 4.2), with simple flux-
freezing/advection and trans-Alfvénic turbulence explaining
the mean and fluctuating field strengths. We stress that this is
distinct from some historical models wherein 𝐵𝜙 and 𝐵𝑅 are
sourced from some strong mean poloidal field ⟨𝐵𝑧⟩, in which
case such an anti-correlation (ensuring inflow) is non-trivial.
For the Reynolds stress in the outermost disk where it dom-
inates, it is less obvious what exactly regulates the detailed
quantitative properties of the stress, related to our discussion
in § 5.4 regarding the uncertainty in what exactly drives the
turbulence. If instabilities related to self-gravity like the global
𝑚 = 1 modes and/or gravito-turbulence drive the turbulence,
these would naturally produce the kind of in-plane motion with

the correct sign (on average) of ⟨𝜌𝛿𝑣𝑅𝛿𝑣𝜙⟩, but other insta-
bilities that could be present, such as the low-𝛽 extensions of
the MRI (see § 4.2.3), have not yet been well-studied in the
non-linear regime.

For completeness, we note if we define the comoving MHD
stress tensor T ≡ 𝚷mag+𝛿𝚷kin, there are three terms in Fig. 26
that can in principle give rise to torques in the disk plane.23
First, the usual Maxwell/Reynolds stress (T𝑅𝜙), which we
discussed above and will discuss further below. Second, the
non-axisymmetric azimuthal term which can produce a local
torque ∝ 𝜕T𝜙𝜙/𝜕𝜙. And third, the wind or convective term ∝
𝜕T𝑧𝜙/𝜕𝑧. The azimuthal 𝜕T𝜙𝜙/𝜕𝜙 term is usually neglected
(even when |T𝜙𝜙 | itself is large) because by definition the net
torque integrated over 𝜙 must vanish at leading order for orbits
that are approximately closed and/or circular (assuming small
deviations from axisymmetry in the potential) in a disk which
is not evolving on a timescale fast compared to the orbital time

23 The equation for the co-moving evolution of the specific angular mo-
mentum ℓ of some gas parcel becomes ⟨𝜌⟩ dℓ/d𝑡 = −∇ · (𝑅 T𝑖𝜙 ) .
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(Kalnajs 1971). However, Hopkins & Quataert (2011) showed
that this term can be leading order in the net torque when the
“gravitational torques” discussed above are important (or when
non-axisymmetric terms in the potential become non-linearly
large), because one can break the periodicity in 𝜙 that causes
the integral of 𝜕T𝜙𝜙/𝜕𝜙 to vanish if the external potential
induces orbit crossings and shocks or pileups in the gas. So
we note it briefly here because at radii ≳ 0.1 pc, where the
gravitational torques can be important (and where we see in
e.g. Fig. 17 that the strong eccentric pattern produces a clear
discontinuity in the velocity streamlines), this can actually play
a leading-order role. However, in the primarily rotationally-
supported inner disk at ≪ 0.1 pc, it becomes less important.

The vertical/convective term in 𝜕T𝑧𝜙/𝜕𝑧 is usually consid-
ered when there is a strong outflow/wind removing angular
momentum from the disk. But recall here (Figs. 17-20) that
the vertical velocity is primarily (weak) inflow. This means
that in order to significantly lower the specific angular mo-
mentum of disk material and promote accretion, the inflowing
gas would have to (1) carry a considerable fraction of the total
accretion rate (which it does not, because we showed above
the density structure means most of the inflow is through the
gas in the midplane with |𝑧 | ≲ 𝐻), and (2) be significantly
sub-Keplerian (which it is usually not, since by definition it
tends to join the disk at its circularization radius).

So it seems clear that, on average, the most important MHD
torques in the inner disk indeed arise predominantly from the
usual Maxwell+Reynolds stress.

7.2.2. Relative Importance of the Maxwell vs. Reynolds Stresses,
and Fluctuating vs. Mean-Field Components

In Fig. 27, we therefore plot the azimuthally-and-vertically
averaged Reynolds stress 𝑅𝑅𝜙 ≡ ⟨𝛿𝚷kin

𝑅𝜙⟩ ≡ ⟨𝜌 (𝑣𝑅 −
⟨𝑣𝑅⟩) (𝑣𝜙 − ⟨𝑣𝜙⟩)⟩ ≡ ⟨𝜌 𝛿𝑣𝑅𝛿𝑣𝜙⟩ and Maxwell stress
−𝑀𝑅𝜙 ≡ ⟨𝚷mag

𝑅𝜙
⟩ ≡ −⟨𝐵𝑅 𝐵𝜙⟩/4𝜋, as a function of radius

from the BH, with their range and sign. Because the Maxwell
term ∝ ⟨𝐵𝑅𝐵𝜙⟩ includes both a mean-field ⟨𝐵𝑅⟩⟨𝐵𝜙⟩ and
fluctuating field ⟨𝛿𝐵𝑅 𝛿𝐵𝜙⟩ component, we also plot both the
total Maxwell and fluctuating component alone. We can im-
mediately compare the normalization of these terms to the
torques 𝜏 in Fig. 25 noting that, if dominant, the sum of these
terms in the units given (𝜌𝑉2

𝑐 ) should approximately equal the
torque in units of𝑉2

𝑐 (up to an order one constant that depends
on the averaging weighting and slope of the different terms).
We see reasonably good agreement, with a factor of < 2 differ-
ence owing to how the different weighting of the means. And
of course the magnitude of the stresses are much larger than
in a SS73-like 𝛼 disk where (by assumption) the Alfvén and
turbulent velocities are much smaller than the thermal sound
speed.

Next, we compare and see that at large radii ≫ 0.01 pc, the
Reynolds stress is dominant by a factor of a couple to a few,
while at smaller radii the two are comparable or the Maxwell
stress is dominant by a similar factor. To understand this
better we recall Fig. 22, which plots the Mach number M of
the turbulence versus radius. We see that it is quasi-isotropic,
trans-Alfvénic, and highly super-sonic (consistent with all our
previous analysis of 𝛽 and velocity fields directly). We note
here though that although the trend of Alfvén Mach number
M𝐴 with radius is weak, we see the turbulence transition from
mildly sub-Alfvénic at the smallest radii, to modestly super-
Alfvénic at large radii. This is broadly consistent with the
trend in the ratio of Reynolds to Maxwell stresses.
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Fig. 27.— Quantitative properties of the Maxwell & Reynolds stresses from
Fig. 26 in more detail. We plot two times as in Figs. 10 & 20 (panels),
showing the 𝑅𝜙 component of the Maxwell stress (both the total −⟨𝐵𝜙𝐵𝑅 ⟩
and fluctuating −⟨𝛿𝐵𝜙 𝛿𝐵𝑅 ⟩ component, as labeled) and the Reynolds stress
(⟨𝜌𝛿𝑣𝜙 𝛿𝑣𝑅 ⟩). Note that the total Maxwell stress, −⟨𝐵𝜙𝐵𝑅/4𝜋 ⟩ (i.e. not
just the fluctuating component), is what appears in the angular momentum
(AM) equation, while ⟨𝜌𝑣𝜙𝑣𝑅 ⟩ includes additional pure advection terms that
do not influence the AM (i.e. only ⟨𝜌𝛿𝑣𝜙 𝛿𝑣𝑅 ⟩ gives rise to AM exchange).
Each quantity is averaged over several snapshots around the time of interest
and in annuli within the disk, excluding any dense star-forming clumps. The
shaded range shows the ±1𝜎 range of | − 𝐵𝜙𝐵𝑅/4𝜋 |, etc., in all cells in
each annulus. Reynolds stresses tend to be larger at radii ≳ 0.01 − 0.1 pc
and especially outside the ordered disk, where the turbulence is weakly super-
Alfvénic (Fig. 22). Within the inner disk, Maxwell stresses dominate by a
factor of ∼ 10. The total/mean Maxwell stress is larger than the fluctuating
component by factors of several, consistent with the strong mean fields in e.g.
Fig. 15 but distinct from predictions of e.g. the weak-seed-field MRI. We also
(top) plot the instantaneous inflow rate ¤𝑀/3𝜋𝑅𝑉𝑐Σgas from Fig. 25. This
agrees well with the sum of total Maxwell+Reynolds stresses, as expected if
they dominate the angular momentum transport.

We also see that the although mean field Maxwell stress is
usually dominant, the fluctuating field stress is non-negligible,
especially at some times at very small radii. It will occasionally
occur that an excess of toroidal magnetic flux will build up in
the center, sometimes briefly suppressing accretion but then
producing a large mean-field Maxwell stress and leading to a
rapid accretion event. This leads to the fields being accreted
inwards, changing the ratio of mean-to-fluctuating stresses
briefly. But in general the behavior plotted holds, showing
that the fluctuations 𝛿𝐵𝜙 and 𝛿𝐵𝑅 are sufficiently strongly
anti-correlated that they can be comparable to the mean-field
stress, even when ⟨|𝛿𝐵𝜙 |⟩ ≲ |⟨𝐵𝜙⟩|.

The “origins” of the angular momentum transport and
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stresses, therefore, are directly tied to (a) the origins of the
strong magnetic fields, and (b) the origin of the turbulence
within the disk, each of which was discussed above.

8. COMPARISON TO PREVIOUSLY-STUDIED
“STRONGLY-MAGNETIZED” DISKS

While the majority of the literature on quasar accretion disks
has focused on disks with “weak” magnetic fields (e.g. mag-
netic pressure less than radiation or thermal pressure), there
has been some discussion of disks in the strong-field limit.
These can generally be divided into a couple of different cate-
gories, some of which are indeed closely related to the behav-
iors we report here in our “flux-frozen” (and flux-fed) disks,
and some of which are not. We therefore find it helpful to
briefly review these past models and distinguish the results
from their predictions. Note that a more quantitative compari-
son to SS73-like “weakly-magnetized” (𝛽 ≫ 1) disks is given
in Paper III (see also § 3.2 & 4.2.4).

8.1. Magnetically Arrested (MAD) Disks
Magnetically arrested (MAD) disks, in which accretion

is halted by strong magnetic fields near the BH, are usu-
ally characterized by extremely strong poloidal magnetic flux
(Bisnovatyi-Kogan & Ruzmaikin 1976; Narayan et al. 2003).
We clearly see that in many (though not all) respects, the
behaviors here are opposite those predicted in the MAD
regime and seen in idealized simulations of MAD disks (e.g.
Tchekhovskoy et al. 2010, 2011; White et al. 2019; Xie &
Zdziarski 2019). Most importantly: (1) accretion proceeds
rapidly here, (2) the accretion is in fact aided by magnetic
fields, (3) the fields are primarily toroidal, which has qualita-
tively different consequences at these scales, and (4) the disks
are vigorously turbulent and cool efficiently (which also helps
promote strong inflows, compared to the more well-studied
MAD limit).

This is not surprising, as it is trivial to verify that, every-
where we resolve, the magnetic field strengths are below the
MAD limit of ⟨𝐵𝑧⟩2

mad/8𝜋 ∼ 𝐺 𝑀BH Σgas/4 𝑅2 (this limit is
effectively equivalent to 𝑣mad

𝐴, 𝑧
≳ 𝑣K, for the poloidal field,

but we see relatively weak poloidal fields and even includ-
ing toroidal components we see 𝑣𝐴 < 𝑣K everywhere). This
is true both in the simulations here, and the analytic models
in presented in Paper III which can be extrapolated to ISCO
scales. As argued therein, if one starts from an outer disk
boundary like that in our simulations, then even if we ignore
the important geometric constraint that one cannot generate a
dominant mean vertical field via flux freezing from field con-
figurations like those in our simulations, it would require much
stronger amplification of the mean field compared to what we
see (𝑃𝐵 ∝ ⟨|B|2⟩ ∝ 𝜌𝛾 with 𝛾 > 2, as opposed to 𝛾 ∼ 4/3
which we measure in the simulations here). In addition, the
turbulence would have to be strongly suppressed to become
become highly sub-Alfvénic (𝑣turb ≪ 𝑣𝐴), in order to satisfy
a MAD-like criterion 𝐵2/8𝜋 ≳ 𝐺 𝑀BH Σgas/4 𝑅2 as 𝑟 → 0.

However, the argument that a disk should eventually enter
the MAD limit somewhere outside the ISCO or event hori-
zon is often phrased in terms of an incoming magnetic flux
from much larger scales, as e.g. Φmag ∼ 𝜋 𝑅2 𝐵 ≳ Φcrit ∼
𝜇G pc2 (𝑀bh/107 M⊙)3/2 ( ¤𝑀BH/ ¤𝑀Edd)1/2 using the scalings
from Xie & Zdziarski (2019). At a glance (comparing Fig. 10)
it would naively seem that our simulations (and most observed
AGN) exceed this limit at ISM scales. But we caution that

this flux-based extrapolation makes several key assumptions
which are not valid in the simulations here. Most importantly,
it assumes (1) that the “seed” field is dominated by a coherent
poloidal/vertical/dipole field (uniform B ≈ ⟨𝐵𝑧⟩ 𝑧 with co-
herence length ∼ 𝑅), which then (2) is amplified much more
rapidly than other field components, assuming strictly homolo-
gous, laminar accretion with B = ⟨𝐵𝑧⟩ 𝑧, so that ⟨𝐵𝑧⟩ ∝ 1/𝑅2,
with (3) a thermal-pressure dominated Shakura & Sunyaev
(1973) 𝛼 disk assumed to estimate Σgas and the disk thickness
𝐻/𝑅 and pressure support level “needed” to arrest the disk,
together with (4) assumed radial/toroidal field components
|𝐵𝑅 |/|𝐵𝑧 | ∼ |𝐵𝜙 |/|𝐵𝑧 | ∼ 𝐻/𝑅 ≪ 1 that are sourced only via
turbulence from the dominant poloidal field. But none of these
conditions are satisfied in our simulations. As shown above,
at large radii the “seed” flux is isotropic and turbulent (with
|𝛿𝐵𝑧 | ≫ ⟨𝐵𝑧⟩; Figs. 3, 5, 6 & 10). Moreover in the “free-fall”
region where gas is tidally captured by the SMBH and then cir-
cularizes to form the disk (see § 4.1), the structure of the tidal
compression/expansion means that any mean poloidal ⟨𝐵𝑧⟩
is preferentially suppressed relative to the dominant ⟨𝐵𝑅⟩ or
⟨𝐵𝜙⟩ components, ensuring that |B| ≫ |𝛿𝐵𝑧 | ≫ ⟨𝐵𝑧⟩ in the
disk (e.g. Fig. 10). Per § 5.6 and discussion in Lubow et al.
(1994), this means that the vertical field 𝐵𝑧 will be “locked”
in a regime where turbulent flux transport and resistivity sup-
press the amplification of ⟨𝐵𝑧⟩ (qualitatively unlike 𝐵𝑅 and
𝐵𝜙 , which grow via flux-freezing/advection rather than be-
ing sourced from ⟨𝐵𝑧⟩), explaining why the mean ⟨𝐵𝑧⟩ grows
much more slowly than ⟨𝐵𝑅⟩ and ⟨𝐵𝜙⟩ as 𝑟 → 0 (opposite
the MAD assumption). And we have shown that assuming
a thermal-pressure-dominated (𝛽 ≫ 1) Shakura & Sunyaev
(1973) disk would predict orders-of-magnitude different disk
properties from those in our simulations (with e.g. 𝐻/𝑅 and
Σgas incorrect by factors of ∼ 300 and ∼ 104, respectively; see
Fig. 5).

Thus it is obvious that our disks are not magnetically arrested
in practice, nor should they be given the physical conditions;
however, it is certainly possible that if the densities of the
inflows (hence accretion rates) dropped sufficiently at some
later time, the system might transition to a MAD-like state
(depending on whether the magnetic fields also declined, and
whether or not the turbulence became less vigorous as the
densities and accretion rates declined). It is also conceivable
that very close to the BH (around the ISCO) the behavior
of these disks could become more “MAD-like” (or otherwise
truncated or inefficient at low accretion rates, see Hogg &
Reynolds 2018; Datta et al. 2022). But again, the simple
analytic models we develop in Paper III suggest that this would
require some qualitative change in the fundamental scalings
for the turbulence and magnetic field strengths, compared to
the resolved behaviors in our simulations.

8.2. Magnetically Elevated or Levitated Disks
Magnetically levitated and/or elevated disks are disks in

which magnetic fields are relatively weak in the midplane (with
𝛽 ≫ 1), but become fractionally more important with 𝛽 ≲ 1
in the tenuous gas at a few scale heights above the midplane
(|𝑧 | ≫ 𝐻). This can produce a variety of interesting behaviors
with e.g. inflow/outflow along current sheets or angular mo-
mentum transport via MHD winds, but the bulk of the mass
is still effectively a “classical” thermal-pressure-dominated 𝛼
disk (Johansen & Levin 2008; Gaburov et al. 2012; Sądowski
2016; Mishra et al. 2020). Again our simulations are in an
opposite regime: (1) most importantly we see 𝛽 ≪ 1 in the
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midplane and in a gas-mass- and gas-density-weighted mean
sense; (2) the dependence of 𝛽 on both gas density (𝛽 is lower
in denser gas) and scale height (𝛽 is weakly stratified and often
increases in the midplane) is the opposite of that in a magnet-
ically elevated disk; (3) the thermal structure of the disk is
also opposite the elevated disk model (it is warmer above the
midplane); (4) the velocity structure above the disk is also
distinct.

8.3. Vertically Magnetized Star-Forming/Galactic Disks
Recently, Begelman & Silk (2023) suggested that strongly-

magnetized galactic disks could drive BH accretion in proto-
galaxies on scales much larger than the traditional accretion
disk. They focus primarily on galactic radii ≳ pc, where they
assume a magnetic field that is dominated by a mean global
vertical field (with smaller, turbulence-resistivity-dominated
radial and toroidal components sourced from ⟨𝐵𝑧⟩), turbulent
𝑄 ∼ 1 maintained by stellar feedback, and magnetic torques
that dominate on these scales with turbulence that is sub-
Alfvénic and/or sub-sonic relative to the dominant mean ver-
tical field (specifically they require ⟨𝑣𝐴, 𝑧⟩ = |⟨𝐵𝑧⟩|/

√︁
4𝜋 𝜌 ≳

𝛿𝑣turb/
√︁

1 + 1/M2
𝑠 ). While these larger scales are primar-

ily discussed in Paper I, we note here that we do not see
these conditions in our simulations. At star-forming galactic
radii ≫ pc, Paper I showed that (1) magnetic forces are sub-
dominant to gravity and turbulence/bulk motions; removing
magnetic fields has almost no effect on the torques/inflow rates
at 𝑅 ≫ pc, which are dominated on these scales by a com-
bination of gravitational torques and stellar-feedback-induced
shocks; (2) there is no dominant coherent/uniform mean ver-
tical field (consistent with observed galactic magnetic fields;
Mao et al. 2010; Beck 2015; Jaffe 2019; Ma et al. 2020;
Krause et al. 2020); and (3) the turbulence at 𝑅 ≫ pc is super-
Alfvénic. In the accretion disk studied here (radii ≪ pc), we
also see a very different situation to that assumed in Begelman
& Silk (2023), with fields that are primarily toroidal and set
by flux freezing (§ 5.6), 𝐵𝜙 sourced by 𝐵𝑅 (§ 4.2), weak and
incoherent vertical fields in the disk (§ 4), ⟨𝑣𝐴, 𝑧⟩ ≪ 𝛿𝑣turb (by
factors ∼ 10 − 100; Figs. 10 & 20), thermal+magnetic 𝑄 ≫ 1
and minimal star formation (§ 3), and qualitatively different
scalings with radius.

8.4. Previous Models of Toroidal-Field-Dominated Disks
In previous literature, the models that come closest to cap-

turing the properties we observe in our simulations are those
of Begelman & Pringle (2007); Oda et al. (2009). These
have been studied numerically in idealized simulations, which
consider a relatively small section of the disk with simpli-
fied physics and fixed initial and boundary conditions, in e.g.
Salvesen et al. (2016a); Kudoh et al. (2020) (see also Jo-
hansen & Levin 2008 and Gaburov et al. 2012, though their
assumptions, with 𝛽 ∼ 1, may be more similar to magneti-
cally elevated disks). The main similarity is that these models
posit 𝛽 ≪ 1 from a primarily toroidal magnetic field, which
dominates over the midplane gas+radiation pressure. As we
discuss in more detail in Paper III with a simple analytic model
motivated by our simulations, it turns out that this similarity
alone is sufficient to capture most of the crucial properties of
the simulations here.

Nonetheless, there do still exist qualitative differences be-
tween the behaviors seen in our simulations and those models.
Most importantly, those models implicitly assume the field is
amplified from initially small values via the MRI and produces

a toroidal 𝐵𝜙 which (a) is dominated by its fluctuating compo-
nents, and so (b) rapidly changes sign, even following a given
Lagrangian parcel, (c) is dominant over the poloidal 𝐵𝑧 (which
sources it in the first place) but by a relatively small factor, and
(d) saturates at a value of 𝑣𝐴 ∼ √

𝑐𝑠 𝑣K, above which the lin-
ear growth of the MRI is assumed to be suppressed following
the analytic analysis in Pessah & Psaltis (2005). The final
condition leads (e) to relatively modest 𝛽 ∼ 0.1 at the radii
of interest here (much higher than the values we see). This
also leads (f) to the prediction that the maximum accretion
rate that can be maintained is only just about the Edding-
ton limit around supermassive black holes, so these studies
focused on much lower-density, lower-accretion rate regimes
and did not consider highly super-Eddington accretion. And
(g) this means that the disks simulated here are orders-of-
magnitude more gravitationally stable (e.g. retain 𝑄 ≫ 1 out
to orders-of-magnitude larger radii from the BH) compared to
the predictions in these studies.

There are other differences as well that could be impor-
tant: the models in Begelman & Pringle (2007) (as well as
Oda et al. 2009) made very different assumptions for the tem-
perature and opacity structure and predict a stratified disk
with a hotter midplane; however the actual simulations in
Kudoh et al. (2020), which include dynamical cooling and
heating (albeit with a simplified prescription compared to the
detailed network here) predict an opacity and thermal struc-
ture much closer to what we see (inversely stratified, with a
mostly-atomic cool midplane at these radii). Moreover these
previous studies neglect the fact that these models, almost by
necessity, predict highly super-sonic (M𝑠 ≫ 1) accretion-
disk turbulence at high ¤𝑀 , which in turn relates to very ef-
ficient/rapid cooling (𝑡cool/𝑡dyn ∼ M−2

𝑠 ≪ 1). This in turn
leads to some star-formation but avoids catastrophic gravito-
turbulent fragmentation via magnetic support. Indeed, Begel-
man & Pringle (2007) essentially make the Shakura & Sunyaev
(1973)-style assumption of a laminar disk with turbulent ve-
locity 𝑣t ∼ 𝛼1/2𝑣𝐴 ≪ 𝑣𝐴 ≪ 𝑉c. And these analytic/idealized
models (including ours, in Paper III) all assume quasi-circular
disks, neglecting the potentially important role of the coherent
eccentric, large-amplitude 𝑚 = 1 modes we see here.

Fundamentally, the key physical difference is that our simu-
lations do not need to amplify B from some weak/trace “seed”
field via the MRI in order to achieve their “magnetically domi-
nated” state. Rather, they begin from this state, as the accreted
gas carries in sufficiently large magnetic flux, with the conse-
quence that the gas initially in the disk already has a magnetic
field well above the specific (analytic) saturation threshold for
the MRI assumed in Begelman & Pringle (2007); Oda et al.
(2009), namely 𝑣𝐴, flux−freezing ≫ (𝑐𝑠 𝑣K)1/2. This, in turn,
produces a variety of other consequences as described above,
as well as different instabilities operating in the disk.

That said, some key conclusions are robust and confirmed
here: the fact that 𝛽 ≪ 1 can be supported down to the ISCO,
in principle; that the fields do not decay; that these can produce
accretion rates far larger than a thermal Shakura & Sunyaev
(1973) disk; that they can sustain super-Eddington accretion;
that the disks are much more stable at large radii than an
equivalent Shakura & Sunyaev (1973) disk; and that the outer
disk is primarily atomic and “cool” and thermally weakly-
stratified or even inversely stratified. These are all at least
qualitatively robust conclusions comparing to the simulations
in Kudoh et al. (2020) and analytic arguments in Begelman &
Pringle (2007), even if the details and origins of the magnetic
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fields differ in some important respects.
8.5. Why Does the Strong Field Not Decay (or Buoyantly

Escape)?
Related to the discussion above, there have also been some

previous claims in the literature (Salvesen et al. 2016a; Fragile
& Sądowski 2017) that a strong toroidal-field dominated disk
can, under the right conditions, rapidly (in tens of orbits)
evolve to 𝛽 > 1, due to a combination of adiabatic expansion
with outflows and buoyant escape. Clearly we do not see this
“decay,” even having run our simulations for ≫ 104 orbits
at their innermost radii (see e.g. Fig. 14). It is also worth
noting that the simulations of Kudoh et al. (2020) discussed
above also did not see any such decay/escape. Moreover as
discussed extensively above, we have checked not just that the
field is maintained at a given Eulerian position, but following a
Lagrangian parcel over time, we see it amplified (not decaying)
according to simple theoretical expectations.

There are a several important and straightforward reasons
why the arguments for the specific situation considered in e.g.
Salvesen et al. (2016a); Fragile & Sądowski (2017) should not
hold here. Importantly, those authors considered a qualita-
tively different parameter space, initial conditions, and bound-
ary conditions from those here. In those papers, the initial
“disk” is strictly hydrostatic, with no net accretion or torques,
and rapidly expands/puffs up, producing outflows almost ev-
erywhere (even in the disk midplane) and weakening the mag-
netic fields primarily via adiabatic expansion. This is almost
the exact opposite of the behavior here, where we see |B|
increase because gas flows in becoming more dense (Figs. 5-
15). Moreover, the density and temperature scales are orders-
of-magnitude different, and those idealized simulation models
were strictly adiabatic – i.e. had no cooling – while we see very
efficient cooling 𝑡cool ≪ 𝑡dyn. This can both maintain low-𝛽
and dissipate the thermal energy, which in the idealized mod-
els could cause the disk to puff up or drive strong buoyancy
instabilities (see also Paper III). And they also only considered
quite modest initial 𝛽 > 0.1, so already close to 𝛽 ∼ 1, while
our disks essentially “begin” at orders-of-magnitude lower 𝛽
(Fig. 4-5) via the transport of magnetic flux from a weakly
magnetized ISM (Fig. 11-15). This also qualitatively changes
which instabilities can operate in the disk (as shown in Fig. 16):
for example as discussed in § 4.2.3, the specific Parker-like ver-
tical buoyancy modes discussed in Johansen & Levin (2008);
Salvesen et al. (2016a) may operate on such large wavelengths
(∼ 10𝐻 ≳ 𝑅, given the large scale heights in Fig. 5) that
they cannot fit within the disk, or they may be suppressed
by the combination of strong trans-Alfvénic turbulence, non-
negligible radial and vertical fields, and low-𝛽 (Horiuchi et al.
1988; Kim & Ryu 2001), but other radial buoyancy modes
may appear which have qualitative different effects on the
field (§ 4.2.3).

Moreover, both Salvesen et al. (2016a) and Fragile & Są-
dowski (2017) considered exclusively azimuthal fields, and
noted that adding some poloidal or radial component would
prevent the field decay, as was subsequently shown explicitly
in Salvesen et al. (2016b). Here, we do see dominant toroidal
fields, but with substantial (order-unity) projections into both
the poloidal and radial directions (Fig. 10). Indeed, this is
inevitable in our simulations, given the origin of the “seed”
fields for the accretion disk from a quasi-isotropically-tangled
field in the ISM. Thus our simulations actually reside “safely”
in the regime where Salvesen et al. (2016b) argued they should
not experience rapid decay/loss/escape.

It is also crucial to note that there is no source of magnetic
flux in the idealized simulations of Salvesen et al. (2016a);
Fragile & Sądowski (2017). Absent any source of new flux in
the midplane, it seems plausible that escape of toroidal field
from the midplane and/or turbulent resistivity could eventu-
ally weaken 𝐵𝜙 , perhaps producing something more like the
magnetically elevated disks in Johansen & Levin (2008) with
a minimum in 𝛽 at the midplane. And we are not arguing that
magnetic buoyancy is totally negligible here – in contrast, in
§ 4.2.3, 5.5, & 6 we argued that buoyancy instabilities unique
to low-𝛽 disks might play an important role driving the tur-
bulence in the disk and explaining the weak stratification we
observe. However, we showed above in e.g. Fig. 15 and § 4.1
that even if vertical buoyancy removed midplane toroidal field
on the fastest possible timescale it can operate (a few Ω−1),
this would be balanced by the growth of toroidal field just from
new radial flux carried in with the midplane accretion flow (see
also Shibata et al. 1990, who make a similar argument from
both analytic considerations and idealized MHD simulations).
In brief, the midplane mean toroidal field in the simulations
is constantly sourced by advection of new radial and toroidal
flux, “closing the dynamo loop” and replenishing/maintaining
the magnetic-field strength.

We stress that this possibility was indeed anticipated by
Salvesen et al. (2016a); Fragile & Sądowski (2017), as well
as others such as Shibata et al. (1990); Johansen & Levin
(2008); Kudoh et al. (2020), all of whom emphasized the crit-
ical importance of physically-motivated boundary conditions
for the accretion disk from larger (ISM) radii and therefore
the source of flux (the motivation for our simulations in this
paper). Salvesen et al. (2016a) specifically stated that, given
“favorable conditions” for the source of magnetic flux along
with the accretion flow (which they noted could arise from
the “external” field from the ISM/galactic scales), “a strongly
magnetized disc would necessarily follow.” Though they envi-
sioned primarily poloidal external flux, while we find a mix of
radial and poloidal flux (see Fig. 10), the overall effect will be
similar, maintaining strong toroidal fields in the disk (Fragile
& Sądowski 2017). Therefore, taken together, the stable be-
havior of the strong toroidal fields here is expected, and does
not contradict the results from the more idealized test-problem
simulations considered in Salvesen et al. (2016a); Fragile &
Sądowski (2017).

9. ANGULAR MOMENTUM OF THE DISK RELATIVE
TO THE PRE-EXISTING BH SPIN

Our simulations do not have sufficient resolution to follow
the spin of the SMBH in detail. However, even in the low-
resolution “progenitor” simulation, we do dynamically follow
the total angular momentum (AM) accreted by the SMBH
jBH (from its formation as a seed, with jBH updated whenever
some gas is accreted following the detailed numerical descrip-
tion in Hopkins et al. 2023b). While imperfect, ĵBH should
serve as at least a plausible guess for the spin direction of
the SMBH. Given the scenario occurring in our simulation
(§ 3) – where a turbulent massive star-forming cloud complex
in a highly chaotic, clumpy high-redshift massive galaxy is
partially tidally disrupted on close passage to a pre-existing
SMBH in the nucleus – there is no reason to think that the
accretion disk AM vector jgas should be preferentially aligned
with this pre-existing BH AM vector (or the SMBH spin di-
rection).

We can immediately verify this in the simulations. Compar-
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ing the vector directions ĵgas and ĵBH, the accretion disk at the
times we follow is approximately ∼ 140◦ misaligned from ĵBH
interior to ≲ 0.1 pc (where the disk AM direction ĵgas is quite
stable within different annuli, to within a few degrees). This
means it is likely retrograde and out-of-plane with the pre-
existing SMBH spin. As the disk evolves, the AM direction
will evolve too, tracing material further away from the SMBH
at this time: at ∼ 1 pc (or ∼ 10 pc) the mean AM vector of the
accreting gas is ∼ 100◦ (or ∼ 130◦) misaligned, so can vary
by ∼ 40◦. The corresponding enclosed gas masses and accre-
tion timescales at the current accretion rate into < 80 au are:
∼ (3×104, 6×105, 107) 𝑀⊙ and ∼ (103, 2×104, 3×105) yr
for gas within ∼ (0.1, 1, 10) pc.

There is also no correlation between the direction ĵBH and
the secondary preferred direction of the accretion disk: namely
the direction of the semi-major axis in the plane of the disk
(since it is coherently eccentric). But this is expected even if
ĵBH and ĵgas were aligned, since the semi-major axis direction
precesses on timescales of order the orbital time at the outer
disk radius.

Our inner resolution scale (∼ 80 au or ∼ 300 𝑅schw) is much
larger than any scale where BH spin directly influences the
dynamics (e.g. via Lense-Thirring precession), so this is not
directly important for the scales we resolve. However, simu-
lations of smaller scales using these results as outer boundary
conditions should include such effects. Moreover, this is con-
sistent with the well-established observational result that the
“spin axis” inferred from AGN jet directions does not appear
to correlate with gas AM on any resolved macroscopic scales
in galaxies (see e.g. Schmitt et al. 1997; Kinney et al. 2000;
Hopkins et al. 2012a,c; Davies et al. 2014; Reynolds 2021,
and references therein). Indeed, the misalignment angles that
we find, and their variation with scale and time on sub-pc
scales, are consistent with those seen in previous simulations
by Anglés-Alcázar et al. (2021), who also emphasize the lack
of correlation between the angular momentum vector at ≲ 1 pc
(at any given instant) and on much larger (≳ kpc) scales.

Together, this further suggests that extremely misaligned
accretion – which can itself even further help in promoting
very rapid accretion on scales smaller than those we resolve
here (see e.g. Kaaz et al. 2022) – might be quite common in
quasars whose large-scale fueling episodes resemble that here.

10. WHAT HAPPENS WITHOUT MAGNETIC FIELDS?
Paper I discusses several numerical experiments in detail,

including an example where we begin our “hyper-refinement”
stage of the simulation without magnetic fields (but from oth-
erwise identical initial conditions). There we showed that this
produces relatively weak effects on ≫ pc scales (in the galactic
ISM), consistent with the vast majority of previous simulation
studies of magnetic fields in cosmological galaxy formation
simulations (Su et al. 2017, 2018, 2019; Hopkins et al. 2020b;
Ji et al. 2020; Steinwandel et al. 2019, 2022; Martin-Alvarez
et al. 2021; Ponnada et al. 2022; Whitworth et al. 2022). But
as expected from our arguments above, the effects on the disk
at scales ≪ pc can be dramatic. Here we explore the disks that
form without MHD in more detail.

Briefly, we note the resolution and run-time of this sim-
ulation. We initially run the simulation with our “default”
resolution of the full-physics simulation with MHD (mass res-
olution ∼ (1 − 5) × 10−3 𝑀⊙ in the high-resolution region
inside ≲ 10 pc), but for a more limited time (equivalent to
∼ 3000Ω−1

inner or ∼ 100 yr at the very highest resolution level,

and ∼ 105 yr at intermediate resolution following the infall
during refinement; see Paper I for details of the refinement
scheme). This reduced time is chosen both because it is a
counterfactual numerical experiment and because it is notably
more numerically expensive compared to our default simu-
lation, owing to the much more rapid fragmentation into ex-
tremely dense sub-clumps, the formation of extremely massive
stars from said fragmentation (see Paper IV), and the razor-thin
disk. This razor-thin disk, discussed below, means that even
at our extremely high resolution, it is challenging to resolve
the vertical scale-height of the inner disk at 𝑅 ≪ 0.01 pc.
We therefore re-start this simulation with an even further
layer of refinement continuing to a minimum mass resolu-
tion of Δ𝑚min ≈ 0.003 M⊙ (𝑟/0.1 pc)2 at 𝑟 < 0.1 pc, reaching
a highest resolution of Δ𝑚 < 10−7 M⊙ at our innermost radii
< 100 au. This is extremely expensive computationally, so
we evolve it for a much shorter time at its highest resolution
(∼ 100Ω−1

inner), just to ensure that the properties at the inner-
most radii can be reliably modeled.

10.1. Runaway Star Formation
The major focus of our comparison in Paper I was to show

that, absent magnetic fields, on sub-pc scales (where MHD
torques take over as dominant from gravitational torques in
our default simulation per Fig. 25) fragmentation and subse-
quent star formation run away catastrophically. Whereas in
our default simulations (including magnetic fields) the fields
stabilize the disk and lead to a sharp suppression of the SFR
per unit area or volume at radii ≲ 0.1 − 1 pc, the volumetric
SFR in a simulation without MHD continues to rise steeply as
𝑟 → 0. Per Fig. 30, the SFR interior to < 1 pc (or < 0.1 pc), for
example, rises from∼ 10 M⊙ yr−1 (∼ 0.1 M⊙ yr−1) with MHD
to ∼ 250 M⊙ yr−1 (∼ 5 M⊙ yr−1) without MHD. As discussed
below, the SFR at < 1 pc significantly exceeds the total mass
inflow rate into this annulus, strongly suppressing inflows to
the BH accretion disk.

The physical reasons for this – again the main focus of
Paper I – are straightforward. Most importantly, the lack
of magnetic fields means the disk is no longer stabilized
at radii ∼ 0.01 − 1 pc against catastrophic gravito-turbulent
fragmentation. On top of this, the lack of strong magnetic
stresses/torques means that gas cannot inflow efficiently so
“piles up” at large radii, further accelerating fragmentation.
This directly enhances the ratio of SFR to inflow rate at
∼ 0.1 − 1 pc, therefore further suppressing inflow to even
smaller radii. Thus, without magnetic fields, we indeed see
the classic hydrodynamic problem – reviewed in e.g. Shlos-
man & Begelman (1989); Shlosman et al. (1990); Goodman
(2003) – of runaway rapid fragmentation in the outer disk
region when inflow rates from the ISM are large.

10.2. Vastly Lower Accretion Rates
Partly as a result of the runaway star formation, but also

because of inefficient MHD torques (discussed below), we see
that the surviving inflow rates of gas into ≪ 1 pc are reduced
dramatically without MHD. The time-averaged net gas inflow
rate through our inner boundary at < 80 au is reduced from
∼ 20−30 M⊙ yr−1 in our default simulation, to ≲ 0.1 M⊙ yr−1

in the simulation without MHD (a factor of ∼ 200 − 500
reduction). But even this accretion rate appears to be falling
towards the end of the relatively short duration of the rerun
without MHD, because the torques in the inner disk seem to
be spinning up the disk and create a growing hole in the center
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Fig. 28.— Face-on images showing gas surface density in a re-simulation of our fiducial simulation without magnetic fields (see § 10), as in Figs. 1-2, at the
latest time to which we are able to run the simulation. We see much more vigorous clumping/fragmentation at radii ∼ 0.01 − 1 pc, a more compact disk that only
emerges interior to ≲ 0.01 pc, a series of tightly-wound 𝑚 = 1 modes with large amplitudes, giving a “concentric ring” appearance, and a central hole in the disk
that is expanding (larger than our inner accretion boundary by a factor of several).

Fig. 29.— Edge-on images of gas surface density in our fiducial/“full-
physics” simulation (top) and re-simulation without MHD (bottom; as in
Fig. 28). Cylindrical 𝑅-𝑧 coordinates are used to better see the disk structure.
We clearly see that without magnetic fields, the disk is much more compact
and razor thin, featuring almost no extended vertical atmosphere/halo/coronal
structure.

of the disk. This can be seen by-eye in Figs. 28-29. Indeed,
from Fig. 30, comparing either the total inflow+outflow rate
within a given annulus ( ¤𝑀in+ ¤𝑀out = 4𝜋 ⟨𝑣𝑟 𝜌 𝑟2⟩), or from the
total 𝑅𝜙 kinetic stress (⟨𝚷kin

𝑅𝜙⟩ = ⟨𝜌 𝑣𝜙 𝑣𝑅⟩ ∼ 𝑣K ⟨𝜌 𝑣𝑅⟩), we
clearly see that the mean radial velocity in the disk midplane
is outward – i.e. we actually have a decretion disk at this time.

Some gas still “leaks” through owing to non-equilibrium
motions and vertical inflows joining onto the inner disk. This
means the inflow rate is highly intermittent/bursty, dominated
by occasional clumps that make it through the inner region.
The vertical inflows contribute little in a time-averaged sense
and would likely be ejected if we included some form of jets
and/or harder radiation emitted by the unresolved disk interior
to < 80 au, since they are primarily polar. Notably, if we

evolved the disk longer, this net decretion, coupled to the larger
SFR compared to gas inflow rate, would lead to even further
depletion of the inner gas and therefore further suppression of
the time-averaged gas accretion rate. Indeed, if we monitor
the gas mass inside of ≲ 100 au, we see that after it initially
rises in an inflow event, over the time period of the last ∼
600Ω−1

inner at 𝑅 ∼ 80 au (just ∼ 20 yr) it drops precipitously
by a factor of ∼ 3 (then it increases slightly as the ring of gas
that builds up goes unstable and a clump falls back in towards
the central < 100 au). In contrast, we showed these properties
were stable in our full-physics simulations (with MHD) for
timescales at least ≳ 105 Ω−1

inner (∼ 104 yr, the duration of our
default simulation at highest resolution). So again without
magnetic fields, we see orders-of-magnitude lower accretion
rates, and it appears difficult to sustain near-Eddington (let
alone significantly super-Eddington) inflows into and through
the disk.

Of course it is possible that on much longer timescales
(≳Myr) the runaway star formation seen here could produce
non-linearly different conditions that eventually lead to effi-
cient accretion. But this does not change our generic conclu-
sion that for a given set of initial/boundary conditions, mag-
netic fields play a critical role on these scales.

10.3. A Razor-Thin, Compact, Residual Gravito-Turbulent
Disk

10.3.1. Disk Size and Scale Height

That said, there is still clearly in Figs. 28-29 some disk that
forms. But it is visually obvious in Fig. 29 that this disk is
radically different from that in our full-physics simulations.
First, consider the disk size. Per Fig. 30, and by-eye in Fig. 29,
we see that the surface density of the disk falls of rapidly, and
the ratios 𝐻/𝑅 and 𝛿𝑣turb/𝑉𝑐 all increase rapidly, outside of
𝑅 ≳ 0.01 pc – so the “outer” disk radius here is at least an order
of magnitude smaller than in the full-physics case. This corre-
sponds to the radii where the Toomre 𝑄 ∼ 𝑐𝑠 𝜅/(𝜋 𝐺 Σ) ∼
140 (𝑅/0.01 pc)−3/2 (Σ/106 M⊙ pc−2)−1 (𝑐𝑠/8 km s−1) falls
to ≲ 10, where more catastrophic turbulent fragmentation
should set in (as opposed to “gravito-turbulent” fragmentation
which can at least maintain some semblance of disk structure;
see e.g. Rice et al. 2005; Hopkins & Christiansen 2013 for
examples) given the fact that the disk is quasi-isothermal over
the limited dynamic range of radii resolved here at ∼ 8000 K.
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Fig. 30.— Quantitative properties of our re-simulation without magnetic fields (§ 10) after we further hyper-refine to < 10−6 M⊙ mass resolution in the
innermost < 0.01 pc, at the latest time we evolve it. Top Left: Inflow ¤𝑀in, outflow ¤𝑀out, & SFRs ¤𝑀∗ (as Fig. 5). Without MHD, runaway fragmentation
produces orders-of-magnitude larger SFRs ( ¤𝑀∗ > ¤𝑀in) and lower inflow rates, with ¤𝑀in dropping rapidly as 𝑟 → 0 and outflow ¤𝑀out > ¤𝑀in at this time. Top
Right: Surface density profile. Absent magnetic support, fragmentation produces a sharper outer truncation of the disk at ≳ 0.01 pc, seen in the steep Σgas (𝑅) ,
while the ¤𝑀out > ¤𝑀in in the inner disk has produced the “hole” visible here as lower Σgas (𝑅 ≲ 0.002 pc) and in Fig. 28. Middle Left: Thermal and turbulent
Toomre 𝑄 parameter (as in Fig. 5). The outer disk truncation corresponds to where the thermal 𝑄 falls to ≲ 10, where we would expect more catastrophic
turbulent fragmentation (absent MHD), with strong gravito-turbulence at smaller radii (given that 𝑡cool ≪ 𝑡dyn on scales here). Middle Right: Amplitude of
the non-axisymmetric modes (as in Fig. 21). Consistent with strong gravito-turbulence and the morphology in Fig. 28, we see tightly-wound spiral modes with
O( |𝑎1 | ) ∼ 1, much stronger than our full-physics case. Bottom Left: Vertical gas density profile (as in Fig. 23). Without magnetic support the disk is much
thinner (𝐻/𝑅 ≲ 0.01 inside the disk region at ≲ 0.01 pc), but also we see orders-of-magnitude lower density “above” the disk (the extended, slowly-falling
𝜌( |𝑧 | ) atmosphere/corona from Fig. 23 is entirely absent without MHD inside the disk radii, per Fig. 29). Bottom Right: Reynolds (fluctuating kinetic) stress
tensor components 𝛿𝚷kin

𝑖 𝑗
≡ 𝜌𝛿𝑣𝑖 𝛿𝑣 𝑗 (as in Fig. 26). Within the disk, the 𝑅𝜙 Reynolds stress responsible for angular momentum transfer is more than an order

of magnitude weaker absent MHD, and has a fluctuating sign (< 0 here indicating angular momentum gain, consistent with the net ¤𝑀out > ¤𝑀in seen above).
Without magnetic fields, the turbulence is extremely anisotropic, evidenced by ⟨𝛿𝑣2

𝑅
⟩ ∼ ⟨𝛿𝑣2

𝜙
⟩ ∼ 100 ⟨𝛿𝑣2

𝑧 ⟩, which is expected as gravito-turbulence alone
cannot efficiently drive vertical motions.
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So it is not surprising that the disk can exist at these radii, given
the (much lower) accretion rates seen here and its reasonably
warm temperatures.

Second, we see that the disk is extremely thin, with 𝐻/𝑅 ≲
0.01 through most of its resolved extent. We see subtle warps,
and a roughly concentric-ring morphology owing to tightly-
wound modes discussed below. And not only is the disk scale-
height quite small, but whereas in our full-physics simulations
we saw a fairly extended, more slowly-falling (power-law-
like) vertical atmosphere/corona above the disk (|𝑧 | ≫ 𝐻; see
Fig. 23), without MHD we see a much more stark (exponential
or super-exponential) transition with extremely low densities
outside the very narrow midplane (Fig. 30). This, of course, is
not surprising, given the lack of the dominant pressure support
from magnetic fields seen in our full-physics simulations, but
further accelerates fragmentation and gravito-turbulence in the
disk.

It is also worth noting that absent MHD, the disk is radiation-
pressure dominated. This is expected without magnetic pres-
sure, given the accretion rates and other properties (see Fig. 5,
or comparison to SS73-like disks in Paper III).

10.3.2. Extremely Anisotropic Gravito-Turbulence and
Tightly-Wound Modes

The disk without MHD is strongly gravito-turbulent
and rapidly-cooling, consistent with its runaway fragmen-
tation. Assuming black-body cooling from a thin disk
balancing accretion, we would expect in the outer disk
𝑇midplane ∼ 2400 K ( ¤𝑀0.1Σ6𝜅/𝑅3

0.01)
1/4, and 𝑡cool/𝑡dyn ∼

0.003 (𝑅3
0.01Σ

5
6𝜅/ ¤𝑀5

0.1)
5/4 (where ¤𝑀0.1 ≡ ¤𝑀in/0.1 M⊙ yr−1;

Σ6 ≡ Σgas/106 M⊙ pc−2; 𝑅0.01 ≡ 𝑅/0.01 pc; and 𝜅 ≡ 𝜅/𝜅es),
and therefore highly super-sonic turbulence in the disk plane
with M𝑠 ∼ (𝑡cool/𝑡dyn)−1/2 ∼ 10− 50. These expectations are
broadly consistent with what we see in the simulation inside
the disk region (𝑅 ≲ 0.01 pc). Although we do note that just
as in our full-physics simulations, non-LTE effects and exter-
nal heating become more important to the disk temperature at
larger radii.

The 𝑚 = 1 modes reach high (order-unity) amplitudes
|𝑎1 | ∼ 0.1 − 1, and are very tightly-wound with almost
all the power at short characteristic wavelengths 𝑘 ∼ 1/𝐻.
This produces a morphology that resembles a series of nar-
row concentric rings of alternating high and low density.
This is all expected for strong gravito-turbulence in a very
thin (𝐻 ≪ 𝑅) differentially rotating disk (Gammie 2001;
Paardekooper 2012; Meru & Bate 2012). Consistent with
this, the velocity fluctuations are highly anisotropic: while the
in-plane motions driven by these modes have relatively large
|𝛿𝑣𝑅 | ∼ |𝛿𝑣𝜙 | ∼ |𝑎1 |𝑉𝑐 ∼ 0.1𝑉𝑐, the vertical motion is an
order-of-magnitude smaller, |𝛿𝑣𝑧 | ∼ 0.01𝑉𝑐. Again, this is
consistent with previous idealized simulations in the regime
without efficient magnetic fields and/or stellar feedback to
isotropize the turbulence and maintain a thick disk (Hopkins
et al. 2012b): “pure gravitoturbulent” driving is unable to
maintain appreciable vertical dispersion.

Examining the kinetic stress tensor in Fig. 30 in more detail,
it is worth noting that the majority of the 𝑅𝑅 and 𝜙𝜙 disper-
sion (⟨𝜌𝛿𝑣𝑅𝛿𝑣𝑅⟩ and ⟨𝜌𝛿𝑣𝜙𝛿𝑣𝜙⟩) can be directly attributed
to the 𝑚 = 1 modes: subtracting the best-fit 𝑚 = 1 component
from e.g. 𝛿𝑣𝑅 (𝑅, 𝜙) at each 𝑅 leads to an order-of-magnitude
reduction in 𝛿𝚷kin

𝑅𝑅. The latter is the true “turbulent” com-
ponent. But even this is order-of-magnitude larger than the
much smaller vertical dispersion, as noted above. Turning to

the ⟨𝛿𝚷kin
𝑅𝜙⟩ component of the Reynolds stress relevant for an-

gular momentum transport, we see that not only is it order-of-
magnitude smaller than the Reynolds stress in our full-physics
simulations (Fig. 26), but it often has the opposite sign, i.e.
⟨𝛿𝚷kin

𝑅𝜙⟩ = ⟨𝜌𝛿𝑣𝑅𝛿𝑣𝜙⟩ < 0, driving outflow rather than in-
flow. Both the large eccentric fluctuations in 𝑣𝑅, and the sign
variations in the Reynolds stress, are directly reflected in the
inflow/outflow rates in Fig. 30.

In short, while we see the expected strongly non-linear
𝑚 = 1 modes, in-plane supersonic turbulence, and efficient
fragmentation, as expected for strong gravito-turbulence in a
hydrodynamic disk with 𝑡cool ≪ 𝑡dyn, the effective Shakura &
Sunyaev (1973)-equivalent 𝛼 parameter is often smaller than
∼ M2

𝑠 , and the Reynolds stresses can even produce net outflow.
Taken together, this demonstrates a simple but important point:
we cannot simply assume the properties of the disk without
magnetic fields would be the same as that with magnetic fields,
but with the fields simply “removed” (i.e. that we would have
the same Reynolds stress) – the disk is non-linearly different
in crucial aspects.

11. CONCLUSIONS
Paper I presented the first numerical simulations to follow

gas dynamics in a fully-cosmological setup from scales of
≳Mpc down to < 80 au or < 300 Schwarzschild radii from
a SMBH accreting in a quasar phase (Fig. 1). The simu-
lations capture a diverse range of key physical effects rel-
evant to evolution on these scales including multi-band ra-
diation transport; coupling to non-LTE and non-equilibrium
atomic/molecular/ionized gas thermo-chemistry and radiative
cooling; resolved individual (proto- and main-sequence) star
formation and stellar evolution, with associated “feedback” in
the form of jets, radiation, stellar mass-loss, and supernovae;
and magneto-hydrodynamics with kinetic and non-ideal ef-
fects, and amplification only from trace cosmological fields in
the inter-galactic medium. In Paper I we studied the large-scale
properties of these simulations and how star formation is sup-
pressed close to the BH and a true quasar accretion disk forms
on sub-pc scales (Figs. 2, 4). In this paper, we present a de-
tailed study of the accretion physics, structure, and origins of
the magnetic fields in these simulations. Our key conclusions
include:

1. The accretion disk is magnetically-dominated, with
plasma 𝛽 ∼ 10−6 − 10−2 even in the midplane. In the inner
disk, the field is dominated by the mean toroidal ⟨𝐵𝜙⟩, but
with non-negligible mean radial field ⟨𝐵𝑅⟩ and fluctuating
toroidal/radial/vertical components |𝛿𝐵𝑅, 𝜙, 𝑧 | (Figs. 5, 10).

2. The magnetic fields arise from simple flux-freezing, viz.
the dynamo is closed by advection of radial flux. The
field strengths are amplified smoothly from sub-nanoGauss
intergalactic fields and typical few-microGauss interstellar
fields at ∼ kpc scales, without some sharp change at smaller
radii (Fig. 3). The accretion disk initially forms from cap-
ture of gas with tangled, quasi-isotropic fields in the galactic
nucleus; these are stretched into radial fields as the gas ini-
tially falls through the BHROI, and then into toroidal fields
as it circularizes (Figs. 11, 12), so it is a “flux-fed” and
“flux-frozen” disk in a general sense. This leaves charac-
teristic imprints such as sign flips in the toroidal field that
are advected with the gas as it accretes (Figs. 6, 7, 14, 15).
Given the rapid inflow rates and corresponding advection
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of flux, we expect and confirm that the toroidal fields do not
damp, even over timescales ≳ 105 times the dynamical time
at our innermost resolved radii (Figs. 14, 15).

3. The toroidal field is stronger than the often-quoted limit
for linear growth of the “traditional” MRI (𝑣𝐴 >

√
𝑐𝑠 𝑣K;

Figs. 12, 16). Instead, we see that the disk lies nominally in
the regime of the related Type II/III or SSMI/SHMI mag-
netic instabilities from e.g. Kim & Ostriker (2000); Pessah &
Psaltis (2005); Das et al. (2018), when analyzed according
to those previous analytic linear studies. The fluctuating
field shows coherent structure with most of the power on
wavelengths of roughly the scale height 𝐻 (Figs. 8, 9).

4. The disk is strongly turbulent, with trans-Alfvénic and
highly super-sonic, broadly isotropic velocity fluctuations
(Figs. 20, 22). The velocity and magnetic fluctuations are
consistent with one another and the stresses. We see some
coherent vertical infall into the disk (Figs. 17, 19) but this
is negligible compared to inflow through the disk.

5. The disk is coherently eccentric at large radii with a co-
herent dimensionless eccentricity of |𝑎1 | ≳ 0.1 throughout
much of the disk (Fig. 21). This is driven by the infall and
non-Keplerian potential at larger radii outside the BHROI.
To first order this dominates the deviations from perfectly
circular orbits (Fig. 17) and may produce shocks that drive
some of the turbulence especially at the largest radii. But
these effects do not dominate the net torque/angular momen-
tum transport of the gas, especially at smaller radii (Figs. 24,
26, 27; § 7.2 & 10).

6. The disk is weakly stratified. This is due to a combi-
nation of the vigorous highly super-sonic turbulent trans-
port and non-LTE effects on the thermo-chemistry in the
more tenuous disk atmosphere and outer disk. As a result,
the magnetic-field strength declines only weakly away from
the midplane, the temperature is inversely stratified (as ex-
pected for a corona/tenuous atmosphere), and the plasma 𝛽
is weakly stratified but lowest in the disk midplane (Fig. 23).

7. Accretion is driven by a combination of Maxwell and
Reynolds stresses. Within the accretion disk, the torques
on the gas are dominated by a quasi-turbulent (Fig. 24)
MHD torque (as opposed to e.g. torques from gravitational
or radiation pressure forces; Fig. 25). Within this, we see
that the usual Maxwell+Reynolds stresses are the dominant
sources of angular momentum transport (Fig. 26). In the
outer disk, where the turbulence is mildly super-Alfvénic,
Reynolds stresses dominate, while in the inner disk, the
mean-field Maxwell stress dominates, followed by the fluc-
tuating Maxwell and then Reynolds stress, but the three
terms are always within an order-of-magnitude of one an-
other (Fig. 27).

8. The disk is not rapidly fragmenting. This is the main
subject of Paper I so we refer to that study for details. But
we confirm here (e.g. Figs. 4, 5) that the accretion disk
is stable against catastrophic turbulent or gravito-turbulent
fragmentation on all scales ≪ pc, and that the inflow rates
are much larger than the star formation rates. As discussed
in more detail in Paper I and Paper IV, on all scales of
interest here, the mass loss, injection, and turbulent driving
contributions from star formation and/or stellar feedback
are completely negligible compared to the other terms we
study.

9. These effects can produce super-Eddington accretion.
The torques (Fig. 25), Maxwell & Reynolds stresses
(Fig. 27), mean radial-flow velocities (Fig. 20), time-steady
structure of the disk (Fig. 5), and directly measured in-
flow/accretion rates (Fig. 5) are all consistent with a sus-
tained gas inflow rate that is remarkably constant in both
space and time: ¤𝑀in ∼ 20 − 30 M⊙ yr−1 is sustained in
steady state from scales ≲ 80 au to ∼ 1 pc for the duration
of our simulation (≳ 105 inner dynamical times, or ∼ 104 yr
at the highest refinement level). Given the SMBH mass of
≃ 1.3×107 M⊙ , this is up to ∼ 100 times the canonical opti-
cally thin electron-scattering Eddington mass accretion rate
for a nominal radiative efficiency of 𝜖𝑟 = 0.1. Whether this
can be sustained to horizon scales (and whether the accre-
tion is radiatively efficient on those scales), and the effects
of whatever radiation emerges from the inner disk externally
illuminating the outer disk, are important subjects for future
study.

10. The accretion disk is likely mis-aligned with the BH
spin. The quasar episode here is triggered by tidal interac-
tions with passing, highly-turbulent giant molecular cloud
complexes in a clumpy, turbulent, merging galaxy. As such,
it is unsurprising that we find the inner accretion disk an-
gular momentum has essentially no correlation with the
angular momentum vector of previous generations of BH
accretion at earlier cosmic times (which we use as a proxy
for the BH spin direction). The disk here is mis-aligned by
∼ 140◦ (§ 9), so is both retrograde and mis-aligned.

We further validate these results by comparing an equiva-
lent simulation without any magnetic fields, which we show
produces completely different results (Figs. 28-30): it un-
dergoes catastrophic gravito-turbulent fragmentation, with
orders-of-magnitude higher star formation rates and orders-
of-magnitude lower gas inflow rates; the gas inflow rate
drops rapidly towards the center; the disk is razor-thin, with
extremely anisotropic turbulence (strong in-plane gravito-
turbulent modes but very weak vertical stirring/mixing); the
Reynolds stresses are an order-of-magnitude weaker and often
have the opposite sign (pushing the disk outwards); the 𝑚 = 1
modes reach much stronger amplitudes and are tightly wound
up to short radial wavelengths of order the pressure scale-
length, leading to a concentric-ring-like morphology; and the
disk mass and outer extent are reduced by more than an order-
of-magnitude (with no real disk outside of ≳ 0.01 pc and the
disk mass inside ≲ 0.001 pc that can be supported with𝑄 ≫ 1
reduced by orders-of-magnitude). So it is clear that magnetic
fields play an absolutely fundamental role on these scales.

In a companion paper (Paper III), we also construct a sim-
ple self-similar analytic model for the flux-frozen strongly-
magnetized, super-sonically turbulent disks that form consis-
tently in the simulations. We show there that this can, at
least qualitatively, reproduce the most important features of
the simulations described above, although it is certainly an
over-simplification that cannot capture all of the subtleties ob-
served in the simulations (including e.g. behaviors which are
clearly not strictly scale-free/power-law-like; see e.g. Fig. 5).
In addition to providing some additional consistency checks
and aid in interpreting the simulations, these models at least
suggest that there is no obvious barrier to extrapolating the
behavior seen on our resolved scales down to even smaller
scales where dedicated GRMHD simulations are required.

There are many obvious ways in which to extend and im-
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prove on the simulations here in future work. In principle, one
could imagine refining even further, to smaller radii. How-
ever, doing so while retaining all of the physics of star for-
mation, molecular cooling, cosmological expansion (let alone
the mass of all the gas, stars, and dark matter to ≳Mpc scales)
is both unnecessary and imposes a huge computational over-
head. Moreover, at some scales additional physics (e.g. general
relativistic effects) will become important. Our goal is there-
fore not to extend these simulations directly to the ISCO, but
to provide new motivation for exploration of disks like that
we see here in dedicated GRMHD accretion-disk simulations.
Such simulations can reach from scales within the ISCO out
to hundreds of gravitational radii – directly overlapping the
innermost resolved radii here. So it would be possible to ei-
ther directly take our inner boundary conditions to set up such
smaller-scale simulations, or to use a form like the analytic
models in Paper III to set up initial conditions for idealized
disk simulations.

These simulations can then be used to not only survey differ-
ent parameter space within the broad category of magnetically-
dominated disks, but also to make first-principles predictions
for the radiation and jets/outflows that should emerge from
the accretion disk on scales ≪ 80 au, but which we cannot
resolve here. Because this is a first experiment and these
kinds of flux-frozen accretion disks have not been explored
on such radii, it remains deeply ambiguous whether the disk
here should, for example, be radiatively efficient or not, let
alone what properties (and orientation) a jet should have. For
these reasons and because our goal was to predict the accre-
tion rates and disk outer boundary conditions in the first place,
we again caution that these simulations take a simple accre-
tion inner boundary, even though it seems likely that given
the combination of strong fields and high accretion rates, sig-
nificant jets or outflows and radiation must emerge from that
boundary. Ultimately, those “feedback” properties could be
re-introduced to simulations like those here – running, for ex-
ample, with some injection/boundary conditions motivated by
those smaller-scale simulations – to follow “back up” to larger
scales.

Other important extensions of the work here include explor-
ing the accretion disks that form in different galaxies and at
different times. While all of our experiments here suggest that
there is nothing “special” or “pathological” about the time cho-
sen here for hyper-refinement (relative to any other time that

features large inflow rates into the BHROI and therefore po-
tential quasar-level activity), and as noted above the accretion
rates and implied quasar luminosities correspond to quasars
around the “knee” of the observed luminosity function at these
redshifts (𝑧 ∼ 4 − 5), it is important to validate this directly.
More important still would be to explore how the accretion
disks behave in qualitatively different regimes: for example, at
lower accretion rates, spanning the vast range between the most
luminous sources (like the simulation here) through to “inter-
mediate” luminosity quasars, then Seyferts, low-luminosity
AGN, and ultimately, extremely low-accretion-rate systems
like those in M87 or our own Galaxy.

Further, there are many more properties to study in the sim-
ulations here, which could enable a unique exploration and
prediction space. This includes the structure of the obscur-
ing torus, the nature of the broad-line region and narrow-line
region transition, the IMF of stars forming in the circum-
quasar medium and quasar accretion disk, the consequences
for transient and gravitational-wave sources from stars and
stellar-mass black holes in the disk, predictions for observable
signatures of the strongly magnetized accretion disk, and more.
We hope to explore these areas and other phenomenology in
future work.
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