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Abstract—The recently developed Multi-Channel Factor Anal-
ysis (MFA) is a method for extracting a latent low-dimensional
signal that is present across multiple channels and corrupted by
unobserved single-channel interference and idiosyncratic noise. In
MFA, only the channel structure and dimensionality of the signal
and interference subspaces are specified in advance, which raises
the concern that the signal, interference, and noise covariances
may not be uniquely determined by the observation model. This
paper presents necessary and sufficient conditions on the channel
sizes and subspace dimensions to guarantee the identifiability
of MFA, ensuring that the second-order spatial properties of
the latent components can, in principle, be recovered from the
multi-channel observations.

Index Terms—factor analysis (FA), identifiability, multi-channel
factor analysis (MFA)

I. INTRODUCTION

The aim of Factor Analysis (FA) is to obtain a parsimo-

nious model for the second-order properties of a multivariate

observation. The observation is represented as the sum of a

signal, which lives in an unknown low-dimensional subspace,

and idiosyncratic noise. Classical or single-channel exploratory

Factor Analysis (FA) was originally developed in the field

of psychometrics [1], and is now a widely used technique in

multivariate data analysis. In array processing, FA is frequently

used to analyze the output of uncalibrated systems where the

noise variance is anisotropic and unknown [2]–[4].

Of central import to this paper, the recently developed

method of Multi-Channel Factor Analysis (MFA) [5] extends

FA to the multi-channel and multi-sensor setting, to allow for

the presence of channel-specific interference. Similarly to the

signal, the channel-specific interferences also live in unknown

low-dimensional subspaces, but those subspaces are constrained

to lie within the observation spaces for the individual channels.

In this fashion, the signal, which has multi-channel effects, can

be distinguished from interference, which separately affects

distinct channels, as well as idiosyncratic noise. MFA has

significant utility for detection and estimation of a weak signal

which presents across multiple channels in the presence of

channel-specific interference, which is a problem encountered

in array processing [6]–[8].

However, to ensure that the second-order model obtained

from MFA can be meaningfully interpreted, the decomposition

into signal, interference, and noise must be unique. Further, it

should be possible to give guarantees for the uniqueness of the

MFA decomposition using only the sizes of the channels the

dimensionality of the signal and interference subspaces. The

problem of the identifiability of MFA is that of obtaining such

guarantees.

This work presents conditions on the channel sizes and factor

numbers which certify the identifiability of MFA, thus allowing

for application of MFA to multi-channel signal processing

problems without concerns of non-interpretability.

A. Notation

Matrices and vectors are denoted by bold-face uppercase

and lowercase symbols respectively, while scalars are denoted

with light-face symbols. The zero matrix of size n×m is 0n,m,

while the zero vector of size n is 0n. The identity matrix of

size n× n is In. For the matrix D, DT is its transpose. The

space of real diagonal matrices of size n× n is Diag(n), with

Diag≥0(n) being the subset with non-negative diagonal entries.

The set of positive semidefinite matrices of size n is PSD(n).
The operator blkdiag applied to a list of matrices constructs

the block-diagonal matrix with said matrices as the on-diagonal

blocks. The expectation of a random quantity s is E[s]. The

non-negative part of a scalar a ∈ R is (a)+ ≡ max{a, 0}.

II. MODEL

Consider an array of C potentially heterogeneous sensors,

each of which produces a real vector-valued observation. The

cth sensor provides the observation vector xc ∈ R
nc , which

is composed of nc scalar measurements. To jointly analyze

the multi-sensor data, the observation vectors x1, . . . ,xC are

taken to belong to distinct channels sensing a common source.

A. Observation Model

To model the channel-c observation xc, three latent vectors

are defined, namely the signal sc, interference ic, and noise
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uc, which are specific to channel c and are of size nc. The

channel-c observation is then synthesized as the sum,

xc = sc + ic + uc. (1)

The signal sc is the expression of the shared source within

channel c, while ic is channel-c-specific influences which are

not confined to individual scalar inputs in that channel. The

idiosyncratic noise uc is then the remaining influences which

are particular to individual scalar measurements.

To allow for this parsing of the C observations, the

observations for the individual channels are stacked vertically

into the all-channel observation as x ≡ [xT

1 . . . xT

C ]
T. The

all-channel signal, interference, and noise vectors s, i, and u

are similarly obtained by stacking. The total number of scalar

inputs is n ≡
∑C

c=1 nc, and the channel sizes are combined

into the length-C integer vector n ≡ [n1, . . . , nc]
T. So, x, s, i

and u are vectors in R
n.

The signal s is assumed to lie within some subspace of

R
n, of which only the dimension r0 ≤ n is known. Therefore,

s can be written as s = Af for some A ∈ R
n×r0 and f ∈

R
r0 , where the range of A is the signal subspace and f is

a vector of latent factors which are common across channels.

The n× r0 common factor loading matrix A can be written as

A = [AT

1 . . . AT

C ]
T, where the nc×r0 submatrix Ac contains

the rows of A corresponding to xc within the stacked x. So,

the channel-c signal sc = Acf is then the sensing of the shared

input f in channel c, with Ac controlling how f is sensed.

In contrast, the channel-c interference component ic is

assumed to lie within an unknown dimension-rc subspace

of the channel-c observation space. That is, ic can be written

as ic = Bcgc for some Bc ∈ R
nc×rc whose range is the

interference subspace in channel c and a vector of latent factors

gc which is unique to channel c. The total number of unique

factors across all channels is r ≡
∑C

c=1 rc. The all-channel

unique factor loading matrix B is obtained by diagonally

stacking the matrices into B ≡ blkdiag(B1, . . . ,BC), which

is of size n× r. The unique factors are vertically stacked into

the length-r vector g ≡ [gT

1 , . . . ,g
T

c ]
T.

With the above definitions, the first-order model for the

all-channel observations is

x = Af +Bg + u. (2)

In addition to the channel structure and sizes of the observed

data, a key presupposition of MFA is the common factor number

r0 and unique factor numbers r1, . . . , rC . For simplicity of

notation, the factor number are combined into the integer vector

r ≡ [r0, r1, . . . , rC ]
T of length C + 1.

B. Covariance Specification

The observation vector x and the latent vectors s, i and u

are taken to be random quantities, whose second moments are

of interest. In the expressions of the signal and interference in

terms of the common and unique factors, s = Af and i = Bgc,

the loading matrices A and B are fixed unknown parameters

while the factors f and g are random unobserved vectors.

As the focus of MFA is the second-order properties of the

multi-channel data, all random quantities are assumed to have

mean zero. The second moments of s and i are respectively

Rss ≡ ARffA
T and Rii ≡ BRggB

T,

where Rff ≡ E[ffT] and Rgg ≡ E[ggT]. To allow for the

desired interpretations of s and i, factors of different types are

assumed to be uncorrelated. That is,

E[fgT] = 0r0,r and E[gcg
T

c′ ] = 0rc,rc′
c ̸= c′.

This assumption and the structure of B ensure that Rii is block-

diagonal, with C blocks of sizes n1 × n1 through nC × nC .

For the all-channel noise vector u, the noise components

corresponding to distinct scalar inputs are assumed to be

uncorrelated but the variances are unconstrained, so

Φ ≡ E[uuT]

is a diagonal covariance matrix. The noise u is further assumed

to be uncorrelated with the latent factors,

E[ufT] = 0n,r0 and E[ugT

c ] = 0n,rc , c = 1, . . . , C.

With these specifications on the moments of the latent

vectors, the covariance of the all-channel observation is

Rxx ≡ Rss +Rii +Φ

= ARffA
T +BRggB

T +Φ.
(3)

Estimation of the three covariance components enables

subsequent analyses of practical interest, such as detecting

the existence of a cross-channel signal and predicting the latent

vectors s, i and u from the observed x.

In the above description of how x is synthesized from latent

factors f and g and the noise u, the common factor covariance

Rff is unconstrained while the unique factor covariance Rii is

block-diagonal but otherwise unconstrained. However, without

further information about either the loading matrices A,B

or the factor covariances Rff ,Rgg, the pairs (A,Rff ) and

(B,Rgg) are non-identifiable using knowledge of x alone.

This follows as any change of basis on the factor spaces which

takes (A, f) to (AT0,T
−1
0 f) and (Bc,gc) to (BcTc,T

−1
c gc)

leaves s and ic unchanged. In this paper, this indeterminacy

is resolved by requiring that the factors f and g be unit-

scale and uncorrelated, Rff = Ir0 and Rgg = Ir. Alternative

normalizations, such as taking A,B to have unit norm columns

and Rff and Rii to be diagonal with non-increasing diagonal

elements, are useful for some analyses.

III. IDENTIFIABILITY OF MFA

Without further assumptions on the unobserved signal, inter-

ference, and noise, the only information that the observations

contain about the statistical properties of the latent vectors is in

Rxx. If a distinct triple (R′
ss,R

′
ii,Φ

′) of matrices structured

as in Section II sums to the same observation covariance Rxx,

then MFA can yield no meaningful conclusions about s, i, and

u. If only one such triple of appropriately structured matrices

sums to Rxx, then the MFA decomposition of Rxx is identified

for the specified channel sizes and factor numbers.
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Identification of Rxx requires two subproblems to be

solvable. First, it must be possible to uniquely isolate the

noise variance Φ from the combined signal-and-interference

covariance Rss +Rii. Second, it must be possible to uniquely

separate Rss +Rii, which is the noise-free part of the Rxx,

into the signal covariance Rss and the interference covariance

Rii. The observation covariance Rxx is identified if and only

if both subproblems have unique solutions.

However, as Rxx is not known a priori, it is instead

necessary to determine conditions on the channel sizes n and

factor numbers r which can guarantee that almost all Rxx with

the given n and r will admit a unique MFA decomposition.

MFA for those channel sizes and factor numbers is then

generically identifiable. Proofs of the propositions presented

here are provided in the journal version of this paper.

Requiring that these subproblems be solvable for all possible

Rxx is too restrictive, as degenerate cases will always exist.

As a simple example, if A,B are such that AAT + BBT

is diagonal, it is impossible to isolate Φ from AAT +BBT.

Instead of precisely determining all ways in which identification

can break down, we instead find conditions on n and r that

guarantee that the non-identified Rxx make up a null set and

so are ignorable for practical purposes. This type of approach

is called generic identifiability, and it is used for single-channel

FA [9], [10], as well as for low-rank matrix completion [11]. In

this paper, a subset of a d-dimensional real vector space is null

if its image under a linear isomorphism to R
d has Lebesgue

measure zero. A statement is generically true if it true for all

elements excepting a null subset.

A. Separation of Signal and Interference

For the MFA covariance model to be identified, the noise-free

part of the observation covariance, Rss+Rii, must be uniquely

separable into the signal covariance Rss and the interference

covariance Rii. This problem does not arise in exploratory

single-channel factor analysis. Although this unique separation

problem does not explicitly depend on the loading matrices

A and B, it is useful to frame the problem in terms of the

combined loading matrix [A B], which is of size n× (r0 + r)
and is obtained by horizontally concatenating A and B. In

this setting, unique separability is equivalent to whether

[A B][A B]T = [Ã B̃][Ã B̃]T (4)

implies that

Ã = AQ00, and B̃c = BcQcc, c = 1, . . . , C, (5)

for all A, Ã ∈ R
n×r0 and B, B̃ being channel-structured block

diagonal as described in Section II, where Q00 ∈ R
r0×r0 and

Qcc ∈ R
rc×rc are orthogonal matrices of the appropriate sizes.

A typical result in factor analysis (see, e.g., [12]) implies

that, for any equally sized real matrices X and Y, XXT equals

YYT if and only if Y = XQ for some orthogonal Q of the

appropriate size. This is easily seen as X and Y share singular

values and left singular vectors. Application of this result to

[A B] and [Ã B̃] implies that [Ã B̃] = [A B]Q, where Q is

an orthogonal matrix which is patterned as

Q =











r0 r1 rC
Q00 Q01 . . . Q0C r0
Q10 Q11 . . . Q1C r1

...
...

...

QC0 QC1 . . . QCC rC











, (6)

noting that blocks Qij are not themselves orthogonal. Taking

Rss = AAT, Rii = BBT and R̃ss = ÃÃT, R̃ii = B̃B̃T, (4)

implies that Rss + Rii = R̃ss + R̃ii, while (5) implies that

Rss = R̃ss and Rii = R̃ii. If the off-diagonal blocks of Q

are required to be zero, then (5) will follow from (4) and so

AAT +BBT will be uniquely separable.

This formulation highlights a difference between MFA

with r0 common factors and r1, . . . , rC unique factors and

a single-channel factor analysis of same data with r0 + r

factors and channel structure ignored. In the latter case, the

product [A B]Q for any orthogonal Q yields a valid factor

loading matrix, as no distinction is made between factors

which influence multiple channels and those which are channel-

specific. For MFA, the distinction between these types of

factors is imposed by the requirement that B be block-diagonal

with block sizes determined by n1, . . . , nc and r1, . . . , rC .

Therefore, in MFA, the transformation [A B]Q = [Ã B̃] must

yield a B̃ which also has the appropriate block structure. This

will clearly be the case if Q is block diagonal. However, the

converse is not true without restrictions on n and r, even if A

and B satisfy the lower-triangular conditions of [5, Sec. III].

In fact, if the dimensions of the signal and interference

subspaces are too large relative to the channel sizes, such non-

separability is typical. The following condition provides an

upper bound on r, above which almost all Rss +Rii will not

be uniquely separable into Rss and Rii. This can be obtained

by application of a theorem for confirmatory FA [13], which

evaluates the needed linear constraints on the loading matrix

to ensure it is locally determined.

Condition 1. The channel sizes n and factor numbers r satisfy

r0r +
1

2

C
∑

c=1

rc(r − rc) ≤

C
∑

c=1

rc(n− nc). (7)

Proposition 1. If the channel sizes n and factor numbers r

are such that (4) implies AAT = ÃÃT and BBT = B̃B̃T

for almost all MFA loading matrices A, Ã ∈ R
n×r0 and

B, B̃ ∈ R
n×r patterned as in Section II, then Condition 1 is

satisfied.

The above proposition provides an upper bound on which

values of n and r could allow the noise-free part of the

observation covariance to be generically uniquely separable. On

the other hand, the following proposition provides a sufficient

condition on [A B] which ensures that, if [A B]Q preserves

the channel structure of B, Q will be block diagonal. This

yields the unique separability of AAT +BBT. It is proven by

an extension of the technique of [14], which proves a related

result in confirmatory FA, to the block-structured case.
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Proposition 2. For MFA loading matrices A ∈ R
n×r0 and B ∈

R
n×r patterned as in Section II, suppose that, after possibly

renumbering the channels, the submatrices M1, . . . ,MC of

[A B] have full column rank, where Mc is

Mc =

[

A<c B<c

A>c 0

]

, M1 = [AT

2 . . . AT

C ]
T, (8)

with A<c = [AT

1 . . .A
T

c−1]
T, A>c = [AT

c+1 . . .A
T

C ]
T and

B<c = blkdiag(B1, . . . ,Bc−1). Then any orthogonal Q

patterned as (6) with [A B]Q = [Ã B̃] for some MFA loading

matrices Ã ∈ R
n×r0 and B̃ ∈ R

n×r must have Qij = 0 for

all i ̸= j.

Although framed in terms of the loading matrices A and

B, Proposition 2 also provides a result about Rss +Rii itself.

To see this, suppose A,A′ ∈ R
n×r0 and B,B′ ∈ R

n×r are

MFA loading matrices such that [A B][A B]T = Rss+Rii =
[A′ B′][A′ B′]T. If the conclusion of Proposition 2 is true for

A and B, then it is similarly true for A′ and B′, which follows

from the fact that [A′ B′] equals [A B]Q′ for some Q′ and

the product of block-diagonal matrices is block-diagonal. So,

if Rss +Rii equals AAT +BBT for any A and B such that

the hypothesis of Proposition 2 applies, then Rss +Rii can

be uniquely separated into Rss and Rii.

However, as Rss+Rii is not known, it is instead desirable to

establish conditions on the channel sizes n and factor numbers

r which ensure that Proposition 2 applies generically. The

following conditions, which are established by investigating

the structure of the submatrices M1, . . . ,MC , suffice to ensure

that Proposition 2 applies and hence that Rss+Rii is uniquely

separable in almost all cases. Although Condition 2 as stated

depends on the channel numbering, Proposition 3 shows that

the choice of channel numbering does not in fact affect the

generic separability.

Condition 2. The channel sizes n and factor numbers r satisfy

r0 +

c−1
∑

k=1

rk ≤ n− nc, (9)

for all c = 1, . . . , C.

Proposition 3. (Generic Separability of Rss+Rii) If Condition

2 is satisfied for some channel ordering, then the hypothesis

of Proposition 2 is satisfied for A ∈ R
n×r0 and B ∈ R

n×r

patterned as in Section II, excepting a null set of A and B.

Proposition 3 combined with Proposition 2 gives sufficient

conditions on the channel sizes and factor numbers to allow

for generic unique separability of Rss + Rii. Conversely,

Proposition 1 gives necessary conditions on n and r for the

same conclusion. To assess the size of the gap between the

two sets of conditions, note that if the inequalities in (9) hold

with equality, the necessary condition (7) will also hold with

equality. So, for some values of n and r, the necessary and

sufficient conditions coincide. This provides reason to believe

that the gap between the two conditions is not too large, which

is supported by the quantitative comparisons in Section IV.

B. Isolation of Noise

For an MFA observation covariance Rxx obtained by (3) to

be identified, the diagonal noise variance Φ must be uniquely

isolable from the low-rank portion of the observation covariance

Rss+Rii. A problem of this type has been studied extensively

in the literature on single-channel FA, as it is the crux of the

identifiability problem for exploratory single-channel FA [9].

In MFA however, the multi-channel aspect of the observations

alters the noise variance isolation problem, as the low-rank

part of the observation covariance has additional structure not

present in exploratory single-channel FA. This prevents direct

application of previous results, but the technique of [10] used

to prove the generic identifiability of the noise variance in

single-channel FA can be generalized to MFA.

In single-channel FA, the central criterion for determining

identifiability of the noise variances is

φ(n, r, ρ) =
r(r + 1)

2
−
ρ(ρ+ 1)

2
− ρ(r − ρ)− n,

for observation dimension n, factor number r, and ρ ∈ N. The

inequality φ(n, r, 2r − n) > 0 is equivalent to the Ledermann

bound [15] for n > 6, which provides the threshold for

identifiability in the single-channel case [9], [10].

For MFA, unique isolation of the noise variances depends

on a similar criterion,

ψ(n, r,ρ) = n+φ(n, r0, ρ0)+
C
∑

c=1

φ(nc, rc, ρc)+rc(r0−ρ0),

for non-negative integer vector ρ = [ρ0, ρ1, . . . , ρC ]
T. It can

be seen that ψ is not a function of the total number of factors

r0 + r alone, but instead depends on how those factors are

distributed. So, the channel structure influences whether Φ can

be uniquely isolated from Rss +Rii, even though Φ itself is

not channel-structured.

Unlike in the single-channel case, the isolation of Φ requires

that the minimum value of ψ be positive over a class of n′, r′

reduced from the original n, r, due to the constraints of the

channel structure on the interference component. The following

condition sets out the required class of reduced n′, r′, over

which ψ(n′, r′,ρ) > 0 for all valid ρ and for all members of

the class ensures that Φ can be uniquely isolated. The set of

reductions and valid ρ is M , defined below.

Condition 3. The channel sizes n and factor numbers r satisfy

r0 + r ≤ n. In addition, let ψ∗ be the smallest criterion value

over possible MFA reductions,

ψ∗ = min
(n′,r′,ρ)∈M

ψ(n′, r′,ρ) (10)

where M ⊂ N
C×N

C+1×N
C+1 contains (n′, r′,ρ) satisfying

n′
c ≤ nc, c = 1, . . . , C,

r′c = (rc − (nc − n′c))+, c = 1, . . . , C,

r′0 = [r0 −
∑C

c=1(nc − n′c − rc)+]+,

ρc ≤ min{r′c, 2(r
′
0 + r′c)− n′

c}, c = 1, . . . , C,

ρ0 = min{r0, 2r
′
0 +

∑C

c=1 2r
′
c − ρc − n′

c},

(11)

and
∑C

c=1 n
′
c > 0. Either ψ∗ > 0 or M is empty.
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