2023 57th Asilomar Conference on Signals, Systems, and Computers | 979-8-3503-2574-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/IEEECONF59524.2023.10476743

Multi-Channel Factor Analysis for Temporally and
Spatially Correlated Time Series

Gray Stanton
Statistics
Colorado State University
Fort Collins, USA
gstanton@colostate.edu

Haonan Wang
Statistics
Colorado State University
Fort Collins, USA
wanghn @stat.colostate.edu

Abstract—In Multi-Channel Factor Analysis (MFA), the spatial
covariance of a multi-channel observation is decomposed into
the covariances of latent signal, interference, and noise com-
ponents. In proposed applications, the observations also have
temporal correlations which may be of independent interest or
may influence the spatial covariance estimates. An extension
to MFA is proposed where the common and unique factor
series are synthesized using LTI filters with unknown transfer
functions. A novel block majorization-minimization procedure
for semi-parametric estimation of both spatial and temporal
correlations is summarized. Experiments show that the resulting
technique for spatio-temporal correlation analysis of a multi-
channel observation series improves on MFA when the factor
series are time-dependent.

Index Terms—factor analysis (FA), multi-channel factor anal-
ysis (MFA), space-time, time series

I. INTRODUCTION

Multi-channel factor analysis (MFA) is a technique for the
investigation of multi-channel observations that are composed
of an unknown signal that is present across all channels,
interferences that are confined to individual channels, and
anisotropic idiosyncratic noises. In [1], MFA is introduced
and several possible applications to communications and array
processing are discussed. However, in many of the proposed
applications, such as passive radar and multi-point cellular
network processing, the observations exhibit temporal corre-
lations in addition to the spatial correlations treated by MFA.
As in [2], [3], the observations are temporally and spatially
correlated time series.

The presence of substantial temporal correlations in the ob-
servation series alters the problem of detecting and estimating
spatial correlations [4], [5]. Even if the spatial correlations
are of primary interest, exploiting the temporal structure of
the time series often leads to improved performance. The
experiments of Section IV demonstrate this phenomenon in
the context of multi-channel factor analysis.

In Section II, a semi-parametric extension to MFA for
multi-channel vector-valued time series is proposed, where
a non-parametric model for the temporal correlations of the
signal and interferences is adjoined to the previous spatial
correlation structure of MFA. A three-step block majorization-
minimization (MM) procedure [6] is developed to estimate
the second-order spatio-temporal structure of the observation
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series. This is accomplished in the frequency domain by
optimizing a Gaussian log-likelihood objective in a fashion
analogous to the method of [1] for MFA estimation with in-
dependent observations, but with substantial differences in the
procedure details which are summarized in Section III. Finally,
Section IV contains the results of simulated experiments which
assess how the proposed modeling of temporal correlation
improves performance.

Notation

Matrices and vectors are written with bold-face uppercase
and lowercase symbols respectively, while scalars are denoted
with light-face symbols. The identity matrix of size n is
I,,. For the matrix D, DT and D" are its transpose and
conjugate transpose respectively. The operator blkdiag applied
to a list of matrices constructs the block-diagonal matrix with
said matrices as the on-diagonal blocks. The expectation of a
random quantity s is E[s]. The discrete Fourier transform of
a series x[t], t € Z is F{x} and the discrete convolution of
series x[t] and y[t] is (x*y)[t]. The function é[¢] is 1 if ¢ = 0
and 0 otherwise.

II. MODEL

Suppose that a measurement apparatus consists of C' het-
erogeneous sensors, which are presumed to capture differing
aspects of some shared underlying phenomenon. At time
t € Z, the cth sensor records m. scalar inputs which are
contained in the channel-c observation vector x.[t] € R™e.
Each time-series of observations made by the C' sensors is
treated as a distinct channel of information, and relevant
information about the shared phenomenon may be contained in
the second-order spatio-temporal properties of the all-channel
observation series.

A. Observation Model

The measurements in the cth channel are modeled using
three latent series, namely the signal s.[t] € R"¢, the interfer-
ence i.[t], and the idiosyncratic noise u.[t]. At each time, the
values of these three latent series in channel ¢ are summed to
form the channel-c observation vector,

Xc[t] = Sc[t} + ic[t} + uc[t]' (D
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The all-channel observation series x[t] is obtained by stacking
the observations in each in channels c=1,...,C as

x[t] = [x]] ... x5l

Similarly, s[t] = [s][t]...sL[t]]T, i[t] = [i[[1]...iL[t]7, and
uft] = [u][t]...ul[t]]T are the all-channel latent series. The
total number of scalar inputs is n = Zil ne. At time ¢, the
series values x[t], s[t], i[t], u[t] are n x 1 vectors.

The core assumption of multi-channel factor analysis is that
the signal and interferences live in different types of low-
dimensional subspaces. At each time ¢, the all-channel signal
s[t] lies within some subspace of the all-channel observation
space R”, where the dimension of the signal subspace is
known to be ry but the subspace itself is not known. The
signal subspace arises from the sensors’ relationship to the
underlying phenomenon and so is assumed to be constant
across time. If the columns of the common factor loading
matrix A € R"*" are a basis for the signal space, then s[t]
can be expressed as Af[t], where the common factors £]t] are
a latent time-series of ry x 1 vectors.

The channel-c interference ic[t] similarly lies within a low-
dimensional subspace whose dimension is known to be 7. but
is otherwise unknown. However, the channel-c interference
space is constrained to be a subspace of the observation space
for channel c only. As for the signal space, the interference
spaces are also taken to be constant across time. If the columns
B. € R"™*" are a basis for the channel-c interference
space, then i.[t] = B.g.[t] where g.[t] € R™ is the series
of unique factors for channel c. To effect the orthogonality
of the interference spaces, the unique factor loading matrix
is B = blkdiag(By,...,B¢). The unique factor series are
stacked into g[t] = [g7[t]...g5[t]]" and so the all-channel
interference series can be written as i[t] = Bg[t]. With these
definition, the all-channel observation series is expressed as

x[t] = s[t] + i[t] + u[t]
= Af[t] + Bglt] + ult]. @

B. Covariance Specification

The latent series are all assumed to have zero mean. As
the temporal properties of the signal and interference are not
known in advance, it is assumed only that they are wide-sense
stationary and admit Wold representations as

s[t] = A (K¢ wo)[t],

i.[1] = Bo(K,, * wo)lf] ®

c=1,...,C,

where K[t] € R™*" and K, [t] € R"*" are unknown
causal time-invariant linear filters which are coloring transfor-
mations for the common and channel-c unique factor series
respectively. Their matrix transfer functions are K¢ = F{Ks}
and g, = F{Kg_}. The series wy[t],k =0,..,C are white
noise processes with identity variance and are uncorrelated
across all lags for different values of k. By construction, st]

and i[t] are wide-sense stationary series which are uncorrelated
across all lags. Their covariance matrix functions are

Tao[t] = A(Ke « KD[]AT
Tii[t] = Bo(Kg, * KL )[BY,

where KT[t] = KT[—t]. Letting T';i[t] be the covariance
matrix function of the stacked interferences, we have T'y;[t] =
blkdiag(Ti,i, [t], - - -, Ticic[t]) as the interference series for
different channels are uncorrelated across all lags. Similarly,
s[t] and i[t] are uncorrelated across all lags. Finally, the noise
u[t] is temporally white with diagonal variance matrix ®,

Tuult] = ®0[t],

and is assumed to be uncorrelated with both the signal and
interference series across all lags.

With the preceding assumptions, the all-channel observation
series x[t] is zero mean and wide-sense stationary, with
covariance matrix function

Tyx[t] = Tss[t] + Tii[t] + Tuult]- 4)

Analysis of the second-order spatio-temporal relationships of
the all-channel observations x is performed in the frequency
domain. The additive construction of x[t] from the latent
series implies that the power spectral density Sxx is similarly
constructed,

Ses(e¥) = AK f(eiW)/c}(e*iW)AT,
Sii(e") = BICy (K, (e7)BT, (5)
Syx(€) = Sgs(€') + Sii(e) + @,

where B is blkdiag(Bi,...,B¢) and Kg(e¥) =
blkdiag(Ky, (), ..., Ky, ()) is similarly block-diagonal.

III. ESTIMATION
A. Approach

To estimate the spatio-temporal correlations of the latent
signal, interference, and response series, we assume that each
channel is sampled at T" equally-spaced times ¢t = 0,...,T—1.
That is, the data are C discrete time-series x1[t],. .., x¢[t] of
length T'.

As in the case of MFA with temporally independent ob-
servations, the estimation of the cross-sectional and temporal
covariance parameters is accomplished by maximization of
a Gaussian quasi-likelihood. However, when temporal de-
pendence is present, it is significantly simpler to perform
estimation in the frequency domain rather than the time
domain. Objective functions with the form of a Gaussian
log-likelihood in the frequency domain are called QGML
objectives [T] and have been extensively used in time series
analysis. The estimators obtained by minimization of such a
QGML objective are Whittle estimators [8], which maximize
of the principle part of a time-domain Gaussian likelihood [9]
and are asymptotically equivalent to the time-domain MLE.

In the frequency domain, the key datum is the all-channel
periodogram, which, for times ¢ = 0,...,7—1 and radial
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frequencies wy = 2nk/T for k = 0,...,|T/2] =
computed from the observations x[0],...,x[T — 1] as

Ir[k] = = ( x[tetten) (ST x(teiten) "

The finite-sample QGML objective then is

T-1
t=0

1 K

(i Sxx) = o7 D " log det Sy (wi) + tr S (wi) I [k].
k=0
(6)

To obtain the desired correlation estimates, we can mini-
mize ¢(I7;Sxx) over the class of observation power spectral
densities Sxx realizable by (5) for some parameter values
(A,B, K¢, Kg). However, there are both computational and
theoretical issues which must be addressed. The first issue is
that Sxx is unchanged under change of scale and orthonormal
bases of the factor spaces as well as frequency-varying unitary
transformation of the transfer functions. The second issue is
that the space of functional parameters K¢(e“) and Kg(e)
is too large to optimize over directly.

B. Invariants and Equivalence Class Representatives

In writing the signal processes s[t] as the time-varying
weighted combination of the columns of A, where the weight
process f[t] is obtained by passing white noise through the
linear filter with transfer function ICf(ei“), we introduce two
indeterminacies into our synthesis. First, any time-constant
change of basis of the factor space which takes A — AT
and f[t] — T 'f[t] leaves s[t] fixed. Second, if U(elw)
is a Hermitian-even unitary rg X rg matrix function, then
f'[t] synthesized as {f'} = (K¢U)(el“){wy} would have the
same second-order statistical properties as f[t]. However, we
can remove these indeterminacies and similar ones for the
interference process by restricting the set of loading matri-
ces and transfer functions while not reducing the realizable
correlations of the latent series.

This is accomplished by selecting unique representatives
of each class of (A, B, K¢, Kg) which yield the same Sxx.
However, the minimizing values themselves are only arbi-
trary representatives of entire equivalence classes. Therefore,
second-order quantities such as T'ss[t], Tyi[t] and Syx(el)
are used when interpreting the obtained results, as they are
equal for any choice of representative. Details of the unique-
representative constraints are provided in the journal version
of this paper.

C. Functional Basis Expansion

A flexible model for the transfer functions C¢ and KCg of the
latent factor series is obtained by approximating the functional
parameters with their expansions relative to a chosen collection
of basis functions. Significant computational advantages are
obtained if local basis functions are used, as then certain
matrices used in the estimation procedure will be sparse.
Therefore, we employ the frequently-used B-spline basis. Let
B ¢,p(w) denote the mth B-spline basis function of order ¢
with knot vector p, 0 = py < p1 < ..., < ppr+e = 7. The

functions B,, ¢, are uniquely defined up to normalization and
can be computed via the Cox-de Boor [10] recursion.

With this choice of basis, the unknown transfer functions
K¢ and Kg are approximated as

Kearlk] = SN Lo Boop(wi),
]Cg,]\/f[k] - Z%:l RmBm,Z,p(wk)v

where the L,, € C"*" are the lower-triangular matrix
coefficients for the common factor transfer function and
R, € C'*" are the lower-triangular matrix coefficients
for the channel-c unique factor transfer function with R,, =
blkdiag(R. 1, - -, Rm,c).

D. Optimization Problem

The QGML estimators of the MFA parameters based on
the observations at times t = 0,...,7 — 1 and using M basis
functions are obtained by solving

i (Ir: A, B,® {L,}.{R,,
ape Y (g, A 4B 2 {In} {Ru}) - (7)

where {(I7; A, B, ®,{L,,},{R.}) is (6) with
Sxx (wi) = AKe nr[K]KE 1 [K]A + BICg, 0 [K]KE 3/ [K]B + ®.

As is the case for MFA with independent observations, opti-
mization of ¢ can be accomplished by an alternating block
Majorization-Minimization (MM) procedure [6], where the
parameters blocks @, (A, B), and ({L,,}, {R,,}) are updated
cyclically with the other two blocks held fixed. For notational
convenience, let C be the block matrix [A B], let K[k]
be blkdiag (K¢ as[k], Kg a[k]), and let I be the frequency-
average periodogram (K + 1)1 Z?:o Ir[k]. The objective
can be separated into £(Ir) = {71 (I7) + ¢1,(Ir), which are

lra(Ir; @) = >0 1og o + I )imm/ Prnims
lr2(Ir; A, B, @, {Ly}, {Rn}) = S i [log det E[K]
— (B KK KICT@ I [k @ CKK])] - (K +1)7!
where Z[k] is an abbreviation of
Ek;A,B,®, {L,}, {R,}] =1, + KHECT® ' CK[k].

The first quantity, {71, by itself would be simple to op-
timize, while the second quantity, {7, is the average of
frequency-dependent terms, each of which admits a majorizing
surrogate function. The surrogate functions used follow from
the fact that, in the kth term of {7 2, each block of parameters
enter the matrices E and KCH[k]CT® 11 [k]® ' CK[k] only
at most quadratically. Hence, the solution of (7) is obtained by
iterative closed-form solution of linear or quadratic subprob-
lems. The sth iteration consists of

1) (Optimization for ®) Using the previous iteration’s pa-

rameter values, the noise variance is updated by extract-
ing the diagonal of a frequency-averaged transformation
of the periodogram.

2) (Optimization for A, B) Holding the other parameters

fixed, solving a non-frequency-dependent matrix least-
squares problem gives updates for A and B.
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3) (Optimization for {L,,}, {R,,}) Mapping Ir[k] onto
the factor space, the objective is majorized by a positive
definite quadratic form in {L,,} and {R,,}. Use of
a local basis ensures that the form can be minimized
efficiently with a banded least-squares solver.

4) (Enforcement of Unique-Representative Constraints) In
the previous steps, the requirements on (A, B, K¢, Kg)
which select a unique representative, as mentioned
in Section III-B, are not enforced. However, we can
transform the obtained values to satisfy the constraints
without changing the objective value.

Details of the procedure and convergence results are provided
in the journal version of this paper.

IV. EXPERIMENTS

In this section, we examine how the proposed MFA exten-
sion to model the temporal correlations in the latent series
improves model quality. In particular, the quality of the esti-
mates for the lag-zero spatial correlation matrix R = T's[0]+
I';i[0] + ® under varying conditions is explored in Section
IV-A. The proposed MFA extension can be directly compared
to MFA with the assumption of independent observations as
presented in [1]. This allows the evaluation of how modeling
the temporal correlations in the latent series in addition to the
their spatial correlations improves performance.

In the following experiments, the relative contribution of
the signal, interference, and noise series to the channel-c
observation are quantified by their lag-zero power ratios,

Ns,e = tr(Ts,s.[0])/ tr(Re),
Mie = tr(Fyi, [0])/ r(Re),
N, = tr(®.)/ tr(R.).

Here, R. = TI'x_x_[0] is the zero-lag observation covariance
within channel ¢ and T's g, [0] and T' ; [0] are respectively
the n. X n. blocks on the main diagonal of the lag-zero signal
and interference covariances in channel c. All experiments use
cubic B-splines (M = 6,¢ = 4) with equidistant knots.

A. Spatial Correlation Estimation

To understand how the presence of non-trivial temporal
correlations in the latent series affect estimation of the zero-lag
spatial correlation matrix R = I'x[0], we simulate x[t] using
temporally correlated latent factor series. Under mild moment
conditions, the estimation procedure in [1], which assumes
that the observations are temporally independent, still allows
for consistent estimation of R even when the observations are
temporally dependent. Therefore, the estimates Rinq obtained
uelng the method of [1] can be compared to the estimated
Rdep = AAT + BBT + & obtained from the procedure of
Section III-D.

To make this comparison, we replicate the experimental
settings of Experiment 3 in [1, Sec. IV.c], where C' = 4
channels of sizes Ny = 6, No = 8§ N3 = 10 and Ny = 12,
with 79 = 2 common factors and r, = 1 unique factor for

each channel. The proportion of variance explained by signal,
interference, and noise components is equal across channels,

Ns,c = 0.1 M,c = 0.5 Nu,e = 04c=1,...,C.

The latent factors are independent realizations of a Gaussian
AR(1) process with AR coefficient ¢ and error variance
o?. The factor loadings and lag-zero factor covariances are
normalized so that the lag-zero covariance of f[t] and g.[t] ¢ =
1,...,C is the identity. The measure of spatial covariance
estimation quality is the Normalized Mean-Squared Error
(NMSE), defined as

IR~ RI3

NMSE=FE ,
IR

which we estimate by averaging 400 Monte-Carlo trials at each
simulation setting.

In Figures la and 1b, we compare the achieved NMSE
for varying number of samples 7" when the latent factor
exhibit temporal correlations, ¢ = 0.9,0 = 0.435 versus
the setting where the latent factors are uncorrelated across
time, ¢ = 0.0, = 1.0. Three estimators of R are compared,
namely the estimated f{dep based on modeling the temporal
correlations, the estimated f{ind based on the assumption
of independent observations, and the non-parametric sample
covariance estimate Ramp = 7" ZZ;O x[t]xT[t].

Figure la demonstrates that f{dep exhibits improved per-
formance for estimation of the spatial covariance when non-
zero temporal correlation in the latent factors is present, and
that the performance gap between Rdep and Rmd increases as
the number of samples increases. Conversely, when the latent
factors are temporally uncorrelated, Figure 1b shows that Rdep
and Ring perform similarly except for small sample sizes.

To further compare how varying levels of temporal depen-
dence affect the estimation of the cross-sectional parameters,
Figure 1c compares the achieved NMSE with T' = 400 sam-
ples and varying AR(1) coefficient. For low levels of temporal
dependence of the latent factors, the performances of Rind and
ﬁdep are comparable. However, for high levels of temporal
dependence, Rdep has a significant advantage. For a fixed
sample length, increasing the temporal dependence reduces the
amount of information present and so all estimators perform
worse when the temporal correlation is high.

V. DISCUSSION

Many array processing problems center around combining
multiple observation series in distinct channels, with the goal
of recovering the commonalities across the different chan-
nels when both channel-specific interference and idiosyncratic
noise are present. In Section II, an extension to MFA that
models the multi-channel spatio-temporal correlations in the
observation series is proposed, which augments the spatial
covariance parameters with unknown transfer functions for
the latent factors. Section III describes a novel majorization-
minimization estimation method for the covariance parameters.

The experiments of Section IV demonstrate that modeling
the second order temporal properties of the observations
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improves performance when the observations have strong

Estimator temporal correlations. As array processing problems often

-1 — Dep.MFA involve both spatially and temporally correlated observations,
== Indep. MFA the proposed extension to MFA is a step forward to attaining
T Semele Cov the envisioned function of multi-channel factor analysis.
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