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Abstract—In Multi-Channel Factor Analysis (MFA), the spatial
covariance of a multi-channel observation is decomposed into
the covariances of latent signal, interference, and noise com-
ponents. In proposed applications, the observations also have
temporal correlations which may be of independent interest or
may influence the spatial covariance estimates. An extension
to MFA is proposed where the common and unique factor
series are synthesized using LTI filters with unknown transfer
functions. A novel block majorization-minimization procedure
for semi-parametric estimation of both spatial and temporal
correlations is summarized. Experiments show that the resulting
technique for spatio-temporal correlation analysis of a multi-
channel observation series improves on MFA when the factor
series are time-dependent.

Index Terms—factor analysis (FA), multi-channel factor anal-
ysis (MFA), space-time, time series

I. INTRODUCTION

Multi-channel factor analysis (MFA) is a technique for the

investigation of multi-channel observations that are composed

of an unknown signal that is present across all channels,

interferences that are confined to individual channels, and

anisotropic idiosyncratic noises. In [1], MFA is introduced

and several possible applications to communications and array

processing are discussed. However, in many of the proposed

applications, such as passive radar and multi-point cellular

network processing, the observations exhibit temporal corre-

lations in addition to the spatial correlations treated by MFA.

As in [2], [3], the observations are temporally and spatially

correlated time series.

The presence of substantial temporal correlations in the ob-

servation series alters the problem of detecting and estimating

spatial correlations [4], [5]. Even if the spatial correlations

are of primary interest, exploiting the temporal structure of

the time series often leads to improved performance. The

experiments of Section IV demonstrate this phenomenon in

the context of multi-channel factor analysis.

In Section II, a semi-parametric extension to MFA for

multi-channel vector-valued time series is proposed, where

a non-parametric model for the temporal correlations of the

signal and interferences is adjoined to the previous spatial

correlation structure of MFA. A three-step block majorization-

minimization (MM) procedure [6] is developed to estimate

the second-order spatio-temporal structure of the observation

series. This is accomplished in the frequency domain by

optimizing a Gaussian log-likelihood objective in a fashion

analogous to the method of [1] for MFA estimation with in-

dependent observations, but with substantial differences in the

procedure details which are summarized in Section III. Finally,

Section IV contains the results of simulated experiments which

assess how the proposed modeling of temporal correlation

improves performance.

Notation

Matrices and vectors are written with bold-face uppercase

and lowercase symbols respectively, while scalars are denoted

with light-face symbols. The identity matrix of size n is

In. For the matrix D, DT and DH are its transpose and

conjugate transpose respectively. The operator blkdiag applied

to a list of matrices constructs the block-diagonal matrix with

said matrices as the on-diagonal blocks. The expectation of a

random quantity s is E[s]. The discrete Fourier transform of

a series x[t], t ∈ Z is F{x} and the discrete convolution of

series x[t] and y[t] is (x∗y)[t]. The function δ[t] is 1 if t = 0
and 0 otherwise.

II. MODEL

Suppose that a measurement apparatus consists of C het-

erogeneous sensors, which are presumed to capture differing

aspects of some shared underlying phenomenon. At time

t ∈ Z, the cth sensor records nc scalar inputs which are

contained in the channel-c observation vector xc[t] ∈ R
nc .

Each time-series of observations made by the C sensors is

treated as a distinct channel of information, and relevant

information about the shared phenomenon may be contained in

the second-order spatio-temporal properties of the all-channel

observation series.

A. Observation Model

The measurements in the cth channel are modeled using

three latent series, namely the signal sc[t] ∈ R
nc , the interfer-

ence ic[t], and the idiosyncratic noise uc[t]. At each time, the

values of these three latent series in channel c are summed to

form the channel-c observation vector,

xc[t] = sc[t] + ic[t] + uc[t]. (1)
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The all-channel observation series x[t] is obtained by stacking

the observations in each in channels c = 1, . . . , C as

x[t] ≡
[

xT

1 [t] . . . xT

C [t]
]T
.

Similarly, s[t] ≡ [sT1 [t] . . . s
T

C [t]]
T, i[t] ≡ [iT1 [t] . . . i

T

C [t]]
T, and

u[t] ≡ [uT

1 [t] . . .u
T

C [t]]
T are the all-channel latent series. The

total number of scalar inputs is n ≡
∑C

c=1 nc. At time t, the

series values x[t], s[t], i[t],u[t] are n× 1 vectors.

The core assumption of multi-channel factor analysis is that

the signal and interferences live in different types of low-

dimensional subspaces. At each time t, the all-channel signal

s[t] lies within some subspace of the all-channel observation

space R
n, where the dimension of the signal subspace is

known to be r0 but the subspace itself is not known. The

signal subspace arises from the sensors’ relationship to the

underlying phenomenon and so is assumed to be constant

across time. If the columns of the common factor loading

matrix A ∈ R
n×r0 are a basis for the signal space, then s[t]

can be expressed as Af [t], where the common factors f [t] are

a latent time-series of r0 × 1 vectors.

The channel-c interference ic[t] similarly lies within a low-

dimensional subspace whose dimension is known to be rc but

is otherwise unknown. However, the channel-c interference

space is constrained to be a subspace of the observation space

for channel c only. As for the signal space, the interference

spaces are also taken to be constant across time. If the columns

Bc ∈ R
nc×rc are a basis for the channel-c interference

space, then ic[t] = Bcgc[t] where gc[t] ∈ R
rc is the series

of unique factors for channel c. To effect the orthogonality

of the interference spaces, the unique factor loading matrix

is B = blkdiag(B1, . . . ,BC). The unique factor series are

stacked into g[t] = [gT

1 [t] . . .g
T

C [t]]
T and so the all-channel

interference series can be written as i[t] = Bg[t]. With these

definition, the all-channel observation series is expressed as

x[t] = s[t] + i[t] + u[t]

= Af [t] +Bg[t] + u[t].
(2)

B. Covariance Specification

The latent series are all assumed to have zero mean. As

the temporal properties of the signal and interference are not

known in advance, it is assumed only that they are wide-sense

stationary and admit Wold representations as

s[t] = A(Kf ∗w0)[t],

ic[t] = Bc(Kgc ∗wc)[t] c = 1, . . . , C,
(3)

where Kf [t] ∈ R
r0×r0 and Kgc [t] ∈ R

rc×rc are unknown

causal time-invariant linear filters which are coloring transfor-

mations for the common and channel-c unique factor series

respectively. Their matrix transfer functions are Kf = F{Kf}
and Kgc

= F{Kgc
}. The series wk[t], k = 0, . . , C are white

noise processes with identity variance and are uncorrelated

across all lags for different values of k. By construction, s[t]

and i[t] are wide-sense stationary series which are uncorrelated

across all lags. Their covariance matrix functions are

Γss[t] = A(Kf ∗K
†
f )[t]A

T

Γicic [t] = Bc(Kgc
∗K†

gc
)[t]BT

c ,

where K†[t] = KT[−t]. Letting Γii[t] be the covariance

matrix function of the stacked interferences, we have Γii[t] =
blkdiag(Γi1i1 [t], . . . ,ΓiC iC [t]) as the interference series for

different channels are uncorrelated across all lags. Similarly,

s[t] and i[t] are uncorrelated across all lags. Finally, the noise

u[t] is temporally white with diagonal variance matrix Φ,

Γuu[t] = Φδ[t],

and is assumed to be uncorrelated with both the signal and

interference series across all lags.

With the preceding assumptions, the all-channel observation

series x[t] is zero mean and wide-sense stationary, with

covariance matrix function

Γxx[t] = Γss[t] + Γii[t] + Γuu[t]. (4)

Analysis of the second-order spatio-temporal relationships of

the all-channel observations x is performed in the frequency

domain. The additive construction of x[t] from the latent

series implies that the power spectral density Sxx is similarly

constructed,

Sss(e
iω) = AKf (e

iω)KT

f (e
−iω)AT,

Sii(e
iω) = BKg(e

iω)KT

g (e
−iω)BT,

Sxx(e
iω) = Sss(e

iω) + Sii(e
iω) +Φ,

(5)

where B is blkdiag(B1, . . . ,BC) and Kg(e
iω) =

blkdiag(Kg1(e
iω), . . . ,Kg1(e

iω)) is similarly block-diagonal.

III. ESTIMATION

A. Approach

To estimate the spatio-temporal correlations of the latent

signal, interference, and response series, we assume that each

channel is sampled at T equally-spaced times t = 0, . . . , T−1.

That is, the data are C discrete time-series x1[t], . . . ,xC [t] of

length T .

As in the case of MFA with temporally independent ob-

servations, the estimation of the cross-sectional and temporal

covariance parameters is accomplished by maximization of

a Gaussian quasi-likelihood. However, when temporal de-

pendence is present, it is significantly simpler to perform

estimation in the frequency domain rather than the time

domain. Objective functions with the form of a Gaussian

log-likelihood in the frequency domain are called QGML

objectives [7] and have been extensively used in time series

analysis. The estimators obtained by minimization of such a

QGML objective are Whittle estimators [8], which maximize

of the principle part of a time-domain Gaussian likelihood [9]

and are asymptotically equivalent to the time-domain MLE.

In the frequency domain, the key datum is the all-channel

periodogram, which, for times t = 0, . . . , T−1 and radial
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frequencies ωk = 2πk/T for k = 0, . . . , ⌊T/2⌋ ≡ K, is

computed from the observations x[0], . . . ,x[T − 1] as

IT [k] =
1

T

(
∑T−1

t=0 x[t]e−itωk

)(
∑T−1

t=0 x[t]e−itωk

)H
.

The finite-sample QGML objective then is

ℓ(IT ;Sxx) ≡
1

K + 1

K
∑

k=0

log detSxx(ωk) + trS−1
xx (ωk)IT [k].

(6)

To obtain the desired correlation estimates, we can mini-

mize ℓ(IT ;Sxx) over the class of observation power spectral

densities Sxx realizable by (5) for some parameter values

(A,B,Kf ,Kg). However, there are both computational and

theoretical issues which must be addressed. The first issue is

that Sxx is unchanged under change of scale and orthonormal

bases of the factor spaces as well as frequency-varying unitary

transformation of the transfer functions. The second issue is

that the space of functional parameters Kf (e
iω) and Kg(e

iω)
is too large to optimize over directly.

B. Invariants and Equivalence Class Representatives

In writing the signal processes s[t] as the time-varying

weighted combination of the columns of A, where the weight

process f [t] is obtained by passing white noise through the

linear filter with transfer function Kf (e
iω), we introduce two

indeterminacies into our synthesis. First, any time-constant

change of basis of the factor space which takes A 7→ AT

and f [t] 7→ T−1f [t] leaves s[t] fixed. Second, if U(eiω)
is a Hermitian-even unitary r0 × r0 matrix function, then

f ′[t] synthesized as {f ′} = (KfU)(eiω){w0} would have the

same second-order statistical properties as f [t]. However, we

can remove these indeterminacies and similar ones for the

interference process by restricting the set of loading matri-

ces and transfer functions while not reducing the realizable

correlations of the latent series.

This is accomplished by selecting unique representatives

of each class of (A,B,Kf ,Kg) which yield the same Sxx.

However, the minimizing values themselves are only arbi-

trary representatives of entire equivalence classes. Therefore,

second-order quantities such as Γss[t],Γii[t] and Sxx(e
iω)

are used when interpreting the obtained results, as they are

equal for any choice of representative. Details of the unique-

representative constraints are provided in the journal version

of this paper.

C. Functional Basis Expansion

A flexible model for the transfer functions Kf and Kg of the

latent factor series is obtained by approximating the functional

parameters with their expansions relative to a chosen collection

of basis functions. Significant computational advantages are

obtained if local basis functions are used, as then certain

matrices used in the estimation procedure will be sparse.

Therefore, we employ the frequently-used B-spline basis. Let

Bm,ℓ,p(ω) denote the mth B-spline basis function of order ℓ
with knot vector p, 0 = p0 ≤ p1 ≤ . . . ,≤ pM+ℓ = π. The

functions Bm,ℓ,p are uniquely defined up to normalization and

can be computed via the Cox-de Boor [10] recursion.

With this choice of basis, the unknown transfer functions

Kf and Kg are approximated as

Kf ,M [k] =
∑M

m=1 LmBm,ℓ,p(ωk),

Kg,M [k] =
∑M

m=1 RmBm,ℓ,p(ωk),

where the Lm ∈ C
r0×r0 are the lower-triangular matrix

coefficients for the common factor transfer function and

Rm,c ∈ C
rc×rc are the lower-triangular matrix coefficients

for the channel-c unique factor transfer function with Rm =
blkdiag(Rm,1, . . . ,Rm,C).

D. Optimization Problem

The QGML estimators of the MFA parameters based on

the observations at times t = 0, . . . , T − 1 and using M basis

functions are obtained by solving

min
(A,B,Φ,{Lm},{Rm})

ℓ(IT ;A,B,Φ, {Lm}, {Rm}) (7)

where ℓ(IT ;A,B,Φ, {Lm}, {Rm}) is (6) with

Sxx(ωk) = AKf ,M [k]KH

f ,M [k]A+BKg,M [k]KH

g,M [k]B+Φ.

As is the case for MFA with independent observations, opti-

mization of ℓ can be accomplished by an alternating block

Majorization-Minimization (MM) procedure [6], where the

parameters blocks Φ, (A,B), and ({Lm}, {Rm}) are updated

cyclically with the other two blocks held fixed. For notational

convenience, let C be the block matrix [A B], let K[k]
be blkdiag(Kf ,M [k],Kg,M [k]), and let IT be the frequency-

average periodogram (K + 1)−1
∑K

k=0 IT [k]. The objective

can be separated into ℓ(IT ) = ℓT,1(IT ) + ℓT2
(IT ), which are

ℓT,1(IT ;Φ) =
∑n

m=1 log Φmm + [IT ]mm/Φmm,

ℓT,2(IT ;A,B,Φ, {Lm}, {Rm}) =
∑K

k=0

[

log detΞ[k]

− tr(Ξ−1[k]KH[k]CTΦ−1IT [k]Φ
−1CK[k])

]

· (K + 1)−1

where Ξ[k] is an abbreviation of

Ξ[k;A,B,Φ, {Lm}, {Rm}] ≡ Ir +KH[k]CTΦ−1CK[k].

The first quantity, ℓT,1, by itself would be simple to op-

timize, while the second quantity, ℓT,2, is the average of

frequency-dependent terms, each of which admits a majorizing

surrogate function. The surrogate functions used follow from

the fact that, in the kth term of ℓT,2, each block of parameters

enter the matrices Ξ and KH[k]CTΦ−1IT [k]Φ
−1CK[k] only

at most quadratically. Hence, the solution of (7) is obtained by

iterative closed-form solution of linear or quadratic subprob-

lems. The sth iteration consists of

1) (Optimization for Φ) Using the previous iteration’s pa-

rameter values, the noise variance is updated by extract-

ing the diagonal of a frequency-averaged transformation

of the periodogram.

2) (Optimization for A,B) Holding the other parameters

fixed, solving a non-frequency-dependent matrix least-

squares problem gives updates for A and B.
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3) (Optimization for {Lm}, {Rm}) Mapping IT [k] onto

the factor space, the objective is majorized by a positive

definite quadratic form in {Lm} and {Rm}. Use of

a local basis ensures that the form can be minimized

efficiently with a banded least-squares solver.

4) (Enforcement of Unique-Representative Constraints) In

the previous steps, the requirements on (A,B,Kf ,Kg)
which select a unique representative, as mentioned

in Section III-B, are not enforced. However, we can

transform the obtained values to satisfy the constraints

without changing the objective value.

Details of the procedure and convergence results are provided

in the journal version of this paper.

IV. EXPERIMENTS

In this section, we examine how the proposed MFA exten-

sion to model the temporal correlations in the latent series

improves model quality. In particular, the quality of the esti-

mates for the lag-zero spatial correlation matrix R = Γss[0]+
Γii[0] + Φ under varying conditions is explored in Section

IV-A. The proposed MFA extension can be directly compared

to MFA with the assumption of independent observations as

presented in [1]. This allows the evaluation of how modeling

the temporal correlations in the latent series in addition to the

their spatial correlations improves performance.

In the following experiments, the relative contribution of

the signal, interference, and noise series to the channel-c
observation are quantified by their lag-zero power ratios,

ηs,c = tr(Γscsc [0])/ tr(Rc),

ηi,c = tr(Γicic [0])/ tr(Rc),

ηu,c = tr(Φc)/ tr(Rc).

Here, Rc = Γxcxc
[0] is the zero-lag observation covariance

within channel c and Γscsc [0] and Γicic [0] are respectively

the nc×nc blocks on the main diagonal of the lag-zero signal

and interference covariances in channel c. All experiments use

cubic B-splines (M = 6, ℓ = 4) with equidistant knots.

A. Spatial Correlation Estimation

To understand how the presence of non-trivial temporal

correlations in the latent series affect estimation of the zero-lag

spatial correlation matrix R = Γxx[0], we simulate x[t] using

temporally correlated latent factor series. Under mild moment

conditions, the estimation procedure in [1], which assumes

that the observations are temporally independent, still allows

for consistent estimation of R even when the observations are

temporally dependent. Therefore, the estimates R̂ind obtained

using the method of [1] can be compared to the estimated

R̂dep = ÂÂT + B̂B̂T + Φ̂ obtained from the procedure of

Section III-D.

To make this comparison, we replicate the experimental

settings of Experiment 3 in [1, Sec. IV.c], where C = 4
channels of sizes N1 = 6, N2 = 8, N3 = 10 and N4 = 12,

with r0 = 2 common factors and rc = 1 unique factor for

each channel. The proportion of variance explained by signal,

interference, and noise components is equal across channels,

ηs,c = 0.1 ηi,c = 0.5 ηu,c = 0.4 c = 1, . . . , C.

The latent factors are independent realizations of a Gaussian

AR(1) process with AR coefficient ϕ and error variance

σ2. The factor loadings and lag-zero factor covariances are

normalized so that the lag-zero covariance of f [t] and gc[t] c =
1, . . . , C is the identity. The measure of spatial covariance

estimation quality is the Normalized Mean-Squared Error

(NMSE), defined as

NMSE = E

[

||R− R̂||2F
||R||2F

]

,

which we estimate by averaging 400 Monte-Carlo trials at each

simulation setting.

In Figures 1a and 1b, we compare the achieved NMSE

for varying number of samples T when the latent factor

exhibit temporal correlations, ϕ = 0.9, σ = 0.435 versus

the setting where the latent factors are uncorrelated across

time, ϕ = 0.0, σ = 1.0. Three estimators of R are compared,

namely the estimated R̂dep based on modeling the temporal

correlations, the estimated R̂ind based on the assumption

of independent observations, and the non-parametric sample

covariance estimate R̂samp = T−1
∑T

t=0 x[t]x
T[t].

Figure 1a demonstrates that R̂dep exhibits improved per-

formance for estimation of the spatial covariance when non-

zero temporal correlation in the latent factors is present, and

that the performance gap between R̂dep and R̂ind increases as

the number of samples increases. Conversely, when the latent

factors are temporally uncorrelated, Figure 1b shows that R̂dep

and R̂ind perform similarly except for small sample sizes.

To further compare how varying levels of temporal depen-

dence affect the estimation of the cross-sectional parameters,

Figure 1c compares the achieved NMSE with T = 400 sam-

ples and varying AR(1) coefficient. For low levels of temporal

dependence of the latent factors, the performances of R̂ind and

R̂dep are comparable. However, for high levels of temporal

dependence, R̂dep has a significant advantage. For a fixed

sample length, increasing the temporal dependence reduces the

amount of information present and so all estimators perform

worse when the temporal correlation is high.

V. DISCUSSION

Many array processing problems center around combining

multiple observation series in distinct channels, with the goal

of recovering the commonalities across the different chan-

nels when both channel-specific interference and idiosyncratic

noise are present. In Section II, an extension to MFA that

models the multi-channel spatio-temporal correlations in the

observation series is proposed, which augments the spatial

covariance parameters with unknown transfer functions for

the latent factors. Section III describes a novel majorization-

minimization estimation method for the covariance parameters.

The experiments of Section IV demonstrate that modeling

the second order temporal properties of the observations
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(a) Factor series are AR(1) with φ = 0.9
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(c) Varying temporal correlation with T = 400

Fig. 1: Normalized mean-squared error achieved by estimators

of zero-lag cross-sectional covariance R with varying T at

different temporal correlations (1a, 1b) and varying temporal

correlations with fixed T (1c).

improves performance when the observations have strong

temporal correlations. As array processing problems often

involve both spatially and temporally correlated observations,

the proposed extension to MFA is a step forward to attaining

the envisioned function of multi-channel factor analysis.
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