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This paper discusses modelling and numerical
issues in the simulation of the Landau-de Gennes
(LdG) model of nematic liquid crystals (LCs) with
cholesteric effects. We propose a fully implicit,
(weighted) L2 gradient flow for computing energy
minimizers of the LdG model, and note a time-
step restriction for the flow to be energy decreasing.
Furthermore, we give a mesh size restriction,
for finite-element discretizations, that is critical
to avoid spurious numerical artifacts in discrete
minimizers, particularly when simulating cholesteric
LCs that exhibit ‘twist.’ Furthermore, we perform a
computational exploration of the model and present
several numerical simulations in three dimensions, on
both slab geometries and spherical shells, with our
finite-element method. The simulations are consistent
with experiments, illustrate the richness of the
cholesteric model, and demonstrate the importance of
the mesh size restriction.

1. Introduction
New types of materials are a necessary component
in many new technologies [1,2]. Liquid crystals (LCs),
in particular, are finding innovative uses in many
material design problems. Originally, nematic LCs
were developed and commercialized for their optical
properties [3–8], which is what enables LC displays.

Many nematic LCs are characterized by several
material constants [9,10], which provide useful tuning
parameters that can be tailored to specific applications.
This paper is concerned with the modelling and
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numerical simulation of a particular sub-type of LC which are known as cholesteric nematic
LCs, where the molecules have a chiral structure that affects their actuation and equilibrium
behaviour [3,11,12]. Cholesteric LCs are present in many biological systems, such as viruses [13],
chitin [14] and the structured colouring of the scarab beetle [15]. These materials often exhibit
stripe patterns in their optical response, which can be exploited for engineering materials for the
built environment [16,17]. This paper presents a numerical method and analysis for simulating
cholesteric LCs in order to predict their structural features. Numerical modelling can yield greater
insight into the functional effects of cholesteric LCs in biological systems and enable the design
of programmable materials [18–20].

Many numerical methods and implementations exist for the standard Landau-de Gennes
(LdG) model, e.g. [21–28]. These methods have also been extended to tackle cholesteric LCs
[11,12,29,30]. However, to the best of our knowledge, a proper numerical analysis of the general
LdG model that includes the cholesteric term appears to be lacking.

This paper gives an overview of numerical analysis issues that can arise in the general LdG
model with cholesteric effects. We address both computing L2 gradient flow dynamics, as well
as solving the equilibrium equations that characterize a local minimizer. In particular, time-
step restrictions are needed to guarantee energy decrease of the gradient flow (e.g. even for the
well-known convex-splitting scheme for handling the bulk potential). In addition, a mesh-size
restriction appears that is not immediately obvious, i.e. if the computational mesh size is not
small enough, unphysical solutions may occur (i.e. the computed local minimizer may exhibit
numerical artifacts). Furthermore, we investigate two slightly different cholesteric models which
can potentially produce different results depending on the material parameters (e.g. the twist)
and whether other physics is coupled to the LC model (e.g. electric fields). We also demonstrate
that the choice of initial condition can significantly affect which local minimizer is found, as well
as the speed of convergence to a solution.

Part of the contribution of this paper is to present these issues, and how to handle them, to
a diverse audience of computational scientists. Another contribution is to explore the cholesteric
LdG model and illustrate the rich phenomena that result from it; see [11,12,17] for related work.
Our presentation here should enable more robust computations for exploring the LC physics and
device design of systems that are governed by the cholesteric LdG model.

We summarize some notational conventions we use in this paper. We focus on three
dimensional LC models; thus 2-tensors are elements of R

3×3 denoted by standard capital letters,
e.g. the 3 × 3 identity tensor is written as I. Constants and scalar-valued functions will be denoted
by lowercase letters. Moreover, Greek letters will typically denote certain important functions and
constants. Vectors will be denoted by boldface lowercase letters.

Let the D operator denote differentiation of a scalar-valued function with respect to each
argument of a tensor; i.e. for any function φ mapping to R, define

Dφ(P) :=
[
∂φ

∂Pij

]3

i,j=1

, D2φ(P) :=
[

∂2φ

∂Pij∂Pkl

]3

i,j,k,l=1

, ∀ P ∈ R
3×3,

i.e. the gradient and Hessian operators. For derivatives with respect to spatial coordinates, we
use ∂iφ := ∂xiφ, where x = (x1, x2, x3)† is the spatial coordinate, or we use the comma-subscript
notation, e.g. φ,i := ∂iφ and Pij,k := ∂kPij.

Next, we define the L2(Ω), L2(Γ ) inner products and associated norms

(A, B)Ω :=
∫
Ω

A : B dx, ||A||20,Ω := (A, A)Ω , (A, B)Γ :=
∫
Γ

A : B dS(x), ||A||20,Γ := (A, A)Γ ,

where A, B are tensors and : is the Frobenius inner-product (similar relations hold for vectors and
scalars). Moreover, |A| = √

A : A is the Frobenius norm. We also have the H1(Ω) norm: ||P||21,Ω :=
||P||20,Ω + ||∇P||20,Ω .
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2. Liquid crystal theory
We briefly review the LdG theory for a nematic LC phase.

(a) Coarse-grained molecular theory
LCs are a meso-phase of matter where the ordered macroscopic state is between a spatially
disordered liquid and a fully crystalline solid [31]. Nematic LC molecules are rod-like and are
free to slide about, meaning no positional order is maintained. The (partial) spatial order that is
maintained is orientational, i.e. the rod-like molecules prefer to be aligned with their neighbours
due to molecular forces.

The Q-tensor order parameter, which represents the orientational order, can be derived via
first principles (see [31]). Given a domain Ω containing LC, Q is a tensor-valued function over Ω ,
where Q(x) represents the (statistical) state of the LC (at x) and belongs to

S0 := {Q ∈ R
3×3 | Q† = Q, tr(Q) = 0}. (2.1)

Next, writing Q in its eigenframe, we have Q =∑3
i=1 λiei ⊗ ei, where λi ≡ λi(Q) are the

eigenvalues of Q, and ei are the normalized eigenvectors. From the properties of Q, one can
show that each λi satisfies −(1/3) ≤ λi(Q) ≤ (2/3) (for i = 1, 2, 3). Also, since Q is traceless, λ3 =
−(λ1 + λ2). If all eigenvalues are equal, they are 0 and we simply have Q = 0, which represents the
isotropic state (no nematic order). Likewise, when all eigenvalues are different from one another,
we have what is called the biaxial state. Most commonly, when only two of the eigenvalues are
equal, we have the so-called uniaxial state, where Q may be expressed as

Q = s
(

n ⊗ n − 1
3

I
)

, (2.2)

where s is called the degree-of-orientation, and is a measure of the orientational order of the LC
molecules at each point, and n is called the director, which has unit length, |n| = 1, and represents
the average direction in which the molecules are pointing. One can show that − 1

2 ≤ s ≤ 1. For
many nematic LCs, the default state is usually uniaxial with a particular value of s that depends
on the material. Typically, the optimal s is in the range 0.5 ≤ s ≤ 0.8 [3].

(b) Landau-de Gennes theory
Next, we model the state of an LC system through a tensor-valued function Q :Ω → S0, where
Ω is the physical domain of interest that we assume throughout has Lipschitz boundary Γ

with outward pointing unit normal vector ν (e.g. box-like domains and domains with smooth
boundary are allowed). We assume that the equilibrium state of the LC is represented by a
function Q that (locally) minimizes the LdG free energy [9,10,29]:

E[Q] :=
∫
Ω

f (Q, ∇Q) dx +
∫
Ω

ψ(Q) dx +
∫
Γ

g(Q) dS(x) +
∫
Γ

φ(Q) dS(x) −
∫
Ω

χ (Q) dx, (2.3)

with the elastic energy (with twist component as in [11,29]) given by

f (Q, ∇Q) := 1
2

(	1|∇Q|2 + 	2|∇ · Q|2 + 	3(∇Q)† · ∇Q + 4	1τ0∇Q · (ε · Q)), (2.4)

where {	i}3
i=1 (units of J m−1) and τ0 (units of m−1) are material dependent elastic constants, and

we have the (frame indifferent) invariants |∇Q|2 := Qij,kQij,k, |∇ · Q|2 := Qij,jQik,k, (∇Q)† · ∇Q :=
Qij,kQik,j, ∇Q · (ε · Q) := εjklQik,lQij, where we use the convention of summation over repeated
indices and εjkl is the Levi-Civita tensor. The transpose in the third term indicates to swap one
of the Q indices with the derivative index. Note that taking 	i = 0, for i = 2, 3 and τ0 = 0 gives the
often used one constant LdG model.
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Figure 1. (a) Illustration of homeotropic anchoring. Here, the director n, which we denote by n‖, is closely aligned with the
outward normal vector ν ; the closeness of alignment is controlled by the constant w0. (b) Illustration of planar degenerate
anchoring. Here, the director n, which we denote by n⊥, is closely aligned tangent to the surface; the closeness of alignment is
controlled by the constantsw1 andw2.

Next, the bulk potential ψ is a double-well type of function that is given by

ψ(Q) = a0 − a2

2
tr(Q2) − a3

3
tr(Q3) + a4

4
(tr(Q2))2. (2.5)

Above, a2, a3, a4 are material parameters (units of J m−3) such that a2, a3, a4 are positive; a0 is
a convenient constant to ensure ψ ≥ 0. Stationary points of ψ are either uniaxial or isotropic
Q-tensors [32]. Combined with (2.2), the critical values of the scalar order parameter s for

ψ(Q(s)), where Q(s) is uniaxial, are s = 0 (local maximum), s = (a3 −
√

a2
3 + 24a2a4)/(4a4) (local

minimum) and the global minimum [33]: s0 = (a3 +
√

a2
3 + 24a2a4)/(4a4), and is typically in the

range 0.5 ≤ s0 ≤ 0.8 [3] for a2 sufficiently large positive, which we shall always assume. Note
that, for thermotropic LCs, a2 is temperature dependent where a2 can become a large negative
parameter for high enough temperature [10,31]. In this case, ψ becomes a convex function with
a global minimum at Q = 0 (the isotropic state). Though this potential is rather simplistic in that
it does not guarantee that the eigenvalues of Q remain in the physical range (see earlier), it is
effective in most modelling situations (cf. [32]).

The surface energy, composed of the quadratic g(Q) and higher-order φ(Q), accounts for weak
anchoring of the LC (i.e. penalization of boundary conditions). For example, a Rapini–Papoular
type anchoring energy [34] can be considered

g(Q) = w0

2
|Q − QΓ |2 + w1

2
|Q̃ − Q̃⊥|2 and φ(Q) = w2

4
(|Q̃|2 − s2

0)2, (2.6)

where w0, w1 and w2 are positive constants (units of J m−2), QΓ (x) ∈ S0 for all x ∈ Γ , and s0
is the scalar order parameter of the uniaxial Q that minimizes the double well. Note that,
typically, w1 = w2/2 (see [35]), but we use two separate constants for the sake of generality. We
set Q̃ := Q + (s0/3)I, and define the standard projection onto the plane orthogonal to ν, that is,
Q⊥ :=ΠQΠ where Π = I − ν ⊗ ν. We define QΓ to be uniaxial of the form QΓ = s0(ν ⊗ ν − I/3).
The w0 term in (2.6) models homeotropic (normal) anchoring, while w1 and w2 model planar
degenerate anchoring. See figure 1 for an illustration.

The function χ (·) accounts for interactions with external fields. For example, the energy density
of a dielectric LC with fixed boundary potential is given by −1/2 D · E [36], where the electric
displacement D is related to the electric field E by the linear constitutive law [3,37,38]: D = εE =
ε̄E + εaQE, ε(Q) = ε̄I + εaQ, where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive
dielectric permittivities. Thus, −(1/2)D · E = −(1/2)ε̄|E|2 + χ (Q), where χ (Q) = −(1/2)εaE · QE ≡
−(1/2)εaE ⊗ E : Q, with units J m−3.

(c) Non-dimensionalization
We start by noting that Q and s are already non-dimensional. Lengths and coordinates are non-
dimensionalized by introducing a characteristic length ξ , e.g. x̂ = x/ξ , where x̂ is non-dimensional.
Then, set 	m to be the maximum or average of {|	i|}3

i=1 and simply divide (2.3) by 	m · ξ to obtain
a dimensionless energy. This effectively rescales all spatial derivatives, integral measures and the
various constants in the problem. Other non-dimensionalizations are possible (cf. [39, Sec. 2.]).

However, ψ(Q) and φ(Q) are non-convex functions, which significantly affects the numerical
analysis of the model. Thus, we describe their non-dimensionalization in more detail. Set
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c0 :=ψ(0) − ψ(Q(s0)) and define the non-dimensional bulk potential by ψ̂(Q) :=ψ(Q)/c0; thus,
ψ̂(0) − ψ̂(Q(s0)) = 1. This immediately implies that |Dψ̂(Q)| = O(1), as Q varies between the
isotropic state and the global minimum of ψ̂ . Then, upon introducing the non-dimensional
parameter η :=

√
	m/(c0ξ2), we have

1
	mξ

∫
Ω

ψ(Q) dx = 1
η2

∫
Ω̂

ψ̂(Q) dx̂, (2.7)

where Ω̂ is the scaled domain. As for φ(Q), upon setting φ̂(Q) = (|Q̃|2 − s2
0)2/4 and ω := 	m/(w2ξ ),

we have
1
	mξ

∫
Γ

φ(Q) dS(x) = 1
ω

∫
Γ̂

φ̂(Q) dŜ(x̂), (2.8)

where Γ̂ is the scaled boundary. Then, the total non-dimensional energy is

Ê[Q] =
∫
Ω̂

f̂ (Q, ∇̂Q) dx̂ + 1
η2

∫
Ω̂

ψ̂(Q) dx̂ +
∫
Γ̂

ĝ(Q) dŜ(x̂) + 1
ω

∫
Γ̂

φ̂(Q) dŜ(x̂) −
∫
Ω̂

χ̂ (Q) dx̂. (2.9)

For simplicity, we drop the ‘hat’ notation for the remainder of the paper.

(d) The cholesteric LdG model
Cholesteric LCs are created by adding a chiral dopant (i.e. molecules with a chiral structure) to
nematic LCs. This induces a helical superstructure on the nematic phase, which means the local
behaviour of the LC is nematic (i.e. line segments are aligned with their immediate neighbours)
but the larger, super-molecular arrangement of the line segments follows a helical structure with
a certain periodicity (or pitch), p. The physical manifestation of the cholesteric phase is that the
helix modulates the optical properties in a periodic fashion.

The cholesteric, LdG model in (2.3) can be obtained through a mapping procedure from the
cholesteric, Oseen-Frank (director) LC model (see [9]). But we also consider a slightly different
cholesteric model given in [11]. In the following sections, we relate this model (which we refer to
as the cholesteric model) to the LdG model we have defined in §2b. The elastic energy in [11] is,
mainly, a rewriting of the terms in (2.4). However, there is an implicit interference of the elastic
energy in [11] with the bulk potential that brings up a modelling issue we highlight in part (ii) of
this section.

(i) Elastic energy

The cholesteric model in [11] gives the elastic energy as

fgrad(Q) =
(
	̆1

2

)
|∇ × Q + 2τ0Q|2 +

(
	̆2

2

)
|∇ · Q|2 +

(
	̆24

2

)
(Qij,kQik,j − Qij,jQik,k), (2.10)

where 	̆1, 	̆2, 	̆24 are elastic constants, τ0 = 2π/p with p being the pitch, and ∇ × Q = εiklQlj,kei ⊗ ej,
where ei is the ith vector in the standard basis of R

3. This is referred to as the curl of Q and is
consistent with the definition of curl for vectors, i.e. the columns of ∇ × Q are the curls of the
corresponding columns of Q. The term |∇ × Q + 2τ0Q|2 is what frustrates the equilibrium state
from having a constant director and models the chiral structure of the molecules. As we will see
in the numerical results, choosing τ0 > 0 causes a ‘twisting’ of the director throughout the LC
domain.

It is a straightforward exercise in index notation to prove the identity |∇ × Q|2 = Qij,kQij,k −
Qij,kQik,j. Moreover, from the definition of ∇ × Q, we have the identity (∇ × Q) : Q = (εiklQlj,kei ⊗
ej) : Q = εiklQlj,kQij.
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With this, we can rewrite (2.10) in the form of (2.4) by first noting that(
	̆1

2

)
|∇ × Q + 2τ0Q|2 =

(
	̆1

2

)
Qij,kQij,k −

(
	̆1

2

)
Qij,kQik,j

+
(

4	̆1

2

)
τ0εiklQlj,kQij + 2	̆1τ

2
0 |Q|2.

From here, we note that tr(Q2) ≡ |Q|2, rearrange the terms and group them as

fgrad(Q) =
(
	̆1

2

)
Qij,kQij,k +

(
	̆2 − 	̆24

2

)
Qij,jQik,k

+
(
	̆24 − 	̆1

2

)
Qij,kQik,j +

(
4	̆1

2

)
τ0εiklQlj,kQij + 2	̆1τ

2
0 tr(Q2). (2.11)

We then use frame indifferent invariants to map these constants to the LdG elastic and twist
energy densities as given in (2.4), i.e. 	1 = 	̆1, 	2 = 	̆2 − 	̆24, 	3 = 	̆24 − 	̆1, where the twist constant
τ0 is the same in both models. Note that there is an extra term of |Q|2 ≡ tr(Q2) in (2.11) that is not
found in (2.4) but does appear in (2.5). We discuss the implications of this in the next subsection.

(ii) Alternative cholesteric model

In (2.4) and in [29], they consider the (cholesteric) elastic energy as not containing a tr(Q2) term
like [11] does. Indeed, keeping this term can have a significant effect on the behaviour of energy
minimizers.

For simplicity of exposition, we assume all energies have been non-dimensionalized, take
	1 = 1, τ0 > 0, and set the other elastic constants to zero. If we keep the tr(Q2) term in (2.11), it
will combine with the a2 coefficient in (2.5) to produce a new effective (non-dimensional) bulk
potential in (2.9), namely

ψ̃(Q) = a0 − a2 − 4	1η
2τ 2

0
2

tr(Q2) − a3

3
tr(Q3) + a4

4
(tr(Q2))2, (2.12)

where ã2 = a2 − 4η2τ 2
0 is the coefficient in front of tr(Q2). If τ0 = 15 and a2 = 1, for instance, then

choosing η= 0.0408 yields ã2 ≈ 0.5, which is a significant change in the global minimum. One
would have to choose η= 0.01 to have ã2 > 0.9. Moreover, if η is not small enough to compensate
for τ0, then ã2 will be negative, which makes the tr(Q2) term positive. If ã2 is sufficiently large
and negative, then ψ̃(Q) will be a convex function, with a single minimum at Q = 0, implying
that the isotropic phase is preferred. Furthermore, in the case of thermotropic LCs, the tr(Q2)
coefficient depends on temperature. Thus, using (2.10) for the elastic energy leads to the effect that
increasing the twist parameter is akin to increasing the temperature, which is not consistent with
experiments. Figure 2 shows a comparison between the original double well and the modified
one; clearly, the location of the global minima are different.

Hence, a moderate twist will change the effective double well (bulk) potential, which directly
controls the nematic phase diagram of the LC; the severity of the change increases with the twist.
To the best of our knowledge, the material doping discussed at the beginning of §2d, which is
needed to create a cholesteric LC, should not change the nematic phase diagram. This seems to
be an artifact of the model. Moreover, we note that choosing η sufficiently small to reduce the
interference of the twist on the bulk potential is computationally inconvenient because it makes
the problem more stiff; smaller time steps will be needed to ensure energy decrease in a gradient
descent scheme. Therefore, we mainly adopt the approach in [29], which is justified in [9], and
simply drop the tr(Q2) term in (2.11). But we do provide a comparison with the model in [11]
in §5f.

Remark 2.1. The surface anchoring energy proposed in [11] is the same as that given in (2.6)
but with a trivial change in the constants.
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2.0

1.5

1.0

0.5

0

–0.50 –0.25 0 0.25 0.50 0.75 1.00

ψ (S)

Figure 2. The two double wells from the twomodels. This compares the double wellψ in (2.5) to the effective double well ψ̃
in (2.12), which arises when the alternate cholesteric model is used. Note that the global minima, s0 forψ and̃ s0 for ψ̃ , of the
two bulk potentials differ greatly.

3. Minimizing the Landau-de Gennes energy
Existence of a minimizer of (2.9) can be established through the direct method of the calculus of
variations; for instance, see [23]. Computing a minimizer can, in principle, be done by solving
the Euler–Lagrange equations associated with (2.9) (i.e. the first-order condition). However, these
equations are nonlinear and the energy is non-convex, so simply applying Newton’s method will
not necessarily converge nor produce a minimizer.

We begin by developing a weak formulation of the first order condition. Then, we describe
multiple gradient flow schemes for finding (local) minimizers. The main purpose is to explain
how different choices of the scheme (i.e. different implicit–explicit splittings) require different
time-step restrictions that are affected by the bulk and boundary parameters η and ω, and the
twist parameter τ0.

(a) First-order condition
The minimization problem for the LdG energy functional (2.9), and associated first-order
condition, is

Q̄ = arg min
Q∈V

E[Q], δQE[Q̄; P] = 0, ∀P ∈ V, (3.1)

where V := H1(Ω ; S0) is the admissible space and δQE[·; ·] is the variational derivative of E[·].
Next, we introduce various bilinear forms that will be convenient in our analysis and for
numerical computation. Let ae(·, ·) : V × V → R be the bounded symmetric bilinear form defined
by ae(Q, P) := 	1(Qij,k, Pij,k)Ω + 	2(Qij,j, Pik,k)Ω + 	3(Qij,k, Pik,j)Ω . If 	1, 	2, 	3 satisfy [23, Lem. 4.1]

0< 	1, −	1 < 	3 < 2	1, −3
5
	1 − 1

10
	3 < 	2, (3.2)

then there is a constant c> 0 such that ae(P, P) ≥ c||∇P||20,Ω , for all P ∈ V.
Next, let as(·, ·) : V × V → R be the bounded symmetric bilinear form defined by as(Q, P) :=

w0(Q, P)Γ + w1(Q − Q⊥, P)Γ , where w0, w1 ≥ 0. If either w0 or w1 is positive, then there exists a
constant α1 > 0 such that

ae(P, P) + as(P, P) ≥ α1||P||21,Ω , ∀P ∈ V. (3.3)
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See [40] for a proof of (3.3). We also have the bilinear form at(·, ·) : V × V → R, which is not
coercive, accounting for the twist term at(Q, P) := 2	1τ0[εikl(Qjk,l, Pij)Ω + εikl(Pjk,l, Qij)Ω ]. For later
use, we define one bilinear form to contain the previously defined forms

a(Q, P) := ae(Q, P) + at(Q, P) + as(Q, P), (3.4)

and note that there is a constant c0 > 0 such that |a(Q, P)| ≤ c0||Q||1,Ω ||P||1,Ω . We also introduce
the linear form lrhs(·) : V → R:

lrhs(P) := (χ (P), 1)Ω + w0(QΓ , P)Γ + w1

(
− s0

3
ν ⊗ ν, P

)
Γ

. (3.5)

We can now write E[Q] in the form

E[Q] =
(

1
2

)
a(Q, Q) +

(
1
η2

)
(ψ(Q), 1)Ω +

(
1
ω

)
(φ(Q), 1)Γ − lrhs(Q), (3.6)

which yields the following expression for the first variation of E :

δQE[Q; P] = a(Q, P) +
(

1
η2

)
(Dψ(Q), P)Ω +

(
1
ω

)
(Dφ(Q), P)Γ − lrhs(P). (3.7)

Combining with (3.1), we find that Q̄ satisfies a tensor-valued, anisotropic, elliptic partial
differential equation (PDE) system defined over Ω with a tensor-valued Robin boundary
condition. For instance, in terms of indices 1 ≤ i, j ≤ 3, the bulk PDE (with χ taken from the
dielectric LC energy density as in §2b) is

− 	1Qij,kk − 	2Qik,kj − 	3Qik,jk − 4	1τ0εi	kQ	j,k

+ 1
η2 (−a2Qij − a3(Q2)ij + a4|Q|2Qij) = −1

2
εa(E ⊗ E)ij, in Ω , (3.8)

where only the traceless part of the tensor equation is considered. In (3.8), note that the term
4	1τ0εi	kQ	j,k is analogous to a convective term, e.g. (V · ∇)Q, where Vi	k = 4	1τ0εi	k is like a
‘velocity’. It is well known [41] that convection-diffusion problems present some difficulties in
their numerical approximation, especially when the velocity is large. This is the case here when
τ0 is large, which manifests as a mesh-size restriction in theorem 4.2, as well as restricting the
time-step when a popular convex-splitting scheme is used for finding an energy minimum (see
theorem 3.2).

(b) Gradient flow
We look for an energy minimizer using a gradient flow strategy [22,26,27,29] applied to the energy
(2.9). Let t represent ‘time’ and suppose that Q ≡ Q(x, t) evolves by an L2(Ω) gradient flow

(∂tQ(·, t), P)Ω = −δQE[Q; P], ∀ P ∈ V, (3.9)

where Q(x, 0) = Q0 ∈ V is the initial guess for the flow. Formally, the solution of (3.9) will converge
to a local minimizer. In this case, Q(x, t) satisfies a parabolic PDE (in strong form), and by the
standard theory of parabolic PDEs, it has a unique solution. Gradient flows are related to the
natural relaxation that many physical systems undergo, including LCs, which is why we use it
in our simulations. Directly minimizing E by some other optimization technique is also possible
and may yield other minimizers that are not commonly observed in experiment.

We discretize (3.9) in time by first letting Qk(x) ≈ Q(x, kδt), where δt> 0 is a finite time step and
k is the time index. Next, we replace ∂tQ(·, t) by a finite difference approximation, so then (3.9)
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becomes a sequence of elliptic problems. In other words, given Qk, find Qk+1 ∈ V such that

δt−1(Qk+1 − Qk, P)δt = −δQE[Qk+1; P], ∀P ∈ V, (3.10)

where we have defined a time-stepping inner product (·, ·)δt by

(P, T)δt := 1
η2 (P, T)Ω + 1

ω
(P, T)Γ . (3.11)

We also define a norm by ||P||2δt := (P, P)δt. One can show that (3.10) is equivalent to a minimizing
movements strategy [42]

Qk+1 = arg min
Q∈V

Fk(Q), Fk(Q) := 1
2δt

||Q − Qk||2δt + E[Q], (3.12)

which immediately yields the useful property Fk(Qk+1) ≤Fk(Qk) ≤Fk−1(Qk) and implies that
E[Qk+1] ≤ E[Qk] for all k. In practice, we iterate until we reach a final iteration index or some other
stopping criteria (see §5a). However, (3.10) is a fully implicit equation and requires an iterative
solution because of the nonlinearities in ψ(Q) and φ(Q). The following theorem, whose proof can
be found in appendix A(a) and also [40], gives a time-step restriction to ensure energy decrease.

Theorem 3.1. The sequence {Qk}∞k=0 defined by the method in (3.10) is monotonically energy
decreasing, i.e. E[Qk+1] ≤ E[Qk], provided that δt ≤ 2/max{a2 + a2

3/a4, 2s2
0/3}.

The time step restriction in theorem 3.1 involves non-dimensional constants of O(1). However,
the time-step inner product (3.11) used in (3.10) accounts for the strength of the non-convex
terms through the positive constants η and ω. In other words, when either η and ω are
small, the minimizing movements scheme in (3.12) penalizes Qk+1 − Qk to be small. Hence, the
minimization sequence will take more iterations when either η and ω are small.

Other types of time-discretizations can be used, such as implicit–explicit methods. But they
usually have more stringent time-step restrictions. Another related strategy is convex-splitting
which is popular in gradient flow schemes [27,43,44]. For instance, let ψ(Q) =ψc(Q) − ψe(Q),
where ψc and ψe are convex functions of Q. We modify (3.10) by treating ψc implicitly and ψe

explicitly. For simplicity, we drop the nonlinear φ term, and simplify the time stepping inner
product to (P, T)δt = (P, T)Ω . Then, (3.10) is replaced by the following. Given Qk, find Qk+1 ∈ V
such that

δt−1(Qk+1 − Qk, P)Ω + a(Qk+1, P) +
(

1
η2

)
(Dψc(Qk+1), P)Ω

= lrhs(P) +
(

1
η2

)
(Dψe(Qk), P)Ω , ∀P ∈ V. (3.13)

This scheme also has an energy decrease property with a time-step restriction.

Theorem 3.2. The sequence {Qk}∞k=0 defined by the method in (3.13) is monotonically energy
decreasing, i.e. E[Qk+1] ≤ E[Qk], provided that δt ≤ 2α1/(108	2

1τ
2
0 − α2

1), where α1 is the coercivity
constant in (3.3). If |τ0| ≤ α1/(2

√
27	1), there is no restriction on δt.

A proof of this result may be found in [40]. Usually, a convex splitting scheme is used to avoid
a time-step restriction. However, the above discussion shows that a sufficiently large τ0 will cause
a restriction. Moreover, according to [44], a convex splitting scheme is nothing but a fully implicit
scheme with time re-scaled (when τ0 = 0). Thus, we always use the fully implicit scheme as our
gradient descent strategy to find a minimizer of (3.1).

4. Finite-element method
We approximate (3.10) by a finite-element method [45]. In doing so, we assume that Ω ⊂ R

3

is discretized by a conforming shape regular triangulation Th = {Ti} consisting of tetrahedra.
Theorem 4.2 presents an error estimate for our finite-element discretization of the equilibrium
problem (i.e. first-order condition in (3.1)).
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(a) Spatial Discretization
Let Mh(Ωh) be the space of continuous, piecewise Lagrange polynomial functions on Ωh,
subordinate to the mesh Th of Ωh, with polynomial degree r ≥ 1. We discretize (3.10) by
approximating Q by a finite-element function Qh. Note that S0 can be uniquely identified with
a five dimensional vector space [21], i.e. there exists 3 × 3, symmetric traceless basis matrices
{Ei}5

i=1 such that any Q ∈ S0 can be uniquely expressed as Q = qiEi, for some coefficient functions
q1, . . . , q5. With this, we define the tensor finite-element space

Sh(Ωh) := {P ∈ C0(Ωh; S0) | P = qi,hEi, qi,h ∈ Mh(Ωh), 1 ≤ i ≤ 5}, (4.1)

and let Qh ∈ Vh := Sh(Ωh) ⊂ V. Thus, Qh = qi,hEi, and qi,h ∈ H1(Ω) for i = 1, . . . , 5.
The fully discrete L2-gradient flow now follows from (3.10), i.e. given Qh,k, find Qh,k+1 ∈ Vh

such that

δt−1(Qh,k+1 − Qh,k, Ph)δt = −δQE[Qh,k+1; Ph], ∀ Ph ∈ Vh. (4.2)

We iterate this procedure until some stopping criteria is achieved (see §5a). Since Vh ⊂ V, the
same arguments in §3b still hold when replacing V by Vh. Therefore, the same time-stepping
restrictions apply to the fully discrete formulation.

(b) Error estimate for the equilibrium problem
We present an error estimate for finite-element approximations of a local minimizer of the LdG
energy E[·]. If Q ∈ V is a local minimizer of E[·], then it satisfies the first-order condition in (3.1).
Moreover, if Qh ∈ Vh is a local minimizer of E[·] (over the discrete space Vh), then

δE[Qh](Ph) = a(Qh, Ph) +
(

1
η2

)
(Dψ(Qh), Ph)Ω

+
(

1
ω

)
(Dφ(Qh), Ph)Γ − lrhs(Ph) = 0, ∀Ph ∈ Vh. (4.3)

The error estimate in theorem 4.2 is built on the following assumption, which says that the energy
landscape around a minimizer is not too flat.

Assumption 4.1 (Isolated minimizer and coercivity). For a given local minimizer Q of E , we
assume there exists ζ > 0 such that for all Q̃ with ||Q − Q̃||1,Ω < ζ , we have E[Q] ≤ E[Q̃], and for
some m0 > 0,

δ2E[Q̃](P, P) = a(P, P) +
(

1
η2

)
(P, D2ψ(Q̃)P)Ω

+
(

1
ω

)
(P, D2φ(Q̃)P)Γ ≥ m0||P||21,Ω , ∀ P ∈ V. (4.4)

In order to avoid additional technicalities, we assume that if Q is a solution of (3.1), then it
has the additional regularity Q ∈ H2(Ω). Moreover, we also assume an associated adjoint problem
also enjoys additional H2(Ω) regularity; see remark A.4 (in the appendix) for further details. We
have the following result that yields an error estimate for the finite-element solution Qh, which
requires a restriction on the mesh size h.

Theorem 4.2. Let Q ∈ V be a local minimizer of E[·] that satisfies (3.1) and also satisfies Q ∈ H2(Ω),
and let Qh ∈ Vh be a local minimizer of E[·] that satisfies (4.3). Moreover, adopt assumption 4.1 and assume
that ||Q − Qh||1,Ω < ζ . Then, there exists c> 0 such that for all h ≤ h0, we have ||Q − Qh||1,Ω ≤ ch|Q|2,Ω ,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 Ju

ne
 2

02
4 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230813

..........................................................

where

h0 =
(

α1

k + (a′/η2) + (s′′/ω2)

)1/2 1√
8(c0 + β ′

1/η
2 + β ′

2/ω)c2c3
, (4.5)

where k = max((216	2
1τ

2
0 /α1) − (α1/2), 0), c1, c2, c3, β ′

1, β ′
2, a′ and s′′ are constants depending on the

domain, and

c0 = 	1 + 3	2 + 	3 + 4	1
√

27τ0 + β3(w0 + 3w1) (4.6)

is the constant such that |a(Q, P)| ≤ c0||Q||1,Ω ||P||1,Ω , with β3 also depending on the domain.

The proof of theorem 4.2 is found in §Ab, as well as [40]. Note that (4.5) says that small values
of η and ω, and large values of τ0, lead to small values of h0. Furthermore, theorem 4.2 says there
is no error estimate if the mesh size is too large. This means that the discrete problem may have
no connection to the physical problem of interest.

5. Simulations
We present several simulations that illustrate the cholesteric LdG model on both a slab geometry
and a spherical shell for a range of twist parameters. We illustrate both the richness of the
model, as well as issues that can arise when the mesh size is not small enough. Our software
is implemented in Firedrake [46], which heavily uses the PETSc library [47]. We used Paraview to
visualize our simulations. We simulated on two of the machines owned by the LSU Department
of Mathematics. Each machine was equipped with two Intel Xeon Gold 6242R processors running
at 3.10/4.10 GHz, as well as a 768 GiB RAM. We ran our simulations on a single node using 25
processes.

(a) Minimization technique
As discussed in §3b, the gradient descent method can be used to find a local minimizer of the
LdG equilibrium problem. In our implementation, we apply this method to the finite-element
discretization of the problem. At each time step, we must solve a nonlinear system in (4.2), so
Firedrake’s built-in nonlinear solver (which utilizes Newton’s method) is employed. We use the
Geometric agglomerated Algebraic MultiGrid (GAMG) preconditioner, as well as the Minimal
Residual Method (MINRES) for our Krylov subspace method.

However, the fully implicit gradient descent method we use comes with a time-step restriction
(see theorem 3.1) that is affected by η and ω through the minimizing movements inner product
(3.12), as well as the twist τ0. This can lead to excessive computation times. Therefore, in practice,
we start with a time step that satisfies the various restrictions given earlier and compute several
steps (e.g. we start with a time step of δt = 0.001 and we compute 50 steps). Then, we increase the
time step by a factor of 10 and do several more steps (e.g. 50), checking that the energy continues
to decrease with each step. If the energy does not decrease after increasing the time step, or if
the solver diverges, then we go back to the smaller time step and perform more iterations before
attempting to increase the time step again. In practice, however, the energy always decreased
in our simulations; the only situation in which we had to go back to the smaller time step was
when the solver diverged. This continues until δt reaches a maximum value of δt = 100 000, after
which we continue iterating. During this procedure, for any value of δt, if the energy decrease
between successive iterates is less than a tolerance (e.g. 10−6), then we stop iterating and solve the
equilibrium problem directly (i.e. no gradient descent). If the nonlinear solver for the equilibrium
problem diverges, then we continue with several more gradient descent iterations. Despite the ad
hoc nature of this procedure, it was effective in obtaining (discrete) local minimizers of the discrete
LdG energy in a reasonable amount of time.
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(b) Parameter choices and visualization
The following parameter values were used for all simulations in §5c, d and e. The coefficients of
the double well in (2.5) were chosen as

a0 = 1, a2 = 7.502104, a3 = 60.975813 and a4 = 66.519069. (5.1)

The function ψ(Q) has a global minimum at Q∗ = s0(l ⊗ l − I/3), where l ∈ R
3 is any unit vector,

and s0 = 0.7. The other coefficients are given by 	1 = 1.0, 	2 = 	3 = 0, and η= 0.1. We conducted
experiments with both homeotropic anchoring (i.e. w0 = 10.0, w1 = w2 = 0) and planar degenerate
anchoring (i.e. w0 = 0, w1 = w2 = 10.0 and ω= 0.1). The twist was varied, with values typically
chosen as τ0 = 0, 5, 10, 15, 20, 25. In §5f, a different set of parameters was used corresponding to
the LC 5CB.

The numerical solution for Q is visualized by first performing an eigendecomposition of Q
at each node of the mesh. We then set n to be the eigenvector of Q corresponding to the largest
eigenvalue of Q. If Q has a uniaxial form, then this choice of n is consistent with (2.2). Finally,
we compute |n · r|, where r is a given vector that corresponds to the computational domain,
and visualize |n · r| as a scalar field. Typically, r is chosen to face a hypothetical viewer, and this
varies depending on the geometry of the LC domain. Thus, |n · r| = 0 means the LCs are facing
orthogonal to the viewer’s line of sight, and |n · r| = 1 means the LCs are facing the viewer directly.

(c) Slab configuration
(i) Experimental set-up

The domain Ω is a rectangular solid (slab geometry), where Ω = (0, 2) × (0, 2) × (0, 0.2). The
boundary is partitioned as Γ = Γ1 ∪ Γ0 where Γ1 = (0, 2) × (0, 2) × {0, 0.2} (top and bottom of the
slab) and Γ0 = Γ \ Γ1 (sides of the slab). Then, in the formulation (3.10), we replace Γ with Γ1, i.e.
we enforce the weak anchoring condition on Γ1 and use a zero Neumann condition on Γ0. For the
finite-element discretized domain Ωh, we chose a mesh size of h = 0.02.

The initial condition was chosen as follows. First, define

w1 = (0, cos(τ0x1), sin(τ0x1))†, w2 = (cos(τ0x2), sin(τ0x2), 0)†. (5.2)

Then for i = 1, 2, we define ni = wi/|wi|, and Qi := s0(ni ⊗ ni − I/3). Each Qi corresponds to
a helical configuration of the director field, with period given by 2π/τ0. Then, choosing ρ =
(cos(τ0x1) cos(τ0x2) + 1)/2, we set

Q0 = (1 − ρ)Q1 + ρQ2. (5.3)

See figure 3 for a visualization of the initial condition Q0 and the computed local minimizers for
both homeotropic and planar degenerate anchoring for a range of twist values τ0. Note that the
colour corresponds to |n · r| with r = e3 (see §5b).

(ii) Results

Table 1 lists the (non-dimensional) energies of the initial condition for each τ0 compared to the
energies of the equilibrium state (a local minimizer), for both homeotropic and planar degenerate
anchoring. Figure 3 (middle column) depicts the final equilibrium solutions with homeotropic
anchoring, all of which had very regular stripe patterns, except when τ0 = 5 where the solution
for the homeotropic case consisted of the director pointing normal to the surface on the entire
domain. In addition, as τ0 increased, the final stripe patterns aligned more with the diagonal of
the slab. This is most likely due to the zero Neumann condition imposed on the sides. If a periodic
boundary condition were used, then the final configuration would be invariant to rotations of the
e1, e2 plane. We were not able to enforce this condition because of a limitation of Firedrake.

For the planar degenerate anchoring case (figure 3, right column), similar striped patterns
occurred in the equilibrium solutions for each twist value. However, the alignment with
the diagonal was not quite as pronounced. Moreover, the transition between stripes was
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initial condition homeotropic anchoring

0 0.1 0.2 0.3 0.4

5

10

15

20

0.5 0.6 0.7 0.8 0.9 1.0

planar degenerate anchoringτ0

Figure 3. Slab geometry: 2 × 2 × 0.2 (§5c, part (ii)). Colour is proportional to |n · e3|. Initial condition column shows top
view (viewing the xy plane) of slab. Homeotropic anchoring columns show the top view and a vertical slice (viewing the xz
plane) through the middle of the slab. Planar degenerate anchoring columns have the same format.

Table 1. Energies for the slab (2 × 2 × 0.2) in figure 3.

homeotropic anchoring planar degenerate anchoring

τ0 initial energy final energy initial energy final energy

0 39.20061947 32.86058337 0.0 0.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 49.25887441 −2.64966269 43.13556899 −11.06811563
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 70.41495358 −41.83731193 65.18722048 −51.78216459
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 104.88188461 −122.7420167 100.38078589 −133.893747
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 151.32789951 −254.83515683 147.15907691 −265.87890179
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

slightly different from the homeotropic case and the period was different. For instance, τ0 = 20
corresponds to an ideal period of p = 2π/τ0 ≈ 0.314, but the measured period from the simulation
was p = 0.35 (p = 0.38) for the homeotropic (planar degenerate) case. We also note that in the
planar degenerate case, with τ0 = 5, the director is mainly tangential, except for two small,
disconnected regions where the director becomes parallel to e3. This is because the anchoring
constants, which are set to w1 = w2 = (1/ω) = 10, outweigh the twist. Simulation times varied,
ranging from 0 to 41 h for the homeotropic case, and 0 to 16 h for the planar degenerate case.
Times were generally shorter for the planar degenerate case.

(d) Shell configuration
(i) Details

The domain Ω is a spherical annulus (shell), where two choices were used. For the first shell, we
setΩ =Ωshell,0 :=B(0, 1) \ B(0, 0.9), where B(0, r) is an open ball of radius r. For the finite-element
discretizationΩh, we set the mesh size to be h = 0.02. For the initial condition, when τ0 > 0, we let
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initial condition homeotropic anchoring

0 0.1 0.2 0.3 0.4

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1.0

planar degenerate anchoringτ0

Figure 4. Centred shell (Ωshell,0), front view (viewing the yz plane) (§5d, part (ii)). Colour is proportional to |n · r| with r=
x/|x|. Homeotropic anchoring columns show the outer boundary and a vertical slice through the shell. Planar degenerate
anchoring columns have the same format.

w = w(x1, x2, x3) = (cos(τ0x3), sin(τ0x3), 0)†. Then, similarly to the initial conditions for the slabs,
we set n = w/|w| and

Q0 = s0

(
n ⊗ n − I

3

)
. (5.4)

For τ0 = 0, we let n = x/|x|, and set Q0 as in (5.4).
The far left column of figures 4 and 5 depicts the initial condition, where the colour corresponds

to |n · r| with r = x/|x|, i.e. the radial unit vector (see §5b). The stripes in the initial condition form
a spiral on the spherical boundary running top to bottom, with spacing inversely proportional
to τ0. Moreover, figures 4 and 5 show the final equilibrium state of Q, corresponding to a local
minimizer, for both homeotropic and planar degenerate anchoring for a range of twist values τ0.

For the second shell, we set Ω =Ωshell,1 :=B(0, 1) \ B(p, 0.9), where p = (0, 0, 0.05)†, i.e. an off-
centred annulus. Our mesh size was again set to h = 0.02. We used the same initial condition here
as in (5.4). Figure 6 shows the initial condition, as well as the final equilibrium state, for a range
of twist values.

We also performed another set of numerical experiments for the first shell, Ω =Ωshell,0, but
with the initial condition set to Q0 in (5.3). Figure 7 shows the initial condition, as well as the final
equilibrium state, for a range of twist values. We omitted the case of τ0 = 0, since the results were
not appreciably different from the previous experiments.

(ii) Results

We begin with the centred shell Ωshell,0 and initial condition (5.4). Table 2 lists the (non-
dimensional) energies of the initial condition for each τ0 compared to the energies of the
equilibrium state (a local minimizer), for both homeotropic and planar degenerate anchoring.
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initial condition homeotropic anchoring
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planar degenerate anchoringτ0

Figure5. Centred shell (Ωshell,0), top view (viewing the xy plane) (§5d, part (ii)). Similar format tofigure 4; the slices are parallel
to the view plane.

Figures 4 and 5 (middle column) depict the final equilibrium solutions with homeotropic
anchoring, where the spiral stripe pattern has a slight undulation. Moreover, the spirals meet
as two ‘fingers’ at the poles of the shell. The slice views show that the spiral pattern persists
through the shell’s thickness. For τ0 = 5, instead of a stripe pattern, the director n is radial pointing
outward from the origin, because the anchoring strength outweighs the twist effect.

For the planar degenerate anchoring case (figures 4 and 5 (right column)), similar striped
patterns are present in the equilibrium solutions for each twist value. We note that the transition
between stripes is slightly different from the homeotropic case (as for the slab). For τ0 = 5, the
director field is mainly tangential, except for two ‘poles’ where the director becomes normal to
the surface of the shell. Again, this is because the anchoring constants outweigh the twist.

Each simulation time ranged from 0 to 26 h for the homeotropic case, and 0 to 11 h for the
planar degenerate case (with an exception for τ0 = 10 which took nearly 20 h). In general, higher
twist correlates with longer simulation times, and the planar degenerate case took longer than the
homeotropic case.

Next, we consider the off-centred shell Ωshell,1 and initial condition (5.4). Table 3 lists the
(non-dimensional) energies of the initial condition for each τ0 compared to the energies of the
equilibrium state (a local minimizer), for both homeotropic and planar degenerate anchoring.

Figure 6 depicts the final equilibrium solutions for both homeotropic and planar degenerate
anchoring, which show similar stripe patterns as for the previous centred shell. But there are
some differences. For τ0 = 5 with planar degenerate anchoring, the two ‘poles’ where the director
becomes normal to the surface are shifted down towards the thicker part of the shell. For τ0 = 10
and homeotropic anchoring, the stripe pattern is absent at the top (thinnest) part of the shell;
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initial condition homeotropic anchoring
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Figure 6. Off-centred shell (Ωshell,1), front view (viewing the yz plane) (§5d, part (ii)). Similar format to figure 4.

for planar degenerate, the spiral pattern is only present on the lower (thicker) half of the shell.
For higher twists, the spiral patterns are similar to the previous (centred) shell. This is due to
the interplay of the anchoring strength and the twist. Basically, there is not enough ‘room’ in
the thinnest part of the shell to develop a twist of the director field if τ0 is not sufficiently large.
Each simulation time ranged from 0 to 24 h for the homeotropic case, and 2 to 80 h for the planar
degenerate case. In general, higher twist correlates with longer simulation times, and the planar
degenerate case took longer than the homeotropic case. For example, with τ0 = 0, it took around
30 min for the homeotropic case, and 32 h for the planar degenerate case.

We now reconsider the centred shell Ωshell,0 but with the initial condition (5.3). Table 4 lists
the (non-dimensional) energies of the initial condition for each τ0 compared to the energies
of the equilibrium state (a local minimizer), for both homeotropic and planar degenerate
anchoring.

Figure 7 depicts the final equilibrium solutions for both homeotropic and planar degenerate
anchoring, which show similar stripe patterns as before. However, the stripe patterns break
away from being a spiral in some cases. For instance, with homeotropic anchoring and τ0 =
15, 20, we see multiple triple junctions of the blue region. In addition, we see similar triple
junctions for the planar degenerate anchoring with τ0 = 15. The τ0 = 10 case (planar degenerate)
exhibits a somewhat bizarre hexagonal/pentagonal pattern with a slightly lower energy than
the minimizer in figures 4 and 5 (E = −66.795 versus E = −62.482). Despite redoing this case
with a finer mesh size of h = 0.015, the pattern persisted (with a final energy of E = −68.244),
suggesting that this may represent a true minimizer. The other cases exhibited a similar spiral
pattern as before. Each simulation took from 1 to 33 h for the homeotropic case, and 4 to 14
h for the planar degenerate case, with the latter case generally taking a shorter time than the
former.
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initial condition homeotropic anchoring
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Figure 7. Centred shell (Ωshell,0) with oscillatory initial condition, front view (viewing the yz plane) (§5d, part (ii)). Similar
format to figure 4.

Table 2. Energies for the centred shell (Ωshell,0) in figures 4 and 5.

homeotropic anchoring planar degenerate anchoring

τ0 initial energy final energy initial energy final energy

0 1.23566209 1.23349847 56.94106826 51.13769725
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 60.49129983 1.23349741 12.23300007 −13.13068291
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 21.34536007 −33.76001607 −26.81216759 −62.48198396
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 −36.59992963 −151.97707415 −84.58904161 −185.01096392
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 −103.25794942 −348.22427414 −151.0115368 −384.49961726
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 −166.11557298 −639.23581796 −213.57414074 −677.04411588
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Comments on computing minimizers
We demonstrate the ramifications of theorem 4.2, which has a mesh size restriction, on the form
of discrete minimizers. Because of the non-convex terms in the energy, i.e. the double well and
cholesteric term, the choice of mesh size affects more than just the resolution of the features of
the minimizer Q. Indeed, too coarse a mesh can yield discrete minimizers that contain numerical
artifacts, i.e. the ‘minimizer’ may be very far from a true minimizer of the continuous problem.
Figure 8a shows two simulations, one for the slab and one for shell, that illustrate how these
numerical artifacts may manifest. In other words, when the mesh size is too large, the energy
landscape of the discrete energy functional may contain artificial minima, so the gradient flow
finds a different minimizer with a very different structure.
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Table 3. Energies for the off-centred shell (Ωshell,1) in figure 6.

homeotropic anchoring planar degenerate anchoring

τ0 initial energy final energy initial energy final energy

0 1.34958562 1.26765658 56.95232872 1.56772626
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

05 60.4884546 1.24104888 12.23023189 −13.2233694
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 21.30137144 −34.07603296 −26.85588133 −64.03286781
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 −36.81485612 −149.89711829 −84.80477055 −182.77158029
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 −103.91110362 −342.9675383 −151.66656546 −379.13022842
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 −167.63544101 −630.70950725 −215.09203743 −668.63027357
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Energies for the centred shell (Ωshell,0), with oscillatory initial condition, in figures 7.

homeotropic anchoring planar degenerate anchoring

τ0 initial energy final energy initial energy final energy

5 107.21684588 1.23349885 65.88019321 −12.85142139
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 143.69128926 −33.21147874 103.37532314 −66.79504813
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 198.33754579 −151.71328798 158.2365114 −185.18312273
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 269.46171783 −348.4203652 229.41729719 −384.3815465
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 352.2492802 −639.0239269 312.42189391 −676.81099557
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0.1

(a) (b)
(a) (b)

x-normal y-normal

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8. (a) Equilibrium states when the mesh size is not small enough (§5e). Example (a) shows an energy minimizer, with
E = −213.62, for the large slab with the oscillatory initial condition and τ0 = 20, but with a mesh size of 0.05 (cf. figure 3
(homeotropic), withE = −254.84, that used a mesh size of 0.02). Clearly, the period of the stripes in figure 3 is much smaller
than in (a) (to be exact, the period here is around 0.576). Example (b) shows a minimizer, with E = −757.69, for the centred
shell with the periodic initial condition and τ0 = 25, but with a mesh size of 0.05 and a shell thickness of 0.2 (cf. figure 4
(homeotropic), with E = −639.24, that used a mesh size of 0.02 and a thickness of 0.1). (b) Different equilibrium states with
mismatched initial condition (§5e). We consider a centred shell with homeotropic anchoring and a twist of τ0 = 15 (recall
figure 4 (homeotropic)). However, we use a periodic initial condition consistent with τ0 = 25 (see far left col. in figure 4), i.e.
more stripes than the minimizer should have. The computed minimizer has energy E = −151.78, compared to E = −151.98
in figure 4 (homeotropic), and contains two triple junctions not present in the previous simulation.

We also consider another type of perturbation of the initial condition in figure 8b. Here, a
centred shell, with homeotropic anchoring, is considered with τ0 = 15, but the initial condition
corresponds to τ0 = 25, i.e. more tightly packed stripes. Because of this mismatch of the initial
condition, the simulation took approximately 1 week to ‘unwind’ the extra twist in the initial
condition to arrive at a minimizer with τ0 = 15. Moreover, the gradient flow obtained a different
minimizer with a stripe pattern having two triple junctions, as opposed to figure 4 which had no
triple junctions.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 3.3

model A

initial condition final condition

model B-1 model B-2

5.2 7.1

Figure 9. (a) Results from the simulation of Model A (§5f). Both a front view (viewing the yz plane) and a top view (viewing
the xy plane) are shown, with a view of the initial condition and final state (both outside view and slice are shown). Models
B-1 and B-2 had visually indistinguishable patterns. (b) Results from the simulation of Models A, B-1, B-2 (§5f), except viewing
the largest eigenvalue λ̄= max{λi}3i=1 of the energy minimizing Q. We have Model A (our formulation), Model B-1, (their
formulation with their inconsistent s0), and Model B-2 (their formulation with a consistent s0).

(f) Other cholesteric model
We attempted to reproduce a result of Lavrentovich and Tran in [12, Fig. 6], which models a
cholesteric shell with outer radius 0.42 µm and inner radius 0.24 µm. From this, we choose the
characteristic length ξ = 0.42 µm.

The dimensional parameters used are for the 5CB LC, which can be found in [29]. The
double well constants are a2 = 0.172 × 106 J m−3, a3 = 2.12 × 106 J m−3 and a4 = 1.73 × 106 J m−3.
Following §2c, we then calculate c0 = 0.038362224 × 106 J m−3, and divide the double well
coefficients by c0 to obtain the non-dimensional double well:

a0 = 1.0, a2 = 4.4835774, a3 = 55.262698, a4 = 45.096447,

which gives s0 = 0.7992969.
For the elastic coefficients (for 5CB in [29]), we have 	̆1 = 	̆2 = 4 × 10−11 J m−1, 	̆24 = 0. Since

	̆24 = 0, this corresponds, via the mapping of the constants in §2d, to 	1 = 	2 = 4 × 10−11 J m−1,
	3 = −4 × 10−11 J m−1. From here, we choose 	m = 4 × 10−11 J m−1 and divide by 	m to obtain 	1 =
	2 = 1, 	3 = −1. Note that the inequalities in (3.2) are not strictly satisfied in this case. We also
have a cholesteric pitch of p = 0.18 µm, and so the non-dimensional twist is τ0 = 14.660766. The
anchoring condition is planar degenerate with w0 = 0, w1 = 4 × 10−4 J m−2, w2 = 8 × 10−4 J m−2.
Multiplying the first two by ξ/	m, we obtain w0 = 0, w1 = 4.2. Finally, using the formulae η=√
	m/(c0ξ2) and ω= 	m/(w2ξ ), we have that η= 0.07688273 and ω= 0.11904762.

We ran simulations for the above parameters using the following three models: A, B-1, B-2.
Model A is given in (2.3) (see [9,10,29]), and model B-1 is the cholesteric model in [11] and
discussed in §2d. Since s0 is inconsistent with their effective double well ψ̃ (see §2d, part (ii),
and the discussion about the extra tr(Q2) term), we ran the simulation for a model B-2, which
is identical to B-1, except that we replace s0 with the correct global minimum s̃0 for ψ̃ .

The energy results of these simulations are found in table 5, and the results of the simulation
using model A are found in figure 9a, which does not exactly match the result in [12, fig. 6].
Their method uses a conjugate gradient method which is different from our minimization scheme,
i.e. their method travels along a different path in the energy landscape so finds a different local
minimizer.

We do not give the visualization of the other two models (B-1, B-2), because they look nearly
identical to Model A. We suspect this is due to the cholesteric twist having a dominant effect. It
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Table 5. Energies for the model comparisons in figure 9 (§5f).

model initial energy final energy

A −196.83349123 −479.36144656
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B-1 310.00570697 185.52404418
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B-2 365.134880212 183.86282819
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

should be noted, however, that models A and B-1, B-2 differ greatly in their final energies, as well
as in the values of the maximum eigenvalue λ̄ of Q, the latter of which is shown in figure 9b. We
emphasize that, due to the energetic differences, if other physical effects were to be coupled to the
LC (e.g. electro-static effects), then the models would most likely give vastly different equilibrium
states. In addition, if the twist parameter is sufficiently large, then the effective bulk potential
(recall §2d(ii)) will favour an isotropic state, which is not consistent with cholesteric LC behaviour
[11,12,17].

It took approximately 2 h to simulate model A, while it took about 40 min to simulate models
B-1 and B-2. The mesh size used was 0.04285714.

6. Conclusion
The first part of this paper gives an overview of the LdG model [9,10,29] for nematic LCs,
with cholesteric effects, and connects it to a slightly different cholesteric model in [11]. We then
presented a gradient flow and numerical scheme for the cholesteric LdG model, while noting
important time-step restrictions to have an energy decreasing algorithm. Moreover, we gave a
mesh size restriction that ensures that discrete minimizers are approximate versions of isolated,
true minimizers.

Using our gradient flow, we compute (local) minimizers with an adaptive time-stepping
strategy to reduce the computation time. This produced several numerical simulations that
illustrate the rich behaviour of the cholesteric LdG model. For both slab and shell geometries,
the minimizer has regular stripe patterns that are affected by the domain shape. Specifically, the
off-centred shell has a very different minimizer than the centred shell for intermediate values of
the twist τ0. We also demonstrate that our gradient flow scheme can compute different (local)
minimizers for the same set of parameters but depending on the initial condition. Some of the
simulations show perturbed stripe patterns that exhibit ‘triple junctions’ of the stripe and are due
to using initial conditions with a high spatial frequency. All of these (equilibrium) stripe patterns
are in line with known experiments for cholesteric LCs (for instance, see [48,49] for examples with
thin slab geometries, and [11,12,16,17] for shell geometries).

We also gave examples of how artificial solutions may arise if the mesh size is not small
enough, i.e. the computed minimizer may exhibit discrete artefacts. Furthermore, we showed
that the two cholesteric models exhibit very different energies, though the computed solution
may still have a very similar configuration of the director n.

The results of this paper should help inform LC computational scientists about potential
pitfalls in the simulation of the cholesteric LdG model and lead to more robust numerical
predictions of cholesteric LC physics.
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Appendix A

(a) Proof of theorem 3.1
Proof of theorem 3.1. We start with the following inequality for any P, T ∈ V (recall that

a2, a3, a4 > 0):

(T, D2ψ(P)T)Ω = −a2||T||20,Ω − 2a3(PT, T)Ω + 2a4(P : T, P : T)Ω + a4(|T|2, |P|2)Ω

≥ −a2||T||20,Ω − (a3δ)(|T|2, |P|2)Ω − (a3/δ)||T||20,Ω + a4(|T|2, |P|2)Ω

= −
(

a2 + a2
3

a4

)
||T||20,Ω = −a′||T||20,Ω , (A 1)

by choosing δ = a4/a3, where a′ = a2 + a2
3/a4. Similarly, we have

(T, D2φ(P)T)Γ =
(

−2s2
0

3

)
||T||20,Γ + 2(P : T, P : T)Γ + (|T|2, |P|2)Γ

≥
(

−2s2
0

3

)
||T||20,Γ = −s′||T||20,Γ , (A 2)

where s′ = 2s2
0/3. Next, setting Sk+1 := Qk+1 − Qk, we have the identity

a(Qk, Qk) = a(Qk+1, Qk+1) + a(Sk+1, Sk+1) − 2a(Sk+1, Qk+1). (A 3)

Note also that, substituting P = Sk+1 := Qk+1 − Qk into (3.10) and (3.7), we have

δt−1(Sk+1, Sk+1)δt = −a(Qk+1, Sk+1) −
(

1
η2

)
(Dψ(Qk+1), Sk+1)Ω

−
(

1
ω

)
(Dφ(Qk+1), Sk+1)Γ + lrhs(Sk+1). (A 4)

Now use a Taylor expansion of ψ(Qk) and φ(Qk) about Qk+1, i.e. set Q̄(s) := (1 − s)Qk+1 + sQk, and
for some s1, s2 ∈ (0, 1), we obtain from (3.6) combined with (A 1), (A 2), (A 3):

E[Qk] =
(

1
2

)
a(Qk, Qk) +

(
1
η2

)
(ψ(Qk+1), 1)Ω +

(
1
ω

)
(φ(Qk+1), 1)Γ

− lrhs(Qk+1) + lrhs(Sk+1) −
(

1
η2

)
(Dψ(Qk+1), Sk+1)Ω

−
(

1
ω

)
(Dφ(Qk+1), Sk+1)Γ +

(
1

(2η2)

)
(Sk+1, D2ψ(Q̄(s1))Sk+1)Ω

+
(

1
(2ω)

)
(Sk+1, D2φ(Q̄(s2))Sk+1)Γ
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≥
(

1
2

)
a(Qk+1, Qk+1) +

(
1
η2

)
(ψ(Qk+1), 1)Ω +

(
1
ω

)
(φ(Qk+1), 1)Γ

− lrhs(Qk+1) +
(

1
2

)
a(Sk+1, Sk+1) − a(Sk+1, Qk+1) + lrhs(Sk+1)

−
(

1
η2

)
(Dψ(Qk+1), Sk+1)Ω −

(
1
ω

)
(Dφ(Qk+1), Sk+1)Γ

−
(

1
η2

)(
a′

2

)
||Sk+1||20,Ω −

(
1
ω

)(
s′

2

)
||Sk+1||20,Γ .

We then substitute (A 4) into the above line and use (3.6) again to see that

E[Qk] ≥ E[Qk+1] + δt−1(Sk+1, Sk+1)δt −
(

1
η2

)(
a′

2

)
‖Sk+1‖2

0,Ω −
(

1
ω

)(
s′

2

)
‖Sk+1‖2

0,Γ

= E[Qk+1] +
(

1
η2

)(
1
δ

t − a′

2

)
‖Sk+1‖2

0,Ω +
(

1
ω

)(
1
δ

t − s′

2

)
‖Sk+1‖2

0,Γ ≥ E[Qk+1],

provided that δt ≤ 2/max{a′, s′}. �

(b) Proof of theorem 4.2
To facilitate the proof of theorem 4.2, we first give several intermediate results.

Lemma A.1 (Gårding’s inequality). There exists k ≥ 0 such that

a(P, P) + k||P||20,Ω ≥ α1

2
||P||21,Ω , ∀ P ∈ V,

where α1 is the constant found in (3.3).

Proof. We follow the proof found in [45], with modifications for our particular case. First,
note the coercivity result from (3.3): ae(P, P) + as(P, P) ≥ α1||P||21,Ω . Next, recall (3.4) and note that

|εikl(Pjk,l, Pij)Ω | ≤ √
27|P|1,Ω ||P||0,Ω (where |P|21,Ω := ||∇P||20,Ω denotes the H1(Ω) semi-norm), and

using a weighted Young’s inequality, we have

a(P, P) + k||P||20,Ω ≥ α1||P||21,Ω + 4	1τ0εikl(Pjk,l, Pij)Ω + k||P||20,Ω

≥ α1||P||21,Ω − (4	1
√

27)τ0|P|1,Ω ||P||0,Ω + k||P||20,Ω

≥ α1|P|21,Ω − 2	1
√

27τ0δ|P|21,Ω − 2	1
√

27τ0δ
−1||P||20,Ω + (k + α1)||P||20,Ω

=
(
α1 − 2	1

√
27τ0δ

)
|P|21,Ω +

(
k + α1 − 2	1

√
27τ0δ

−1
)

||P||20,Ω

≥
(α1

2

)
||∇P||20,Ω +

(α1

2

)
||P||20,Ω .

Finally, by choosing δ = α1/(4	1τ0
√

27) the result follows by assuming:

k = max

[(
216	2

1τ
2
0

α1
− α1

2

)
, 0

]
. (A 5)

�

Lemma A.2. The following inequality holds:

α1

4
||Q − Qh||21,Ω ≤ c1||Q − Qh||1,Ω ||Q − Ph||1,Ω + k̃||Q − Qh||20,Ω , ∀Ph ∈ Vh,

where c1 and k̃ are nonnegative constants, and Q, Qh are defined in theorem 4.2.
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Proof. First, observe that, by subtracting (4.3) from (3.7) (choosing P = Ph ∈ Vh), we obtain

a(Q − Qh, Ph) +
(

1
η2

)
(Dψ(Q) − Dψ(Qh), Ph)Ω +

(
1
ω

)
(Dφ(Q) − Dφ(Qh), Ph)Γ = 0, (A 6)

for all Ph ∈ Vh. Secondly, for all symmetric tensors Q1, Q2, P, note that

(Dψ(Q1) − Dψ(Q2)) : P = −a2(H : P) − a3(Q2
1 − Q2

2) : P + a4(|Q1|2Q1 − |Q2|2Q2) : P

= −a2(H : P) − a3(H : (Q1 + Q2)P)

+ a4

2
[(|Q1|2 + |Q2|2)H : P + (H : (Q1 + Q2))((Q1 + Q2) : P)]

= H :
(
−a2I − a3(Q1 + Q2)I + a4

2

[
(|Q1|2 + |Q2|2)I

+(Q1 + Q2) ⊗ (Q1 + Q2)
])

P =: H :Θ(Q1, Q2)P,

where H = Q1 − Q2 and I is the 4-tensor identity. Similarly, we have

(Dφ(Q1) − Dφ(Q2)) : P = −2s0

3
H : P + (|Q1|2Q1 − |Q2|2Q2) : P

= −2s2
0

3
H : P +

(
1
2

)
[(|Q1|2 + |Q2|2)H : P + (P : (Q1 + Q2))((Q1 + Q2) : H)]

= H :

(
−2s2

0
3

I +
(

1
2

)
[(|Q1|2 + |Q2|2)I

+ (Q1 + Q2) ⊗ (Q1 + Q2)])P =: H :Ξ (Q1, Q2)P.

Note also that these tensors obey the inequality

(P,Θ(Q1, Q2)P)Ω ≥
∫
Ω

−a2|P|2 − a3(P : (Q1 + Q2)P) +
( a4

2

)
(|Q1|2 + |Q2|2)|P|2

≥
∫
Ω

−a2|P|2 −
(

a3δ
−1

2

)
|P|2 −

(
a3δ

2

)
|Q1 + Q2|2|P|2

+
(a4

2

)
(|Q1|2 + |Q2|2)|P|2

≥
∫
Ω

−a2|P|2 −
(

a3δ
−1

2

)
|P|2 − (a3δ)(|Q1|2 + |Q2|2)|P|2

+
(a4

2

)
(|Q1|2 + |Q2|2)|P|2

= −
(

a2 + a2
3

a4

)
||P||20,Ω = −a′||P||20,Ω ,

and also

(P,Ξ (Q1, Q2)P)Γ =
∫
Γ

−
(

2s2
0

3

)
|P|2 +

(
1
2

)
(|Q1|2 + |Q2|2)|P|2 +

(
1
2

)
((Q1 + Q2) : P)2

≥
∫
Γ

−
(

2s2
0

3

)
|P|2 = −s′||P||20,Γ ,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 Ju

ne
 2

02
4 



24

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230813

..........................................................

for all Q1, Q2, P, where we have chosen δ = a4/2a3, a′ = a2 + a2
3/a4, and s′ = 2s2

0/3. Then, for all
Ph ∈ Vh, we have

a(Q − Qh, Q − Qh) = a(Q − Qh, Q − Ph) + a(Q − Qh, Ph − Qh)

= a(Q − Qh, Q − Ph) −
(

1
η2

)
(Dψ(Q) − Dψ(Qh), Ph − Qh)Ω

−
(

1
ω

)
(Dφ(Q) − Dφ(Qh), Ph − Qh)Ω .

Substituting Θ and Ξ into the above, we see that

a(Q − Qh, Q − Qh) = a(Q − Qh, Q − Ph) −
(

1
η2

)
(Q − Qh,Θ(Q, Qh)(Ph − Qh))Ω

−
(

1
ω

)
(Q − Qh,Ξ (Q, Qh)(Ph − Qh))Γ

= a(Q − Qh, Q − Ph) +
(

1
η2

)
(Q − Qh,Θ(Q, Qh)(Q − Ph))Ω

+
(

1
ω

)
(Q − Qh,Ξ (Q, Qh)(Q − Ph))Γ

−
(

1
η2

)
(Q − Qh,Θ(Q, Qh)(Q − Qh))Ω −

(
1
ω

)
(Q − Qh,Ξ (Q, Qh)(Q − Qh))Γ

≤ c0||Q − Qh||1,Ω ||Q − Ph||1,Ω

+
(

1
η2

)
||Θ(Q, Qh)||0,3,Ω ||Q − Qh||0,6,Ω ||Q − Ph||0,Ω

+
(

1
ω

)
||Ξ (Q, Qh)||0,Γ ||Q − Qh||0,4,Γ ||Q − Ph||0,4,Γ

+ a′

η2 ||Q − Qh||20,Ω + s′

ω
||Q − Qh||20,Γ ,

where c0 is the continuity constant defined in (4.6) (see [40] for details), and ||P||p0,p,Ω := (|P|p, 1)Ω .
Applying the Sobolev trace and embedding theorems, with induced constants β1,β2 > 0, we get

a(Q − Qh, Q − Qh) ≤ c0||Q − Qh||1,Ω ||Q − Ph||1,Ω

+
(
β1

η2

)
||Θ(Q, Qh)||0,3,Ω ||Q − Qh||1,Ω ||Q − Ph||1,Ω

+
(
β2

ω

)
||Ξ (Q, Qh)||0,Γ ||Q − Qh||1,Ω ||Q − Ph||1,Ω

+ a′

η2 ||Q − Qh||20,Ω + s′

ω
||Q − Qh||20,Γ .

Next, by another classic trace theorem, ||P||20,Γ ≤ β3||P||0,Ω ||P||1,Ω combined with a weighted
inequality, we have

s′

ω
||Q − Qh||20,Γ ≤ (β3s′)2

ω2α1
||Q − Qh||20,Ω + α1

4
||Q − Qh||21,Ω ,

which leads to

a(Q − Qh, Q − Qh) ≤ c1||Q − Qh||1,Ω ||Q − Ph||1,Ω

+
(

a′

η2 + (β3s′)2

ω2α1

)
||Q − Qh||20,Ω + α1

4
||Q − Qh||21,Ω ,
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where

c1 := c0 +
(
β1

η2

)
||Θ(Q, Qh)||0,3,Ω +

(
β2

ω

)
||Ξ (Q, Qh)||0,Γ = c0 + β ′

1
η2 + β ′

2
ω

. (A 7)

Now, by Gårding’s inequality, we have

α1

2
||Q − Qh||21,Ω ≤ a(Q − Qh, Q − Qh) + k||Q − Qh||20,Ω .

And so, if we combine this with the above, define s′′ = (β3s′)2/α1, and set

k̃ = k + a′

η2 + s′′

ω2 , (A 8)

then the proof is complete. �

Now we move towards an estimate in L2(Ω) of Q − Qh. In order to do this, we first introduce
the solution to and regularity of an adjoint problem.

Lemma A.3. There exists a solution R ∈ V to the adjoint problem

a(P, R) +
(

1
η2

)
(R,Θ(Q, Qh)P)Ω +

(
1
ω

)
(R,Ξ (Q, Qh)P)Γ = (Q − Qh, P)Ω , ∀ P ∈ V, (A 9)

where we assume the regularity estimate

||R||2,Ω ≤ c3||Q − Qh||0,Ω , (A 10)

where ||P||22,Ω := ||∇2P||20,Ω + ||∇P||20,Ω + ||P||20,Ω denotes the H2(Ω) norm.

Proof. First note the inequality

P :Θ(Q, Qh)P = −a2|P|2 − a3(P : (Q1 + Q2)P) +
(a4

2

)
((|Q1|2 + |Q2|2)|P|2 + (P : (Q1 + Q2))2)

= −a2|P|2 − 2a3(P : Q̄P) + a4

(
|Q1|2 + |Q2|2

2
|P|2 + 2(Q̄ : P)2

)
≥ −a2|P|2 − 2a3(P : Q̄P) + a4(|Q̄|2|P|2 + 2(Q̄ : P)2) = P : D2ψ(Q̄)P,

as well as the inequality,

P :Ξ (Q, Qh)P = −
(

2s2
0

3

)
|P|2 +

(
1
2

)
((|Q1|2 + |Q2|2)|P|2 + (P : (Q1 + Q2))2)

≥ −
(

2s2
0

3

)
|P|2 + (|Q̄|2|P|2 + 2(Q̄ : P)2) = P : D2φ(Q̄)P,

where Q̄ = (Q1 + Q2)/2, and where we have used the Cauchy–Schwarz and Young inequalities.
From here, using (4.4), we see that

a(P, P) +
(

1
η2

)
(P,Θ(Q, Qh)P)Ω +

(
1
ω

)
(P,Ξ (Q, Qh)P)Γ

≥ a(P, P) +
(

1
η2

)
(P, D2ψ(Q̄)P)Ω + (P, D2φ(Q̄)P)Γ ≥ m0||P||21,Ω ,

showing that this problem is coercive, and so the solution to the above is guaranteed by Lax-
Milgram, which also shows that ||R||1,Ω ≤ c||Q − Qh||0,Ω for some constant c> 0. �

Remark A.4. The additional H2(Ω) regularity assumed in theorem 4.2 on the solution Q, as
well as the additional regularity on the adjoint solution in (A 10), may be shown rigorously (given
certain smoothness assumptions onΩ) by applying bootstrapping techniques, and combining the
previous a priori estimate for ||R||1,Ω with the theory in [53, ch. 4].
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Lemma A.5. The following estimate holds for the L2-norm difference of Q and its finite-element
approximation:

||Q − Qh||0,Ω ≤ c4h||Q − Qh||1,Ω .

Proof. Starting from (A 6), replace Ph with Rh ∈ Vh and use Θ and Ξ from earlier to get

a(Q − Qh, Rh) +
(

1
η2

)
(Rh,Θ(Q, Qh)(Q − Qh))Ω +

(
1
ω

)
(Rh,Ξ (Q, Qh)(Q − Qh))Γ = 0.

Then, set P = Q − Qh in (A 9) to produce an estimate for ||Q − Qh||0,Ω

(Q − Qh, Q − Qh)Ω = a(Q − Qh, R) +
(

1
η2

)
(R,Θ(Q, Qh)(Q − Qh))Ω

+
(

1
ω

)
(R,Ξ (Q, Qh)(Q − Qh))Γ

= a(Q − Qh, R − Rh) +
(

1
η2

)
(R − Rh,Θ(Q, Qh)(Q − Qh))Ω

+
(

1
ω

)
(R − Rh,Ξ (Q, Qh)(Q − Qh))Γ

≤ a(Q − Qh, R − Rh)

+
(

1
η2

)
||Θ(Q, Qh)||0,3,Ω ||R − Rh||0,6,Ω ||Q − Qh||0,Ω

+
(

1
ω

)
||Ξ (Q, Qh)||0,Γ ||R − Rh||0,4,Γ ||Q − Qh||0,4,Γ .

We apply the Sobolev trace and embedding theorems to the above line and obtain that

(Q − Qh, Q − Qh)Ω ≤ a(Q − Qh, R − Rh)

+
(
β1

η2

)
||Θ(Q, Qh)||0,3,Ω ||R − Rh||1,Ω ||Q − Qh||1,Ω

+
(
β2

ω

)
||Ξ (Q, Qh)||0,Γ ||R − Rh||1,Ω ||Q − Qh||1,Ω

≤ c0||Q − Qh||1,Ω ||R − Rh||1,Ω +
((

β1

η2

)
||Θ(Q, Qh)||0,3,Ω

+
(
β2

ω

)
||Ξ (Q, Qh)||0,Γ

)
||Q − Qh||1,Ω ||R − Rh||1,Ω

= c1||Q − Qh||1,Ω ||R − Rh||1,Ω ,

for all Rh ∈ Vh, where β1,β2 > 0 are constants induced from the trace and embedding theorems,
and c1 is the same as in (A 7). We then note that infPh∈Vh ||P − Ph||1,Ω ≤ c2h|P|2,Ω for all P ∈ H2(Ω)
(see [45], for instance), for some constant c2 > 0, where |P|22,Ω := ||∇2P||20,Ω is the H2(Ω) semi-
norm. So, we can choose Rh such that by this estimate as well as (A 10), we obtain

(Q − Qh, Q − Qh)Ω ≤ c1c2h||Q − Qh||1,Ω |R|2,Ω ≤ c1c2c3h||Q − Qh||1,Ω ||Q − Qh||0,Ω .

Dividing everything by ||Q − Qh||0,Ω , we obtain

||Q − Qh||0,Ω ≤ c4h||Q − Qh||1,Ω , (A 11)

where c4 := c1c2c3 and we are done. �
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Proof of theorem 4.2. Combining lemma A.2 with lemma A.5, we obtain the following for all
Ph ∈ Vh:

α1

4
||Q − Qh||21,Ω ≤ c1||Q − Qh||1,Ω ||Q − Ph||1,Ω + k̃||Q − Qh||20,Ω

≤ c1||Q − Qh||1,Ω ||Q − Ph||1,Ω + k̃(c1c2c3)2h2||Q − Qh||21,Ω .

Moving the last term to the left-hand side and then dividing by ||Q − Qh||1,Ω :(α1

4
− k̃(c1c2c3)2h2

)
||Q − Qh||1,Ω ≤ c1||Q − Ph||1,Ω .

If we choose h ≤ h0, where

h0 =
(
α1

8k̃

)1/2 1
c1c2c3

,

then
α1||Q − Qh||1,Ω ≤ 8c1||Q − Ph||1,Ω , ∀ Ph ∈ Vh. (A 12)

Next, substituting c1 from (A 7) and k̃ from (A 8), the explicit form of h0 is

h0 =
(

α1

k + (a′/η2) + (s′′/ω2)

)1/2 1√
8(c0 + β ′

1/η
2 + β ′

2/ω)c2c3
.

Finally, using the interpolation theory result from the previous lemma, we see that the estimate
(A 12) is bounded by a constant times h|Q|2,Ω , thus completing the proof. �
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