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At construction workplaces, workers should be consistently attentive to approaching and nearby safety hazards.
However, workers tend to allocate most of their attentional resources to a work task and often exhibit inattentive
behaviors to hazards, which may lead to serious injuries and fatalities. Predicting construction workers’ inat-
tentiveness is thus critical to preventing accidents in construction workplaces. With the advent of biosensing
technologies, the potential of using biosignals to predict human behaviors has been proven in various fields of
study. However, to date there has been little discussion about utilizing biosignals to predict construction
workers’ inattentive behaviors. To this end, this study examines whether construction workers’ inattentive be-
haviors can be predicted by assessing biosignal reactivity. A virtual road construction environment was created
and used for an experiment to expose participants to a repeated struck-by hazard without risking actual injury.
Participants’ biosignals (i.e., electrodermal activity, pupil dilation, and saccadic eye movement) and physical
engagement in inattentive behaviors were collected and analyzed. The results of statistical analyses revealed
significant differences in biosignal reactivities between participants’ attentive behaviors (i.e., paying attention to
the hazard) and inattentive behaviors (i.e., ignoring the hazard). The outcomes of the machine learning-based
behavior classification also indicate the usefulness of predicting inattentive behaviors by monitoring workers’
biosignals during a construction task and provide a foundation for the utilization of biosignals in safety man-
agement to prevent accidents resulting from inattentive behaviors.

1. Introduction

The construction industry has always been considered to be one of
the most high-risk industries [1-3]. In 2018, more than 1,000 fatalities
were reported from the construction industry in the United States [4].
Despite countless efforts to improve construction safety, the majority of
fatalities and injuries in construction workplaces still occur due to
workers’ unsafe behaviors [5-9]. Insufficient attention to potential risks
associated with workplace hazards is a major contributing factor to
workers’ unsafe behaviors [10,11]. In construction workplaces, workers
become complacent with hazards that they are exposed to frequently
[12-14]. This often causes workers to underestimate the risks, become
inattentive to the hazards, and engage in unsafe behaviors [15,16].
Typically, warning signals are provided to induce worker alertness to
nearby hazards, but repeated exposures to warning signals also cause
workers to be less attentive or habituated to those signals. To this end,
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measuring workers’ attentiveness and predicting their inattentive be-
haviors are critical to the development of closed-loop interventions that
continuously provide feedbacks until workers recover their attention to
hazards and/or warning signals [11,17,18].

The recent development in the field of biosensing technology (e.g.,
electrodermal activity (EDA), electroencephalography [EEG], electro-
cardiogram [ECG], and eye tracking) has led to a growing interest in the
use of wearable sensors in measuring worker attentiveness [19,20].
Researchers have focused on observing changes in biosignals when a
participant encounters a hazard during an experiment and compared
participants’ biosignals when they were in “without hazard” conditions
and in “with hazard” conditions. Several studies have found that
workers show heightened biosignal reactivity when they are exposed to
workplace hazards [11,17,21]. Choi et al. [17] found that short-term
changes in EDA show significant differences between low- and high-
risk activities. Specifically, Wang et al. [11] demonstrated that
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workers’ vigilance—sustained attention to an external threat—is
observable through EEG signal analysis. These studies have accumulated
evidence indicating the potential causality between heightened re-
activities in biosignals and attentiveness by identifying the association
between abnormalities in biosignals and exposure to hazards. However,
little research has been conducted on predicting inattentive behaviors
that are caused by failures to be attentive to frequently presented
warning signals or repeatedly encountered workplace hazards in a
construction environment. To this end, this study examines the
computational approaches to predict workers’ inattentive behaviors to
hazards by using biosignals collected while warning signals are
employed prior to their encounters with hazards.

To achieve the research objective, an experiment was conducted in a
laboratory setting. The major considerations in the experimental design
were how to expose participants to a repeated workplace hazard without
risking actual injury and observe their attentiveness to it. Thus, a virtual
reality environment was created and used for the experiment, during
which participants were asked to perform a road-cleaning task and
repeatedly exposed to the risk of being struck by a construction vehicle.
Participants’ physical responses and biosignal reactivitties to the hazard
were measured by using eye-tracking sensors and a wearable EDA
sensor. Through the statistical analysis, significant relationships be-
tween participants’ physical inattentive behaviors and reactivities in
biosignals are identified. Finally, the usefulness of predicting inattentive
behaviors using biosignals is demonstrated by applying a supervised
learning-based classification. The findings provide a foundation for the
utilization of biosignals in safety interventions and training to prevent
accidents caused by workers’ inattentive behaviors during a construc-
tion task.

2. Research background
2.1. Inattentive behaviors and habituation to workplace hazards

Previous studies in construction safety have focused on explaining
workers’ unsafe behaviors from a cognitive psychology perspective.
These researchers claimed that workers’ inattention to hazards is one of
the significant precursors of workplace accidents [22-24]. Performing a
construction task demands constant attention to surrounding hazards
[21,25]. However, during a construction task, workers tend to pay more
attention to the task and less attention to hazards because of limited
attention capacity [26,27]. Wickens [27] determined that humans’
attentional resources are limited. Therefore, in workplaces, while
simultaneously performing multiple tasks (e.g., performing a task vs.
watching out for potential hazards), workers are apt to allocate their
limited attentional resources according to their priorities [28].

Recent studies in construction safety have also found that construc-
tion workers’ risk perception is highly related to their attention alloca-
tion to workplace hazards [21,25]. When workers’ perceived risk is low,
workers are likely to allocate less attentional resources to hazards and
tend to engage in inattentive behaviors that can result in workplace
fatalities and injuries [29-31]. The tendency of workers to be inattentive
to workplace hazards is actually exacerbated when workers are
frequently exposed to the same hazard [11]. After long-term and
frequent exposure to hazards, workers become habituated to the hazard
and begin to underrate its risk [15,32,33]. Researchers have defined this
phenomenon as risk habituation and tried to examine its influence on
workers’ engagement in inattentive behaviors [1,34]. For instance,
previous studies found that lift truck operators who were exposed to
regular hazards tended to show a low level of perceived risk while
driving a lift truck in hazardous situations [13,35,36].

Other studies have demonstrated that workers’ sensitivity to work-
place risks decreases with repeated exposure to the same hazard [8,20].
Accident investigation reports also confirmed that one of the significant
causal factors of struck-by accidents is workers’ inattention to
approaching equipment [37,38]. In many cases of struck-by accidents,
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construction equipment was moving at a low speed, and proximity
warning alarms were sounded, but pedestrian workers failed to avoid
accidents because they were focused on their task and did not heed the
approaching equipment [16,37,38]. Providing auditory warning alarms
is a common and simple method used to shift workers’ attention from
their tasks to approaching hazards [39]. However, as seen in the acci-
dent cases mentioned above, its effectiveness in reducing workers’
habituated inattentiveness is questionable [1]. Therefore, there is a
critical need to assess workers’ inattentiveness to workplace hazards to
prevent struck-by and other accidents in construction sites.

2.2. Biosignals and attentiveness

Researchers in psychology and cognitive science have generated evi-
dence indicating that workers’ attentiveness can be assessed by monitoring
reactivities in various biosignals [40-43]. This section reviews previous
studies that examined measures of various biosignals in relation to assess-
ments of attentiveness to hazards.

EDA, which indicates changes in the electrical current of the skin in
response to adverse or threatening stimuli [44-46], has been widely
adopted to objectively measure individuals’ sustained attention
[19,47-49]. EDA signals usually are sorted into two indices: skin
conductance level (SCL) and skin conductance response (SCR) [50]. SCL
measures slow changes in average skin conductance, and SCR represents
the rapid phasic transient related external stimuli [46,51]. Previous
studies have used EDA to identify an individual’s mental status changes
in various circumstances (e.g., ambulatory settings, occupational set-
tings, etc.) [6,52]. Studies in construction safety [17,53,54] have
investigated the applicability of EDA to monitor construction workers’
attention to workplace hazards. The results indicated that there were
significant short-term changes in EDA when participants were exposed
to a hazardous working environment [17].

To monitor workers’ inattentiveness during exposure to work-
place hazards, researchers also have focused on pupil size measure-
ment and saccadic eye movement (e.g., saccadic velocity, saccadic
duration). Pupillometry is a technique that measures changes in
pupil size [55]. Pupil dilation reflects the intensity of cognitive load
and responses to external stimuli [56]. Increases in cognitive pro-
cessing of information, or cognitive load, are indicated by increases
in pupil size. Thus, changes in pupil size can be used for continuous
measurement of mental workload [57]. Kimble et al. [58] demon-
strated the association between pupil size and exposure to threat-
ening stimuli. Results showed that larger pupil dilation was
demonstrated when participants were exposed to high-risk situa-
tions. Specifically, Liao et al. [59] measured pupil dilation to
examine its usefulness for assessing construction workers’ atten-
tiveness. The results revealed that participants’ pupils were differ-
ently dilated according to the different types of risks associated with
workplace hazards. In addition to pupil dilation, saccadic eye
movements have also been considered as useful indicators of mental
attention [56]. Saccadic velocity and duration have proved to be
related to attentiveness [60]. Saccadic eye movements tell the speed
and angle of eye movement, which indicate participants’ attention to
a presented stimulus [55]. Costela and Castro-Torres [60] found that
exposure to hazardous situations is significantly associated with
larger saccadic eye movements. Saccadic velocity has been adopted
in applied psychology studies to measure participants’ emotional
arousal [55,61-63]. Since saccadic velocity is not vulnerable to
participants’ voluntary control, it may indicate underlying mental
activity more clearly than other saccade metrics [62,64]. Saccadic
duration is another metric that indicates the level of risk perception
and attentiveness to exposed hazards [65]. Stasi et al. [66] found that
people who engaged in risky-behaviors more frequently showed
shorter saccadic duration than people who showed less engagement
in risky-behaviors. Based on this evidence, this study examines the
usefulness of biosignals (e.g., EDA, pupil dilation, saccadic velocity,
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Fig. 1. Construction task in the VR environment: (a) Virtual sweeping task using a broom. Motion controllers were attached to the broomstick; (b) Overview scene of

the virtual road construction environment.

and saccadic duration) in predicting inattentive behaviors of con-
struction workers.

2.3. Biosignal analysis and behavior prediction

In various fields of study (e.g., human-robot interaction research,
consumer behavior analysis, and driving behavior analysis), researchers
have become increasingly interested in the prediction of human be-
haviors through the analysis of biosignal reactivity [55,67-69]. For
example, several studies [68,69] in analyses of driving behavior focused
on the utility of assessing drivers’ biosignals to predict risky driving
behaviors. Liang and Lin [68] found distinctively different reactivities in
EEG and EDA signals from risky and safety drivers when they encoun-
tered road hazards. Murphey et al. [69] used ECG and EDA to predict
drivers’ intention to change lanes and illustrated the value of biosignal
assessment in predicting human behaviors. Researchers in the field of
behavioral and neurophysiological science also have explored biosignal
analysis methods to predict participants’ decision making during
decision-reward uncertainty tasks [70-72]. Cavanagh et al. [70], for
example, revealed the association between greater pupil dilation and an
increase in decision threshold in difficult decision-making circum-
stances. Studies in consumer science have investigated the analysis of
biosignals that allows the prediction of subsequent purchasing behaviors
[55,71]. Guerreiro et al. [71] attempted to predict consumer choice by
assessing EDA signals. The results demonstrated that heightened re-
activities in EDA signals are correlated with participants’ selection be-
haviors. However, in contrast to other research domains there has been
little discussion about assessing biosignals to predict construction
workers’ inattentive behaviors in hazardous working environments. To
this end, this study examines whether construction workers’ inattentive
behaviors can be predicted by assessing biosignal reactivities when
workers encounter workplace hazards.

3. Data collection

In a construction context, it is excessively difficult to observe
workers’ inattentive behaviors during a construction task [72].
Furthermore, workers cannot be exposed to a hazardous situation for
research purposes. On the other hand, a virtual reality (VR) environment
can provide a close-to-reality simulation and evoke with high validity an
individual’s behavioral and physiological responses to exposed hazards
[73-76], thereby enabling researchers to analyze relationships between
the biosignal reactivity and physical behaviors when a participant en-
counters simulated hazardous contexts. To this end, the experiment was
conducted using a VR environment. Specifically, in order to expose
participants to repeated struck-by hazards and monitor their biosignal

reactivity, a virtual road construction and maintenance operation was
simulated. The following sections describe the VR environment devel-
opment process, experimental settings, and the data collection process.

3.1. Immersive virtual road construction environment

The experimental scenario focused on repeated exposure of participants
to potential struck-by hazards associated with construction vehicles
continuously operating around participants and sounding associated audi-
tory warning alarms. In order to build a near-reality virtual environment,
ambient sounds of a road maintenance work zone were carefully designed
and embedded in the VR environment. For instance, operation sounds from
heavy construction vehicles (e.g., milling machine, street sweeper, and
asphalt paver) and traffic sounds from passing cars were played during the
experiment. Furthermore, to enhance participants’ sense of presence, the
volume of ambient sounds attenuated as a participant moved away from a
source of the sound. A virtual construction task was designed to be able to
observe participants’ responses to a hazard while they were performing a
construction task. In the VR environment, a participant was asked to
perform a cleaning crew’s task, removing all debris from the surface of the
road by sweeping, using a broom. The motion controllers, attached to a real
broomstick, captured the physical sweeping movements of a participant,
and simulated the participant’s movements in the VR environment with a
virtual broom and virtual debris [Fig. 1-(a)].

In the virtual road construction environment, construction vehicles
move in response to participants’ behaviors. One of the construction
vehicles behind a participant (i.e., a sweeper) moves back and forth to
expose a participant repeatedly to a struck-by hazard. The movement of
the sweeper was deliberately designed to evoke participants’ behavioral
and physiological responses to the exposed hazard without interrupting
or stopping a participant’s task. During the experiment, the sweeper
repeatedly approaches in close proximity to a participant and then
moves away. A proximity warning alarm is presented only while the
sweeper is moving forward and is turned off while the sweeper is moving
backwards [Fig. 1-(b)]. In this scenario, a participant is repeatedly
exposed to the potential struck-by hazard without interfering with the
road cleaning task. One reciprocal movement of the sweeper is consid-
ered as one exposure to the struck-by hazard, and a participant’s
response to the hazard was measured for each exposure. Furthermore, to
build a realistic hazardous working environment, a virtual accident with
the sweeper was also designed. In a VR environment, the simulated
accident was triggered by a participant’s frequent inattentive behaviors.
When a participant ignored and did not look back to check the
approaching hazard more than 11 times, the sweeper moved toward the
participant until it collided with the participant, and the VR accident
was triggered.
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3.2. Measurement of physical inattentive behaviors and biosignals

In this study, participants’ hazard-checking behavior—an eye and/or
head movement a participant makes in order to observe approaching
hazards—is considered as attentive behavior. The manifestation of par-
ticipants’ physical attentive behaviors was determined by an eye
movement tracking system integrated into the developed VR environ-
ment. During the experiment, when a participant looked back to check
the sweeper’s proximity, it was labeled as an attentive behavior (i.e.,
hazard-checking behavior) and documented as such. If a participant did
not check the proximity of the sweeper during one exposure cycle, that
was labeled as an inattentive behavior (i.e., non-hazard-checking
behavior). Participants’ behavioral and physiological responses to the
exposed hazard were collected as follows. While a participant was per-
forming the virtual road cleaning task, his/her responses in EDA were
collected from the wrist-mounted, wearable EDA sensor and were
sampled at 4 Hz, and pupil dilation and saccadic eye movements were
measured using eye-tracking sensors embedded in the head-mounted
display (HMD) at 45 Hz.

3.3. Experimental procedure

A total of 32 participants (26 males, 6 females; Mg = 21.09, SDgg=
3.04) participated in the experiment. All participants were undergrad-
uate and graduate students at Texas A&M University (TAMU) majoring
in construction/engineering. The experiment was implemented in the
Building Information Modeling-Computer Aided Virtual Environment
(BIM-CAVE) at TAMU with the approval of the Institutional Review
Board.

Before commencing the experiment, all participants were
required to watch a safety training video for road maintenance work
[77] and were trained on how to perform the virtual road-cleaning
task. Then, participants undertook a practice session to become
familiarized with the VR task. The struck-by hazard and the simu-
lated accident were not presented in the practice session. During the
actual experiment, a participant was asked to alert him/herself to
approaching equipment and auditory warning signals for safety
purposes. When the VR-simulated accident occurred because of a
participant’s inattentive behaviors, the experiment was aborted
immediately. Otherwise, the experiment was discontinued 20 min
after starting the experiment. The validity of the collected physio-
logical and behavioral responses was examined by testing the effect
of VR familiarization on participants’ behavioral and physiological
responses. At construction sites, workers’ behavioral/physiological
responses to encountered hazards might vary from one day to the
next because individual factors—emotional stability, safety experi-
ence, and safety awareness—can affect unsafe behaviors [78]. To this
end, this study investigates whether the proposed approach can
predict inattentive behaviors using biosignal data collected on
different days. For this reason, all participants participated in two
sessions, separated by a week’s interval. Subsequently, the data from
both sessions were used to predict inattentive behaviors.

4. Methods

The inattentive behavior prediction method that employs extracted
features was designed by applying machine learning algorithms. The
prediction process consisted of five steps: data preprocessing and base
feature extraction; application of contextual features; feature selection
for the classification; statistical analysis; and classification between
hazard-checking behaviors (i.e., attentive behaviors) and non-hazard
checking behaviors (i.e., inattentive behaviors).

4.1. Data processing and base feature extraction of biosignals

Collected biosignals typically include motion artifacts and noises
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[17,52]. To identify those noises and artifacts, visual inspection and
preprocessing were performed. Eye movement data collected from five
participants showed a large number of noises or no fluctuation. For these
reasons, the data from those five participants were not included in the
analysis. Data from a total of 27 participants were used for this study.

Motion artifacts and noises in EDA signals—such as an excessively
abrupt decrease after reaching an absolute maximum peak—were
removed using a smoothing filter while preserving the typical EDA
fluctuation [44,79,80]. In this study, the Blackman window filter of
twelve data points per block was applied to smooth EDA signals
[51,81,82]. After the smoothing, a signal segmentation was imple-
mented in order to identify underlying state changes in EDA signals,
which result from the external stimulus (i.e., exposure to the struck-by
hazard) [50]. Each EDA signal from each participant was segmented
into smaller segments using bottom-up segmentation because of its su-
perior performance as compared to other segmentation methods
[82,83]. A Python package Ruptures was used for the segmentation [84].
After the segmentation, base features from each segment were calcu-
lated. The values related to SCR (e.g., amplitude and frequency within
the time segment) were extracted using Ledalab software [44,85]. The
calculated SCR values of each segment were rearranged to synchronize
with the time of raw data. To determine a length of each segment that
best explains the differences in SCR values corresponding to physical
inattentive behaviors, we performed statistical analyses using SCR
values with different window period lengths (e.g., the entire period of
each exposure, 20 s, 10 s, and 5 s). There was a distinct difference in
biosignal reactivities only when a 10-second window period was
applied. Thus, 10 s of SCR values before and after the warning alarm
occurrence in each hazard exposure were extracted. Statistical features
such as maximum, minimum, mean, and standard deviation were
calculated from the SCR values. Through this process, 12 base features
were extracted from EDA and normalized at the individual level.

In processing pupil and saccadic eye movement data, de-blinking is
important to the process of removing artifacts [86]. According to the pre-
vious studies’ recommendations [86,87], pupil and saccadic eye movement
data were eliminated during the blink, 100 ms before and after the blink,
and interpolation was implemented for the period of the removed data.
After the elimination of blinking, base feature extraction was conducted on
pupil data and saccadic eye movement data, respectively. Pupil dilation
relative to a baseline size indicates an individuals’ extra listening effort in
response to external auditory stimuli [88]. Thus, in order to analyze changes
in pupil size in response to exposure to the struck-by hazard and auditory
warning alarms, the baseline correction was performed. To set the baseline
pupil size of each subject, this study applied the 1,000 ms of baseline
duration, which is the preferred measurement of human mental perception
[89]. Based on the extracted baseline, the pupil dilation was calculated at
each data point (calculated pupil dilation = measured pupil size — baseline).

Using the collected saccadic eye movement data, saccadic velocity and
duration were calculated by adopting the microsaccades detection method.
Microsaccades are rapid events that happen between fixational eye move-
ments [90] and are affected by attentional allocation during task execution
[91]. Specifically, the presentation of background noises causes higher ve-
locity and longer duration of microsaccades when a participant is per-
forming a task [92]. Thus, in this study, the features related to the velocity
and duration of microsaccades are used as indicators of inattentive behav-
iors. Using recorded eye positions (i.e., x and y coordinates) the eye
movement velocity was calculated. Based on the velocity of each data point,
the occurrence of microsaccades was detected, and the microsaccade ve-
locity (i.e., saccadic velocity) and the microsaccades duration (i.e., saccadic
duration) were calculated. The 10 s of fixed length window—10 s before
and after the warning alarm occurrence in each exposure—was applied to
extract pupil dilation and saccadic eye movement values corresponding to
hazard exposure.

Then, like EDA base features, the statistical features such as
maximum, minimum, mean, and standard deviation were calculated
from pupil dilation and microsaccades. A total of 24 base features from
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Table 1
Selected features for the prediction of inattentive behaviors.
Modality Selected features ID
Electrodermal Skin Conductance - Difference in the mean SCR El
activity Response (SCR) amplitude between before
(EDA) and after the warning alarm
- Maximum SCR amplitude E2
after the warning alarm
- Mean SCR amplitude after E3

the warning alarm

Mean SCR frequency after the  E4

warning alarm

Mean pupil dilation before P1

the warning alarm

- Mean pupil dilation after the =~ P2
warning alarm

Eye  Pupillometry  Pupil dilation

Saccadic Saccadic velocity - Difference in the mean S1
movement saccadic velocity between
before and after the warning
alarm
- Mean saccadic velocity after S2
the warning alarm
- Peak saccadic velocity after S3
the warning alarm
Saccadic duration - Mean saccadic duration after ~ S4
the warning alarm
Context Number of - The number of exposures to C1

exposures
VR familiarity

the approaching hazard
Participants’ familiarity with ~ C2
VR technology

Table 2

The number of subjects who experienced VR-accident during the experiment.
Session Non-accident group (NAG) Accident group (AG) Total
First 5 22 27
Second 16 11 27

Table 3

Two-way ANOVA results of mean SCR amplitude: main and interaction effects of
inattentive behaviors and accident occurrences.

Measure Sum of squares df F p -value
Checking 1.76 1 1.894 0.169
Accident 2.51 1 2.705 0.100
Checking*Accident 3.59 1 3.866 0.054

* Significant at the p = .05 level.

pupil dilation and microsaccades were extracted and normalized at the
individual level. Consequently, from these base feature extractions, a
total of 36 features were derived.

4.2. Contextual features

In predicting human behaviors, adding contextual information about the
situation in which the behaviors occur plays an important role [93-95]. The
use of contextual features could enhance the prediction performance of
machine learning models [96,97]. Thus, to provide additional information
about when participants were exposed to struck-by hazards, the number of
exposures to the hazard is used as a contextual feature. Since this study aims
to examine the presence of inattentive behaviors in response to the
repeatedly exposed struck-by hazard, we expect that the adopted machine
learning method will learn the interaction between the number of exposures
to the hazard and selected features. Furthermore, participants’ familiarity
with VR (i.e., prior experience using VR devices) was measured using a 5-
point Likert scale (where 1 = not at all familiar, and 5 = extremely
familiar) and used as additional contextual feature, with the underlying
assumption that familiarity with a virtual environment may affect partici-
pants’ responses to stimuli presented in the VR environment [96,98,99].
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Fig. 2. Depiction of mean SCR amplitude after warning alarm occurrence (E3)
by non-checking behaviors vs. checking behaviors. Standard error bars
are included.

Table 4
Simple effect of the accident occurrence at the level of mean SCR amplitude.
Accident occurrence Comparison Estimated df F p
difference -value
Without accident (Checking) — 0.212 977 3.056 0.080
(Non-
checking)
With accident (Checking) — 0.071 977 0.739 0.390
(Non-
checking)

3

Significant at the p = .05 level.
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Fig. 3. Depiction of mean pupil dilation after the warning alarm (P2) by non-
checking behaviors vs. checking behaviors. Standard error bars are included.

Table 5
Two-way ANOVA results of mean saccadic velocity after the warning alarm:
main and interaction effects of inattentive behaviors and accident occurrences.

Measure Sum of squares df F p -value
Checking 4.68 1 5.011 0.025*
Accident 0.10 1 0.105 0.746*
Checking*Accident 0.18 1 0.196 0.658*

* Significant at the p = .05 level
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Table 6
Mann-Whitney U test results of mean saccadic duration.
Accident Behaviors (Median) U VA p -value
occurrence .
Checking  Non-
checking
Without accident — 0.034 — 0.196 11,816 - 0.036*
2.101
With accident 0.125 — 0.299 39,142 — <

4.732 0.001*

* Significant at the p = .05 level

Immersiveness has been used to refer to the degree of realism achieved by a
virtual environment [100]. The level of perceived immersiveness in a VR
environment is another important factor that influences participants’ be-
haviors during an experiment [101]. Thus, to measure participants’
perceived immersiveness in the VR environment, a survey using the Igroup
Presence Questionnaire (IPQ) that employed a 5-point Likert scale, was
conducted after the experiment [102,103], and the survey result was
employed for the contextual feature. A total of 3 contextual features were
used as base features.

4.3. Feature selection for the classification of inattentive behaviors

To find features that best explain the differences between reactivities in
biosignals when a participant showed attentive behaviors (i.e., hazard-
checking behaviors) and inattentive behaviors (i.e., non-hazard- checking
behaviors), feature selection was implemented. The stepwise regression
method outperforms other feature selection methods, such as forward se-
lection and backward selection [104-106]. Thus, through the stepwise
regression analysis, less significant base features among all 39 features were
eliminated, and 12 features were ultimately selected (Table 1). From EDA
data, the difference in the mean SCR amplitude between before and after the
warning alarm occurrence (E1), the maximum amplitude after the warning
alarm occurrence (E2), the mean SCR amplitude after the warning alarm
(E3), and the mean SCR frequency after the warning alarm (E4) were
selected as significant features for the prediction of inattentive behaviors.
Mean pupil dilation before (P1) and after the waring alarm occurrences (P2)
were selected as important features of pupil data. The difference in the mean
saccadic velocity between before and after the warning alarm occurrence
(S1), the mean saccadic velocity after the warning alarm (S2), the peak
saccadic velocity after the warning alarm (S3), and the mean saccadic
duration after the warning alarm (S4) were selected from saccadic eye
movement data. Lastly, the number of exposures to the approaching hazard

(@)

Group . Non-accident group ; Accident group

0.1

0.0 i 2

Mean saccadic velocity (S2)

Non-checking Checking

Behavior type
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(C1), and participants’ familiarity with VR technology (C2) were selected
from among the contextual features.

4.4. Statistical analysis

Prior to conducting the behavior prediction, statistical analyses with all
selected features were performed to evaluate the significance of differences
in biosignals between two types of behaviors. The magnitude of reactivities
in biosignals when participants showed inattentive behaviors was compared
to that when they exhibited attentive behaviors. For further analysis of the
effect of accident occurrence during the experiment on reactivities in bio-
signals, the data from all participants were separated into two groups ac-
cording to the occurrence of the VR-simulated accident: (1) the Non-
accident group (NAG)—participants who did not engage in the accident,
and (2) the Accident group (AG)—participants who engaged in the accident
during the experiment. A two-way Analysis of Variance (ANOVA) was
performed to examine the main and interaction effects of participants’
inattentive behaviors and accident occurrences on biosignal reactivities.
Post hoc analyses were conducted with Bonferroni corrections for multiple
comparisons. The equality of variances was checked with Levene’s test
[107,108]. Since pupil dilation data and saccadic duration data did not meet
the assumption of the normal distribution, a non-parametric test, the
Mann-Whitney U test, was performed to examine the significant difference
in pupil dilation and saccadic duration between two types of behavioral
responses (i.e., non-checking and checking behaviors) at o = 0.05.

Table 7

Prediction performance depending on the modality of biosignals.
Modality With biosignals

UAR Recall for each class F1 Score
Non-checking Checking

EDA 0.548 0.541 0.552 0.557
Eye 0.637 0.590 0.662 0.646
EDA + Eye 0.679 0.656 0.692 0.677
EDA + Context 0.630 0.652 0.619 0.638
Eye + Context 0.699 0.698 0.700 0.698
EDA + Eye + Context 0.722 0.705 0.731 0.730

Note: EDA = EDA data (E1, E2, E3, and E4); Eye = Pupil data (P1, and P2), and
Saccadic eye movement data (S1, S2, S3, and S4); Context = Contextual features
(C1, and C2)

(b)

Group . Non-accident group | Accident group

0.1

0.0

-0.14

Mean saccadic duration (S4)

-0.34

Non-checking Checking

Behavior type

Fig. 4. Analysis of biosignal reactivities in the two types of behavioral responses. Standard error bars are included: (a) Depiction of mean saccadic velocity after the
warning alarm (S2) by non-checking behaviors vs. checking behaviors; (b) Depiction of mean saccadic duration after the warning alarm (S4) by non-checking

behaviors vs. checking behaviors.
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4.5. Classification

A support vector machine (SVM) with linear kernel function was used
for the supervised machine learning due to its strength in handling classes of
imbalances [109,110]. During the experiment, participants’ responses to
the approaching hazard were not controlled. Therefore, the number of
samples in each behavior class was unevenly distributed. The number of
checking behaviors (n = 642) was almost twice the number of non-checking
behaviors (n = 339). The number of non-checking behaviors (i.e., inatten-
tive behaviors) was relatively small. The SVM weights minority classes by
increasing the penalty for misclassifying minority classes to prevent them
from being overwhelmed by the majority class [110]. In particular, the SVM
performed better than decision tree and random forest, which are well
known for their interpretability and accuracy in the binary classification
(see Table Al in the Appendix). An inattentive behavior prediction was
performed using the data from each modality of biosignals. Then, to
improve the behaviors’ prediction performance, an additional inattentive
behavior prediction was performed with classification models, which were
trained on the data from multimodal biosignals. Lastly, to boost the classi-
fier’s performance, contextual features (including the number of exposures
to the hazard [C1l] and participants’ familiarity with VR [C2]) were
included as input features in the prediction model, and the prediction was
conducted. The performance of the prediction was scored using the un-
weighted average recall (UAR) [111]. The presented UARs were averaged
over 10 runs with 10-fold cross-validation classification in each combination
of biosignals.

5. Results

A total of 981 samples (481 samples from the first session, 515
samples from the second session) were collected through the experi-
ment. Participants were exposed to the struck-by hazard on average 18
times (M = 17.73,SD = 3.75) in the first session, and on average 19
times (M = 19.07,SD = 3.13) in the second session. Of the 981 samples,
339were labeled as inattentive behavior (i.e., non-checking behavior),
and 642 samples were labeled as attentive behavior (i.e., checking
behavior). During the experiment, participants who showed frequent
inattentive behaviors experienced the VR-simulated struck-by accident
(i.e., AG), and other participants, who continuously paid attention to the
hazards, did not experience the simulated accident (i.e., NAG) (Table 2).

5.1. Statistical analysis: Biosignal reactivities and inattentive behaviors

The two-way ANOVA analysis was performed because the result of t-test
comparison did not indicate a significant difference in mean SCR amplitude
after the warning alarm (E3) between non-checking behaviors and checking
behaviors; t (979) = 0.33, p = 0.74. The result of the two-way ANOVA
analysis is presented in Table 3 and Fig. 2. While the ANOVA analysis did
not reveal any significant main effect, the interactional effect between
hazard checking behaviors and accident occurrence approached a signifi-
cant level (F(1, 977) = 3.719, p = 0.054). To explore how the accident
occurrence affects the participants’ behaviors at the level of mean SCR
amplitude, a simple effect test was performed (Table 4). The result
approached a significant level (F(1, 977) = 3.056, p = 0.080). The results of
the ANOVA analysis indicate that NAG had higher values of mean SCR
amplitude when they engaged in checking behaviors in response to the
approaching hazards, compared to when they failed to engage, but AG did
not present much difference in SCR amplitude values between attentive and
negligent behaviors. This indicates that NAG has demonstrated a relatively
higher level of attentiveness towards warning signals and may contribute to
the behavioral consequences each group experienced (safe operation versus
accident engagement).

The analysis results of mean pupil dilation (Fig. 3) are in accor-
dance with those of mean SCR amplitude. There was no significant
difference in pupil dilation between the two types of behavioral re-
sponses, U = 103556, p = 0.21). Thus, the Mann-Whitney U test was
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performed for each group. The results confirmed that NAG had
higher values of pupil dilation for checking behaviors (Mdn = 0.100)
than for non-checking behaviors (Mdn =0.024), U =11989, p =.052,
while AG did not present any significant difference between non-
checking (Mdn = -0.012) and checking behaviors (Mdn = 0.050),
U =39142, p =.405. This also indicates that NAG may have exercised
heightened levels of attentiveness toward warning signals as
compared to AG.

The results of the two-way ANOVA analysis on mean saccadic ve-
locity and mean saccadic duration, on the other hand, indicated that AG
and NAG shared similar patterns of saccadic movements (Table 5 and 6,
and Fig. 4). Both groups had significantly higher values of saccadic ve-
locity and duration when they engaged in checking behaviors, which
may be largely because subjects initiated checking behaviors during the
time window taken for feature computations (10 s after warning sig-
nals). The results of direct comparison analyses (t-test) also confirmed
that saccadic velocity and duration differed significantly between non-
checking behaviors and checking behaviors (p = .013 and p < .001,
respectively). On the other hand, the statistical analysis results of fea-
tures E1, E2, E4, P1, S1, S3, C1, and C2 did not indicate any significant
relationship.

5.2. Inattentive behaviors classification

The results from the classification of biosignal data between check-
ing behavior and non-checking behavior classes are provided. The per-
formance of each modality and combinations of biosignals is illustrated
in Table 7. The UAR yielding from the EDA data was close to chance
accuracy (i.e., 50%). The UAR from the eye data (including pupil dila-
tion and saccadic eye movement features) also exhibited a relatively low
performance (i.e., 63.5%) for classifying inattentive behaviors. How-
ever, the combination of EDA and eye data yield a statistically mean-
ingful increase in the UAR (i.e., 67.9%). The results indicate the
potential of combining multimodal biosignals to enhance prediction
performance. Furthermore, a significant increase in UAR is achieved by
including context variables. When contextual features are used in
combination with all modalities to predict inattentive behaviors, the
UAR was 72.2%, the best performance across all settings.

6. Discussion

Recent studies have demonstrated the potential of monitoring biosignal
reactivities to predict near-future or subsequent behaviors [112-114].
However, a dynamic and hazardous construction environment poses chal-
lenges to objectively monitoring construction workers’ biosignals and their
physical engagement in inattentive behaviors while performing construc-
tion tasks. Therefore, this study examined the potential of using multimodal
biosignals in predicting workers’ inattentiveness to workplace hazards using
a VR environment. Through the statistical analyses, significant differences
in biosignals were identified. Several features (E3, P2, S3, and S4) extracted
from the biosignals showed higher levels of reactivity when participants
engaged in attentive behaviors as compared to inattentive behaviors. In
addition, the accuracy (72.2%) of inattentive behavior classification using
these features is quite comparable to the accuracy (ranging from 50% to
82%) of previous studies that attempted to predict human intent based on
biosignals [42,97,115-118]. Furthermore, the prediction accuracy
increased when multimodal biosignals were used compared to when each
modality data was used separately. This result indicates that the contextual
information about how often construction workers have been exposed to
workplace hazards helps increase the prediction performance. Conse-
quently, the outcomes of this study revealed that workers’ physical
engagement in inattentive behaviors to repeatedly exposed approaching
hazards can be predicted by using biosignals collected immediately after
warning signals are given.

At a construction site, the ability to predict workers’ decreased
alertness can greatly benefit construction safety efforts. Specifically,
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biosignal-based inattentive behavior prediction will enable the closed-
loop warning/feedback system that measures human activities (both
biosignals and physical movements) and automatically activates an
intervention (e.g., warnings or feedback) when workers’ inattention is
detected. The activated intervention is then terminated when workers
exhibit attentive behaviors, thus closing the loop [119,120]. In road
construction/maintenance work zones, current warning alarms associ-
ated with construction vehicles do not consider workers’ perceived risk
levels or alertness and thus generate redundant alarms [1]. This can
result in alarm fatigue, which distracts workers’ attention to hazards and
leads to workers’ inattentive behaviors and habitual ignorance of sur-
rounding hazards [1]. In this regard, a closed-loop warning/feedback
system driven by the assessed inattentiveness of workers (e.g., providing
warning alarms or feedback only when a worker shows inattentiveness,
and stopping warning alarms when workers’ attentiveness is recovered)
may help reduce workers’ habituated inattention at construction sites,
thereby reducing workers’ engagement in inattentive behaviors.
Consequently, the biosignals-based inattentiveness prediction holds the
potential to save human lives, and reduce costs and time needed to
monitor workers’ inattentive behaviors at construction sites. Further-
more, the patterns of biosignal reactivities to the presented hazard can
vary according to an individual’s attentional capacity. Thus, the out-
comes of this study could be used to identify individual workers’
response patterns to workplace hazards. Based on the identified pat-
terns, a personalized prediction model can be developed and deployed
for tailored safety interventions. Future studies will examine the feasi-
bility of developing a personalized inattentive behavior prediction
model.

Some limitations of this study should be noted. First, all of the partici-
pants were undergraduate and graduate students. Thus, the biosignal re-
activities in response to exposed hazards might differ from those exhibited
by experienced construction workers. Second, some sample data may
include participant checking behaviors that had already occurred within 10-
seconds of the data window period, which may have affected the prediction
performance. Third, during the experiment, the participants were divided
into two groups depending on the occurrence of the virtual accident that
resulted from a participant’s frequent engagement in inattentive behaviors:
vigilant participants (NAG) and inattentive participants (AG). The 11th time
that a participant demonstrated inattentive behavior was used to provoke
the virtual struck-by accident and determine participants’ inattentiveness.
Although the 11 instances of ignorance function as a reference point that is
somewhat arbitrary, it exceeds 50 percent of the total number of exposures
and is reflective of a participant’s frequent inattention to the approaching
hazard in the experiment. Therefore, the 11 occurrences of engagement in
non-checking behaviors provides a proxy for an individual’s inattention to
the repeatedly presented hazard. Future studies will be required to deter-
mine an optimal reference point that better explains individuals’ inatten-
tiveness. Fourth, some participants experienced the accident as a result of
their behavioral responses during the experiment. Although experiencing
the accident during the first session may have affected participants’
behavioral/physiological responses during the second session, that phe-
nomenon was not investigated in this study. During the next phase of this
study, an association between the simulated accident experience and a
change in participants’ inattentiveness to repeatedly exposed hazards will
be examined. Lastly, the findings of this study may be somewhat limited by
the laboratory conditions: employing a VR environment. In a real envi-
ronment, it is difficult to observe workers’ inattentive behaviors in response
to frequently exposed workplace hazards. For this reason, we exposed
participants to the repeated struck-by hazard in a virtual environment.
Further validation in field experiments is warranted.

With regard to practical application of the proposed approach, a
technology or device that senses the occurrence of warning alarms can
be integrated with the proposed biosignal-based inattentive behavior
prediction. For example, an internet of things (IoT) safety helmet that is
equipped with sensors detecting auditory warning alarms and sensing
workers’ biosignals can be developed. The IoT safety helmet would
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capture biosignals when a warning alarm is detected and analyze
workers’ inattentiveness. Then, it would provide feedback only when
workers’ inattentive behaviors are predicted, thereby mitigating
workers’” habituation resulting from redundant alarms in a workplace.
However, the integration of these technologies and a proposed inat-
tentive behavior prediction method was not considered in this study. It
could be investigated in future studies.

7. Conclusion

This study investigates the usefulness of biosignal data collected using
wearable biosensors and a VR environment in preventing fatalities and in-
juries at construction sites. The findings help explain the association be-
tween reactivities in multimodal biosignals and inattentive behaviors. A
laboratory experiment was conducted using a virtual environment, and a
total of 981 behavior and biosignal samples were collected. Using stepwise
future selection, 12 features were identified to predict inattentive behaviors.
The results of the statistical analysis indicate an association between re-
activities in biosignals and inattentive behaviors. When participants
demonstrated inattentive behaviors, the reactivities in some biosignals were
lower than when participants exhibited attentive behaviors. There was a
significant difference in the mean saccadic velocities (p = .013). The mean
saccadic duration of non-checking behaviors was lower than for checking
behaviors (p < .001). Specifically, NAG showed higher mean SCR amplitude
(p = 0.08) and pupil dilation (p = 0.052) when workers exhibited checking
behaviors than when they engaged in non-checking behaviors. However,
there was no significant difference in AG. This implies that NAG revealed
larger reactivities in biosignals in response to repeatedly presented warning
signals than AG did, and such a high level of attentiveness may associate
with more frequent engagement in safe behaviors. The findings also indicate
that adopting multimodal biosignals for inattentive behavior prediction can
effectively enhance the prediction accuracy to 72.2%, which is quite
competitive compared to studies in other domains that used biosignals to
predict human behavior. This demonstrates that workers’ inattentive be-
haviors can be predicted by monitoring reactivities in workers’ biosignals to
repeatedly exposed workplace hazards during a work task. Consequently,
the outcomes of this study lay the groundwork for future research on how
construction workers’ inattentive behavior—the attentional consequences
of habituation to repeatedly exposed hazards—can be predicted by moni-
toring workers’ biosignals. The proposed computational approach could
potentially change the current strategy for the observation and prevention
of workers’ unsafe behavior from a manual and direct observation to an
automated sensing method using biosignals. Furthermore, the findings of
this study, while preliminary, suggest that using VR as an experimental tool
can be effective in examining construction workers’ behaviors in hazardous
working environments.
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Appendix

(see Table A1)

Table Al
Prediction performance depending on the classifier.

Modality Classifier UAR Recall for each class
Avg. Std. Non- Checking
checking
EDA + Eye + SVM with linear 0.722 0.001 0.705 0.731
Context kernel
SVM with gaussian ~ 0.720  0.001 0.698 0.730
kernel
SVM with 0.718 0.002  0.681 0.737
polynomial kernel
Decision Tree 0.648 0.003 0.507 0.726
Random Forest 0.736 0.002 0.434 0.896

Note: EDA = EDA data (E1, E2, E3, and E4); Eye = Pupil data (P1, and P2), and
Saccadic eye movement data (S1, S2, S3, and S4); Context = Contextual features
(C1, and C2)
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