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A B S T R A C T   

At construction workplaces, workers should be consistently attentive to approaching and nearby safety hazards. 
However, workers tend to allocate most of their attentional resources to a work task and often exhibit inattentive 
behaviors to hazards, which may lead to serious injuries and fatalities. Predicting construction workers’ inat-
tentiveness is thus critical to preventing accidents in construction workplaces. With the advent of biosensing 
technologies, the potential of using biosignals to predict human behaviors has been proven in various 昀椀elds of 
study. However, to date there has been little discussion about utilizing biosignals to predict construction 
workers’ inattentive behaviors. To this end, this study examines whether construction workers’ inattentive be-
haviors can be predicted by assessing biosignal reactivity. A virtual road construction environment was created 
and used for an experiment to expose participants to a repeated struck-by hazard without risking actual injury. 
Participants’ biosignals (i.e., electrodermal activity, pupil dilation, and saccadic eye movement) and physical 
engagement in inattentive behaviors were collected and analyzed. The results of statistical analyses revealed 
signi昀椀cant differences in biosignal reactivities between participants’ attentive behaviors (i.e., paying attention to 
the hazard) and inattentive behaviors (i.e., ignoring the hazard). The outcomes of the machine learning-based 
behavior classi昀椀cation also indicate the usefulness of predicting inattentive behaviors by monitoring workers’ 

biosignals during a construction task and provide a foundation for the utilization of biosignals in safety man-
agement to prevent accidents resulting from inattentive behaviors.   

1. Introduction 

The construction industry has always been considered to be one of 
the most high-risk industries [1–3]. In 2018, more than 1,000 fatalities 
were reported from the construction industry in the United States [4]. 
Despite countless efforts to improve construction safety, the majority of 
fatalities and injuries in construction workplaces still occur due to 
workers’ unsafe behaviors [5–9]. Insuf昀椀cient attention to potential risks 
associated with workplace hazards is a major contributing factor to 
workers’ unsafe behaviors [10,11]. In construction workplaces, workers 
become complacent with hazards that they are exposed to frequently 
[12–14]. This often causes workers to underestimate the risks, become 
inattentive to the hazards, and engage in unsafe behaviors [15,16]. 
Typically, warning signals are provided to induce worker alertness to 
nearby hazards, but repeated exposures to warning signals also cause 
workers to be less attentive or habituated to those signals. To this end, 

measuring workers’ attentiveness and predicting their inattentive be-
haviors are critical to the development of closed-loop interventions that 
continuously provide feedbacks until workers recover their attention to 
hazards and/or warning signals [11,17,18]. 

The recent development in the 昀椀eld of biosensing technology (e.g., 
electrodermal activity (EDA), electroencephalography [EEG], electro-
cardiogram [ECG], and eye tracking) has led to a growing interest in the 
use of wearable sensors in measuring worker attentiveness [19,20]. 
Researchers have focused on observing changes in biosignals when a 
participant encounters a hazard during an experiment and compared 
participants’ biosignals when they were in “without hazard” conditions 
and in “with hazard” conditions. Several studies have found that 
workers show heightened biosignal reactivity when they are exposed to 
workplace hazards [11,17,21]. Choi et al. [17] found that short-term 
changes in EDA show signi昀椀cant differences between low- and high- 
risk activities. Speci昀椀cally, Wang et al. [11] demonstrated that 
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workers’ vigilance—sustained attention to an external threat—is 
observable through EEG signal analysis. These studies have accumulated 
evidence indicating the potential causality between heightened re-
activities in biosignals and attentiveness by identifying the association 
between abnormalities in biosignals and exposure to hazards. However, 
little research has been conducted on predicting inattentive behaviors 
that are caused by failures to be attentive to frequently presented 
warning signals or repeatedly encountered workplace hazards in a 
construction environment. To this end, this study examines the 
computational approaches to predict workers’ inattentive behaviors to 
hazards by using biosignals collected while warning signals are 
employed prior to their encounters with hazards. 

To achieve the research objective, an experiment was conducted in a 
laboratory setting. The major considerations in the experimental design 
were how to expose participants to a repeated workplace hazard without 
risking actual injury and observe their attentiveness to it. Thus, a virtual 
reality environment was created and used for the experiment, during 
which participants were asked to perform a road-cleaning task and 
repeatedly exposed to the risk of being struck by a construction vehicle. 
Participants’ physical responses and biosignal reactivitties to the hazard 
were measured by using eye-tracking sensors and a wearable EDA 
sensor. Through the statistical analysis, signi昀椀cant relationships be-
tween participants’ physical inattentive behaviors and reactivities in 
biosignals are identi昀椀ed. Finally, the usefulness of predicting inattentive 
behaviors using biosignals is demonstrated by applying a supervised 
learning-based classi昀椀cation. The 昀椀ndings provide a foundation for the 
utilization of biosignals in safety interventions and training to prevent 
accidents caused by workers’ inattentive behaviors during a construc-
tion task. 

2. Research background 

2.1. Inattentive behaviors and habituation to workplace hazards 

Previous studies in construction safety have focused on explaining 
workers’ unsafe behaviors from a cognitive psychology perspective. 
These researchers claimed that workers’ inattention to hazards is one of 
the signi昀椀cant precursors of workplace accidents [22–24]. Performing a 
construction task demands constant attention to surrounding hazards 
[21,25]. However, during a construction task, workers tend to pay more 
attention to the task and less attention to hazards because of limited 
attention capacity [26,27]. Wickens [27] determined that humans’ 

attentional resources are limited. Therefore, in workplaces, while 
simultaneously performing multiple tasks (e.g., performing a task vs. 
watching out for potential hazards), workers are apt to allocate their 
limited attentional resources according to their priorities [28]. 

Recent studies in construction safety have also found that construc-
tion workers’ risk perception is highly related to their attention alloca-
tion to workplace hazards [21,25]. When workers’ perceived risk is low, 
workers are likely to allocate less attentional resources to hazards and 
tend to engage in inattentive behaviors that can result in workplace 
fatalities and injuries [29–31]. The tendency of workers to be inattentive 
to workplace hazards is actually exacerbated when workers are 
frequently exposed to the same hazard [11]. After long-term and 
frequent exposure to hazards, workers become habituated to the hazard 
and begin to underrate its risk [15,32,33]. Researchers have de昀椀ned this 
phenomenon as risk habituation and tried to examine its in昀氀uence on 
workers’ engagement in inattentive behaviors [1,34]. For instance, 
previous studies found that lift truck operators who were exposed to 
regular hazards tended to show a low level of perceived risk while 
driving a lift truck in hazardous situations [13,35,36]. 

Other studies have demonstrated that workers’ sensitivity to work-
place risks decreases with repeated exposure to the same hazard [8,20]. 
Accident investigation reports also con昀椀rmed that one of the signi昀椀cant 
causal factors of struck-by accidents is workers’ inattention to 
approaching equipment [37,38]. In many cases of struck-by accidents, 

construction equipment was moving at a low speed, and proximity 
warning alarms were sounded, but pedestrian workers failed to avoid 
accidents because they were focused on their task and did not heed the 
approaching equipment [16,37,38]. Providing auditory warning alarms 
is a common and simple method used to shift workers’ attention from 
their tasks to approaching hazards [39]. However, as seen in the acci-
dent cases mentioned above, its effectiveness in reducing workers’ 

habituated inattentiveness is questionable [1]. Therefore, there is a 
critical need to assess workers’ inattentiveness to workplace hazards to 
prevent struck-by and other accidents in construction sites. 

2.2. Biosignals and attentiveness 

Researchers in psychology and cognitive science have generated evi-
dence indicating that workers’ attentiveness can be assessed by monitoring 
reactivities in various biosignals [40–43]. This section reviews previous 
studies that examined measures of various biosignals in relation to assess-
ments of attentiveness to hazards. 

EDA, which indicates changes in the electrical current of the skin in 
response to adverse or threatening stimuli [44–46], has been widely 
adopted to objectively measure individuals’ sustained attention 
[19,47–49]. EDA signals usually are sorted into two indices: skin 
conductance level (SCL) and skin conductance response (SCR) [50]. SCL 
measures slow changes in average skin conductance, and SCR represents 
the rapid phasic transient related external stimuli [46,51]. Previous 
studies have used EDA to identify an individual’s mental status changes 
in various circumstances (e.g., ambulatory settings, occupational set-
tings, etc.) [6,52]. Studies in construction safety [17,53,54] have 
investigated the applicability of EDA to monitor construction workers’ 

attention to workplace hazards. The results indicated that there were 
signi昀椀cant short-term changes in EDA when participants were exposed 
to a hazardous working environment [17]. 

To monitor workers’ inattentiveness during exposure to work-
place hazards, researchers also have focused on pupil size measure-
ment and saccadic eye movement (e.g., saccadic velocity, saccadic 
duration). Pupillometry is a technique that measures changes in 
pupil size [55]. Pupil dilation re昀氀ects the intensity of cognitive load 
and responses to external stimuli [56]. Increases in cognitive pro-
cessing of information, or cognitive load, are indicated by increases 
in pupil size. Thus, changes in pupil size can be used for continuous 
measurement of mental workload [57]. Kimble et al. [58] demon-
strated the association between pupil size and exposure to threat-
ening stimuli. Results showed that larger pupil dilation was 
demonstrated when participants were exposed to high-risk situa-
tions. Speci昀椀cally, Liao et al. [59] measured pupil dilation to 
examine its usefulness for assessing construction workers’ atten-
tiveness. The results revealed that participants’ pupils were differ-
ently dilated according to the different types of risks associated with 
workplace hazards. In addition to pupil dilation, saccadic eye 
movements have also been considered as useful indicators of mental 
attention [56]. Saccadic velocity and duration have proved to be 
related to attentiveness [60]. Saccadic eye movements tell the speed 
and angle of eye movement, which indicate participants’ attention to 
a presented stimulus [55]. Costela and Castro-Torres [60] found that 
exposure to hazardous situations is signi昀椀cantly associated with 
larger saccadic eye movements. Saccadic velocity has been adopted 
in applied psychology studies to measure participants’ emotional 
arousal [55,61–63]. Since saccadic velocity is not vulnerable to 
participants’ voluntary control, it may indicate underlying mental 
activity more clearly than other saccade metrics [62,64]. Saccadic 
duration is another metric that indicates the level of risk perception 
and attentiveness to exposed hazards [65]. Stasi et al. [66] found that 
people who engaged in risky-behaviors more frequently showed 
shorter saccadic duration than people who showed less engagement 
in risky-behaviors. Based on this evidence, this study examines the 
usefulness of biosignals (e.g., EDA, pupil dilation, saccadic velocity, 
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and saccadic duration) in predicting inattentive behaviors of con-
struction workers. 

2.3. Biosignal analysis and behavior prediction 

In various 昀椀elds of study (e.g., human-robot interaction research, 
consumer behavior analysis, and driving behavior analysis), researchers 
have become increasingly interested in the prediction of human be-
haviors through the analysis of biosignal reactivity [55,67–69]. For 
example, several studies [68,69] in analyses of driving behavior focused 
on the utility of assessing drivers’ biosignals to predict risky driving 
behaviors. Liang and Lin [68] found distinctively different reactivities in 
EEG and EDA signals from risky and safety drivers when they encoun-
tered road hazards. Murphey et al. [69] used ECG and EDA to predict 
drivers’ intention to change lanes and illustrated the value of biosignal 
assessment in predicting human behaviors. Researchers in the 昀椀eld of 
behavioral and neurophysiological science also have explored biosignal 
analysis methods to predict participants’ decision making during 
decision-reward uncertainty tasks [70–72]. Cavanagh et al. [70], for 
example, revealed the association between greater pupil dilation and an 
increase in decision threshold in dif昀椀cult decision-making circum-
stances. Studies in consumer science have investigated the analysis of 
biosignals that allows the prediction of subsequent purchasing behaviors 
[55,71]. Guerreiro et al. [71] attempted to predict consumer choice by 
assessing EDA signals. The results demonstrated that heightened re-
activities in EDA signals are correlated with participants’ selection be-
haviors. However, in contrast to other research domains there has been 
little discussion about assessing biosignals to predict construction 
workers’ inattentive behaviors in hazardous working environments. To 
this end, this study examines whether construction workers’ inattentive 
behaviors can be predicted by assessing biosignal reactivities when 
workers encounter workplace hazards. 

3. Data collection 

In a construction context, it is excessively dif昀椀cult to observe 
workers’ inattentive behaviors during a construction task [72]. 
Furthermore, workers cannot be exposed to a hazardous situation for 
research purposes. On the other hand, a virtual reality (VR) environment 
can provide a close-to-reality simulation and evoke with high validity an 
individual’s behavioral and physiological responses to exposed hazards 
[73–76], thereby enabling researchers to analyze relationships between 
the biosignal reactivity and physical behaviors when a participant en-
counters simulated hazardous contexts. To this end, the experiment was 
conducted using a VR environment. Speci昀椀cally, in order to expose 
participants to repeated struck-by hazards and monitor their biosignal 

reactivity, a virtual road construction and maintenance operation was 
simulated. The following sections describe the VR environment devel-
opment process, experimental settings, and the data collection process. 

3.1. Immersive virtual road construction environment 

The experimental scenario focused on repeated exposure of participants 
to potential struck-by hazards associated with construction vehicles 
continuously operating around participants and sounding associated audi-
tory warning alarms. In order to build a near-reality virtual environment, 
ambient sounds of a road maintenance work zone were carefully designed 
and embedded in the VR environment. For instance, operation sounds from 
heavy construction vehicles (e.g., milling machine, street sweeper, and 
asphalt paver) and traf昀椀c sounds from passing cars were played during the 
experiment. Furthermore, to enhance participants’ sense of presence, the 
volume of ambient sounds attenuated as a participant moved away from a 
source of the sound. A virtual construction task was designed to be able to 
observe participants’ responses to a hazard while they were performing a 
construction task. In the VR environment, a participant was asked to 
perform a cleaning crew’s task, removing all debris from the surface of the 
road by sweeping, using a broom. The motion controllers, attached to a real 
broomstick, captured the physical sweeping movements of a participant, 
and simulated the participant’s movements in the VR environment with a 
virtual broom and virtual debris [Fig. 1-(a)]. 

In the virtual road construction environment, construction vehicles 
move in response to participants’ behaviors. One of the construction 
vehicles behind a participant (i.e., a sweeper) moves back and forth to 
expose a participant repeatedly to a struck-by hazard. The movement of 
the sweeper was deliberately designed to evoke participants’ behavioral 
and physiological responses to the exposed hazard without interrupting 
or stopping a participant’s task. During the experiment, the sweeper 
repeatedly approaches in close proximity to a participant and then 
moves away. A proximity warning alarm is presented only while the 
sweeper is moving forward and is turned off while the sweeper is moving 
backwards [Fig. 1-(b)]. In this scenario, a participant is repeatedly 
exposed to the potential struck-by hazard without interfering with the 
road cleaning task. One reciprocal movement of the sweeper is consid-
ered as one exposure to the struck-by hazard, and a participant’s 
response to the hazard was measured for each exposure. Furthermore, to 
build a realistic hazardous working environment, a virtual accident with 
the sweeper was also designed. In a VR environment, the simulated 
accident was triggered by a participant’s frequent inattentive behaviors. 
When a participant ignored and did not look back to check the 
approaching hazard more than 11 times, the sweeper moved toward the 
participant until it collided with the participant, and the VR accident 
was triggered. 

Fig. 1. Construction task in the VR environment: (a) Virtual sweeping task using a broom. Motion controllers were attached to the broomstick; (b) Overview scene of 
the virtual road construction environment. 
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3.2. Measurement of physical inattentive behaviors and biosignals 

In this study, participants’ hazard-checking behavior—an eye and/or 
head movement a participant makes in order to observe approaching 
hazards—is considered as attentive behavior. The manifestation of par-
ticipants’ physical attentive behaviors was determined by an eye 
movement tracking system integrated into the developed VR environ-
ment. During the experiment, when a participant looked back to check 
the sweeper’s proximity, it was labeled as an attentive behavior (i.e., 
hazard-checking behavior) and documented as such. If a participant did 
not check the proximity of the sweeper during one exposure cycle, that 
was labeled as an inattentive behavior (i.e., non-hazard-checking 
behavior). Participants’ behavioral and physiological responses to the 
exposed hazard were collected as follows. While a participant was per-
forming the virtual road cleaning task, his/her responses in EDA were 
collected from the wrist-mounted, wearable EDA sensor and were 
sampled at 4 Hz, and pupil dilation and saccadic eye movements were 
measured using eye-tracking sensors embedded in the head-mounted 
display (HMD) at 45 Hz. 

3.3. Experimental procedure 

A total of 32 participants (26 males, 6 females; Mage = 21.09, SDage=
3.04) participated in the experiment. All participants were undergrad-
uate and graduate students at Texas A&M University (TAMU) majoring 
in construction/engineering. The experiment was implemented in the 
Building Information Modeling-Computer Aided Virtual Environment 
(BIM-CAVE) at TAMU with the approval of the Institutional Review 
Board. 

Before commencing the experiment, all participants were 
required to watch a safety training video for road maintenance work 
[77] and were trained on how to perform the virtual road-cleaning 
task. Then, participants undertook a practice session to become 
familiarized with the VR task. The struck-by hazard and the simu-
lated accident were not presented in the practice session. During the 
actual experiment, a participant was asked to alert him/herself to 
approaching equipment and auditory warning signals for safety 
purposes. When the VR-simulated accident occurred because of a 
participant’s inattentive behaviors, the experiment was aborted 
immediately. Otherwise, the experiment was discontinued 20 min 
after starting the experiment. The validity of the collected physio-
logical and behavioral responses was examined by testing the effect 
of VR familiarization on participants’ behavioral and physiological 
responses. At construction sites, workers’ behavioral/physiological 
responses to encountered hazards might vary from one day to the 
next because individual factors—emotional stability, safety experi-
ence, and safety awareness—can affect unsafe behaviors [78]. To this 
end, this study investigates whether the proposed approach can 
predict inattentive behaviors using biosignal data collected on 
different days. For this reason, all participants participated in two 
sessions, separated by a week’s interval. Subsequently, the data from 
both sessions were used to predict inattentive behaviors. 

4. Methods 

The inattentive behavior prediction method that employs extracted 
features was designed by applying machine learning algorithms. The 
prediction process consisted of 昀椀ve steps: data preprocessing and base 
feature extraction; application of contextual features; feature selection 
for the classi昀椀cation; statistical analysis; and classi昀椀cation between 
hazard-checking behaviors (i.e., attentive behaviors) and non-hazard 
checking behaviors (i.e., inattentive behaviors). 

4.1. Data processing and base feature extraction of biosignals 

Collected biosignals typically include motion artifacts and noises 

[17,52]. To identify those noises and artifacts, visual inspection and 
preprocessing were performed. Eye movement data collected from 昀椀ve 
participants showed a large number of noises or no 昀氀uctuation. For these 
reasons, the data from those 昀椀ve participants were not included in the 
analysis. Data from a total of 27 participants were used for this study. 

Motion artifacts and noises in EDA signals—such as an excessively 
abrupt decrease after reaching an absolute maximum peak—were 
removed using a smoothing 昀椀lter while preserving the typical EDA 
昀氀uctuation [44,79,80]. In this study, the Blackman window 昀椀lter of 
twelve data points per block was applied to smooth EDA signals 
[51,81,82]. After the smoothing, a signal segmentation was imple-
mented in order to identify underlying state changes in EDA signals, 
which result from the external stimulus (i.e., exposure to the struck-by 
hazard) [50]. Each EDA signal from each participant was segmented 
into smaller segments using bottom-up segmentation because of its su-
perior performance as compared to other segmentation methods 
[82,83]. A Python package Ruptures was used for the segmentation [84]. 
After the segmentation, base features from each segment were calcu-
lated. The values related to SCR (e.g., amplitude and frequency within 
the time segment) were extracted using Ledalab software [44,85]. The 
calculated SCR values of each segment were rearranged to synchronize 
with the time of raw data. To determine a length of each segment that 
best explains the differences in SCR values corresponding to physical 
inattentive behaviors, we performed statistical analyses using SCR 
values with different window period lengths (e.g., the entire period of 
each exposure, 20 s, 10 s, and 5 s). There was a distinct difference in 
biosignal reactivities only when a 10-second window period was 
applied. Thus, 10 s of SCR values before and after the warning alarm 
occurrence in each hazard exposure were extracted. Statistical features 
such as maximum, minimum, mean, and standard deviation were 
calculated from the SCR values. Through this process, 12 base features 
were extracted from EDA and normalized at the individual level. 

In processing pupil and saccadic eye movement data, de-blinking is 
important to the process of removing artifacts [86]. According to the pre-
vious studies’ recommendations [86,87], pupil and saccadic eye movement 
data were eliminated during the blink, 100 ms before and after the blink, 
and interpolation was implemented for the period of the removed data. 
After the elimination of blinking, base feature extraction was conducted on 
pupil data and saccadic eye movement data, respectively. Pupil dilation 
relative to a baseline size indicates an individuals’ extra listening effort in 
response to external auditory stimuli [88]. Thus, in order to analyze changes 
in pupil size in response to exposure to the struck-by hazard and auditory 
warning alarms, the baseline correction was performed. To set the baseline 
pupil size of each subject, this study applied the 1,000 ms of baseline 
duration, which is the preferred measurement of human mental perception 
[89]. Based on the extracted baseline, the pupil dilation was calculated at 
each data point (calculated pupil dilation = measured pupil size – baseline). 

Using the collected saccadic eye movement data, saccadic velocity and 
duration were calculated by adopting the microsaccades detection method. 
Microsaccades are rapid events that happen between 昀椀xational eye move-
ments [90] and are affected by attentional allocation during task execution 
[91]. Speci昀椀cally, the presentation of background noises causes higher ve-
locity and longer duration of microsaccades when a participant is per-
forming a task [92]. Thus, in this study, the features related to the velocity 
and duration of microsaccades are used as indicators of inattentive behav-
iors. Using recorded eye positions (i.e., x and y coordinates) the eye 
movement velocity was calculated. Based on the velocity of each data point, 
the occurrence of microsaccades was detected, and the microsaccade ve-
locity (i.e., saccadic velocity) and the microsaccades duration (i.e., saccadic 
duration) were calculated. The 10 s of 昀椀xed length window—10 s before 
and after the warning alarm occurrence in each exposure—was applied to 
extract pupil dilation and saccadic eye movement values corresponding to 
hazard exposure. 

Then, like EDA base features, the statistical features such as 
maximum, minimum, mean, and standard deviation were calculated 
from pupil dilation and microsaccades. A total of 24 base features from 
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pupil dilation and microsaccades were extracted and normalized at the 
individual level. Consequently, from these base feature extractions, a 
total of 36 features were derived. 

4.2. Contextual features 

In predicting human behaviors, adding contextual information about the 
situation in which the behaviors occur plays an important role [93–95]. The 
use of contextual features could enhance the prediction performance of 
machine learning models [96,97]. Thus, to provide additional information 
about when participants were exposed to struck-by hazards, the number of 
exposures to the hazard is used as a contextual feature. Since this study aims 
to examine the presence of inattentive behaviors in response to the 
repeatedly exposed struck-by hazard, we expect that the adopted machine 
learning method will learn the interaction between the number of exposures 
to the hazard and selected features. Furthermore, participants’ familiarity 
with VR (i.e., prior experience using VR devices) was measured using a 5- 
point Likert scale (where 1 = not at all familiar, and 5 = extremely 
familiar) and used as additional contextual feature, with the underlying 
assumption that familiarity with a virtual environment may affect partici-
pants’ responses to stimuli presented in the VR environment [96,98,99]. 

Table 1 
Selected features for the prediction of inattentive behaviors.  

Modality  Selected features ID 
Electrodermal 

activity 
(EDA) 

Skin Conductance 
Response (SCR)  

- Difference in the mean SCR 
amplitude between before 
and after the warning alarm 

E1  

- Maximum SCR amplitude 
after the warning alarm 

E2  

- Mean SCR amplitude after 
the warning alarm 

E3  

- Mean SCR frequency after the 
warning alarm 

E4 

Eye Pupillometry Pupil dilation  - Mean pupil dilation before 
the warning alarm 

P1  

- Mean pupil dilation after the 
warning alarm 

P2 

Saccadic 
movement 

Saccadic velocity  - Difference in the mean 
saccadic velocity between 
before and after the warning 
alarm 

S1  

- Mean saccadic velocity after 
the warning alarm 

S2  

- Peak saccadic velocity after 
the warning alarm 

S3 

Saccadic duration  - Mean saccadic duration after 
the warning alarm 

S4 

Context Number of 
exposures  

- The number of exposures to 
the approaching hazard 

C1 

VR familiarity  - Participants’ familiarity with 
VR technology 

C2  

Table 2 
The number of subjects who experienced VR-accident during the experiment.  

Session Non-accident group (NAG) Accident group (AG) Total 
First 5 22 27 
Second 16 11 27  

Table 3 
Two-way ANOVA results of mean SCR amplitude: main and interaction effects of 
inattentive behaviors and accident occurrences.  

Measure Sum of squares df F p -value  

Checking 1.76 1 1.894 0.169 
Accident 2.51 1 2.705 0.100 
Checking*Accident 3.59 1 3.866 0.054 

* Signi昀椀cant at the p = .05 level. 

Fig. 2. Depiction of mean SCR amplitude after warning alarm occurrence (E3) 
by non-checking behaviors vs. checking behaviors. Standard error bars 
are included. 

Table 4 
Simple effect of the accident occurrence at the level of mean SCR amplitude.  

Accident occurrence Comparison Estimated 
difference 

df F p 
-value  

Without accident (Checking) – 

(Non- 
checking) 

0.212 977 3.056 0.080 

With accident (Checking) – 

(Non- 
checking) 

0.071 977 0.739 0.390 

* Signi昀椀cant at the p = .05 level. 

Fig. 3. Depiction of mean pupil dilation after the warning alarm (P2) by non- 
checking behaviors vs. checking behaviors. Standard error bars are included. 

Table 5 
Two-way ANOVA results of mean saccadic velocity after the warning alarm: 
main and interaction effects of inattentive behaviors and accident occurrences.  

Measure Sum of squares df F p -value  

Checking 4.68 1 5.011 0.025* 
Accident 0.10 1 0.105 0.746* 
Checking*Accident 0.18 1 0.196 0.658* 

* Signi昀椀cant at the p = .05 level 
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Immersiveness has been used to refer to the degree of realism achieved by a 
virtual environment [100]. The level of perceived immersiveness in a VR 
environment is another important factor that in昀氀uences participants’ be-
haviors during an experiment [101]. Thus, to measure participants’ 
perceived immersiveness in the VR environment, a survey using the Igroup 
Presence Questionnaire (IPQ) that employed a 5-point Likert scale, was 
conducted after the experiment [102,103], and the survey result was 
employed for the contextual feature. A total of 3 contextual features were 
used as base features. 

4.3. Feature selection for the classi昀椀cation of inattentive behaviors 

To 昀椀nd features that best explain the differences between reactivities in 
biosignals when a participant showed attentive behaviors (i.e., hazard- 
checking behaviors) and inattentive behaviors (i.e., non-hazard- checking 
behaviors), feature selection was implemented. The stepwise regression 
method outperforms other feature selection methods, such as forward se-
lection and backward selection [104–106]. Thus, through the stepwise 
regression analysis, less signi昀椀cant base features among all 39 features were 
eliminated, and 12 features were ultimately selected (Table 1). From EDA 
data, the difference in the mean SCR amplitude between before and after the 
warning alarm occurrence (E1), the maximum amplitude after the warning 
alarm occurrence (E2), the mean SCR amplitude after the warning alarm 
(E3), and the mean SCR frequency after the warning alarm (E4) were 
selected as signi昀椀cant features for the prediction of inattentive behaviors. 
Mean pupil dilation before (P1) and after the waring alarm occurrences (P2) 
were selected as important features of pupil data. The difference in the mean 
saccadic velocity between before and after the warning alarm occurrence 
(S1), the mean saccadic velocity after the warning alarm (S2), the peak 
saccadic velocity after the warning alarm (S3), and the mean saccadic 
duration after the warning alarm (S4) were selected from saccadic eye 
movement data. Lastly, the number of exposures to the approaching hazard 

(C1), and participants’ familiarity with VR technology (C2) were selected 
from among the contextual features. 

4.4. Statistical analysis 

Prior to conducting the behavior prediction, statistical analyses with all 
selected features were performed to evaluate the signi昀椀cance of differences 
in biosignals between two types of behaviors. The magnitude of reactivities 
in biosignals when participants showed inattentive behaviors was compared 
to that when they exhibited attentive behaviors. For further analysis of the 
effect of accident occurrence during the experiment on reactivities in bio-
signals, the data from all participants were separated into two groups ac-
cording to the occurrence of the VR-simulated accident: (1) the Non- 
accident group (NAG)—participants who did not engage in the accident, 
and (2) the Accident group (AG)—participants who engaged in the accident 
during the experiment. A two-way Analysis of Variance (ANOVA) was 
performed to examine the main and interaction effects of participants’ 
inattentive behaviors and accident occurrences on biosignal reactivities. 
Post hoc analyses were conducted with Bonferroni corrections for multiple 
comparisons. The equality of variances was checked with Levene’s test 
[107,108]. Since pupil dilation data and saccadic duration data did not meet 
the assumption of the normal distribution, a non-parametric test, the 
Mann–Whitney U test, was performed to examine the signi昀椀cant difference 
in pupil dilation and saccadic duration between two types of behavioral 
responses (i.e., non-checking and checking behaviors) at α = 0.05. 

Table 6 
Mann-Whitney U test results of mean saccadic duration.  

Accident 
occurrence 

Behaviors (Median) U Z p -value  
Checking Non- 

checking 
Without accident − 0.034 − 0.196 11,816 −

2.101 
0.036* 

With accident 0.125 − 0.299 39,142 −

4.732 
<

0.001* 
* Signi昀椀cant at the p = .05 level 

Fig. 4. Analysis of biosignal reactivities in the two types of behavioral responses. Standard error bars are included: (a) Depiction of mean saccadic velocity after the 
warning alarm (S2) by non-checking behaviors vs. checking behaviors; (b) Depiction of mean saccadic duration after the warning alarm (S4) by non-checking 
behaviors vs. checking behaviors. 

Table 7 
Prediction performance depending on the modality of biosignals.  

Modality With biosignals 
UAR Recall for each class F1 Score 

Non-checking Checking 
EDA 0.548 0.541 0.552 0.557 
Eye 0.637 0.590 0.662 0.646 
EDA + Eye 0.679 0.656 0.692 0.677 
EDA + Context 0.630 0.652 0.619 0.638 
Eye + Context 0.699 0.698 0.700 0.698 
EDA + Eye + Context 0.722 0.705 0.731 0.730 

Note: EDA = EDA data (E1, E2, E3, and E4); Eye = Pupil data (P1, and P2), and 
Saccadic eye movement data (S1, S2, S3, and S4); Context = Contextual features 
(C1, and C2) 
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4.5. Classi昀椀cation 

A support vector machine (SVM) with linear kernel function was used 
for the supervised machine learning due to its strength in handling classes of 
imbalances [109,110]. During the experiment, participants’ responses to 
the approaching hazard were not controlled. Therefore, the number of 
samples in each behavior class was unevenly distributed. The number of 
checking behaviors (n = 642) was almost twice the number of non-checking 
behaviors (n = 339). The number of non-checking behaviors (i.e., inatten-
tive behaviors) was relatively small. The SVM weights minority classes by 
increasing the penalty for misclassifying minority classes to prevent them 
from being overwhelmed by the majority class [110]. In particular, the SVM 
performed better than decision tree and random forest, which are well 
known for their interpretability and accuracy in the binary classi昀椀cation 
(see Table A1 in the Appendix). An inattentive behavior prediction was 
performed using the data from each modality of biosignals. Then, to 
improve the behaviors’ prediction performance, an additional inattentive 
behavior prediction was performed with classi昀椀cation models, which were 
trained on the data from multimodal biosignals. Lastly, to boost the classi-
昀椀er’s performance, contextual features (including the number of exposures 
to the hazard [C1] and participants’ familiarity with VR [C2]) were 
included as input features in the prediction model, and the prediction was 
conducted. The performance of the prediction was scored using the un-
weighted average recall (UAR) [111]. The presented UARs were averaged 
over 10 runs with 10-fold cross-validation classi昀椀cation in each combination 
of biosignals. 

5. Results 

A total of 981 samples (481 samples from the 昀椀rst session, 515 
samples from the second session) were collected through the experi-
ment. Participants were exposed to the struck-by hazard on average 18 
times (M = 17.73, SD = 3.75) in the 昀椀rst session, and on average 19 
times (M = 19.07, SD = 3.13) in the second session. Of the 981 samples, 
339were labeled as inattentive behavior (i.e., non-checking behavior), 
and 642 samples were labeled as attentive behavior (i.e., checking 
behavior). During the experiment, participants who showed frequent 
inattentive behaviors experienced the VR-simulated struck-by accident 
(i.e., AG), and other participants, who continuously paid attention to the 
hazards, did not experience the simulated accident (i.e., NAG) (Table 2). 

5.1. Statistical analysis: Biosignal reactivities and inattentive behaviors 

The two-way ANOVA analysis was performed because the result of t-test 
comparison did not indicate a signi昀椀cant difference in mean SCR amplitude 
after the warning alarm (E3) between non-checking behaviors and checking 
behaviors; t (979) = 0.33, p = 0.74. The result of the two-way ANOVA 
analysis is presented in Table 3 and Fig. 2. While the ANOVA analysis did 
not reveal any signi昀椀cant main effect, the interactional effect between 
hazard checking behaviors and accident occurrence approached a signi昀椀-
cant level (F(1, 977) = 3.719, p = 0.054). To explore how the accident 
occurrence affects the participants’ behaviors at the level of mean SCR 
amplitude, a simple effect test was performed (Table 4). The result 
approached a signi昀椀cant level (F(1, 977) = 3.056, p = 0.080). The results of 
the ANOVA analysis indicate that NAG had higher values of mean SCR 
amplitude when they engaged in checking behaviors in response to the 
approaching hazards, compared to when they failed to engage, but AG did 
not present much difference in SCR amplitude values between attentive and 
negligent behaviors. This indicates that NAG has demonstrated a relatively 
higher level of attentiveness towards warning signals and may contribute to 
the behavioral consequences each group experienced (safe operation versus 
accident engagement). 

The analysis results of mean pupil dilation (Fig. 3) are in accor-
dance with those of mean SCR amplitude. There was no signi昀椀cant 
difference in pupil dilation between the two types of behavioral re-
sponses, U = 103556, p = 0.21). Thus, the Mann-Whitney U test was 

performed for each group. The results con昀椀rmed that NAG had 
higher values of pupil dilation for checking behaviors (Mdn = 0.100) 
than for non-checking behaviors (Mdn = 0.024), U = 11989, p = .052, 
while AG did not present any signi昀椀cant difference between non- 
checking (Mdn = -0.012) and checking behaviors (Mdn = 0.050), 
U = 39142, p = .405. This also indicates that NAG may have exercised 
heightened levels of attentiveness toward warning signals as 
compared to AG. 

The results of the two-way ANOVA analysis on mean saccadic ve-
locity and mean saccadic duration, on the other hand, indicated that AG 
and NAG shared similar patterns of saccadic movements (Table 5 and 6, 
and Fig. 4). Both groups had signi昀椀cantly higher values of saccadic ve-
locity and duration when they engaged in checking behaviors, which 
may be largely because subjects initiated checking behaviors during the 
time window taken for feature computations (10 s after warning sig-
nals). The results of direct comparison analyses (t-test) also con昀椀rmed 
that saccadic velocity and duration differed signi昀椀cantly between non- 
checking behaviors and checking behaviors (p = .013 and p < .001, 
respectively). On the other hand, the statistical analysis results of fea-
tures E1, E2, E4, P1, S1, S3, C1, and C2 did not indicate any signi昀椀cant 
relationship. 

5.2. Inattentive behaviors classi昀椀cation 

The results from the classi昀椀cation of biosignal data between check-
ing behavior and non-checking behavior classes are provided. The per-
formance of each modality and combinations of biosignals is illustrated 
in Table 7. The UAR yielding from the EDA data was close to chance 
accuracy (i.e., 50%). The UAR from the eye data (including pupil dila-
tion and saccadic eye movement features) also exhibited a relatively low 
performance (i.e., 63.5%) for classifying inattentive behaviors. How-
ever, the combination of EDA and eye data yield a statistically mean-
ingful increase in the UAR (i.e., 67.9%). The results indicate the 
potential of combining multimodal biosignals to enhance prediction 
performance. Furthermore, a signi昀椀cant increase in UAR is achieved by 
including context variables. When contextual features are used in 
combination with all modalities to predict inattentive behaviors, the 
UAR was 72.2%, the best performance across all settings. 

6. Discussion 

Recent studies have demonstrated the potential of monitoring biosignal 
reactivities to predict near-future or subsequent behaviors [112–114]. 
However, a dynamic and hazardous construction environment poses chal-
lenges to objectively monitoring construction workers’ biosignals and their 
physical engagement in inattentive behaviors while performing construc-
tion tasks. Therefore, this study examined the potential of using multimodal 
biosignals in predicting workers’ inattentiveness to workplace hazards using 
a VR environment. Through the statistical analyses, signi昀椀cant differences 
in biosignals were identi昀椀ed. Several features (E3, P2, S3, and S4) extracted 
from the biosignals showed higher levels of reactivity when participants 
engaged in attentive behaviors as compared to inattentive behaviors. In 
addition, the accuracy (72.2%) of inattentive behavior classi昀椀cation using 
these features is quite comparable to the accuracy (ranging from 50% to 
82%) of previous studies that attempted to predict human intent based on 
biosignals [42,97,115–118]. Furthermore, the prediction accuracy 
increased when multimodal biosignals were used compared to when each 
modality data was used separately. This result indicates that the contextual 
information about how often construction workers have been exposed to 
workplace hazards helps increase the prediction performance. Conse-
quently, the outcomes of this study revealed that workers’ physical 
engagement in inattentive behaviors to repeatedly exposed approaching 
hazards can be predicted by using biosignals collected immediately after 
warning signals are given. 

At a construction site, the ability to predict workers’ decreased 
alertness can greatly bene昀椀t construction safety efforts. Speci昀椀cally, 
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biosignal-based inattentive behavior prediction will enable the closed- 
loop warning/feedback system that measures human activities (both 
biosignals and physical movements) and automatically activates an 
intervention (e.g., warnings or feedback) when workers’ inattention is 
detected. The activated intervention is then terminated when workers 
exhibit attentive behaviors, thus closing the loop [119,120]. In road 
construction/maintenance work zones, current warning alarms associ-
ated with construction vehicles do not consider workers’ perceived risk 
levels or alertness and thus generate redundant alarms [1]. This can 
result in alarm fatigue, which distracts workers’ attention to hazards and 
leads to workers’ inattentive behaviors and habitual ignorance of sur-
rounding hazards [1]. In this regard, a closed-loop warning/feedback 
system driven by the assessed inattentiveness of workers (e.g., providing 
warning alarms or feedback only when a worker shows inattentiveness, 
and stopping warning alarms when workers’ attentiveness is recovered) 
may help reduce workers’ habituated inattention at construction sites, 
thereby reducing workers’ engagement in inattentive behaviors. 
Consequently, the biosignals-based inattentiveness prediction holds the 
potential to save human lives, and reduce costs and time needed to 
monitor workers’ inattentive behaviors at construction sites. Further-
more, the patterns of biosignal reactivities to the presented hazard can 
vary according to an individual’s attentional capacity. Thus, the out-
comes of this study could be used to identify individual workers’ 

response patterns to workplace hazards. Based on the identi昀椀ed pat-
terns, a personalized prediction model can be developed and deployed 
for tailored safety interventions. Future studies will examine the feasi-
bility of developing a personalized inattentive behavior prediction 
model. 

Some limitations of this study should be noted. First, all of the partici-
pants were undergraduate and graduate students. Thus, the biosignal re-
activities in response to exposed hazards might differ from those exhibited 
by experienced construction workers. Second, some sample data may 
include participant checking behaviors that had already occurred within 10- 
seconds of the data window period, which may have affected the prediction 
performance. Third, during the experiment, the participants were divided 
into two groups depending on the occurrence of the virtual accident that 
resulted from a participant’s frequent engagement in inattentive behaviors: 
vigilant participants (NAG) and inattentive participants (AG). The 11th time 
that a participant demonstrated inattentive behavior was used to provoke 
the virtual struck-by accident and determine participants’ inattentiveness. 
Although the 11 instances of ignorance function as a reference point that is 
somewhat arbitrary, it exceeds 50 percent of the total number of exposures 
and is re昀氀ective of a participant’s frequent inattention to the approaching 
hazard in the experiment. Therefore, the 11 occurrences of engagement in 
non-checking behaviors provides a proxy for an individual’s inattention to 
the repeatedly presented hazard. Future studies will be required to deter-
mine an optimal reference point that better explains individuals’ inatten-
tiveness. Fourth, some participants experienced the accident as a result of 
their behavioral responses during the experiment. Although experiencing 
the accident during the 昀椀rst session may have affected participants’ 
behavioral/physiological responses during the second session, that phe-
nomenon was not investigated in this study. During the next phase of this 
study, an association between the simulated accident experience and a 
change in participants’ inattentiveness to repeatedly exposed hazards will 
be examined. Lastly, the 昀椀ndings of this study may be somewhat limited by 
the laboratory conditions: employing a VR environment. In a real envi-
ronment, it is dif昀椀cult to observe workers’ inattentive behaviors in response 
to frequently exposed workplace hazards. For this reason, we exposed 
participants to the repeated struck-by hazard in a virtual environment. 
Further validation in 昀椀eld experiments is warranted. 

With regard to practical application of the proposed approach, a 
technology or device that senses the occurrence of warning alarms can 
be integrated with the proposed biosignal-based inattentive behavior 
prediction. For example, an internet of things (IoT) safety helmet that is 
equipped with sensors detecting auditory warning alarms and sensing 
workers’ biosignals can be developed. The IoT safety helmet would 

capture biosignals when a warning alarm is detected and analyze 
workers’ inattentiveness. Then, it would provide feedback only when 
workers’ inattentive behaviors are predicted, thereby mitigating 
workers’ habituation resulting from redundant alarms in a workplace. 
However, the integration of these technologies and a proposed inat-
tentive behavior prediction method was not considered in this study. It 
could be investigated in future studies. 

7. Conclusion 

This study investigates the usefulness of biosignal data collected using 
wearable biosensors and a VR environment in preventing fatalities and in-
juries at construction sites. The 昀椀ndings help explain the association be-
tween reactivities in multimodal biosignals and inattentive behaviors. A 
laboratory experiment was conducted using a virtual environment, and a 
total of 981 behavior and biosignal samples were collected. Using stepwise 
future selection, 12 features were identi昀椀ed to predict inattentive behaviors. 
The results of the statistical analysis indicate an association between re-
activities in biosignals and inattentive behaviors. When participants 
demonstrated inattentive behaviors, the reactivities in some biosignals were 
lower than when participants exhibited attentive behaviors. There was a 
signi昀椀cant difference in the mean saccadic velocities (p = .013). The mean 
saccadic duration of non-checking behaviors was lower than for checking 
behaviors (p < .001). Speci昀椀cally, NAG showed higher mean SCR amplitude 
(p = 0.08) and pupil dilation (p = 0.052) when workers exhibited checking 
behaviors than when they engaged in non-checking behaviors. However, 
there was no signi昀椀cant difference in AG. This implies that NAG revealed 
larger reactivities in biosignals in response to repeatedly presented warning 
signals than AG did, and such a high level of attentiveness may associate 
with more frequent engagement in safe behaviors. The 昀椀ndings also indicate 
that adopting multimodal biosignals for inattentive behavior prediction can 
effectively enhance the prediction accuracy to 72.2%, which is quite 
competitive compared to studies in other domains that used biosignals to 
predict human behavior. This demonstrates that workers’ inattentive be-
haviors can be predicted by monitoring reactivities in workers’ biosignals to 
repeatedly exposed workplace hazards during a work task. Consequently, 
the outcomes of this study lay the groundwork for future research on how 
construction workers’ inattentive behavior—the attentional consequences 
of habituation to repeatedly exposed hazards—can be predicted by moni-
toring workers’ biosignals. The proposed computational approach could 
potentially change the current strategy for the observation and prevention 
of workers’ unsafe behavior from a manual and direct observation to an 
automated sensing method using biosignals. Furthermore, the 昀椀ndings of 
this study, while preliminary, suggest that using VR as an experimental tool 
can be effective in examining construction workers’ behaviors in hazardous 
working environments. 
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