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Abstract

We consider the classical point vortex model in the mean-field scaling regime,
in which the velocity field experienced by a single point vortex is proportional to the
average of the velocity fields generated by the remaining point vortices. We show
that if at some time the associated sequence of empirical measures converges in a
renormalized H ' sense to a probability measure with density »® € L®(R?) and
having finite energy as the number of point vortices N — oo, then the sequence
converges in the weak-* topology for measures to the unique solution w of the 2D
incompressible Euler equation with initial datum @, locally uniformly in time.
In contrast to previous results Schochet (Commun Pure Appl Math 49:911-965,
1996), Jabin and Wang (Invent Math 214:523-591, 2018), Serfaty (Duke Math
J 169:2887-2935, 2020), our theorem requires no regularity assumptions on the
limiting vorticity w, is at the level of conservation laws for the 2D Euler equation,
and provides a quantitative rate of convergence. Our proof is based on a combination
of the modulated-energy method of Serfaty (J Am Math Soc 30:713-768, 2017)
and a novel mollification argument. We contend that our result is a mean-field
convergence analogue of the famous theorem of Yudovich (USSR Comput Math
Math Phys 3:1407-1456, 1963) for global well-posedness of 2D Euler with vorticity
in the scaling-critical function space L (R?).

1. Introduction

1.1. The point vortex model and the 2D Euler equation

The classical point vortex model is the system of N ordinary differential equa-
tions (ODEs)
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y() =Y aj(Vie () —x;@)

1<j<N -
it Vie{l,...,N}, (1.1

x(0) = xio
where N is the number of vortices, ay, ..., ay € R\{0} are the intensities of the vor-
tices, x?, cees x%, € R? are the pairwise distinct initial positions, g(x):=— % In |x|

is the two-dimensional (2D) Coulomb potential, and VL:z(—BXZ, 0y, ) is the per-
pendicular gradient. This model, which may be seen to be a finite-dimensional
Hamiltonian system, goes back to work of Helmholtz [27] and Kirchoff [31]. In
addition to being an interesting dynamical system in its own right (see [36,37]
for a survey of results), the model (1.1) is an idealization of 2D incompressible,
inviscid fluid flow. Indeed, such a fluid is described in vorticity form by the 2D
incompressible Euler equation

dw~+u-Vo=0

u=(Vtg) xw (t, x) € [0, 00) x R. (1.2)

w(0,x) = a)O(x)

As the vorticity w is simply advected by the velocity field of the fluid, one may

informally view the flow as a continuum superposition of dynamical point vortices.
In fact, the empirical measure of the system (1.1), defined by

N
oN (1, %)= @iy, (x), (1.3)

i=1

is a solution to the so-called weak vorticity formulation of equation (1.2),
t
/ w(t,x)f(, x)dx = / a)O(x)f(O, xX)dx + / / w(s, x)(0 f)(s, x)dxds
R2 R2 0 JR?

1 t
n 5/ / o(t, Vot (Vg (x — y)-
0 (]RZ)Z\Az

(V). x) = (Vs y)ldxdyds,

(1.4)

for any spacetime test function f, where Ay:={(x,y) € (R*)? : x = y}. Due to
the exclusion of the diagonal A; in defining the singular integral in the second line,
it is evident that the formulation (1.4) is well-defined for measure-valued solutions
of the form (1.3).

In order to make sense of a solution to the system (1.1), the point vortices
must not collide. In the repulsive case, the case considered in this article, where
ai,...,ay are all of the same sign which we take to be +1 for simplicity, the
system (1.1) admits (see Theorem 2.20 below) a unique global solution x 5 () =
(x1(2), ..., xn (1)) in C*([0, 00); (RN \ Ay), where

AN={On, ..,y e ROV 131 <i#j<Nsty =y} (15
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Similarly, classical solutions to the Euler equation exist globally in time and are
unique by work of Wolibner [58], and weak solutions (see Definition 2.21) exist
globally and are unique for initial data in L'(R?) N L>(R?) by a theorem of
Yudovich [60], which we review in Sect. 2.4 with Theorem 2.26. Thus, the dynamics
are globally well-posed at both the microscopic level of the point vortices and the
macroscopic level of the Euler equation.

In this article, we are interested in the degree to which the ODE system (1.1)is a
particle approximation to the Euler equation, or conversely the degree to which the
partial differential equation (PDE) (1.2) is a continuum approximation to the point
vortex model (1.1), when the number of vortices N is very large. To mathematically
make sense of this question, we consider the so-called mean-field scaling regime
where the intensities @; = 1/N, for every 1 < i < N, so that the velocity field
experienced by a single point vortex is the average of the velocity fields generated
by the other point vortices. Based on the observation that the empirical measure
wy 1s a solution to the weak vorticity formulation (1.4) of the Euler equation, we
expect that wy converges to a solution of the Euler equation (1.2), as N — 00, in
the weak-* topology for measures, point-wise in time:

Vi>0, wn@) % w(1). (1.6)

1.2. Prior results

The subject of approximating the solution to the Euler equation (1.2) using the
point vortex system has a long history in mathematical fluid dynamics going under
the banner of point-vortex methods. These methods go back to at least work of
Rosenhead [44] and Westwater [57], which used the system (1.1) to study vortex
sheet roll-up. Later works [21,22] by Goodman, Hou, and Lowengrub focused on
approximating the characteristics of classical solutions to the Euler equation (1.2)
using a grid-like discretization of the initial data and the system (1.1). We mention
that these results very strongly rely on the choice of initial data and therefore are
not applicable to treating random initial configurations. As it is not our intention to
survey the literature on this topic, we limit our following remarks to those works
specifically treating mean-field convergence (1.6). We refer the reader more broadly
interested in point-vortex methods to the books of Marchioro and Pulvirenti [37]
and Newton [39], as well as the article of Hauray [25] on the subject and the
relatively recent survey of Jabin [28].

To the best of our knowledge, the first work on establishing the mean-field
convergence is that of Schochet [51]. He showed that for any sequence of initial
data x?v) NeN, such that the 59\, have uniform-in-N compact support, mass, and
energy and such that the associated sequence of empirical measures (w?v) NeN
converges in the weak-* topology for the space M (R?) of signed measures to
some »° € M (R?), there exists a subsequence (wy, )ken Which weak-* converges
to some solution  to the formulation (1.4) with initial datum «?, point-wise in
time. His proof is based on his refinement [50] of Delort’s famous result [12] for
the existence—but not uniqueness—of Radon-measure-valued solutions of a definite
sign in H~!(R?). Schochet’s argument exploits a logarithmic gain of integrability
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to control the number of close point vortices and compactness in time in order to
prove convergence of the nonlinear term along a subsequence. We note that due to a
lack of uniqueness for the class of measure-valued solutions to equation (1.2) under
consideration, one does not know from Schochet’s result that if «° has a bounded
density, then wy, converges to the unique solution w € L°°([0, 00); L'R?> N
L°°(R?)) with initial datum «°. Results similar to Schochet’s were later obtained
by Liu and Xin [34].

A number of year later, Jabin and Wang [30] (see also their earlier work [29])
considered the point vortex model with random initial data, as part of a broader work
on interacting particle systems in the mean-field regime. The empirical measure
(1.3) is now a random probability measure, and the law fy(x1, ..., xx) of the
point vortices is a solution to the associated Liouville equation. Assuming that fy
is a so-called entropy solution to the Liouville equation (see [30, Definition 2]) and
w € L°°([0, T1; WI’OO(TZ)) is a solution to equation (1.2), Jabin and Wang prove
a Gronwall estimate for the time evolution of the relative entropy between fx and
@®VN . From this relative-entropy bound, they deduce a rate of convergence for the -
particle marginal f ;Vk) to w®* in L! normas N — oo. In other words, they prove an
estimate for propagation of chaos, which in turn implies that the empirical measure
converges in law to the solution w of (1.2) (for instance, see [26]). Their result is
stated for the periodic setting, but, as the authors remark, it can be extended to the
present setting of R2. Note that the W - spatial regularity for w is a full derivative
above the Yudovich theorem [60] and amounts to assuming classical solutions to
the Euler equation, as the velocity field u associated to  just barely fails to be C?
(see identity (1.8) below). We also mention that Jabin and Wang prove an estimate
for propagation of chaos for the so-called viscous vortex model, where independent
Brownian motions act on each of the point vortex trajectories and for which the
corresponding limit equation is 2D Navier-Stokes in vorticity form. This provides
a quantitative counterpart to the earlier works [19,40-42].

Subsequently, Serfaty [53] returned to Schochet’s setting of point vortices with
deterministic initial data and proved a Gronwall estimate for the time evolution
of a renormalized H~! norm of the difference wy —  (see (1.17)). Assuming
convergence of the initial empirical measure % to ° in this renormalized H~!
sense (see Remark 1.4), Serfaty’s result implies convergence of the time evolu-
tion in the weak-* sense, as well as propagation of chaos if one randomizes the
initial data. We mention her result is a special case of a more general result treat-
ing mean-field limits of variants of the system (1.1), where the Coulomb poten-
tial is replaced by a Riesz potential (see Definition 2.1 below). Serfaty’s proof is
based on her modulated-energy method originally introduced [52] in the context
of Ginzburg-Landau vortices. We defer a discussion of this method until Sect. 1.4.
In contrast to the partial result of Schochet, which only assumes initial weak-*
convergence to a measure ", and the complete result of Jabin and Wang, which
requires that the limiting vorticity w € L*°([0, 00); P(T2) N Wh°(T?)), where P
denotes the space of probability measures, Serfaty’s proof requires that w belong
to L>([0, 00); P(R?) N L>°(R?)) and satisfy the bound

sup [[V2(g* ()| poog2) < 00, YT > 0. (1.7)
0<t<T
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For prescribed initial datum, such a solution is global and unique. Note that the
assumption (1.7) implies that the velocity field u is spatially Lipschitz continuous.
Although we have the operator identity

V(gH) = v (1.8)
- .

and therefore the left-hand side defines an order-zero Fourier multiplier, it is not
bounded on L>°(R?), as is generally the case for such operators. Thus, the condition
(1.7) cannot be ensured by the finiteness of || (¢)|| ;o (Rz),l which is a conserved
quantity for sufficiently nice weak solutions to (1.2).

Finally, we mention the work of Duerinckx [15], which was published in be-
tween Schochet’s and Jabin and Wang’s respective results. His work treats the
mean-field limit of the gradient-flow analogue of (1.1), where the V' is replaced
by V, as well as mixed flows. While the argument breaks down for the point vortex
model, several of the ideas behind the analysis in [15] are relevant to this work.
We also mention that point vortex systems are one model in a broader family of
first-order particle systems with singular interactions and part of a wider body of
research on the effective behavior of such systems, as well as their second-order
analogues, such as Newton’s equations. So as not to stray from the core subject of
this article, which is the quantitative mean-field convergence of point vortices to
the Euler equation, we have limited our attention to those works directly treating
this specific topic. For the reader interested in this wider subject of research, we
refer to the lecture notes of Golse [20] and to the aforementioned survey of Jabin
[28] and article of Serfaty [53, Subsection 1.1] for a nice discussion.

1.3. Overview of main results

As we saw in this last subsection, the only complete results proving the desired
mean-field convergence of the point vortex system (1.1) to the Euler equation (1.2)
require the existence of a limiting vorticity distribution w satisfying assumptions
which are not at the level of conserved quantities (e.g. the L” norms of ). Moreover,
the Lipschitz norm of the velocity field « in (1.2), and by implication the C* norm of
the vorticity w, in general grows in time.? Given that the Euler equation is known to
be globally well-posed for initial data in L' (R?) N L>°(RR?), in particular requiring
no regularity on the initial vorticity and at the level of conservation laws, thanks to
the aforementioned theorem of Yudovich [60], a natural question is if one can show
mean-field convergence under the same assumptions for the limiting initial vorticity
distribution. Thus, we are led to our main results, which affirmatively answer this
question.

I Evenif wis compactly supported, the velocity field u need not be Lipschitz.
2 See [2] for an example, and see [32] and references therein for more discussion on this
point.
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Theorem 1.1. (Main result I) There exists an absolute constant C > 0 such that
the following holds. Let v € L*®([0, 00); P(R?) N L®(R?)) be a weak solution to

the Euler equation (1.2) with initial datum °,3 such that

/2 ln(x)a)o(x)dx +/ In(x — y)wo(x)a)o(y)dxdy < 00. (1.9)
R

(R%)2

Let N € N, and let x5 € C*([0, 00); (RZH)N \ An) be a solution to the point
vortex system (1.1). Define the functional

v 510,00 —> R,
Iy ay (@), w(t))::/ N Vd(oy — w)(t, x)d(oy — o)1, y),

(RH)2\A;
(1.10)

where wy is the empirical measure defined in (1.3). If for givent > 0, N € N is
sufficiently large so that

1/2
Lo(R2)

32

+ 132 o) NN
L (R?) + 15 (x v (0), 0(0))]
¥ (1.11)

12 013/2
cr
< exp <—€ Ueoll oo g2, |L°°(R2)> ;

Cr ([l

then 37\,”“" (x5 (1), (1)) satisfies the inequality

1TV Gy @), w(@®)] < ( 130 % (2 (0), w(0))]

12

0H3/2
LOO(R2)

+
llew Loo®2)

12 32 —Cr(ll] )

Ct(“a)O”LOO(RZ) + ||w0||Loo(R2))| lI'lN|2)e
+

N
(1.12)

As a corollary of Theorem 1.1, we obtain an estimate for the distance between
the empirical measure wy and the limiting vorticity  in the Sobolev space H* (R?),
for any s < —1. Assuming that the quantity {S’fvvg (X ") tends to zero as N —
oo (see Remark 1.4 for discussion on when this well-preparedness assumption
holds), this Sobolev norm bound implies weak-* convergence in the space of signed
measures M (R?), locally uniformly in time.

Corollary 1.2. (Main Result II) Given s < —1, there exist absolute constants
C, Cs > 0 such that the following holds. If x 5, and w satisfy the assumptions of

3 See Definition 2.21 for the notion of weak solution intended here.
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Theorem 1.1 and N is sufficiently large so as to satisfy the condition (1.11) with
t=T >0, then

lon = oll Lo, 71 s (R2))

,~CTa Ve OO o)
12 Lo (R2) L (R2)

CT®1}2 o) + 10”172 o)l In N2
(5” (0, o] 4 e L@ T T (1.13)

N

cs(|1nN|'/2 + HwOHLoc(R»))
N1/2

Consequently, {f%?vvg(i?v, o) N—) 0, then oy % w in M(R?), locally
— 00 — 00

uniformly in time.

Given the requirement that the limiting vorticity distribution w only belongs to
L>°([0, 00) x R?) and due to the similarity between our estimate for Fy* (x y (£),
w (1)) and the estimate (2.80) for the Holder continuity of the flow map associated
to w, we contend that Theorem 1.1 and Corollary 1.2 constitute a mean-field-
convergence analogue to the work of Yudovich [60] on global well-posedness for
the Euler equation (1.2). To the best of our knowledge, our results are the first
to show a quantitative estimate of mean-field convergence for classical particle
systems under assumptions on the limiting equation which are critical with respect
to the scaling of said equation.

Before commenting on the proofs of our two main results, we record some
remarks on the assumptions in the statements of the theorem and corollary, respec-
tively, and some of the implications of our results.

Remark 1.3. The assumption on the initial vorticity »° in (1.9) is two-fold. The
finiteness of the first term, which is propagated by the flow (see Lemma 2.24), is
a qualitative, technical condition, not unique to our work, ensuring that the stream
function g * w is well-defined. Similarly, the finiteness of the second term en-
sures by conservation of energy (see Lemma 2.25) that w(¢) has finite energy,
so that Fy*(xy (1), w(1)) is well-defined. Additionally, an examination of the
proof of Theorem 1.1, in particular the use of Proposition 1.8, shows that we do
not need to assume that o’ € L*°(R?). It suffices to have a weak solution in
L%°([0, T1; LY (R%) N LP (R?)), for some p > 2, provided that we have an a priori
bound on the log-Lipschitz norm of the velocity field u(¢) uniformly in ¢t € [0, T].
Of course, this bound is provided if 0’ € L®(R?) (see Lemma 2.9).

Remark 1.4. A natural question is what ensures that the condition (1.11) holds.
Clearly, the first term in the left-hand side of inequality (1.11) becomes arbitrarily
small as N — oo. Thus, the question becomes what ensures that that the quantity
Fy ¥ (xy(0), w(0)), which we shall see in the next subsection is the initial value
of the modulated energy, tends to zero as N — o0o. Duerinckx [15] observed (see
Remark 1.2(c) and Lemma 2.6) that if

oy(0) —— w(©0) and lim mlq;wg(xm—xj,m
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- /( o a(x — y)da’(x)dw’(y), (1.14)

then Fy *(xy(0), w(0)) — 0as N — oo. In other words, weak-* convergence
of the sequence of initial empirical measures to a probability measure @ with
L™ density and convergence of the N-body energy to the Coulomb energy of °
implies weak-* convergence of the time evolution of the empirical measures to the
solution w of the Euler equation with initial datum «°. Moreover, the preceding
assumption is statistically relevant in the following sense. If for each N € N, one
takes the initial positions x?ﬁ N> x?,’ y tobeiid. R2-valued random variables

with law °, then one can show using the law of large numbers that the condition
(1.14) holds almost surely.

Remark 1.5. The convergence given by Corollary 1.2 implies propagation of chaos.
Indeed, this convergence follows from the Grunbaum lemma and arguing similarly
as to in [48, Lemma 7.4]. Note that in contrast to the aforementioned work [30] of
Jabin and Wang, the implied propagation of chaos is measured in a negative-order
Sobolev space, as opposed to L.

Remark 1.6. We highlight the recent work [47] by the author which proves mean-
field convergence for the class of stochastic point vortex systems with multiplicative
noise of transport-type introduced by Flandoli, Gubinelli, and Priola [18], resolving
an outstanding problem in the field. Many of the ideas introduced in the present
article and the previous works [15,53] are extended to the stochastic setting in
our work [47]. In particular, we prove mean-field convergence to the stochastic
Euler equation of [8] requiring only that the limiting vorticity be in L7 essentially
uniformly in the noise.

Remark 1.7. Lastly, we expect that our results carry over to the gradient flow setting,
in which the V=g in the system (1.1) is replaced by —Vg:

1
)'C,-(t):—ﬁ Z Va(x; (1) — x;(1)), iefl,...,N}. (L.15)

I<j<N:j#i

The corresponding mean-field PDE is

0w =V - (wu),

1.16
u=Vgxw, ( )

which arises in the hydrodynamic limit of point vortices in Ginzburg-Landau models
of superconductivity [9,17] and whose dynamics have been studied in [1,14,33,38,
54]. Like the Euler vorticity equation, (1.16) has unique weak solutions in 7 (R%) N
L>®(R?) (e.g. see [54, Theorem 4.1]) and the regularity properties of u (e.g. log-
Lipschitz) are unchanged since the Biot-Savart law is only a rotation of thatin (1.2).
Moreover, the energy for (1.15) is nonincreasing, yielding control on the minimal
distance between point vortices. With these two ingredients, we can then use the
modulated energy identity of [53, Lemma 2.1] for the gradient flow case together
with Proposition 1.8 below to obtain results similar to Theorem 1.1 and Corollary
1.2.
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1.4. Road map of proofs of main results

Our proof of Theorem 1.1 is inspired by the modulated-energy method as de-
veloped by Duerinckx and Serfaty in the aforementioned works [15] and [53],
respectively, on mean-field limits of gradient flow and Hamiltonian systems with
Coulombic and super-Coulombic (i.e. Riesz) potential interactions. The latter work
is particularly inspirational to us. We note that the idea of considering a modulated
energy to prove a convergence result has a long history, going back at least to
work of Brenier [4] on the derivation of the incompressible Euler equation from
the Vlasov-Poisson equation. We also note that the modulated-energy approach
has similarities with the aforementioned relative-entropy approach used by Jabin
and Wang [29,30], which originates in weak-strong stability for hyperbolic sys-
tems [11,13] and has been widely used in the context of hydrodynamic limits,
e.g. [49,59]. In fact, Bresch, Jabin, and Wang [5-7] have recently incorporated
the modulated energy of [15,53] into the relative-entropy approach of [29,30] to
obtain a physically meaningful modulated free energy. For more on the history of
and similarities and differences between these techniques, we refer to Duerinckx’s
thesis [16, Subsection 6.1.3].

The specific form of the method we use relies on a weak-strong stability prin-
ciple for the Euler equation (1.2). Its advantages are that it is quantitative and that
it avoids the need for an understanding of the microscopic dynamics in terms of
point-vortex trajectories. Until now, its drawback has been that it requires some
regularity for the limiting vorticity or an assumption on the velocity field (e.g.
Lipschitz continuous) for which one does not have a global-in-time bound. Indeed,
requiring some regularity for solutions of the mean-field equation seems standard in
approaches based on relative entropy or modulated energy, such asin[15,29,30,53].

The idea of [15,53] is to consider as modulated energy the quantity

Iy, w(t)):=/ g(x — y)d(oy — o) (1, X)d(on — )(1,y),

(R2)2\A;
(1.17)

previously introduced in the statement of Theorem 1.1, which may be regarded as
a renormalization of the quantity

lon (1) = @31 g2, (1.18)

so as to remove the infinite self-interaction between the point vortices. One then
proceeds by the energy method. Formally (see Lemma 5.1 for the rigorous compu-
tation), the time derivative of §* is given by

d _a
S ey (0, (1)) = / (Vo) (x — ¥) - (ult, x) — u(t, y))

R\ Ay
d(ony — w)(t, x)d(wy — w)(t,y) (1.19)

fora.e.r € [0, 00). Thus, the key challenge is to control the symmetrized expression
appearing in the right-hand side, point-wise in time. Supposing for a moment that
u is spatially Lipschitz, locally uniformly in time, one can bound with a bit of hard
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work (see [53, Proposition 2.3]) the absolute value of the right-hand side of (1.19)
to obtain that

Fy ey (@), 0))] < [Ty @y (0), (0))]

—1/2
+ € (IPllzoqrry Nl o, wioozy ) N7

1.20
+C (||a)0||Lo<>(R2)7 IIMlle([o,T];WW(RZ))) (120

t
/0 1Ty S (xy (), @())lds,

for every ¢ € [0, T'], where C(-, -) denotes a constant depending on its two inputs.
One then concludes the proof by an application of the Gronwall-Bellman inequality.

Removing the Lipschitz assumption on the velocity field u requires our intro-
duction of several new ideas in order to prove Theorem 1.1. The overall workhorse
of our proof is Proposition 1.8 stated below.

Proposition 1.8. Assume that i € P(R*)NLP(R?) for some2 < p < oc. Then for
any bounded, log-Lipschitz vector field v : R?> — R? and vector Xy € RN\ Ay,
we have the estimate

1
N2

N N
/<R2)2\A @) —v() - (Ve (x — A 8 = Nw)(@)d (DY 85, — Nu)(y)
2

i=1 i=l

vl g2yl Ine€r||In €

<o Il ey el IF5E s ] +

N
2(p=1)
1.21
+Collvlrgre el (1.21)
€lllvllpomey  ellne|llvlipg: =
8+ 2+ elmelCplvll L) Il 0 gk,

€3 €3
p=2
+ vl Lo r2) (Cp”MHU(RZ)Gl "+ Coo||ﬂ||LOC(]R2)€1|1n61|lzoo(17))

for all parameters (€1, €2,€3) € (R+)3 satisfying 0 < 2¢; < €3 < 63 K< L
Here, || - || 1 (r2) denotes the log-Lipschitz semi-norm defined in Definition 2.7 and
Cp, Cx > 0 are constants.

At a high level, the proof of Proposition 1.8 is inspired by that of the afore-
mentioned [53, Proposition 2.3] and is divided into five steps, the first of which is
completely novel to our work and the fourth and fifth of which require significant
new analysis compared to [15,53]:

(S1) Mollification,

(S2) Renormalization,

(S3) Analysis of Diagonal Terms,
(S4) Recombination,

(S5) Conclusion.

The proof of Proposition 1.8 is quite long and technical, so as to maintain the
accessibility of the introduction, we defer an in-depth overview of the proof to
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the beginning of Sect. 4. Instead, we only comment that in our new (S1), we
replace v by the mollified vector field ve, :=v * xe,, where xe, (x):=¢€, 2 x(ey 1x) is
a standard approximate identity. Using the log-Lipschitz regularity of v, we can get
a quantitative bound for the error introduced in this replacement. We then proceed
to (S2)-(S4), working with ve,. Throughout the analysis, we avoid any estimates
that require us to put Ve, in LOO(RZ) (i.e. take the Lipschitz semi-norm of v, );
however, there is one point in (S4) (see (4.85)) where we cannot avoid doing so. Itis
as this point that the mollification is needed, as itallows us to estimate || Ve, || .00 (r2)
at the cost of a factor of | In e;|. It is worth mentioning that the inspiration for this
mollification step comes from previous work of the author on the mean-field limit
of the Lieb-Liniger model [45],* a one-dimensional model for bosons interacting
via the §-potential, where an N-dependent mollification of the interaction potential
was combined with the partial Holder regularity of the N-body wave function. This
mollification argument appears quite effective, and we expect it to have further
application to problems of mean-field convergence.

With Proposition 1.8 in hand, we return to estimating the expression in the right-
hand side of the identity (1.19) for the derivative of the modulated energy. We apply
Proposition 1.8 to the right-hand side point-wise in time, and it remains to choose
€1, €2, €3, which a priori are functions of #, N. If €3 is small, then it is clear from
the reciprocals of €3 appearing in (1.21) that €, €, must be much smaller than €3
to cancel out these divergences, but we cannot make €1, €3 too small, otherwise the
factors of |Ine€1], | In €3] will be too large. To satisfy these competing demands, it
is convenient to choose €] = eg’, € = 632. Up to an arbitrarily large constant factor,
one can take the fixed exponents in these choices arbitrarily large, without making
the factors |In€q[, | In€;] too large. After choosing €1, €2, we need to choose €3,
and there are primarily three types of terms that guide our choice:

|Ine3(1) |

[Ine3()[IFY S xy (@), o), v and O(a). (122)

Again to satisfy the competing demands between these terms, we need to take
€3(r) small without making | In €3(¢)| too large relative to N, |§?va Xy @0, 0@®)].
Furthermore, if €3(#) were independent of time but vanished as N — oo, e.g.
e3(t) = NP forall t > 0 and for some 8 > 0, then a simple application of
Gronwall’s lemma would yield a final N Ct factor, for some constant C > O,
which could only be absorbed if # were small and the initial modulated energy
|37va (x5 (0), w(0))] vanished as N — oo sufficiently fast. To deal with this issue,
we ultimately choose (see (5.32) for the exact choice) €3 () to be a piece-wise func-
tion of N and |§7\7 f(x N (), o(t))|, depending on each quantity’s size relative to the
other. In particular, the rate of mollification is dictated by the size of the modulated
energy.

4 Asis perhaps well-known, the mean-field limit of the Lieb-Liniger model is the one-
dimensional cubic nonlinear Schrodinger equation.
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With a bit of work, we ultimately find that, for all N sufficiently large depending
on (¢, Ty * (x (0), w(0))),
C (|l oo g2t In N>
N

+C (|0l Lo g2) /0 39 (), () In I35 (i (),
w(s))lds, (1.23)

|33 ey (1), o) < [y @y (0), 0(O)] +

where C(||w0||Loo<Rz)) > () is a constant depending only ||C()0||LOQ(R2). Due to the
logarithmic factor in the third term in the right-hand side of the preceding inequality,
we cannot use the Gronwall-Bellman inequality to solve this integral inequality.
Instead, we rely on the Osgood lemma (see Lemma 2.14), which allows us to
complete the proof of Theorem 1.1. We remark that our choice (5.32) for €3 is
strongly motivated by the desire to obtain an Osgood modulus of continuity in
(1.23).

Obtaining Corollary 1.2 from Theorem 1.1 is comparatively straightforward
using Proposition 3.10. This latter proposition shows that the modulated energy
Ty (x (1), (1)) controls the Sobolev norm ||y (1) — @ (1) || s w2y, uniformly in

time, up to an error whichis O ((In N) 1 /2/N 1/2y The weak-* convergence wy (1) A
w(t),as N = o0, in M (IR?) then follows from a standard approximation argument.

1.5. Organization of the article

Having presented the main results of this paper and outlined a road map of their
proofs, we now comment on the organization of the article.

Section 2 is devoted to preliminary facts needed throughout the body of paper.
Section 2.1 introduces the basic notation used in the article. Section 2.2 collects
technical facts from harmonic analysis, many of which are standard in the study
of fluid equations, concerning potential and singular integral estimates used ex-
tensively in Sects. 4 and 5. Section 2.3 reviews Osgood moduli of continuity and
the Osgood lemma, which we shall need to conclude the proof of Theorem 1.1 in
Sect. 5.2. Finally, Sect. 2.4 reviews basic properties of the point vortex model and
Euler equation concerning notions of solutions and well-posedness. As Sect. 2 is
intended to aid in the reading of Sects. 3-5, the reader may wish to consult this
section only as necessary.

Section 3 is devoted to properties of the Coulomb potential g and the modulated
energy S?va(_’ -) previously introduced in (1.10). There is substantial overlap in
this section with results scattered throughout the articles [15,53]. We include the
material again in this article as we have organized our presentation differently
and in the interests of completeness of our exposition. Section 3.1 introduces the
truncation procedure for the potential g and the associated smearing procedure for
point masses. Section 3.2 reviews basic properties of the modulated energy. Section
3.3 gives the proof of Lemma 3.7, important for the proof of Proposition 1.8, which
counts the number of “close” point vortices. Finally, Sect. 3.4 gives the proof of
Proposition 3.10, which shows that the modulated energy controls the Sobolev
norm || - || g5 (r2), up to an additive error.
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Section 4 gives the proof of Proposition 1.8, the workhorse of this paper. We
begin the section with an extended overview of the proof of the proposition, and we
have divided the section into several subsections, corresponding to the main steps
of the proof. Section 4.1 briefly reviews the stress-energy tensor associated to two
functions. Section 4.2 carries out our novel mollification step, culminating in the
proof of Lemma 4.2. Sections 4.3and 4.4 perform the renormalization and analysis-
of-diagonal-terms steps, respectively, in which we prove Lemmas 4.3 and 4.4. These
steps essentially carry over from [53], and therefore we have been parsimonious
with the details. Section 4.5 is the recombination step, which is the longest and
most involved and where a large chunk of the analysis new to our work takes place.
The main conclusion of this subsection is Lemma 4.5. Lastly, Sect. 4.6 concludes
the proof of Proposition 1.8.

Finally, Sect. 5 provides the proofs of our main results: Theorem 1.1 and Corol-
lary 1.2.In Sect. 5.1, we give the rigorous proof of the modulated energy derivative
identity (1.19) with Lemma 5.1. In Sects. 5.2 and 5.3, we prove Theorem 1.1 and
Corollary 1.2, respectively.

2. Preliminaries

In this section, we introduce the basic notation used throughout this article,
review some facts from harmonic analysis and the theory of integral inequalities,
and lastly review well-known results on the well-posedness of the point vortex
model (1.1) and the Euler equation (1.2). The reader may skip this section upon
first reading and consult as necessary.

2.1. Basic notation

Given nonnegative quantities A and B, we write A < B if there exists a constant
C > 0, independent of A and B, suchthat A < CB.If A < B and B < A, we
write A ~ B. To emphasize the dependence of the constant C on some parameter
p, we sometimes write A S, Bor A ~, B.

We denote the natural numbers excluding zero by N and including zero by No.
Similarly, we denote the nonnegative real numbers by R>¢ and the positive real
numbers by R or R.¢.

Given N € N and points x1, ..., xy in some set X, we will write x ; to denote
the N-tuple (x1, ..., xy). We define the generalized diagonal Ay of the Cartesian
product XV to be the set

Ayn:={(x1,...,xn) € xN :x; = x; for some i # j}. 2.1)

Givenx € R"” and r > 0, we denote the ball and sphere centered at x of radius r by
B(x,r)and d B(x, r), respectively. We denote the uniform probability measure on
the sphere 0 B(x, r) by 0 g(x,-). Given a function f, we denote the support of f by
supp(f).On R?, we define the spatial gradient V = (dy, , dx,) and the perpendicular
(spatial) gradient V+ = (—0x,, x,), where dy; is the partial derivative in the x-
direction. We use the notation (x):=(1 + |x|?)!/? to denote the Japanese bracket.
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IfA = (A"f)f\’j:1 and B = (B"/')f\’j:l are two N x N matrices, with entries in
C, we denote their Frobenius inner product by

N
A:B:= Z AY BT, (2.2)
i,j=1

We denote the space of complex-valued Borel measures on R” by M (R"). We
denote the subspace of probability measures (i.e. elements u € M(R") with © > 0
and n(R") = 1) by P(R"). When p is in fact absolutely continuous with respect
to Lebesgue measure on R”, we shall abuse notation by writing p for both the
measure and its density function.

We denote the Banach space of complex-valued continuous, bounded functions
on R” by C(R") equipped with the uniform norm || - || .o. More generally, we denote
the Banach space of k-times continuously differentiable functions with bounded
derivatives up to order k by C¥(R") equipped with the natural norm, and we define
C®:=N, C k_ We denote the subspace of smooth functions with compact support
by C°(R"), and use the subscript O to indicate functions vanishing at infinity.
We define the space of locally continuous functions by Cj,.(R") and similarly for
locally C* and locally smooth functions. We denote the Schwartz space of functions
by S(R") and the space of tempered distributions by S’ (R").

For p € [1,00] and 2 C R", we define L?(2) to be the usual Banach space
equipped with the norm

1/p
T ( /Q If(x)l”dx> 23)

with the obvious modification if p = co. When @ = R", we sometimes just
write || f||z». Lastly, we use the notation || - ||¢» in the conventional manner. In
the case where f : 2 — X takes values in some Banach space (X, || - || x) (e.g.
LP(2; L9(R2)), weshall write || f || .» (. x)- Inthe special case of L ([0, T'1; L1(R?)),
shall use the abbreviation Lf’ L4([0, T] x IRZ), which is justified by the Fubini-
Tonelli theorem.

Our conventions for the Fourier transform and inverse Fourier transform are,
respectively,

F©=Fer= [ fmeitar v e, 4

1

—1 A —
F(H):=f (X)~—(2n),,

/ F(E)e¥Ede  Vx e R 2.5)
Rﬂ

For integer k € Np and 1 < p < oo, we define the usual Sobolev spaces

WEP(RY):={u € LP(R") : VEu € LPR"; (€, Il wep oy

n
(2.6)
= IVFull .-
k=0
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For s € R, we define the inhomogeneous Sobolev space H* (R") to be the space of
u € 8’ (R™) such that 1z is locally integrable and

1/2
il s ey = ( A; ) <$)2S|ﬁ(é)|2d§> < o0, @7

and we use the notation || u| g ®n) 1O denote the semi-norm where (£) is replaced
by |£]. As is well-known, W52(R") = H¥(R") for k € No.

2.2. Harmonic analysis

In this subsection, we recall some basic facts from harmonic analysis con-
cerning function spaces, Littlewood-Paley theory, and Riesz potential estimates.
This material is standard in the field, and the reader can consult references such as
[23,24,55,56].

We begin with the definition of the Riesz potential.

Definition 2.1. (Riesz potential) Let n € N. For s > —n, we define the Fourier
multiplier (—A)*/? by

(=AY )=  FENY (), xR, (2.8)

for a Schwartz function f € S(R"). Since, for s € (—n, 0), the inverse Fourier
transform of |£|* is the tempered distribution

25T (ks
g(—Z’S)IXI‘S‘", 2.9)
a2l -3
it follows that
2T (") )

(=AY fHx) = dy, xeR'. (210

w20 (=%) Jre lx =yt
For s € (0, n), we define the Riesz potential operator of order s by Z; =(—=A)"5/2
on S(R™).

T extends to a well-defined operator on any L” space, the extension also
denoted by Z; by an abuse notation, as a consequence of the Hardy—Littlewood-
Sobolev lemma.

Proposition 2.2. (Hardy-Littlewood—Sobolev) Letn € N, s € (0,n), and 1 <
p < q < oo satisfy the relation

S
==, @2.11)

n

= | =
Q| =

5 As is standard notation, a dot superscript indicates a homogeneous semi-norm for a
function space in this paper.
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Then for all f € S(R"),

1Zs (Ol awny Sns,p I flLe@ny, (2.12)
”Is(f)”ll#,oc(Rn) Sns 1l geys (2.13)

where L™ denotes the weak-L" space. Consequently, I has a unique extension
to L?, forall 1 < p < oo.

Although the Hardy-Littlewood—Sobolev lemma breaks down at the endpoint
case p = oo (one has a BM O substitute which is not useful for our purposes), the
next lemma allows us to control the L° norm of Z ( f) in terms of the L' norm and
LP? norm, for some p = p(s, n). Its usefulness stems from the fact that if w solves
the Poisson equation —Aw = ¢ with zero boundary condition at infinity, then

(Vw)(0)| S Ti(lwh(x)  Vx e R%, (2.14)
as can be seen from using the Fourier transform.

Lemma 2.3. (L*° bound for Riesz potential) For any n € N, s € (0, n), and
p € (5,00],

n(1—1 71(1771,)

)
IZs (Ol oo @y Ssonp W iy 1F I o eny- (2.15)

We next define the Besov scale of function spaces, which first requires us to
recall some basic facts from Littlewood-Paley theory. Let ¢ € C2°(R") be aradial,
nonincreasing function, such that 0 < ¢ < 1 and

Loxl =<1

=10 x> 2

(2.16)

Define the dyadic partitions of unity

1=¢@+) [$Q7x) —¢Q ' D)]=yo) + ) ¥;(x) VxeR"
j=1 j=1
(2.17)

1= 0@ 70 =@ ol=) ;) VxeR"\{0). (2.18)

JEZ JEZ
For any j € Z, we define the Littlewood-Paley projector P;, P<o by
(Pj [)(x):=(; (D) f)(x) =/R Ki(x =y fndy  Kj=y/, (2.19)

(P<0 f)(x):=(¥<0(D) f)(x) = fRn K<o(x =) fdy  K<o=yZ. (2.20)
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Definition 2.4. (Besov space) Lets € Rand 1 < p,q < oco. We define the
inhomogeneous Besov space B;’ q (R™) to be the space of u € S'(R") such that

1/q

o0
il gy @ni= | I P<omtllrn + ) 29 IPull]pny | <00, (221)
Jj=1

For p, g, s as above, we also define the homogeneous Besov semi-norm

1/q

R R jgqs T
el gy oy = | 22N Pl Loy | (2.22)
JEZ

Remark 2.5. Any two choices of Littlewood-Paley partitions of unity used to define
-l BY, ,(BR") (resp. | - s @ny) lead to equivalent norms (resp. semi-norms).
’ p.q

Remark 2.6. The space Biz(R”) coincides with the Sobolev space H* (R"), as can
be seen from Plancherel’s theorem. For s € Ry \N, the space B, ., (R") coincides
with the Holder space C1*15~Is1(R") of bounded functions u : R” — C such that
vk W is bounded, for integers 0 < k < [s] and

[s] [s]
51,11 . I(VE ) (x) = (VE ) ()]
v M||CS7[S](R”)._0<|§E€|<1 [x — y|5_[3] < 0. (2.23)

For integer s, the space By, ,(R"), sometimes called the Zygmund space of order
s, is strictly large than C*(R").

We next define the space of log-Lipschitz functions, which are of central to
importance to this work.

Definition 2.7. (Log-Lipschitz space) We define LL(R") to be the space of func-
tions u € C(R"™) such that

[ (x) — pn(y)l
lullLwey:=  sup < 00. (2.24)
O<fx—yl<e-! X = yIlIn]x — y||

The next lemma shows that Béo’oo(R") continuously embeds in LL(R").

Lemma 2.8. It holds that

oy Sn IVillgy @y Vi€ Bog oo (R, (2.25)

Using Lemma 2.8, Bernstein’s lemma, and the isomorphism BgO’OO(R”) =
Clsls=IslR™), for non-integer s, we obtain the following regularity estimates for
Riesz potentials. In particular, we obtain that if the velocity field « for the Euler equa-

tion (1.2) belongs to LL(R™), provided that the vorticity w € L' (R") N L>®(R").
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Lemma 2.9. For 0 < s <2 andn € N, it holds that

1Zs ()l sy Sson lpellooey 0 <5 <1, (2.26)
1Zs(lliL@ey Sn llitllowny s =1, (2.27)
1Zs Gl rs-1 gy Sson Iitlloo@ny 1 <s <2 (2.28)

forallu € LP(R?) N L®(R™), for some finite p.

The next lemma contains some potential theory estimates for solutions to Pois-
son’s equation in two dimensions. We recall from the introduction that g(x) =
—% In |x| is the 2D Coulomb potential.

Lemma 2.10. Suppose that u € LY(R2) N LP(R?), for some 1 < p < o0, isa
measurable function such that fRZ In{x)|pu(x)|dx < oo. Then the convolution g |4
is a well-defined continuous function and we have the point-wise estimate

p—1
p

(@ w)) Sp (x) 7 Q) lille g2 +/Rz In2{yNIuyldy. (2.29)

Moreover, if 1 < p <2, then

llg sl 20— Sp ||,U«||Lp(R2), (2.30)
Boo ks (R?)

p—2

and if2 < p < 00, then V(g * i) € Bl oo(R?) and

1/2 1/2
1Y@l o2 Sp il G el ey + Doy (231)
Boo 00 (R?)

Proof. To prove that g x u is well-defined, for x 7# 0, we decompose
/ g(x = y)uy)dy = / g(x — y)u(y)dy
R? [x—y|=2(x)
+/ g(x — y)u(y)dy. (2.32)
[x=yI>2(x)

By Holder’s inequality, we have that

RN Y2
/ lgtx = »)uWldy < llnllLe w2 </ [Infx — y|I” dy)
[x—yl=<2(x) [x—yl=2(x)
p=1
Sp () 7 In@O) el Lp w2y (2.33)

where the ultimate inequality follows from changing to polar coordinates. If |x —
y| > 2(x), then it follows from the reverse triangle inequality that 2|y| > |x — y|
and therefore

lg(x — )| $1In2+1In(y). (2.34)
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Thus,
/ lg(x — yuldy < / In2(yDluy)ldy < oo.  (2.35)
[x—y|>2(x) R2

That g * u is continuous follows readily from the dominated convergence theorem
and arguing similarly as to above.

Since the distributional Fourier transform § coincides with the function |£]|~2
outside the origin, it follows from Plancherel’s theorem that for any j € Z,

Pi(g+ W) = v, (©)E| X&), Ve e R\ (0} (2.36)

So it follows from Young’s inequality and Bernstein’s lemma that

wy 2 _gj
1P (g% Wl Loy S 27 NP1l ooy Sp 27 NPl Lpmey- (2:37)

2(p—1)j
Multiplying both sides of the preceding inequality by 2 G and taking the supre-
mum over j € Z, we conclude that

g pll 201 Sp Il e r2)- (2.38)
Booso  (R?)

Now if 2 < p < o0, it’s straightforward to check from integrating against a
test function, the Fubini-Tonelli theorem, and integration by parts that

Vigs*p) = (Vg p) =Ii(n), (2.39)

with equality in the sense of distributions. By Lemma 2.3, the right-hand side is
well-defined in L°°(R?). By Bernstein’s lemma and Lemma 2.3,

1/2 1/2
| P<0Zi 0o S IT ()l oerry Sp I gy I8l gy

. 2
1P T )l gy S 27 1Pl oy S 27 lilioge).  (240)

j(p—2)
Multiplying both sides of the inequality in the second line by 2 5 and taking the
supremum over j € N completes the proof. O

We conclude this subsection with some quantitative estimates for the rate of
convergence of mollification. These estimates are frequently used during the course
of the proof of Proposition 1.8 in Sect. 4.

Lemma 2.11. Let x € CX(R") such that x > 0, supp(x) C B(0,1), and
fR" x(X)dx = 1. For 0 < € < 1, define xe(x):=e 2x(x/€). and pe:=p * xe.
Then for every u € LL(R™), we have the estimates

liell Loo®ny < [lpell Loy, (2.41)
i — pellpo®ny < linllLL@nellnel, (2.42)
IVitellLo®ny S il Lo@nlInel (2.43)
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Proof. Estimate (2.41) is immediate from Young’s inequality. For estimate (2.42),
we use that y has unit mean to write

p(x) — pe(x) = /Rn (n(x) = p(x = y)) xe(¥)dy. (2.44)

By definition of the semi-norm || - || (rn) in Definition 2.7 and that supp(xe) C
B(0, €), we have that, for € < e L

< IllLewm /Rn [y In|y|[lxe(¥)]dy.
(2.45)

’/Rn ((x) — u(x —y)) xe(¥)dy

Using the dilation invariance of Lebesgue measure, we see that the right-hand side
of the preceding inequality equals

c [xeMIdy < lnllLLem

<6|ln6|+64 Iylnlylllx(y)ldy)
S lInllLo@eyel Inel. (2.46)

Iyl ], |yl
”/‘LHLL(R")E / — |In =— + lIlE
Rn €

For estimate (2.41), we first observe that since

fR (VxI)dy =0 € " (2.47)

by the fundamental theorem of calculus and the compact support of x., we may
write

(Vie)(x) = /Rn (n(x —y) — pu(x)) (Vxa)(n)dy. (2.48)

Hence, fore < e 1,

(VW= Nalsen [ 1y I X 0)1dy

_elle /
62 R®

< ||M||LL(JR<n)/R Iyl nly|+Ine) [(Vx)(»ldy, (2.49)

Y <1n|1| +lne>‘ I(VX)(X)W)’
€ € €

where the ultimate line follows from the dilation invariance of Lebesgue measure.
Since x € R" was arbitrary, the proof of (2.43), and therefore the lemma, is com-
plete. O
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2.3. The osgood lemma

In this subsection, we recall some facts related to moduli of continuity and the
Osgood lemma, which is a generalization of the Gronwall-Bellman inequality. The
presentation in this subsection closely follows that of [3, Section 3.1].

Definition 2.12. (Modulus of continuity) Leta € (0, 1]. A modulus of continuity is
an increasing, nonzero continuous function p : [0, a] — [0, co) such that p(0) =
0. We say that a modulus of continuity satisfies the Osgood condition or is an
Osgood modulus of continuity, if

/0 ’ p”i:) = o0. (2.50)

Example 2.13. Evidently, the function p : [0, 1] — [0, 00), p(r):=r is an Osgood
modulus of continuity. Since the anti-derivative of the reciprocal of the function

p:[0,e7 1= [0,00), p(r):=r <ln %) (2.51)

is, up to an additive constant, — In ln(%), we see from the fundamental theorem of
calculus that this is also an example of an Osgood modulus of continuity. This latter
example will be important to the proof of Theorem 1.1 due to the Euler velocity field
only being log-Lipschitz when the vorticity is bounded. Non-examples of Osgood
moduli of continuity include r +— r%,for0 < o < 1,and 7 — r(In })"‘, fora > 1.

Lemma 2.14. (Osgood lemma) Fix a € (0, 1]. Let f : [ty, T] — [0,a] be a
measurable function, y : [to, T] — [0, 00) a locally integrable function, and
p [0, a] — [0, 0o) an Osgood modulus of continuity. Suppose that there exists a
constant ¢ > 0 such that

t
F) <c+ / y()p(fWNdl aet € lio. T, (2.52)
0]
Define the function
M : (0, a] — [0, 00). ‘)ﬁ(x)::/a ar (2.53)
x pr)

Then 9 is bijective, and if t is such that ftf) y (t"dt' < M(c), it holds that

t
f@) <m! (sm(c) — / y(t’)dt’). (2.54)
1

0
Proof. See [3, Lemma 3.4, Corollary 3.5]. O

Remark 2.15. Note that if p : [0, e~'] — [0, c0) is defined by p(r):=rIn(1/r),
then

Em(x)zlnln(l) and M 'y =e*, (2.55)
X

as the reader may check. The importance of this example will become clear in
Sect. 5.2.
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2.4. The point vortex model and Euler equation

In an effort to make this article self-contained, we briefly review properties of
the point vortex model (1.1) and Euler equation (1.2), beginning with the former.
For more details, in particular proofs of the omitted results, we refer to the texts
[3,35,37].

As mentioned in the introduction, the system of equations (1.1) is a finite-
dimensional Hamiltonian system. Indeed, specializing to the repulsive case a; =

- =ay = 1/N, the reader can check that if we define the 2 x 2 matrix corre-
sponding to 90° rotation,

0-—1
Ji= [1 0 } , (2.56)
and the 2N x 2N block-diagonal matrix Jsz%diagN J, ..., J), then
oy : RV x BN >R, onGy, y)=Iy'ayy,, 257

where () - () denotes the standard inner product on (R?)V, defines a symplectic
form. Defining the Hamiltonian functional

1 2\N

Hy (y)i=57 Z g —x))  Vaye ®HV\ Ay,  (259)
I<i#j<N

it is a straightforward computation (see [46, Section 3.1]) that the point vortex

equations (1.1) can be rewritten as

Xy (@) = (VoHy)(xy (@), (2.59)
where V,, Hy denotes the symplectic gradient of Hy with respect to the form w.

Remark 2.16. Using the anti-symmetry of the symplectic form wy, it follows that
the Hamiltonian Hy is trivially conserved by solutions to the system (1.1). Further-
more, since Hy is invariant under translation and rotation, it follows from Noether’s
theorem—or direct computation—that the center of vorticity and moment of inertia,
respectively given by

1 N
M(xy)=— > i (2.60)

i=l1

1 N
Tay)=ns )il (2.61)

are also conserved by solutions.

The next definition clarifies what we mean by a solution to the system (1.1).
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Definition 2.17. (Solution to PVM) Given a time 7 > 0 and initial configuration
1(1)\, e (RHN \ Ay, we say that a function x yy € C([0, T]; (R2)N) is a solution to
the system (1.1) if

min N lxi(t) —x;(®)| >0 Vtel0,T] (2.62)

I<i<j<

and forevery i € {1,..., N},

t
@ =x)+ %/ (Vig)(xi(s) — xj(s)ds Vi €0, T].
I<i#j<N 0
(2.63)

We say that x), € Cic([0, T); (R*)N) is a solution to (1.1) if for every 0 <
T" < T,xy € C(0,T']; (R?)N) is a solution to (1.1). We say that a solution
Xy € Cioe([0,T); (RZ)N) has maximal lifespan if x, is not a solution on the
interval [0, T]. If T = oo, then we say that the solution is global.

Remark 2.18. Since for finite 7 > 0, the interval [0, T'] is compact, it follows from
Weierstrass’s extreme value theorem that the conditions

min N |x;(#) —x;(t)| >0Vt €[0,T] and
<

I<i<j=<
min  min |x;(#) —x; ()] >0 2.64
te[O,T]1§i<j§N| i(t) —xj(0)] (2.64)

are equivalent. Using this property together with the smoothness of Vg away from
the origin and induction, it follows that if x y € C([0, T']; (R*)V) is a solution to
(1.1), then x, € C([0, T]; (RH)N).

Remark 2.19. If a solution to equation (1.1) exists, then it is necessarily unique, as
the reader may check.

While the Hamiltonian Hy defined in (2.58) is not nonnegative-definite, conser-
vation of the Hamiltonian together with conservation of the moment of 7 control
the minimal distance between the point vortices globally in time. Indeed, using that
Hy is conserved, we have that for any distinct pair (ig, jo) € {l,..., N }2 such that
xig (1) — xjo (D] < 1,

1
—3o Il —xpOl< Y 800 = xj(1)
T I<i#j<N
lxi (1) —x; ()] <1
=HyO) — > a0 —x;®)

I<i#j<N
[xi (1) —xj ()[=1

1
= Hy(0) + Z In|x; (1) — x;(1)], (2.65)
l<izj<N
[xi (1) —x ()| =1
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for every ¢t > 0. Using the triangle inequality and that x + In | x| is increasing, we
find that

i ()% + |x (1) |? <In In(0)
2 2
(2.66)

’

In [x; (1) — x; (0] < In (15 (O] + |x;(0)]) < ln\/

where the ultimate inequality follows from the definition (2.61) of Iy (¢) and that
In(2) is conserved. After some algebraic manipulation, we then conclude that for
any 1 <i#j <N,

N
|x; (z) — xj(¢)| > min {1, exp (—271 (HN(O) + an IN(O)))} vt > 0.

21 2
(2.67)

This observation leads to global well-posedness for the system (1.1), summarized
in the next theorem.

Theorem 2.20. (Point vortex GWP) Let N € N, and let 1(1)\, e RHN \ Ay. Then

there exists a unique global solution x 5y € C* ([0, 00); (RZH)N \ An) to the system

(1.1) with initial datum )_c(l)\,

Proof. See [37, Section 4.2] or [46, Sections 3.2 and 3.3]. O

We now turn to discussing the Euler equation (1.2), beginning with our notion
of a weak solution.

Definition 2.21. (Euler weak solution) For 7' > 0, we say that a spacetime measur-
able function  : [0, T] x R?2 — R is a weak solution to the Cauchy problem (1.2)
if o € L®([0, T1; L' (R?) N L?(R?)), for some p > 2, and if for every spacetime
test function ¢ € wkoeoo, T); C Cl (R2)), we have the Duhamel formula

/w(t,x)tp(t,x)dxz/ wo(x)(p(O,x)dx—l—f/ w(s, x)(0sp)(s, x)dxds
R2 R2 0 R2 (268)

t
+f / (Vo) (s, x) -u(s, x)w(s, x)dxds, Vvt € [0, T].
0 JR?

We now make record some remarks on the notion of weak solution contained
in Definition 2.21.

Remark 2.22. Tt follows from the identity (2.68), our assumptions on w, and Lemma
2.11 that the trajectory

p:10,T] >R, p(t):=/ w(t, x)o(t, x)dx) (2.69)
R2
is Lipschitz continuous and that we have the bound

lp(0) = p)] S 1t = slIVellLx qo.r1xr2) Il Lo Lt go.11xR2) 1@l 2o 11022y 0,71 R2)
vt,s € [0, T]. (2.70)
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Remark 2.23. Although our notion of weak solution in Definition 2.21 may seem
to allow for the possibility of a nonempty, but measure zero, set of times ¢, such
that w(r) ¢ L'(R*) N LP(R?), the Duhamel formula (2.68) actually implies that

sup (o)1 g2y + lo®llLrg2)) < oo (2.71)

0<t<T

Indeed, suppose there exists some #y € [0, T'] such that w(f) ¢ L9 (R?), for any
1 < g < p. Then by duality and density, given any N > 0, there exists a test
function ¢ € C°(R?) with | ¢| L4 w2y = | such that

/Rz p(x)w(ty, x)dx > N. (2.72)

Since w € L®([0, T1; L' (R?) N LP(R?)), we see from Holder’s inequality that

‘/}RZ o, x)dx| < [|lo@)| 14w, ae.t €[0,T]. (2.73)
By Remark 2.22,
lim eX)w(t, x)dx = / o(X)w(ty, x)dx. 2.74)
t—1 R2 R2

Choosing N > |lo|| L®LI(0,T]xR2)> W€ obtain a contradiction. Thus, there is no
ambiguity about measure zero sets in inequalities/identities that are point-wise in
time in the sequel.

The next lemma asserts that if at some time f, without loss of generality 7y = 0,
the weak solution w to (1.2), satisfies a logarithmic growth bound, then it satisfies
the same bound (with a possibly time-dependent constant) on its lifespan. This
logarithmic growth condition ensures that the convolution g * @ (i.e. the stream
function associated to w) is well-defined. We leave the proof as an exercise to the
reader.

Lemma2.24. Let T > 0, and let o € L*([0, T]; L'(R?) N L (R?)), for 2 <
p < o0, be a weak solution to the Euler equation in the sense of Definition 2.21.
Suppose also that w(0) satisfies the logarithmic growth bound

/ In{x)w (0, x)dx < oo. 2.75)
RZ
Then

,/RZ In{x)w(z, x)dx < t”u”L?_‘)’(([O,t]sz)”a)”LfoLi([O,t]sz)a Vi € [0,T],

(2.76)

For a final property, we observe that weak solutions to the Euler equation in the
sense of Definition 2.21 conserve the Hamiltonian.
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Lemma 2.25. Let T > 0, and let w € L*([0, T]; L'(R*>)NLP(R?)), for2 < p <
00, be a weak solution to the Euler equation in the sense of Definition 2.21, such
that w(0) satisfies the growth condition (2.75). Then

/]RZ glx — y)w(t, x)w(t, y)dxdy

= /R2 g(x — w0, x)w(0, y)dxdy, VYO<t<T. (2.77)

Proof. See [10]. O

If the velocity field u associated to a weak solution w is log-Lipschitz (for
instance, w € L*®([0, T]; L'(R?) N L*®(RR?))), then the solution w is unique.
This is a famous result of Yudovich [60]. In fact, his result shows that given
initial datum «° € L'(R?) N L®(R?), there is a unique global weak solution
w € L®([0, T]; L' (R?) N L®(R?)) to the equation (1.2), as the next theorem
asserts.

Theorem 2.26. ([60]) Let o° € LY(R%) N L®(R2). Then there exists a unique
solution @ € L*([0, 00); L'(R?) N L®(R?)) to (1.2) in the sense of Definition
2.21. Moreover, there exists a unique continuous map ¥ : [0, 00) x R? — R2 such
that

t
Y, x) =x —I—[ u(t', (', x)di’  V(t,x) €[0,00) x R?, (2.78)
0

where u is the velocity field associated w, and
(t,x) = o’ (1, 2)), (2.79)

Additionally, for each t > 0, ¥ (t,-) is a measure-preserving homeomorphism
and there exists an absolute constant C > 0 such that if |x — y| < exp(l —
Jo lu() | Lp.g2ydt), then

t
Y (1, %) — ¥ (&, )] < Cexp (1 — exp ( fo ||u(r’>||LL<Rz>dt/>>

lx — yIPPC R Ol 2, (2.80)

t
b0 = ey = Cexp (1 —exp (/0 ||u(r’)||LL<Rz>dr’>)
b — y [P Oy, 2.81)

Remark 2.27. Since (¢, -) is measure-preserving for every + > 0, an immediate
consequence of Theorem 2.26 is that the L” norms of w, for any 1 < p < oo, are
conserved.

3. The Modulated Energy

The goal of this section is to introduce the modulated energy and its renor-
malization, which we use to measure the distance between the N-body empirical
measure wy and the mean-field measure w.
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3.1. Setup

Recall from the introduction that g(x):=— % In |x|is the 2D Coulomb potential.
Given n > 0, we define the truncation to distance n of g by

glx), I|x[=n

: 3.1
am, Ixl<n G

g, RZ >R, g,(x):= {

where we have introduced the notation g(x) = g(|x|) to reflect that g is a radial
function. Evidently, g, is a continuous function on R? and decreases like g as
|x| — oo. The next lemma provides us with some identities for the distributional
gradient and Laplacian of g, of which we shall make heavy use in the sequel.

Lemma 3.1. For any n > 0, we have the distributional identities
X
Vg x) = —mlzn(x), (3.2)

(Agy)(x) = —09B(0,n) (X), (3.3)
where o3 p(0,y) is the uniform probability measure on the sphere 9 B(0, ).

Proof. Fixn > 0,andletu € C° (Rz; ]R2). Then by definition of the distributional
gradient,

(Vgy, u) = — /Rz g () (V- u)(x)dx = —/l g(x)(V - u)(x)dx
x|>n

- / g (V- u)(x)dx. (3.4
lx[<n
Using the divergence theorem and that |“;—| is the outward unit normal to a ball
B(0, ), we find that the second term in left-hand side of (3.4) equals

~ X
—ag(m) u(x) - —doyp,y))(x). (3.5)
3B(0,7) | x|

Similarly, using that the outward unit normal to the region B(0, )¢ is —ﬁ, the
first term in the left-hand side of (3.4) equals

/ g(x)u(x) - idUamo,n)(X) + / (V@) (x) - u(x)dx
9B(0.n) x| Ix|=n

(3.6)
- X
= 9(7’/)/ u(x) - —doyp,y) (x) +/ (Ve)(x) - u(x)dx.
IB(O.) |x| ME

Combining identities (3.5) and (3.6), we obtain that

(Vgy, u) = / (Vo) (x) - u(x)dx. 3.7
[x[=n
Since, by the chain rule,

(V) (x) = Vx € R%\ {0}, (3.8)

C2mx 2’
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we conclude that
X

(Vo) = =5

1oy (), (3.9)
with equality in the sense of distributions. Similarly, for any ¢ € C2° (R?),
(Agy. ¢) = — A;{Z(Vgn)(X) - (Vo) (x)dx
= - fx|>n(Vg)(x) - (Vo) (x)dx, (3.10)

where we use identity (3.2) to obtain the ultimate equality. Integrating by parts, this
last expression equals

/aB(O’N)(Vg)(X) : %w(x)daamo,n) (x). (3.11)
Since for every x € dB(0, n),
Vo Lot L (3.12)
| x| 27 |x|?  |x| 27
we conclude identity (3.3). ]

With Lemma 3.1, we can define the smearing to scale n of the Dirac mass Jp
by

8= — Agy = 09B0.)- (3.13)
A useful identity satisfied by 8" is

(g% 8")(x) = gy (x), (3.14)

which follows from the definition (3.13), the associativity and commutativity of
convolution, and the fact that g is a fundamental solution of the operator —A.
Next, given parameters co > 1, « > 0, we define the function

fra(0):=(ge — g)(x),  Vx € R (3.15)

From identity (3.14) and the bilinearity of convolution, we see that f,  satisfies the
identity

Fra = 8% (85 — 837 (3.16)
Additionally, for « > 7, we find by direct computation that

0, x| > «
fro () =3 =2 In(H), n<lx|<a (3.17)

—In(®), x| <n
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and

1
(Vipa)(x) = ———

Ewlnsstx(xx (3.18)

with equality in the sense of distributions. The next lemma provides useful estimates
for the L? norms of , o, Vf,,. We shall use these estimates extensively in Sect. 4.

Lemma 3.2. Forany 1 < p < oo and 0o > o > n > 0, we have that

1/p
2/p 1 1/pn2/p
o T/ n o
< — Inr|Prd +————In— (3.1
”fn’a””(Rz) - (Zﬂ)(p_l)/p (/Z et ") 2r ! n G-19)

and

2-p_2-p1/

%’ l<p<2

en'7T -pir

IVinallr@e =1/ 2 In %, p=2 (3.20)

2op_2-p\l/

W’ p>2.

@m) 7 (p=2)l/r

Proof. We first show estimate (3.19). The case p = oo is immediate from identity
(3.17), so we consider the case 1 < p < oo. Using identity (3.17) and polar
coordinates, we find that

/ [f,0 ()| dx = / f,0 ()P dx +/ f,0 (O] Pdx
R? n<|x|<a lx|<n

2 /0‘ 2 P
@m)r J,

n
Q2m)?r

Using dilation invariance of Lebesgue measure, the first term in the second line

equals

a|r o
—| rdr+ In —

r

In

(3.21)

(X2 1
—/ [Inr|Prdr. (3.22)
eorT )
Thus, using the inclusion Ve ol forl < p < 00, we obtain that

1/p
2/p 1 1/p2/p
o /Py o
<4 Inr|Prd = T mZ (323
IFnallLre) < ) P—D/p (ﬁ | Inr|Zr r) Tt n (3.23)

We next show estimate (3.20), again only considering the case 1 < p < oo.
Using identity (3.18), polar coordinates, and the fundamental theorem of calculus,
we find thatfor 1 < p <2o0r2 < p < o0,

2 “or (@>~P —p>~P)
Py — g =
Aéz |Vf77,ot(x)| dx = (271_)]7 /;1 7 dr = (27‘[)/’_1(2 — P). (3.24)
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If p =2, then

In@ —Int) _ 1 o (3.25)

\Y 2dx =
/]RZ| fn,a(x)| X e o 7

Taking the p-th roots of both sides in (3.24) and square roots in (3.25) completes
the proof of the desired identity. O

Next, given a probability measure 1, such that fRZ [In|x||du(x),avectorxy €
(RH)N, and vector n v € (RN, we define the quantities

N
Hy*V =g * (Z 8y — NM) , (3.26)

i=1
N
X .
H}V‘iz:g * (Z 8 — N/L) , (3.27)
i=1
where 5% = 5" (- — x;).

3.2. Energy functional

For a vector x, € (R?)" and a measure € P(R?) N LP(R?), for some
1 < p < 0o, which has the property

/(Rz)z In{x — y)dpu(x)du(y) < oo, (3.28)

we define the functional

N N
Sn Gy, = / a, E (Z by, — Nu) (x)d (Z by, — NM) )
2

& i=1 i=1
(3.29)

where Ay:={(x,y) € (R?)? : x = y}. Note that Fn (xy, 1) = N2FN* @y, 1),
where S‘;\,v § (x5, u) was defined in (1.10). The reader can check from our assump-
tions on p and Lemma 2.10 that §n (x 5, 1) is well-defined. This functional serves
as a H'(R?) squared-distance that has been renormalized so as to remove the
infinite-self interaction between elements of x . Our first lemma computes the

Coulomb energy of the smeared point mass 8(()77). We omit the proof, as it follows
readily from Fubini-Tonelli and the identities (3.13), (3.14).

Lemma 3.3. For any 0 < < 0o, we have that
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Lemma 3.4. Fix N € N. Let u € LP(R?), for some 2 < p < oo, such that
Sz In(x)|n(x)|dx < oo, and let xy € (RN \ Ay. Then for any n, € RN,
we have the identity

N N
/ a(x —y)d (NM -2 5;7») )d (NM - Za,i?f)) )
(R%)? (3.31)

i=1 i=1
_ /R2 | (VHS:Z‘J’) (0)2dx,
In particular, the right-hand side is finite if and only if | has finite Coulomb energy.
Proof. See the beginning of the proof of [53, Proposition 3.3]. O

The next proposition is essentially proven in [43, Section 2.1] and [53, Section
5] in the greater generality of Riesz, not just Coulomb, interactions. We include a
self-contained proof specialized to our setting.

Proposition 3.5. Ler i € P(R?) N LP(R?), for some 2 < p < oo, such that
Jg2 In(x) | (x)|dx < oo, and let x, € (R*)N \ Ay. Then

— T IUCN 2 _
SNy, 1) = \g}vllrgo </R2 I((VHy’ )(x)l dx ;g(n, ) (3.32)

and there exists a constant C, > 0, such that

Z (g(xi —xj) — fl('?i))+ <3SNy, 1)

I<i#j<N

— (/Rz |(VHy ") (0 Pdx = Zg(nl ) (3.33)

i=1

2 1
+C N||u||Lp(Rz)§ PP
i=1

where (-)4:=max{:, 0}.

Proof. We start by proving (3.32). We first claim that

N N
(x=d|Nu—) by | x)d|[Nu—) &)k
/(W)zngx y ( = ) x ( w=> ) y

i=1 i=1

N N
= li‘m . (/ alx — y)d (NM - Z(s;j?f)) (x)d <NM - Zagh)) (y) (3.34)
10\ ®2)2 i=1 i=1
N
- Z@(m)) .
i=1
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Indeed, the left-hand side of the preceding equality can be re-written as

N
> g —xp)+ N /( o 9 VAR 2N D (5 ) (0.

I<i#j<N i=1
(3.35)

Since x; # x; fori # j, it follows from dominated convergence that

N
Y e —x) 2N Y (g w)(xi)

I<i#j<N i=l1

= lim > / a(x — y)dsi (x)ds (v) (3.36)
\EN|—>0 \<izi (R2)2 ! J
<i#j<N

N
—2N ) /]RZ (g * u)(x)d3§7f>(x)) )
i=1

So by applying Lemma 3.3 to the first term in the right-hand side, we conclude the
proof of the claim.
Next, we show the bound (3.33). Fix 7, € R4)N, and letay € (R4)Y, such

that o;; < n; forevery i € {1, ..., N}.Itis straightforward to check that
N
X X
VHﬁﬂl’: = VHJ’VL&Z + ) (Vaun) = x0). (3.37)

i=1
Using this identity with a little algebra, we find that

N
/RZ |(VH;,‘:§;V)(x)|2dx = /RZ (VH ) (0P dx + 2;/RZ(VH§§%)()C).

SN

(Ve n) (x — xi)dx (3.38)

N
+ /R | D (Vo) (x = xi) Pdx.
i=1

We go to work on the second and third terms in the right-hand side of the preceding
equality. We expand the square to obtain

[.f

N
D (Vian) (x = xi)
i=1

2
dx

N
= Z /Rz(Vfa,-,n,-)(x —X;) - (Vfaj,nj)(x —xj)dx. (3.39)

i,j=1
Recalling the identities

(Vi) () = wesn @ (Afa)@ = (857 — &) ) (3.40)

R
27 |x|2



Mean-Field Convergence of Point Vortices to the Incompressible 1393

and integrating by parts, we find that

N
3 [ V) =30 (Vi) = )

i,j=1

N
) (o)
= 3 [ e = a6 = 850 (3.41)
i, j=1'R
Similarly, using the identity —AHZ%% = Z,N: | 8)(5" ) — Nu and integrating by
parts, we find that

N
5% /R (VHEE0) - (V) x = )i
i=1

SN
N N
= 2;/@@ o i (X — xi)d(l; 8 — N ) (). (3.42)
Combining identities (3.41) and (3.42), we obtain that
N N )
Z /Rz(vfc{i»m)(x —Xi) - (Vfotj,nj)(x —Xj)dx + [l‘{z Z(Vfui’m)(x —x;)| dx
b=l i=1
- ) @) al
- Z/ for (v = 2)d (355" = b’ )(x>+22f fo (= 30)
— Jr2 ' -
ij=1 i=1
N .
d Z(S;?])_NH (x)
j=1
;) () al
) o
N Z / Far.ns (¢ —x,-)d((sx'}f + 8, )(x) +Z/ Foymi (X — X;)
. R2 ' R
I<i#j<N P
A6 + 5600
N
- 2NZA;2 foy,m (6 — x))p(x)dx
i=1
=:Term; + Term, + Terms. (3.43)

We proceed to estimate each of the Term; separately.

e For Term3, we have by Holder’s inequality and Lemma 3.2 that

N
Terms| SN Y e | oy 1l o)

i=1

N 1 (p=1/p

20p—1 _

Sp Nl e ey E n PP (ﬁl [Inr|P/(P 1)rdr)
i=1 i
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+a2 /P %) . (3.44)

e For Term;, we observe from a change of variable and the definition (3.15) of
o ni that

N
Terma = - [ i (95" + 8700
i=1

N
B Z /Rz (g”i (@)d50" () = gay ()Y (x) + gy (0SS (x)
i=1

~ go (S ()
=:Termy 1 + - - - 4+ Termy 4. (3.45)
Since for any r > 0, 8(()’) is the canonical probability measure on the sphere
dB(0,r), gr = g(r) on B(0, r)), and o; < 1;, we find that

Termp 3 + Termpz 4 =0 (3.46)
and
N
Termy, i + Terma2 = ) (8(n1) — §(e)) - (3.47)
i=1
Hence,
N
Termy = Y ((mi) — (i) - (3.48)
i=1
e Finally, for Termi, we use that fy, ,; < 0, forevery i € {1, ..., N}, a property

which is evident from the identity (3.17), to estimate

Term; < Z /RZ Fag i (X — xi)dgijff)(x)

I<i#j<N
3 fR (9 = x) — gy (v —x0)) 485 (). (3.49)

I<i#j=<N

where the penultimate expression follows from unpacking the definition of each
fa;.n: - Making a change of variable, we observe that, for 1 <i # j < N,

/Rz (0 (e = x0) = g (6 —x0)) 57 x)

B /R (30 (5 = % + 3) = oy (6 — % + 1)) dg " (1)

B /u; (80, 1y =31 + D = g (1 = x; + ¥D) d8g”' (). (3:50)
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Since gy, , §o; are nonincreasing, it follows from the triangle inequality that for
any y € 0B(0, o),

(ﬁm _ﬁoz,-) (|xj —xi +yD

_ (~) ) lxj —xi + ¥ =ni . (351
9(i) — 8o, (Ixj —xi| +aj), |x; —xi+yl<m
Since we also have that
g(mi) — 8o; (Ixj — x;i +y])
_ %(m) - §(|Xj —xi+y) =<0, o <|xj—x;i+yl<mn (3.52)
g(n;) — g(a;) <0, lxj —xi +y| <o
by assumption that «; < 7;, it follows that
Termp < — ) (80 — x| + o)) = §0n)), - (3.53)

I<i#j<N

Returning to the equation (3.38) and combining identities (3.53), (3.48), and
(3.44) for Term, Term,, and Terms, respectively, we find that there exists a constant
Cp > 0 such that

/ (VHy’ "N)(x>|2dx < / [(VHy )00 dx

N 1 (p—D/p
2(p—1 B
+ CpN oy Y | 207 <f [ n r[P/ P l)rdr)
i=1 W

ni

(3.54)
20Dy Z_zl >

N
+ > @) —de)) = Y (@x —xil + o) — ),
i=1

I<i#j<N

We can rearrange this inequality to

> @xs = xil+ep) —§m)),

I<i#j=<N

< (/ (VHES) (0f2dx
RZ
N
- Zg(al)> - (/1;2 |(VHM xN)(x)|2dx - Zg(m ) (355)

1 (p=D/p
2p-1 B
+C N||M||LP(R2)Z (p=)/p (ﬁ, |Inr|P/P 1)rdr>
i

i=1

2PV, ﬁ) .
o
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Sending |a, | — 0 and using identity (3.32) and that § € Cjoc(Ry), we see that
the proof is complete. O

The following corollary is a generalization of [53, Corollary 3.4], in particular
a relaxation of the u € L (R?) assumption:

Corollary 3.6. Fix N € N. Let u € L? (Rz), for some 2 < p < oo, such that
f]RZ In(x)|pu(x)ldx < oo, and let x € RHN N\ An. If, forany 0 < €] <K 1, we
define

.1 .
Tie = mm{é—L énjlgN |x; —xjl,e1} and I'N.e =(F1es---,TNg)s (3.56)
J#

then there exists a constant C, > 0 such that

N 2p-1)
Y Grie) < FnGy. )+ N <2§1(61) — 34 + Cplill oz Ney 7 )
i=1
(3.57)

and

2(p=1)
/R NVHY Y D0Pdx < §ny, i)+ NiE) + CpN lInlrene
(3.58)

Proof. We first show inequality (3.57). Fix € > 0 and choose n; = €] in (3.33),
foreachi € {1, ..., N}. Hence,

Y (80 —xjD = §en), < Inlay, )

I<i#j=<N
— f [(VHy' ") () Pdx + N§(er)
R2 AN
5 2(p—1)

+CpllillLr @2y N 7€, L (3.59)
Foreachi € {1, ..., N}, we consider two cases:
(C1) 4ri¢ < €y,
(C2) 4ri¢, > €.
In (C1), it follows from the definition of r; ¢, that there exists j; € {1, ..., N} \ {i}
such that

Xi — Xj; | = 4}",',61 s (3.60)

which implies that

> (@0 —xjD = den), = (3% — xjD) — §len), = §@rie) —dler). (3.61)
1<j<N
J#
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In (C2), it is immediately apparent from the nonincreasing property of g that

§@rie) —8e) < 0= (§(xi —x;D) — §len), ,  Vjell,....N}\{i}.

(3.62)
Combining both cases, we obtain from (3.59) the inequality
N
@@rie) —dEen) < Y (@0x —x;D) —§en),
i=1 I<i#j<N
(3.63)

=SnvGxy, ) — /RZ I(VHxéx)(x)lzdx + Ng(e1)

2(p—1)

+ CplllLr@yN7e, ”

Using that §(4r; ¢,) = §(4) + §(ri ¢,) and rearranging the last inequality, we obtain
(3.57).

We next show inequality (3.58). We choose 1; = r; ¢, in inequality (3.33), for
eachi € {1,..., N}, to obtain that

0< > (s —x) —§0ie)),

I<i#j<N

N
< vy, ) - /R VHYY D0Pdx+3 80ia)  (3.64)
i=1
N o 2p-1
+ CpNllpll oy Y rie’
i=1
Inequality (3.58) then follows immediately from a rearrangement of the preceding
inequality and using that r; ¢, < €1 by definition. O

3.3. Counting Lemma

In this subsection, we prove a preliminary lemma which uses the modulated
energy §n (X, 1) to count the number of distinct pairs (7, j), such that the distance
between x; and x; is below a prescribed threshold. A similar result was implicit
in the proof of [53, Proposition 2.3]; however, we need our refined version in the
proofs of Lemmas 4.2 and 4.5, which are part of the proof of Proposition 1.8, below.

Lemma 3.7. (Counting lemma) Fix N € N. Then there exists a constant C), > 0,
suchthatforany x , € (RHN\ Ay and . € P(R®NLP (R?), forsome?2 < p < 00,
with finite Coulomb energy and such that f]RZ In(x)|u(x)|dx < 00, we have the
cardinality bound

(G ) € NP 10 # jand |xi = x| < &3)| S Fu ey, 1) + Nie)
) 2p-1)
+CpN ||M||LP(R2)63 "

(3.65)

forany 0 < ez < 1.
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Proof. Fix ez > 0.Foreveryi € {1, ..., N}, we chose ; = 2¢3 in estimate (3.33)
of Proposition 3.5 to obtain the cardinality estimate
In(2)

= @i, j) € {l,...,NY i # jand |x; — x;] < €3}

= > —-§(2)
l<i#j=<=N
[xi —xj| < €3

Y @G —x) - §2a).
l<i#j=N >0
lxi —xj| < €3

IA

N
X 2 ~
< Falay. 1) - fR VHEE @R+ 0 506) + CoN Il g

i=1

N
2(263)2(17—1)/17

i=1
2(p—D

<SnGy, ) + Ng2e3) + C;N2”/~'L”LP(R2)63 [ (3.66)
where C;, > Cp. O

Using the radial and decreasing properties of the potential g, we obtain from
Lemma 3.7 the following corollary.

Corollary 3.8. Fix N € N. Let 2 < p < oo. Then there exists a constant C,, >
0, such that for any x € RHN\ Ay and p € PR?) N LP(R?), satisfying
fRZ In{x)|u(x)|dx < oo and having finite Coulomb energy, it holds that

2(p—1)

Z glxi —x;) S §2e3) <3N(£Ny 1) + N§Qes) + CpN* | ill Lo w2y €3 ) (3.67)

I<i#j<N
[xi —xj|<€3

forany 0 < ez < 1.

Proof. Since we also have that

Z g(x; —x,-)) - §8(2e3) ‘{(i’,j/) e{l,....,Ny:i'" £
l<i#j<N
[xi —xj| < €3
and |x; — x| < €3}
< > (90xi —xj) — §Q2e3)) . (3.68)
l<i#j<N
lxi —xj| < €3
the desired conclusion follows immediately from Lemma 3.7, Proposition 3.5, and
rearrangement. O



Mean-Field Convergence of Point Vortices to the Incompressible 1399

3.4. Coerciveness of the energy

In this final subsection, we show that the functional §y (x,, i) controls con-
vergence in the weak-* topology for the Besov space B, éo(Rz),(’ as N — oo,

which, for this scale of function spaces, is the endpoint space containing the Dirac

mass. We begin with a technical lemma for the Fourier transform of 8)((3) , which we

recall is the uniform probability measure on the sphere d B(xg, 7).

Lemma 3.9. For any n > 0 and xo € R?, we have the distributional identity
ﬂxo & )
a(’” (&) = / eMEsn®) gg. (3.69)
2m 0
Proof. Observe that
80 (x) = 6(” =10, (3.70)
n

with translation and dilation to be understood in the distributional sense. We have
the identity

— 1 2
500 (¢) = _/ (i1E1sin®) g (3.71)
2 0

which follows from testing against a Schwartz function, the Fubini-Tonelli theorem,
and changing to polar coordinates. The desired conclusion then follows from the
dilation and translation/modulation invariance of the Fourier transform. |

The next proposition establishes the coerciveness of the modulated energy §y,
in particular that it controls convergence in the weak-* topology on M (R?), and is
an endpoint improvement of [53, Proposition 3.5].

Proposition 3.10. Let N € N and x, € (R®)N \ Ay. Then for any i € P(R*) N
LP(R?), for some 2 < p < oo, and ¢ € le’l (R?), we have the estimate

‘ / so(x)d(Z 8y — N (x)

ctllel g w2
<N 672,14_ Z 2k||P/<(p||L2(R2)
2 k>|log, €

+ Vol 2@y (Bn Gy, 1) + Nllne| (3.72)

5 2=\ 1/2
+Cp||M||Lp(R2)N € r ) s

for any parameters 0 < €] < €3 K 1. Consequently, for any s < —1,

N

1 _
e = D Bx sy Sop 18Ny, 2+ N7 I V|2
i=1

6 The Banach space (B, éo(Rz), I - )) is isomorphic to the dual of the Banach

|IB£LO(R2
space (B} 1 (R?). Il -l g1 (g2))-
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+ (1 + el o) N7V2, (3.73)

and zf&?vvg(gN, w) — 0, as N — oo, then
! EN 8y — in M(R?) (3.74)
— S ——u in . .
N 4 : T NS #
=

Proof. Letn v € (R4)" be a parameter vector, the precise value of which will be
specified momentarily. We write

N N
/R PN b — N =) fR e, — 8 @)
j=1 j=1

N
+ fR e (Y8 = N ). (3.75)
j=1

By Plancherel’s theorem and Lemma 3.9, we see that

N
3 /R e (8, =857 (x)
j=1

N ixj€ 2 , _
- Z/Rz a(g)ezn (/O (1 - e*’"flé‘m(@)) de) de.  (3.76)
j=1

By the fundamental theorem of calculus,

2
/ (1 _ e—in,-|é|sin(9)> 40
0
2 1 X .
- _/ </ (—in,-|s;|sin(e))e—”ﬂlflsm(mds) de. (3.77)
0 0

Foreach j € {1, ..., N}, weintroduce a parameter 0 < o; < 1 and we decompose

Y = Psllogzaj|(ﬂ+P>|log2aj|§0: (3.78)

so that

/ P08y, —87)(x) = / (P=l1ogy 1) () (85, — 887 (x)
R2 R2

_ (3.79)
+ /R (P oty oy ) (D Gy, — 5072,

For the low-frequency term, we use identity (3.77) and estimate the right-hand side
directly to obtain from Plancherel’s theorem that

’ fR (Peiiog, oy 9) (DA (B, = 837 (x)

Snj/ IE|@(E)|dE.  (3.80)
lE1<2/a;
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By Cauchy-Schwarz, the support of the Littlewood-Paley projectors, and
Plancherel’s theorem,

/R i E11(P<0@)©)IdE < [IP=00ll 22 (3.81)
| P ©lde 21 Pl (3.8
which implies that
N [log o
Zm / o E119(&)|dE siinj I P<ogll 122y + ; 2 Pegl 12 e
iz =

N 77j||(ﬂ||321 |(R2)

A

(3.83)

aj

~.
Il
_

For the high-frequency term, we use identity (3.76) and Cauchy-Schwarz to crudely
estimate

N N
> SO0 ) 2KNPelleg.
j=1

j=1k=llog a;|

/ (P=1ogy ;| 9) (X)d (S, — 877 (x)

(3.84)

Note that since ||<p||321 [(R2) < 00, this term tends to zero as || — 0.
Next, we write ’

/ w(x)d(ZS("’ —Nw) = - / pO)AHy, ) (x)dx. (3.85)
R2

where the reader will recall the notation H xiN from (3.27). Integrating by parts
AN
once and then using Cauchy-Schwarz, we obtain that

‘ fR (x)(AH’”N)(x)dx <||V¢||L2<Rz)||VH“xNuLz(Rz) (3.86)

Choosing Ny = I'N,»> We use estimate (3.58) of Corollary 3.6 to obtain that the
right-hand side of the preceding inequality is <

2 1/2
||V§0||L2(]R2)<3N(£N,M)+N|1n€1|+Cp||M||Lp(R2)N261p ) . (3.87)

where the ultimate inequality follows from the fact that [|ry . [l < €; by defini-
tion.
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Next, choosinga; = €2 every j € {1, ..., N}, and combining estimates (3.83),
(3.84), and (3.87), we conclude that

‘ f q)(x)d(z 8y — Nuw)(x)

etllelp w2
SN[—224 Y HReleg
2 k>|log, €2

+ IVl 22y (Fn(y 10) + NlIne] (3.88)

200\ 1/2
+ Cp||l/«||Lp(]R2)N €] ? ) )

which completes the proof of the estimate (3.72).
For the Sobolev norm bound, observe that H *(R?) is a dense subspace of
B} | (R?), for s < —1. Since (H*(R?))* = H~5(R?), it follows that

N
1
llw = _st, lpsmey = sup / px)d(p — Nzﬁxi)(x)
||‘ﬂ||H J(R2) 1 R2 i=1
allely @ .
< sup < 2.1 (R n ||<P||Ij+1(R)
ol f—s ®2)=1 €2 €,
| €l 20-D\ 1/2
+ Vel 2w (56;\/ (XN, e’ ) )
|Ine | Wb\ 2 e
S (SN N el Lr (m2y€q L ) + — o + — Y+l’ (3.89)

€

where the penultimate inequality follows from (3.72) and the definition of the H %
norm and the ultimate inequality from the estimate ||¢|| 5 1 (®?) S lellg-sg2)-

—1/s

Next, we choose €2 = ¢, and

€] = min{N_Wp*“, N_m} (3.90)

in order to obtain the inequality

N
1 _
le == D dx ey Sop 185 @y w12+ N2 I N2
i=1

+ (1+ Il o @) N7V2 3.91)
For the weak-* convergence, we recall that (M(R?), || - ||7v), where | - [|7v
is the total variation norm, is the Banach space dual to (Cy (Rz), Il - lloo), the space

of continuous function equipped with the uniform norm. Let ¢ € Co(R?). Since
H—S (Rz), for s < —1, is a dense subspace of Cy (Rz), given any ¢ > 0, there exists
@. € H*(R?) such that

lg — ¢elloc < - (3.92)

oo
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Then by the triangle inequality,

=<

1 N e
/Rz pe(D)d(n — — ;sx,o(x) +5
(3.93)

1 N
‘/R P — ;jsxi)(x)

Using estimate (3.73), we see that the right-hand side is bounded by
€ _ _
5+ Copllell sy (BN oo 2+ N7 NI 4 (1 o)) N7H2)

(3.94)

where Cy ;, > Oisaconstantdepending only on s and p. It then follows immediately
that by choosing N = N(e, s, p) € N sufficiently large, this expression is < &,
which completes the proof. O

4. Key Proposition

In this section, we prove Proposition 1.8, which is the key ingredient for the
proof of our main theorem. We recall the statement of the proposition below. Propo-
sition 1.8. Assume that . € P(R?) N LP(R?) for some 2 < p < oo. Then for any
bounded, log-Lipschitz vector field v : R? — R? and vector x, € (RN \ Ay,
we have the estimate

1
N2

N N
/ () —v(y) - (Vo) (x — (Y 8 = Nw)()d(Y 85 — Np)(y)
®)2\A2 i=1 i=1

vl g2l Iner||Ine]

Sp ||U||LL(R2)|1HGZ||5(;\;)g(£N, W+

N
2(p—=1)
+CpllvllLLmeyes ” IInes]
€1||U||L°0(]R2) 62|111€2|||U||LL(]R2) Ty
—— + +ellne|Cpllvll el g,

€3 €3
p=2

vl ) (CpIIMIILp<R2>€1 "+ Coollpll e )€1l In € |1200(P)>

(1.21)

for all parameters (€1, €2, €3) € (RﬁL)3 satisfying 0 < 2¢; < €2 < 63 < L.
Here, | - || 12y denotes the log-Lipschitz semi-norm defined in Definition 2.7 and
Cp, Cx > 0 are constants.

The method of proof is inspired by that of [53, Proposition 2.3], but requires a
more sophisticated analysis, as we no longer have at our disposal the assumption
that Vv € L®(R?; (R?)®?). To make the overall argument modular and easier for
the reader to digest, we have divided the proof into several lemmas corresponding
to the main steps of the argument. We recall from Sect. 1.4 that the main steps are

(S1) Mollification,
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(S2) Renormalization,

(S3) Analysis of Diagonal Terms,
(S4) Recombination,

(S5) Conclusion.

In the new (S1), we introduce a parameter 0 < €3 < 1 and replace the vector
field v with the mollified vector field ve,:=v * ¢,, for a standard approximate
identity xe, (x):=€2"2x (62~ 'x). Using the log-Lipschitz regularity of v, we have
an L bound for v — v, (see Lemma 2.11), and we find with Lemma 4.2 that the
error

N N
(v = ve) () - (Vo) (x = 1Y 85y = Ni)(¥)A(Y_ 85 — Npn)(y)

22
RHNA2 i=1 i=1

4.1)

is acceptable. For the remaining steps in the proof of Proposition 1.8, we work with
Ve, and now need to bound the quantity

N N
/( pois, Pa® T 1) (VDG =NQ by~ NdQ by = Nwo).
2

i=1 j=1

4.2)

In (S2), we follow the renormalization procedure used in [53] and prove Lemma
4.3. We smear the Dirac masses 8y, , dx;, so that they are replaced by the proba-

bility measure 8("’) 8y (”’ supported on the spheres 9 B(x;, ;), dB(x;, n ,) in the
quantity (4.2) and we then add back in the diagonal A;. The resulting quantity
is divergent, but can be renormalized by subtracting off the self-interaction of the
smeared point masses. An integration by parts (see Lemma 4.1) allows us to con-
clude that

4.2) = hm (/ (Vuey)(x) : [ x;N’ g xN:ISE (1)dx
4.3)
) Z [, 0 = v 0) - (Vo) = B 8 ).

where [-, -]gg denotes the stress-energy tensor defined in (4.7) below.

In (S3), we consider the divergent diagonal terms in (4.3) (i.e. the second term
in the right-hand side), which correspond to self-interaction of the smeared point
masses 8)(57’ as the smearing parameter vector 1, varies. Here, we can use the
analysis from [53], as the proof does not rely on any special assumption for the
vector field ve,. The conclusion of this step is summarized in Lemma 4.4.

7 We note that the truncation parameter 7] ; is allowed to vary in i. This was an important
new contribution from [53], which we shall also make use of in our work.
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In (S4), we prove Lemma 4.5, which together with Lemma 4.4 from (S3), shows
that the difference between the renormalized expressions (4.3) obtained for different
values of n N equals an acceptable error which depends on N and €;. The proof
of Lemma 4.5 is quite involved, so we will not go into too much detail here. We
only say that it relies crucially on properties of the modulated energy established
in Sect. 3.

Finally, in (S5), we perform a bookkeeping of our work from (S1)-(S4) to see
that the difference between the right-hand sides of (4.3) obtained for different values
ny = gﬁ) > gg\}) € (R,)" is small. By letting |g§\})| — 0 and choosing, for each
iefl,...,N},

a? =i ;=min{ min_|x; —x;|, €1}, (4.4)
1<j<N

1
j#
where have introduced an additional parameter 0 < €; < €2/2, we find that ex-
pression (4.2) equals

. WX N WX N
/R Vo) [HN,KN,Q’ Hy ]SE (x)dx

(ri.sl) (ri.sl)

N
_ Z ~/(]R2)2 (Uez (x) — ve, ()’)) (V@) (x — y)8y, 1 (0)8y, " () (4.5)
+ ErrorN’Lqu ,

where Error Ny is an acceptable error. We estimate the first two terms in (4.5)
using the log-Lipschitz regularity of ve, (see Lemma 2.11) and properties of the
modulated energy (see Lemma 3.3 and Corollary 3.6). In particular, we rely on the
estimate

||Vve2||LOO(R2) S ||U||LL(R2)| Ines], (4.6)

which necessitates the initial mollification. So far, the reader may be wondering
where the additional parameter €3 arise in the proof. It is a parameter needed to
measure whether two points x; and x; are “close” or “far” (e.g., see (4.17)). The
floating parameters €1, €3, €3, which are new to our work, will crucially be needed
to balance terms in order to conclude the proof of Theorem 1.1, as discussed at the
end of Sect. 1.4.

4.1. Stress-energy tensor

We begin by quickly recalling the definition of the stress-energy tensor. For

functions ¢, ¥ € Clloc (R?), we define their stress-energy tensor {[, 1//]1515}1'2 j=1 10
be the 2 x 2 matrix with entries

[p, Y15 = (Bipd; ¥ + 808, ¥) — 8V - VY, 4.7)
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where §;; is the Kronecker delta function. By a density argument, it follows that the
stress-energy tensor is well-defined in L2(R?; (R*)®?) for any functions ¢, ¥ €
H'(R?). By direct computation, we have the divergence identity

3 [o, W1Le = Apd; ¥ + AYdjp,  Vje(l,2), (4.8)

forany ¢, ¥ € H'(R%) N H%(R?), where we have used the convention of Einstein
summation in index j. The following lemma from [53] is used extensively in the
sequel. Note the requirement that the vector field be Lipschitz, not log-Lipschitz,
which will necessitate a mollification in order to apply the lemma.

Lemma 4.1. ([53, Lemma 4.3]) Let v € W1 (R2; R?). For any measures ju, v €
M(R?), such that

fRZng £ U+ (Vg * v (x)[H)dx < oo, (4.9)

we have the identity

N N
/ glx — y)d (NM - 26;7"’) (x)d (NM - ZSSZ”) (y) (4.10)
(R?)?

i=1 i=1

= /R 1 (vHEY) @Pdx, “.11)

4.2. Step 1: Mollification

We commence with step 1 of the proof of Proposition 1.8. Let x € C2° (R?) be
a radial, nonincreasing bump function satisfying

1

/ x(dx=1, 0<y<1, X(X)::L K=z (4.12)
R2 0, |x|>1
For € > 0, set

Xe(x):=€ Zx(x/e) and  ve(x):=(xe * V)(x), (4.13)

where the convolution x, s is performed component-wise. Then v is C* (R?; R?)
and

IV¥vell oo 2y Sk €%, Vk € No. (4.14)

Using the log-Lipschitz regularity of v, we can get a bound, which is in terms of
the modulated energy §n(x, i), for the error stemming from replacing v with
ve in the left-hand side of Eq. (1.21). The importance of this type of bound will
become clear in Sect. 5.2 when we allow the mollification parameter to depend on

SN (X I
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Lemma 4.2. There exists a constant C, > 0 such that for every 0 < €3, €3 < 1,
we have the estimate

N N
/(RZ)Z\AZ (v — Uez) (x) - (Vg)(x — y)d(z 8y, — N“)(x)d(z 8y — Nuw)(y)

i=1 i=1

2(p=1)
§”U”LL(RZ)HHE3|(gN(leM)'i‘NllnEﬂ+CpN2||//L”LP(R2)53 » )

1 =
+N? ol g2ye2l Ine] (g + ||u||§;(R!;)) : 4.15)

Proof. We split the left-hand side of (4.15) into a sum of four terms and estimate
each separately.

e Observe that

N N
./(R2)2\A (v = v,)(X) - (Vo) (x = A 8:)(0)d () 8:,)(x)

i=1 i=1

= Y —v,)@) - (Volxi —x))
I<i#j<N
1

=13 2 (=) — (v —ve)()) - (Vo) (i —x))|, (4.16)
I<i#j<N

where the ultimate equality follows from swapping i and j and using that
(Vg)(x —y) = —(Vg)(y — x). By the triangle inequality,

(4.16)0 < E (V= ve) () = (V= V) (x))) - (VO (xi — x))
Ilsz'#./IsN
Xj—Xj|=€3

1Y (W=ve)) = (0= ve)(x)) - (YOI (x; — xj)
Ilsi#j‘sN
Xi—Xj|>€3

=:Term; + Termy. 4.17)

By another application of the triangle inequality, followed by using that
Ve Il Lr2) < VIl (w2). together with the elementary bound

1

(Vo) (xi —x)I < . (4.18)

[x;i — x|
we find that
Term; S Y vl — X))

1<i#j<N
|xi—xj|<e3



1408 M. ROSENZWEIG

2(p—1)

= ||U||LL(]R2)§(2€3) (SN@N, W) + Ng2e3) + CpN2”/'L||LP(R2)E3 p ,
(4.19)

where the ultimate inequality follows from applying Corollary 3.8. For Term,,
we observe the bound

1
(Vo) (xi —xj)| S P (4.20)

which is immediately apparent from the definition of Vg and the separation of
x; and x;, and the bound

|(V = vey) (xi) — (V= ve) ) (X)) S Il re2y€2l Ineal, 4.21)

which follows from estimate (2.42) of Lemma 2.11 and the triangle inequality,
in order to obtain that

Il eye2llnel N2l g2y el lne|
Terms < Z LL(R?) < LL(R2)

€3 €3

. (4.22)
I<i#j<N
[xi—xj|>e€3
e Next, observe that by the Fubini-Tonelli theorem followed by Holder’s inequal-
ity,
‘ [ o vew Vau- y)d(Nu)(x)d(NM)(y)’
R2)2\ Az

— N?

/R W = 06) () - (Vg 1) (0)da(x)
< N2 v = ve [l Lo w2y 1 V8 * 1l oo g2)- (4.23)

By Lemma 2.11 applied to the first factor and Lemma 2.3 applied to the second
factor in the ultimate line, we find that

P
2 2 —
N21|v = veyll oo 2 IV 8 * | oo 2y S NP e2l Inea 0]l Loy 1] o, -

(4.24)

e Next, observe that by the Fubini-Tonelli theorem

N
»/(RZ)Z\AQ (V= ve,)(x) - Vg(x — y)d(Z 8x,)(X)d(N ) (y)

i=1

N
= N[> (0= ve)(x) (Vg * ) (xi)
i=l
2 2(111)
< Nellnellvll L)Ll g, (4.25)

again by using Lemmas 2.3 and 2.11.
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e Finally, by proceeding similarly as to the previous case,

N
f(Rz)z\AZ(U —Ue) () - Vg(x = 1Y 8:) (AN (x)

i=1

N
=N D (Vo ((v = ve) ) (x:)
i=1
2 2( p—l)
SN 62|]n62|||U|ILL(R2)”M”L;(R2)~ (4.26)

4.3. Step 2: Renormalization

‘We now proceed to step 2 of the proof, working with the mollified vector field
Ve, . Crucially, this step relies on the qualitative assumption that v, is Lipschitz.

Lemma 4.3. It holds that
N N
(Ve, () = V6, () - (V@) (x —¥)d() 8x; — N)(x)d () 6y, — Nu)(y)
/<R2>2\Az ’ ’ ; ,;

= lim ( fR (Vo)) s [HYY, Hﬁé"v’]w (x)dx 4.27)

e

N
Z /<R2>2 (v, () = v, () - (V) (x = B ()BT (y>> .
i=1

Proof. The reader can check from an application of dominated convergence and
recalling the definition of 8" in (3.13) that

N N
f (ver (¥) = v, (M) - (Va) (x = ) (D _ 8, — Np)(x)d (Y 85, = Ni)(y)
(R2)2\A,

i=1 i=1

— lim ( / (Ver (@) — ver (1) - (V) (x — )
(R2)2

e

N N
d (Z By — NM) (0)d (Z 8y - Nu) )
i=1

i=1

(4.28)

N
— Z_/(.Rz)z (Uez (X) — Ve, (y)) - (Vg)(x — y)ai?i)(x)gfc?i)(y)> .
i=1

Since v, € WH™(R?) and Hﬁ’i” € H'(R?) by Lemma 3.4, we may apply
AN
Lemma 4.1 to obtain

N N
/ (Ve (¥) = v, (1) - (V) (x = 1A (Y6 = Ny (0)d (Y 8% — Ny ()
(R2)2 i i=l (4.29)

_ . Xy Xy
_ Az(v%)(x) : [HN’EN’HN’EN]SE (x)dx.
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Substituting this identity into the right-hand side of (4.28), we see that the proof of
the lemma is complete. O

4.4. Step 3: Diagonal Terms

We proceed to step 3 in the proof, in which we analyze how the diagonal
contribution (i.e. the second term in the right-hand side) in identity (4.27) varies
as the truncation vector 7 . varies. The following lemma, which caries over from
[53], provides an identity which does just this.

Lemma 4.4. Leth,nN e RN, such that a; > Ql_for everyi € {l,...,N}.

Then for each i € {1, ..., N}, we have the identity
/( - (ve, (%) = v, () - (V@) (x — V)8 (x)d (8 — 897 (y) = 0,
(4.30)

and consequently,

[ 00 = v 00) - (Ve = ) (a5 s () = s 05 ()
(]RZ)Z i Xi i Xi
(4.31)
= ‘/;{2 (VUQ)()C) : [fa[,m ( - xi)s fOti,ﬂ,’ ( - xi)]SE (x)dx,
where we recall the definition of fq, 5, from (3.15).

Proof. See [53, Section 4: Steps 2 and 3]. O

4.5. Step 4: Recombination

Combining Lemma 4.3 from step 2 and Lemma 4.4 from step 3, we have shown
that for any a, € (R+)N, such that o; > n; foreveryi € {1, ..., N}, it holds that

N N
/( oy, 00 a0V (VDG = DAQ b = N@AQ 8y = Ni)()

i=l i=1
. X, X,
- <./]RZ(VUQ)(X) : [HN,QI/\V/’ HN,gsz]sE (x)dx

N
_ Z/(Rz)z(vsz(x) —v,(3) - (Vg (x — y)(S/(v‘i"i)(x)Si‘ili)(y)> 4.32)
i=1

. . X, X, X, 14X,
- 11‘1110 (/RZ(VvQ)(x) ’ (I:HN’EI\AII’ HN’E:]SE B I:HN’QI}\VI’ HN&%]SE) (X)dx

Iy
N

- Z/I;Z(VUGZ)(X) : [fot,',niv fct,',r],-]SE (x _)Ci)d.x>
i=1

In step 4, we analyze how the first term in the third line varies as |ay |, [ N| — 0.
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Lemma 4.5. Define the parameters

1
ri IR _mln{_ lg;ln |xi _-leﬂ 61}7 KN,EI:Z(F],EU'~"rN,€|)' (433)
i#]
Ifay,nn € (R+)N are such that n; < o; <rje,, foreveryi € {1,..., N}, then

, WXy X WXN X
/RZ(VUQ)(x) ' ([HN "N’ HN’ﬁz]SE B [HNﬂz’ HN@IHSE) (x)dx

N (4.34)
=3 [ 0@ [ Fa ] O = 00 + Brvores
“ R -
i=1
where there exist constants Cp, Coo > 0 such that
[Ermore,ay | < 100 sl (Bn Gy, i)+ Nlines|
2 2(p=1)
+CpN ||IJ«||LP(R2)€3 P
+NZ ”v”LOO(R2) i ||v||LL(R2)|ln(xi|
€3
(4.35)

+ Nlvll ) ||u||z(;’(ﬂg;) Z o In ;|

N
1=2
+ NIl gy D (Cpleil' ™7 el ey
i=1

+Coolail[ i || 1l oo 2) 1200 (P)) -
Proof. Since forany g > 0, g 5(()’3 ) = gp, it follows that
N

HyoY Z —xi) = (9% N

N

—x) = (@ N + ) (80 ¢ = x0) = gy, (- — X))

i=1

= Hy\Y Zfa, (= xi). (4.36)

I Mz i

Observe that gy, (- — x;) = g, (- — x;) outside the ball B(x;, «;) (recall that o; > n;
by assumption). Also observe that the closed balls B(x;, «;) are pairwise disjoint.
To see this property, observe that

lx; — x| lxi — xjl .
o <rie < 1 and o <7rj¢ < — Vi £ j, (4.37)
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by definition of 7; ¢, , 7j ¢, and requirement that o; < r; ¢, and @ < r ,. Thus, we
find that

N
Hy' V) = Hy (o, Yo e RP\ | B, o), (4.38)
i=1

so by the bilinearity of the stress-energy tensor, we have the point-wise a.e. identity

N
X X X X
[HN r]N’ HN nf/:’/]SE [HN Ot],\\// HN ax:l Z fD‘l ni» fo‘l Ni SE( xi)lB(x,',ai)
=l (4.39)

N
ox
2 E I:fai,n,-(' —x;), HN’ngISE lB(xi.ai),
i=1

where we use that the terms [fa[.’m. (- —xp), faj,,]j (-— xj)]SE, fori # j, vanish due
to B(xi, @) N B(x;, ;) = and similarly, [faj,,)j (- —x)), Hﬁx]w 18(x;.0) =0.
Thus, using identity (4.39), we see that

M "N H XN Xy WXy
/ (Vve)(x) : Hy. ”N]SE B [HN’QN’ HN@N:ISE) (x)dx
N

=X fg(wi)qu)(x) ([ Fovon g © =300 + 2 e, C =00, HY ] ) (o

N
sz (VUQ)(X) ([fﬁl: ’h*fﬁl: ’h]SE( x1)+2|:fal 0 X,) HM XN:I E) (x)d_x’
(4.40)
where the ultimate line follows from the fact that Vfy, ;. (- — x;) vanishes outside

B(xi, o). Comparing this last expression to the right-hand side of identity (4.34),
we see that we only need to estimate the modulus of

N
23 /D; V0@ [fagn € =, Y] o
(4.41)

—22 / (v (¥) = v, (1) - (Vgxx—y)d(Za‘“f Nw)(0)d@ = 8¢0)(y),

Jj=1

where the right-hand side follows from an application of Lemma 4.1. Note that by
identity (4.30),

N
440) =23 / (ve (%) = v, () -
i=1 YR

Vo —nd( > 87 = Ni@dEd — 5@ (y). (4.42)
1<j<N
j#i
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Thus, we can split the right-hand side of (4.42) into a sum of two terms defined as
follows:

N
Term;:=2) /(DW Ve (¥) - (V) — (Y 87 — Ny )d (6 — 50 (y),
i=1

1<j<N
J#i
(4.43)
N (ej)
Termg:=—2) f(ﬂw Ve, () - (VO (x = y)d( Y 857 = Nu)(n)d (8 — 50 ().
i=1 1<j=N
J#i

(4.44)

Estimate for Term; We observe that by using the Fubini-Tonelli theorem to first
integrate out the y-variable and then applying identity (3.16),

N
Term; =2 /R Ve (@) - (Vo) (x = x)d () 5 — Nu(x). (4.45)
i=1 I<j<N
J#

Since supp(Via,., (- — %)) C B(xi, ;) and supp(8y;”) C B(x;, ;). which
is disjoint from E(x,-, «;), for j £ i, we observe the cancellation

N
Term; = —2N ZA; Vey (X) - (Viggn ) (x — xp)dju(x).  (4.46)
i=1

By triangle and Holder’s inequalities

N
—2N Z/Rz Vey (%) + (Ve n,) (6 — xi)d ju(x)
i=1

N
SN velln @) I Visnllin @ luls @), @47

i=1
where 1 < pi, p2, p3 < oo are Holder conjugate. Requiring 1 < py < 2,

p1 = 00, and p3 = p and applying Lemma 3.2 to [|Vfq, », | Lr2 (r2), We find
that

p=2

N
447 Sp N D oy " e ll ey el L gy - (4.48)

i=1
Using that ||ve, ||LOO(R2) < vlle(Rz) by Lemma 2.11, we conclude that

N p—2

Termi| Sp Nl oo il oy Y o " (4.49)
i=1

which completes the analysis for Term.
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Estimate for Term, We proceed to analyze Term; from (4.44). Using the Fubini-
Tonelli theorem to first integrate out the x-variable together with identity (3.14),
we can write

Termy =2 ) / V() (Vaa) (v = x/)d(6]) = 5)(y)
1<i£j<n R
(4.50)

N
—2N > / Ve, () - (Vg ) (A (B = 88) ().
izl /R
Adding and subtracting ve, (x;) and ve, (x;), respectively, we can write

2 Y fR V() (Vaa) (v = x)d (] = 5 (y)

I<i#j<N

2 ¥ /ﬂ; (160) (1)) - (Vaa )y — £)dE — 5E)()

I<i#j<N
=:Termy |
+2 )y / Ve, (X)) - (Vg )(y — x)d(I) —8CD)(y)  (4.51)
1<i#j<N R?
=:Termp »

and

N
2N Y| e () - (Vax W@ —88)(y)
iz /R

N
=2N (vey () — vey (1)) - (Vg s p) (N (B — 890) (y)
RZ
i=1

=:Termy 3

N
rN) /R Ve, (x7) - (Vg 1) (3)d (8 — 80 (),
i=1

=:Termy 4
(4.52)
so that
Termy = Termy | + Termj 5 — Termp 3 — Termy 4. (4.53)
We proceed to estimate Termy 1, . .., Termy 4 separately.

Estimate for Termy; As in the proof of Lemma 4.2, we decompose the sum
> l<i#j<N in Termy ;| in terms of “close” and “far” vortex pairs (i, j) with
distance threshold e3:

Termy =2 ) / (00 () = v () - (Vaa ) (y =26 = 50 (3)
1<i#j<n R
|xi—xj|<€3
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+2 ) f (06 () = v () - (Vaw)(y = X = 857) ()
I<i#j<N R
[xi—xj|>€3

=:Termy 1, + Termy | 2. (4.54)

For Termy 1,1, we use that ||ve, | p r2) < IVl ®2) by Lemma 2.11 in order
to obtain that

[Terma, 11| < llvll,zr2) > /R Iy = xjlln |y = x;|(Vaa,) (v — x)Id G + 8E0)(y)
l<i#j=N
[xi —xj] < €3
Sl X [ a0=5de +500), (4.55)
l<i#j=<N

lxi —xj| < €3
where the ultimate inequality follows from using the bound

1
Vga )y —xj)| £ ——8m8— 4.56
(V8a )0 =3))] = (4.56)
andIn|y — xj| < Ofory € supp(S,((?") +3J(f")). Since for 1 <i # j < N,
we have that |x; — x;| > 4r;,, by definition of r; ¢/, and r; ¢, > a; > n;,
by assumption, the reverse triangle inequality and the decreasing property of g
imply that

- 1 _3
g(y —x;) < g(x; —xj1 — —|xi — x;j|) 59(1)-{-9()@ - Xj),

4
Vy € 0B(x;, a;) UIdB(x;, n;i). 4.57)
Hence,
il 2. g2) > A 00— xd I + 57 ()
1<i#j=<N

lxi —xjl < €3

3
S llLeme) Z <g(Z) + g(x; — xj)> .
l<i#j<N
lxi —xj| < €3
Thus by Corollary 3.8,

2(p=1)
[Termp 1,1 S ”v”LL(RZ)“néSl (SN(EN» W)+ Nllnes| + CpN2||M||Lp(R2)E3 P

(4.58)

For Term; 1 2, we make a change of variable to write

A;0&4y>—vch»-(Vg%)ow—xpdwgm-—SQ”xy)
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= /R (ve, 13y + x0) — ey (x))) - (Vg )iy + xi — x)d85" (7)
- /R (Wer(@iy +x0) = vey (1)) - (Vi) @iy +xi = x))d3 (v). (459)
Since €3 > €3 > 2¢; by assumption and since n; < «; < €1, for every

i €{l,..., N}, also by assumption, it follows from the log-Lipschitz property
of ve, and the (reverse) triangle inequality that

v 2 i — il In|n; — oy
1(4.59)| ,Sf Il ez“LL(R)|nl illln|n; l”dS(()])(y) (4.60)
R2 Iniy +xi — x|
v 00 i — O
Il €2||L (R2)|771 il d(g(()l)(y)

r2 (|xi —xj| —a;)(|x; —x;| —n;)
- vl LLw2yni — il In|n; — il N IVl oo 2y I _ai|‘

< ; (4.61)
€3 €3
Hence,
Wiy lmi —eillInfn; —ogll vl peoweylni — il
Termpiol S Y ( - . + (6)2
L<i#j<N 3 3
[xi —xj|>€3
N
lvllizomey — NVllppmeyllnn: — aill
SNZmi—an( St ( >63 —— ). @)
i=1 3

1

Since x +— |x|In |x| is increasing in the region 0 < |x| < e¢™ ', we conclude

that

2

N
V| 7 oo (R2 v 2| Ino;
|Tel'm2,1,2| 5 Nzai l ”L (R?) + l ”LL(R )| il ) (4.63)
€3 €3

i=1

Combining estimates (4.58) and (4.63) for Terms ;,; and Termy i 2, respec-
tively, we conclude that

200-1)
Term, | < 1ol ;| In 3| (SN@N, 1) + Nl es] + Cp N2l ogayes 7
N (4.64)
V]l oo (r2 vl L@yl Ine |
+N Z a; 2( ) + (R#) !
i—1 5 €

Estimate for Termp » We claim that Term; > = 0. Indeed, since by identity (3.17),
we have that

B — 8 = (= Afeyn) (- — i), (4.65)
we can integrate by parts once, observing that

(—Aga))(y —xj) = 8¢ (4.66)
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by identity (3.13) and a change of variable, in order to obtain

Term,=2 Y f b (1) - (Vi) (6 — 1008 (v, (4.67)
1<i#j<N

Note that supp(Va, 5, (-—x1)) C B(x;, a;) by identity (3.18) and supp(8,.”)

E(xj, ), while the balls B(x;, o), B(x;, oj) are disjoint, for i # j. Thus,

we conclude that each of the summands in Term; > vanishes, implying

Termp » = 0. (4.68)

Estimate for Termy 3 Using that ||ve, |z ®2) < [IvllLrg2) by Lemma 2.11, we
find that

N

[Termp 3| < lvllzr@yN Y / b= xillIn|x — xil[|(Vg 1) (x)d (5
. R
i=1

+8) (x). (4.69)

By Lemma 2.3 (note that ||| 12y = 1),

Vg * o) Sp ||u||§,f(n§’2) (4.70)

Since x > |x||1n|x|| is increasing for 0 < |x| < e~ and n; < a;, it follows
from the supports of 8%, 5" that

[Terma 3| Sp 10ll12) ||u||§‘,f@;;)1v Za, e, @.71)

which completes the analysis for Term; 3.
Estimate for Term; 4 We first observe that by a change of variable,

/ Ve, (1) - (Vg % ) (x)d (8 — 8197) (x)
Rz (4.72)
- /R Ve () - (Vo )i+ miy) = (Vg i) (i +iy)) dsg ().

for every i € {1,..., N}. By Lemma 2.9, we have the modulus of continuity
estimates

[(Va s m)(xi +miy) — (Vg * w)(x; + ;)| S
1_7
(Vg * M)IIC.._%(RZ)Imy -yl P
-2
Sp lellpr@eylmi —ail "7, VYlyl=1,2<p<o0 (4.73)
and

(Vg w)(x; +niy) — (Vg ) (xi +aiy)| S
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IV Wl p@eylniy —eiyllInniy —aiyll
S llellpe@eylni —aillInfn —aill,  Viyl=1, p=oc.  (4.74)

_2
Applying these estimates and using that x |x|1 ? and x — |x||In |x]|| are
increasing for 0 < |x| < e~ 1, we find that

-2
[(4.72)] < Cp||U||L00(R2)||M||L17(R2)|Oli| r,2<p<o0 , (4.75)
Coollvll oo 1l oo 2y leti || In feti|], p = 00

where Cj,, Coo > 0 are absolute constants. Hence,

N 1-2
NCplIvll ooy il o2y 20y el 7, 2<p<o

|Termp 4| < I
NCoollvll oo w2y Il Loom2y D052y leillIn]ei]l,  p = o0

(4.76)

which completes the analysis for Term; 4.

Combining estimates (4.64), (4.68),(4.71), and (4.76) for Termy 1, Termy 2, Term 3,
and Termp 4, respectively, we see that

2p-1)
[Terma| S [[vll @2yl In €3] <3N(£N, w) + Nllnes| + CpN2||M||Lp(R2)€3 P )

N
V]l oo (m2 vl g2yl In o
+NZa,~( ® 4 &

i=1

€32 €
S 4.77
NIl Il 50 Y el na| “477)
i=1

N L2
+ NIl gy 2 (Collill ey lail' ™ < coo(p)

i=1

+Cooll 1l oo 2y || I i | 1500 (P)) -

This completes the analysis for Term,.
With estimate (4.49) for Term, the definition of which we recall from (4.43),
and estimate (4.77) for Term,, the definition of which we recall from (4.44), re-
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spectively, together with our starting identity (4.40), we conclude that

Xy pix WXy pphx
‘/ (Vve) () : <[HN ny Nﬂg]SE a [HN’ﬁz’ HN&HSE
N

- Z [famh" fai,ﬂi]SE (- xi)) (x)dx

i=1

2p-1)
S lipeInes] <§N(3_€N,I~L)+N|1n€3| + CoN? |l Lo gzyes 7 )
) 4.78)

||v||Loo(R2) vl Lz w2yl In el
+N; ( - -

+ Nl L) ||u||z(:(Rz) Z ai|In o]

N
1-2
+ Nl ey D (Collill ool ™7 + il ey il il 1o (p) )
i=1
Comparing the preceding inequality with the statement of Lemma 4.5, we see that
the proof of the lemma is complete. O

4.6. Step 5: Conclusion
Returning to the identity (4.32) and applying Lemma 4.5, we have shown that
forany ay € (R+)N with ; < r;¢, foreachi € {1,..., N}, it holds that
N N
/ poya, 2 () (VO = 0AQ 5y = NW@AQ_ 8y = N ()
)7\ Az i=l1 i=l1

= Errore, o, + /RZ(WQ)(x) Hiy Hy XN]SE (x)dx (4.79)

N
-3 /( - (v, (¥) — V6, (1)) - (V@) (x — »)d8E) (x)d8 (y),

where Errore, o, satisfies the bound (4.35). We choose ay = ry ,, where the
reader will recall the definition of r . from (4.33).

Using the error bound (4.35) witha )y =ry . thatr; ¢, < €; by definition, the
increasing property of » > r|Inr|forr € (0, e~'), and some algebra, we find that

20-1)
[Brrore, ||v||LL(Rz)|1neg|<SN<xN,u>+N|lnea|+c Nl o yes 7 )
2
eIN* [ lvlizome)
_|_ _ [ ——
( €3

+ v 2| Ine
. IVl Lo w2yl 1|>

(4.80)

+N e]|lnel|cp||v||LL<Rz>||u||§:@§;)
P2

+ N2||U||L00(]R2) (Cp”/'L”LP(]RZ)el "+ Coollptll oo m2y€1 1 In 61|lzoo(l7)) .
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For the second term in the right-hand side of (4.79), we use that ||ve, |l 1 r2) <

lvllz w2y by Lemma 2.11 and that
(Vo) (x —y)=————  Vx#yeR? (4.81)
27|x — y
in order to obtain the estimate
N
(ri.el) (ri.el)
> f oy (P20 = v (0) - (Vo) (x = )8y ()8 (v)
i—1 Y R
al (riey) (riey)
Tie Tie
Slvelloe ) f e = yl1dag Y s ()
i—1 Y (R?)
i=1
(4.82)

N
S Ivllpiee) ) 80,

i=1

where the ultimate inequality follows from Lemma 3.3 and that |In|x — y|| =
(r;'fl)). Using estimate (3.57) of Corollary 3.6, we

—In|x — y| for x, y € supp(dy,
conclude that

N . .
> f( o (B0 = ) - (Vo) x = )85 o <y)‘
i=1

2p-1)
[Iner| + Cpllpllpr@2yNe; ” ))

(4.83)

S llpeme) (SN()_CN, w) + N <
For the first term in the right-hand side of (4.79), we use Holder’s inequality,

Lemma 2.11, and the point-wise bound
WXy WXy < WXy 2 2
[HNa HRY | @ISIVHGY H@P vx e R (484)

which is immediate from the definition (4.7) of the stress-energy tensor and Young’s

inequality for products, in order to obtain

. XN X N
/;&2<Vv€2)(x) ’ I:HN’LN-fl ’ N’KN,el]SE (x)dx

S IVve ll o2 / (VHN Y )(x)dx
R2 =N.€q

Simelivligs, [ VL @R (485)
8 Now, using estimate (3.58) from Corollary 3.6, we conclude that
- ] _ (@)dx
(4.86)

. XN
‘\/RZ(VUEZ)()C) : I:HN’KN,el’ HNvLNfl s

2(p=1)
S |ln€2|||v||LL(R2) (SN({Na M)+N|ln€1|+CpN2||l/~||Lp(R2)€1 i ) .

8 This inequality is precisely where we use that ve, is Lipschitz.
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Combining estimates (4.80), (4.83), and (4.86), we obtain that

N N
/DW\A (ver () = 06, (M) - (V@I (x = 1A 8 = N)()d(Y_ 8, = Nn)(y)
2

i=1 i=1

2p—1)
S+ el vl <3N(£N,u)+N<|1n€1|+Cp||/A||Lp(1R2>N€1 ! ))

2(p=1
+neslllvll o) (sN@N,uHN(|1nes|+c,,NHu||Lp(Rz>eaT )) (4.87)

2
erN” [ lvllLomge)
€3 €3

+ vl g2y In € |) + N2etlIner|[Cpllvllppge Il 2,,”(R3;

p=2

+ N2||U||L0<>(]R2) (Cp”MHLp(R?)fl !

+ Coolltll Lo r2y€11 ln51|1200(l7)) .

Combining estimate (4.87) with Lemma 4.2 and using that €3 > €, > 2¢ in order
to simplify, we finally conclude that

N N
/ W) = v(y) - (Vo) x =AY 8 = Nw(0)d(Y 85 = Ni)(y)
R2)2\Ay

i=1 i=l

S llpr@ylnell§y Gy, Wl + vl weyNlne || Ine]
2(p=1)

+CpN* ol peyes © IInes) (4.88)
etlvlpog  ellnellvlp g
2 (R*) LL(R?) 2(,, 0
N ( rEE = +ellne|Cpllvll L Il g,

p=2

+ N2||U||LDO(R2) (Cp”M”Ll’(]Rz)el "+ Coollitll oo r2y€1 | In € |lzoo(l7)) ,

which completes the proof of Proposition 1.8.

5. Proof of Main Results

In this section, we give the proofs of Theorem 1.1 and Corollary 1.2 using an
energy estimate, Proposition 1.8, and Proposition 3.10, as sketched in the introduc-
tion.

5.1. Modulated energy derivative

We begin by showing that the function > F* (x v (), @ (¢)), where we recall
that x , (¢) is the solution to the point vortex model (1.1) and w(¢) is the solution
to the Euler equation (1.2), respectively, at time ¢, is locally Lipschitz continuous
and compute its time derivative. The identity (see (5.1) below) is well-known, but
a rigorous proof taking into consideration that we are only working with weak
solutions to the Euler equation (1.2) does not seem to exist in the literature. Thus,
we provide a proof in the interests of completeness.
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Lemma 5.1. (Modulated energy derivative) Fix N € N. Letx , € C*([0, 00); Rz\
Ay) be a solution to the system (1.1), and let € L ([0, T]; L' (R?) N L (R?)),
for some 2 < p < oo be a weak solution to the equation (1.2), satisfying the
logarithmic bound (2.75) uniformly in time. Then 8‘;\,%7 (xy, 1) 110, 00) — [0, 00)
is locally Lipschitz continuous, and for a.e. t € [0, T], we have the identity

d _av
- g(iN(t),w(t))=/” (Vo) (x —y) - (u(z, x) —u(t, y))

di™N (R2)2\ Ay
d(oy — w)(t, x)d(wy — w)(t,y), (5.1

where u is the velocity field associated to w through the Biot-Savart law and
a)N:zﬁ ZZN=1 8y, is the empirical measure associated to x .

Proof. Fix N € N. By the Fubini-Tonelli theorem, we see that

3N(£N(t),w(t))=N2/ (g*w(®)X)w(t, x)dx + Z g(xi (1) — x;j(1)
]RZ

I<i#j<N
N
—2N ) (g o(0)(xi (1)
i=1
=:Term;(¢) + Termy(¢) — Terms (7). (5.2)
By Lemma 2.25 and Remark 2.16, respectively,
dT dT
Zrtml =0 and T2 =, (5.3)

For Terms(¢), the reader can check from the Duhamel formula (2.68), the dis-
tributional calculus, and the Fubini-Tonelli theorem that

(B (g% 0)(t) = —Vg x - (), ae.tel0,T]. (5.4)

Since uw € L®([0, T1; L' (R%; R?) N L?(R?; R?)), it follows from Lemma 2.9
that

3 (g % w) € L=([0, T]; C*P(R?)), (5.5

for some a(p) > 0. Let p € C°(0, T) be a test function. Then by definition of
distributional derivative,

T T
/0 p(s)9; (g * @) (x; () (s)ds = —/0 (9:p)(5)(g * @ (5))(xi(s))ds. (5.6)

Lety € CZ°(R) be astandard bump function, and fore > 0, set y. (s):=e"ly(s/e).
We mollify g *  in time by defining

(Ve *¢ (g% @))(s, x):= /R Ve(s — ) (g * o(s))(x)ds. (5.7
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By Lemma 2.9, we have that this temporally mollified function belongs to C}DC (R x
RR?). Also, note from identity (5.4) that

0 (Ve *1 (g % @) = Ve *t (Vg * -(uw)). (5.8)

It now follows from (5.5) and dominated convergence that
T
—/0 (0 p)(s)(g * w(s5))(xi(s))ds

T
= —éli%g/o (0:0) () (Ve *1 (9 % @))(s, x; (5)). (5.9)

Since x; ([0, T']) is a compact subset of R?, it follows from integration by parts, the
chain rule, and the identity (5.8) that

T
- /0 30) () (e %1 (@ % @) (s, 21 (5))

T
=- /0 PE)(ye H1 (Ve s -a)) (s, xi()ds (5.10)

T
1
+ f POye 0 (Varo)(s,xi() - Y (VI (is) = x(5))ds.
0 1<j<N
i#]
Taking the limit as € — 0T of both sides and applying dominated convergence
again, we conclude that
T

T
/0 P(8)0,((g * w)(x; (-)(s)ds = —/0 PV * -(u(s)w(s)))(x;(s))ds

T | | .11
+/0 p($)(Vg*x @(s))(xi(s)) - N Z (V=@)(xi(s) — xj(s))ds.

1<j<N
i

Since p € CZ°(0, T) was an arbitrary test function, we conclude the distributional
identity
1
(g @) (x; ()))(s) = —=(Vg * -(u(s)w () (xi (5)) + (Vg x @(s)) (xi (5)) - N

> (Vi) (xi(s) = xj(5). (5.12)
1<j<N
i#]

After a little bookkeeping, we conclude that

dTerms

N
(=2N) ( - [R (VO (0) = y) - ult, Yoo (t, y)dy
1 - (5.13)
TN /1;{2 Z (Vo) (xi (1) — ) - (VE@) (i (1) — xj (1)), y)dy),
1<j=N
j#i
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which implies that

d N
ESN(iN(t), w(1) = —ZNE (/};(Vg)(xz'(t) — ) - u(t, y)o(t, y)dy

| (5.14)
-5 f 3 <Vg)<xi<r>—y>-(ng)mm—x,~<t>)w<t,y)dy>.
R2

I<j=<N
J#

Next, using the Fubini-Tonelli theorem, we can write
N
AN fz(Vg)(xi (1) — y) - u(t, Yo(t, y)dy = 2N?
. R
i=1

/(Rz)z(Vg)(x —y)-u(t,y)dow(t, y)doy(t, x). (5.15)

Similarly, writing Vg = JVg (recall the definition of the 2 x 2 matrix J from
(2.56)), so that by the anti-symmetry of J,

(Va)(xi (1) — ¥) - (V@) (xi (1) — x;(1))
= (VIg)(xi (1) — y) - (V) (xi (1) — x; (1)), (5.16)

we observe that

-2 > (Vo) =y - (Vi) — xj (), y)dy
R2

1<i#j<N
=2 Z u(xi (1) - (V@) (xi (1) — x; (1))
I<i#j<N
= 2N2/ (Vo) (x — y) - u(t, x)dwy (t, X)doy (1, y). (5.17)
(RH)2\ Ay

Swapping x and y and using that (Vg)(x — y) = —(Vg)(y — x), we find that

(G.17) = N2/ (V@) (x —y) - (u(t, x) —u(t, y)) doy(t, x)don(t, y).
(RH)2\A;
(5.18)
Similarly,
(5.15) = —2N2/ (Vg)(x —y) -u(t, x)do(t, x)doy(t,y). (5.19)
®RH2\A,
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Now observing the cancellations
N2/ (Vo) (x — y) - u(t, x)do(t, y)doy(t, x)
(R2)2\ Az

=—N2/ Vg)(x — y) - u(t, y)do(t, x)doy (&,
(R2>2\A2( g9 —y)-ult,y)do(t, x)doy(t,y) (5.20)

= sz (Vo) (x —y) - (u(t, x) —u(t, y)) do(t, x)doy(t, y)
R2)2\ Ay
=0,
which follow from the Fubini-Tonelli theorem and the orthogonality identity
(Vg w)(t,x) Lu(t,x) V@, x)el0,T]xR?, (5.21)

and also the cancellation
0= Nz/ (Va)(x —y) - (u(t, x) —u(t, y))do(t, x)do(t, y), (5.22)
(R?)?

which follows from considerations of anti-symmetry, it follows from (5.14), (5.18),
and (5.19) that

d
ESN(&/\/(I‘), w(t)) = N2[ . Vo) (x —y) - (u(t, x) —u(t, y)) d(w — oy)(t, x)

RH)\A2

d(w — wn)(t, y)s. (5.23)

Dividing both sides by N> completes the proof of the lemma. O

5.2. Proof of Theorem 1.1

We now are prepared to prove Theorem 1.1, which we do in this subsection.
By the fundamental theorem of calculus for Lebesgue integrals, Lemma 5.1, and
the triangle inequality,

1TV @y (), o)) < 1TV @Y, @
t
+ / / (Va)(x — y) - (u(s, x) — u(s, ) d(@ — wy)(s, x) (5.24)
0 (R2)2\A,

d(w — wn)(s, y)lds.

Applying Proposition 1.8 with p = oo to the integrand in the right-hand side of
the preceding inequality point-wise in s and using that

04172
llll oo 0, 00); 200 R2)) S N7l e 2y and Nutll zoog0,00);.2.(R2) S e0” | oo 2.
(5.25)
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by Lemmas 2.3 and 2.9, respectively, and conservation of the L°° norm, we find
that there exists a constant C; > 0 such that

Ty @y (1), (@)

t
3/2
< BV, )+ Crlle® 172 e /0 e(s)| Inex(s)lds

t
av [Iner(s)||Inex(s)]
+ Cill@® | oo g2 / (|1n€ OIFYE @y (5), o)) +
1 L>®(R?) 0 2 N Ay N (5.26)
a3 Ines(s)]) ds
1/2
@@l 2R ) ners) 0w
+ 1[ 3 ds,
0 €3(s) €3(s)

where €1, €2, €3 : [0, 00) are measurable functions such that 1 > €3(s) > €2(s) >
2¢e1(s) > 0 for every s € [0, 0o). We choose €1, € as follows:

€1(s):=€3(5)°, (5.27)
e (s):=€3(s)". (5.28)

Substituting these choices for €1(s), €2(s) into the right-hand side of inequality
(5.26) and simplifying, we find that
13Ny (), 00)] < 1V X @) + Calle | oo 2y

t 1 2
fo <| I €3() 1898 (x (), 0 (5))] + %) ds

t
+C2||w0||L°°(R2)/ €3(s)| Ines(s)|ds (5.29)
0
! 1/2 2
o [ (a0 g, + @@ e
3/2
(Ha)O”LOO(RZ) + ”wO”L/oo(R2)>) ds’

where C» > Cj is an absolute constant. Note that if we define §y* : [0, c0) —
[0, o) by

SNy (), w(s))= sup [Ty @y (), 0], (5.30)

0<s'<s
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which is tautologically a nondecreasing function, then it follows from (5.29) that
Sy @y @), 00) < IFVEaY. 0]+ Callo’ | @2

t 2
fo (| In &3 () IFE (5, w0 (5)) + w> ds

t

+C2||a)0||Loo(Rz)/O e3(s)|In e3(s)|ds 531)
t
—l—Cz/O <e3(s)||w0||lL/£(R2)+€3(s)2|1n63(s)|

3/2
(1 ey + 16015 ) ) .

It remains to choose €3, which we do now in a piece-wise fashion:

by, vy (), 0(s) < B
Vs € [0, 00), €3(s):= @?\;’g(&\,(s),a)(s)), '“TN < @?\;)g(&\,(s),a)(s)) <e !,
e !, TNy (s), w(s) = e}

(5.32)

Substituting this choice for €3(s) into the right-hand side of inequality (5.31) and
partitioning the interval [0, ¢] according to the values of S‘;vv § (xpn(s), w(s)), as in
the definition (5.32), we find that

i C3lle® 12 o (1 + (1] oo )] In N |21
avg Vg, 0 0 L (R2) )
FUWE (x (1), 0(1)) < 1308 (Y, )] + v
+ Callell gy (1 + 10 e )
t_ -
/O SVE @ (), @) InFyE (xy (5), @(5))lds (5.33)

1/2
+ Callell 2 g, (1+ 1P e )

t -
/(;1>e—1(3ﬁg(£N(S),w(S)))ds,

where C3 > C5 is an absolute constant.

We now want to close the estimate (5.33) by using the Osgood lemma (re-
call Lemma 2.14). It is not hard to check from the continuity of the map s
S?VUg (xy(s), w(s)) that the map s +—> §(;va (xn(s), w(s)) is also continuous (see
the proof of [46, Lemma 5.4]). Now fixatime ¢ € (0, 00). Let N € N be sufficiently
large so that

1/2

Calle® /2 oy (14 10 e ) £ < Inin (1334 efy, )]

12 (5.34)

0
C3t”w ||LOO(R2

(L [1°]] oo 2)) | In NI
N
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By continuity, there exists a minimal time 0 < ¢y, < ¢ (we adopt the convention
that 73, = ¢ if no such time exists) such that

%Ug(&v(s),a)(s)) <e !, VO<5s <ty and Wg(gN(t,t),w(t,T,)):e_l.
(5.35)

Applying Lemma 2.14 with modulus of continuity » — rIn(1/r) on the interval
[0, e 1] and using Remark 2.15, we find from condition (5.34) that for every 0 <
s <ty

— N9

Ny (9), o(5))

1/2 0 o\ -
C3S‘|w0” o2y (1 @07 || Lo ®2)) | In N|
SGXp<—exp<1n1n(g“ %, @) + L>(R?) = (R?)

— C3s]j0° ||L“(R2) (1+ ||CU0HL°°(JR2)) ))

~Caslo )% 2 1601 00 g2))

Cas110® 1,2 o) (1 + l6° | e z2)) | In Nz)

N

= (&‘;v”g(x%,won +
(5.36)

It then follows from (5.34) that the expression in the ultimate line is < e~ !, which
implies that ¢y, = ¢. Thus, the proof of Theorem 1.1 is complete.

5.3. Proof of Corollary 1.2

We now show how to obtain Corollary 1.2 from Theorem 1.1. Fix s < —1 and
T > 0, and let N € N be sufficiently large so as to satisfy the condition (1.11).
Then applying estimate (3.73) of Proposition 3.10 with p = oo foreach ¢ € [0, T']
fixed and also using conservation of the L°° norm, followed by applying Theorem
1.1, we find that there exists constants C > 0, such that

lw(t) — on (Dl s r2y

—ctlle® 12

Lo Rv)UHIU I oo ®2y)

1/2 0 2\ ¢
CtIIwOI\Lw g2y (I + 0° [ Lo @2)) | In N
(m“ (o S (5.37)
[In N |2 + ||w°||Loc(Rz
N1/2

Taking the supremum over ¢t € [0, T'] of both sides yields (1.13). The assertion
regarding weak-* convergence in M (R?) follows by using (3.74). Thus, the proof
of Corollary 1.2 is complete.
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