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Abstract

The problem of an infinite isotropic elastic matrix subjected to uniform far-field load and con-

taining a Gurtin-Murdoch material surface of cylindrical shape is considered in plane strain

setting. The governing equations and the boundary conditions for the problem, reduced to

that of an infinite plane containing a material curve along a circular arc, are reviewed. The

displacements inside the matrix are sought in the complex variables form of a single layer

elastic potential whose density represents the jump in complex tractions across the curve.

Exact complex integral representations for the elastic fields everywhere in the material are

provided and the problem is further reduced to the system of real variables hypersingular

boundary integral equations in terms of the strain and rotation components associated with

the curve. The components are then approximated by the series of trigonometric functions

that are multiplied by the square root weight functions to allow for automatic incorporation

of the tip conditions. The unknown coefficients in the series are found from the system of

linear algebraic equations that is solved using standard collocation method. The numerical

examples are presented to illustrate the influence of dimensionless parameters with the main

focus on the study of curvature-induced effects.
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1. Introduction

In this paper, we consider the plane strain problem of an infinite isotropic elastic ma-

trix that contains a Gurtin-Murdoch material surface of cylindrical shape and subjected to

uniform far-field load. The surface represents a membrane of vanishing thickness that is

characterized by its own elastic stiffness and the residual surface tension. The possible ap-

plications of the problem are in the area of modeling composite materials that use ultra-thin

stiff membranes as reinforcements, e.g., Cao (2014), Güler and Bağcı (2020), Papageorgiou

et al. (2017, 2020), Suk et al. (2010), in particular, thick graphene reinforced composite

cylindrical panels, e.g. Mirzaei and Abbasi (2023).

The idea that the existing material surface theories, Gurtin and Murdoch (1975, 1978),

Steigmann and Ogden (1997, 1999), could be useful for modeling materials with flexible and

extensible or inextensible reinforcements was suggested in several recent publications, see

e.g. Baranova et al. (2020), Mogilevskaya et al. (2021b), Zemlyanova et al. (2023). However,

the numerical solutions were reported there only for the case of a material surface along a

straight segment.

Here, we present the numerical algorithm for solving the two-dimensional plane-strain

problem involving a Gurtin-Murdoch curve along a circular arc and use it to investigate the

influence of the curvature-related effects. As in Mogilevskaya et al. (2021b), Zemlyanova

et al. (2023), we use the theories of elastic layer potentials and integral equations in order to

present exact expressions for the elastic fields everywhere in the material. The problem is

further reduced to the solution of the system of coupled real variables hypersingular bound-

ary integral equations written in terms of the strain and rotation components associated
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with the arc. Using the approximations for the components that include the truncated se-

ries of trigonometric functions multiplied by the square root weight functions and employing

standard collocation, we obtain the system of linear algebraic equations for the unknown

series coefficients. The elastic fields in the matrix are then found using appropriate com-

plex integral representations. The obtained solution is used to illustrate the influence of

governing dimensionless parameters with the main focus on the curvature-induced effects.

Additionally, we demonstrate that, unlike in the case of a material surface along a straight

segment, the problem under study is not reducible to the problem of a rigid circular arc,

solved in Liu and Jiang (1994).

The paper is structured as follows. In Section 2, we formulate the problem under study

and review its governing equations. In Section 3, we introduce the complex variables rep-

resentations for the geometry and fields involved, list the exact complex variables integral

representations for the fields, and present the governing complex variable boundary integral

equation. In Section 4, we reduce the latter equation to the system of real variables bound-

ary integral equations and, after introducing the dimensionless parameters, reformulate the

system in dimensionless settings. In Section 5, we describe major steps of the proposed

numerical algorithm. In Section 6, we demonstrate that, unlike in the case of a material sur-

face along a straight segment, the problem under study is not reducible to the problem of a

rigid circular arc. Section 7 contains several examples of numerical simulations. Concluding

remarks are presented in Section 8.

2. Problem formulation and governing equations

Consider the plane strain problem of an infinite isotropic elastic matrix that contains a

Gurtin-Murdoch material curve located along the circular arc L of radius R with the tips

at the points ξ = a, ξ = b, see Fig. 1. The matrix, characterized by the shear modulus

µ and Poisson’s ratio ν, is subjected to the uniform far-field load σ∞11, σ∞22, σ∞12. The origin
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Figure 1: Problem configuration: a Gurtin-Murdoch circular material curve in an elastic matrix.

of the global Cartesian coordinate system with the unit basis vectors e1, e2 is chosen to be

located at the center of the arc. Additionally, the local coordinate system with the mutually

orthogonal unit vectors n, ` is introduced and shown on Fig. 1.

According to the Gurtin-Murdoch theory, it is assumed that L is characterized by its

own elastic stiffness parameters µS, λS and by the residual surface tension σ0. The governing

equations for the theory include the standard Navier equation for the displacements inside

the matrix supplemented by the conditions across L and at its tips. The supplemental

conditions for the problem under study can be deduced from the corresponding conditions

for a curve of an arbitrary sufficiently smooth shape reported in Mogilevskaya et al. (2021b),

Zemlyanova et al. (2023), see also a review in Mogilevskaya et al. (2021a), by assuming that

the local radius of curvature R = R(s) on L is constant.

Thus, the conditions for the fields across L at the point ξ ∈ L are (here and below we

omitted the argument ξ for brevity)

u+1 = u−1 = u1, u
+
2 = u−2 = u2, (1)
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∆σn = σ+
n − σ−n = −σ

S

R
+ σ0

∂ωS

∂s
, (2)

∆σ` = σ+
` − σ

−
` =

∂σS

∂s
+ σ0

ωS

R
, (3)

where u1 and u2 are the displacement components of the bulk material in the global coordi-

nate system, σn and σ` are the corresponding normal and shear tractions, and s is the arc

length. The superscripts “+”, “−” here and below describe the limit values of the fields

when L is approached from the direction of that of the normal vector or from the opposite

direction, respectively. The expressions for the surface stress σS, surface strain εS, and

surface rotation ωS involved in Eqs. (2)-(3) are

σS = σ0 + (λS + 2µS)εS, (4)

εS =
un
R

+
∂u`
∂s

, (5)

ωS = −u`
R

+
∂un
∂s

, (6)

in which un and u` are the normal and shear components of the displacements.

The conditions at the tips ξ = a and ξ = b of L are given by the following equations:

σS = 0, σ0ω
S = 0. (7)

3. Representation of the geometry and fields by complex variables

3.1. Complex variables combinations

We assume that the coordinates of the point ξ ∈ L are combined in the complex variable

τ = τ1 + iτ2. The equation of the arc then can be expressed in complex variables as

τ τ̄ = R2, (8)
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where a bar over a symbol denotes complex conjugation.

As in Mogilevskaya et al. (2021a,b), Zemlyanova et al. (2023), we introduce the complex

variables displacements and tractions as

u = u1 + iu2, σ = σn + iσ`, (9)

where i2 = −1.

Using the following transformation formulae, see e.g., Mogilevskaya et al. (2021a):

un + iu` = iu exp (−iα) , (10)

d

ds
= exp (iα)

d

dτ
, (11)

dα

ds
=

1

R
, (12)

where α = α (s) is the angle between the axis Ox1 and the tangent at the point ξ ∈ L, and

taking into account that for the circle

exp (iα) = exp[i(β + π/2)] = i
τ

R
, (13)

where β = β (s) is the angle between the axis Ox1 and the normal to the arc at the point

characterized by complex variable τ (s), one can rewrite Eqs. (4)-(6), in complex variables

notations as

σS = σ0 + (λS + 2µS)εS = σ0 + (λS + 2µS) Re u′, (14a)

εS =
un
R

+
∂u`
∂s

= Re u′, (14b)

ωS = −u`
R

+
∂un
∂s

= − Imu′, (14c)
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where u′ is defined as follows:

u′ =
du

dτ
+

dτ̄

dτ

du

dτ̄
. (15)

3.2. Complex variables integral representations for the fields

The integral representations for the elastic fields in the material system under study can

be deduced from the representations for more general case of a curve of an arbitrary shape,

see Linkov and Mogilevskaya (1998), Mogilevskaya and Linkov (1998), Mogilevskaya et al.

(2021a,b), Zemlyanova et al. (2023).

The representation for the complex displacements outside of L is

u (z) = u∞ (z)− 1

4πiµ (κ+ 1)


∫
L

∆σ (τ) [2κ ln (z − τ)− κK1 (τ, z)] dτ

+

∫
L

∆σ (τ)K2 (τ, z) dτ

 ,

(16)

in which z = x1 + ix2 is the complex combination of the Cartesian coordinates of the point

z /∈ L, ∆σ = ∆σn + i∆σ`, κ = 3− 4ν,

K1 (τ, z) = ln
τ − z
τ − z

, K2 (τ, z) =
τ − z
τ − z

, (17)

and

u∞ (z) =
1

2µ

[
(κ− 1)

σ∞11 + σ∞22
4

z − σ∞22 − σ∞11 − 2iσ∞12
2

z

]
. (18)

The expressions for the complex tractions on some line outside of L is

σ (z) =σ∞ (z)− 1

2πi (κ+ 1)


∫
L

∆σ (τ)

[
(κ− 1)

1

τ − z
+ κ

∂

∂z
K1 (τ, z)

]
dτ

−
∫
L

∆σ (τ)
∂

∂z
K2 (τ, z) dτ

 ,

(19)
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where

σ∞ (z) =
σ∞11 + σ∞22

2
+
σ∞22 − σ∞11 − 2iσ∞12

2

dz

dz
. (20)

As in Mogilevskaya et al. (2021b), Zemlyanova et al. (2023), the boundary integral equa-

tion will be obtained using the following representation that results from Eqs. (15), (16):

u′ (z) = [u∞(z)]′ +
1

4πiµ (κ+ 1)


∫
L

∆σ (τ)

[
2κ

1

τ − z
+ κ

∂

∂z
K1 (τ, z)

]
dτ

−
∫
L

∆σ (τ)
∂

∂z
K2 (τ, z) dτ

 ,

(21)

where

[u∞(z)]′ =
1

2µ

[
(κ− 1)

σ∞11 + σ∞22
4

− σ∞22 − σ∞11 − 2iσ∞12
2

dz

dz

]
. (22)

3.3. Boundary integral equation in terms of complex variables

Using the limiting procedure in which the field point is allowed to reach the boundary

point τ 0 = τ 01 + iτ 02 from the direction normal to the boundary at that point, the following

boundary integral equation is obtained, see Mogilevskaya et al. (2021b), Zemlyanova et al.

(2023):

u′(τ 0) = [u∞(τ 0)]′ +
1

4πiµ(κ+ 1)

{
−
∫

L

∆σ(τ)

[
2κ

1

τ − τ 0
+ κ

∂

∂τ 0
K1(τ, τ

0)

]
dτ

−
∫
L

∆σ(τ)
∂

∂τ 0
K2(τ, τ

0)dτ̄

}
.

(23)

Using Eqs. (8), (17), we get for the points on L

K1 = ln
(τ − τ 0)ττ 0

R2(τ 0 − τ)
= ln

(
−ττ

0

R2

)
, K2 = −ττ

0

R2
, (24a)

dτ̄ = −R
2

τ 2
dτ,

∂K1

∂τ 0
=

1

τ 0
,
∂K2

∂τ 0
= − τ

R2
. (24b)
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Substituting the expressions of Eq. (24) into Eq. (23), we obtain the following boundary

integral equation:

u′(τ 0) = u∞(τ 0)
′
+

1

4πiµ(κ+ 1)

[
−
∫

L

∆σ(τ)

(
2κ

1

τ − τ 0
+ κ

1

τ 0

)
dτ −

∫
L

∆σ(τ)
1

τ
dτ

]
. (25)

4. The system of hypersingular boundary integral equations

4.1. Reduction of Eq. (25) to the system of real variables equations

Using the following representations for the points on L:

τ = Reiβ, τ 0 = Reiβ0 , dτ = iReiβdβ,
dτ̄0
dτ0

=
d

dτ0

R2

τ0
= −e−2iβ0 , (26)

and substituting Eq. (26) into Eq. (25), we get (here and below, we omitted the arguments

τ 0 and τ for brevity)

u′ = u∞′ +
κ

2πµ(κ+ 1)
−
∫

L

(∆σn + i∆σ`)
eiβ

eiβ − eiβ0
dβ

+
κ

4πµ(κ+ 1)
−
∫

L

(∆σn + i∆σ`)e
i(β−β0)dβ

− 1

4πµ(κ+ 1)

∫
L

(∆σn − i∆σ`)dβ.

(27)

Taking into account that

eiβ

eiβ − eiβ0
=

1

2
− i

sin(β − β0)
2[1− cos(β − β0)]

, ei(β−β0) = cos(β − β0) + i sin(β − β0), (28)

and using Eqs. (2), (3), (12), (13), (14a), (14c), (27), (28), one can arrive, after some algebra,



4 THE SYSTEM OF HYPERSINGULAR BOUNDARY INTEGRAL EQUATIONS 10

at the following system of real variables integral equations in terms of σS and ωS:

σS =(λS + 2µS) Re u∞′ + σ0

+
λS + 2µS

4πRµ(κ+ 1)

∫ β2

β1

[
κ
σS cos(β − β0) + σ0ω

S sin(β − β0)
1− cos(β − β0)

+ σS
]

dβ,
(29)

ωS = − Imu∞′+
1

4πRµ(κ+ 1)

∫ β2

β1

[
κ
σ0ω

S cos(β − β0)− σS sin(β − β0)
1− cos(β − β0)

− σ0ωS
]

dβ, (30)

where β1 and β2 are the angles associated with the tips of L and Re u∞′, Imu∞′ are obtained

from Eqs. (22), (26) as

Re u∞′ =
1

2µ

[
(κ− 1)

σ∞11 + σ∞22
4

− 2σ∞12 sin(2β0) + cos(2β0)(σ
∞
11 − σ∞22)

2

]
,

Imu∞′ =
1

2µ

[
σ∞11 − σ∞22

2
sin(2β0)− σ∞12 cos(2β0)

]
.

(31)

4.2. Dimensionless integral equations

Introducing the following dimensionless parameters

θ = β2 − β1, σ̃∞ij =
σ∞ij
µ
, γ =

µRθ

2µS + λS
, σ̃S =

2σS

µRθ
, σ̃0 =

2σ0
µRθ

, (32)

one can re-write Eq. (29) and Eq. (30) as follows:

γσ̃S =Σ1 + γσ̃0 +
θ/2

2π(κ+ 1)

∫ β2

β1

σ̃Sdβ

+
κθ/2

2π(κ+ 1)

∫ β2

β1

σ̃S cos(β − β0) + σ̃0ω
S sin(β − β0)

1− cos(β − β0)
dβ,

(33)

ωS = −Σ2−
σ̃0θ/2

4π(κ+ 1)

∫ β2

β1

ωSdβ

+
κθ/2

4π(κ+ 1)

∫ β2

β1

σ̃0ω
S cos(β − β0)− σ̃S sin(β − β0)

1− cos(β − β0)
dβ.

(34)
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where

Σ1 = (κ− 1)
σ̃∞11 + σ̃∞22

4
− 2σ̃∞12 sin(2β0) + cos(2β0)(σ̃

∞
11 − σ̃∞22)

2
,

Σ2 =
σ̃∞11 − σ̃∞22

4
sin(2β0)−

σ̃∞12
2

cos(2β0).

(35)

Using the linear transformation

β =
θ

2
β̄ + b, (36)

in which b = (β1 + β2)/2, the integrals involved in Eqs. (33) and (34) can be transformed

to those over the interval β̄ ∈ [−1, 1] and the resulting equations become

−Σ1 − γσ̃0 =− γσ̃S(β̄0) +
(1− κ)θ2

8π(κ+ 1)

∫ 1

−1
σ̃S(β̄)dβ̄

+
κθ2

8π(κ+ 1)

∫ 1

−1

σ̃S(β̄) + σ̃0ω
S(β̄) sin[θ/2(β̄ − β̄0)]

1− cos[θ/2(β̄ − β̄0)]
dβ̄,

(37)

Σ2 = −ωS(β̄0)−
σ̃0θ

2

16π

∫ 1

−1
ωS(β̄)dβ̄

+
κθ2

16π(κ+ 1)

∫ 1

−1

σ̃0ω
S(β̄)− σ̃S(β̄) sin[θ/2(β̄ − β̄0)]

1− cos[θ/2(β̄ − β̄0)]
dβ̄.

(38)

5. Numerical solution

5.1. Approximations of the unknown functions

On a circular arc, it is reasonable to approximate sufficiently smooth functions by trun-

cated series of trigonometric functions. To account for the tip conditions of Eq. (7), we sug-

gest to use the square root weight function, as in Mogilevskaya et al. (2021b), Zemlyanova

et al. (2023).

Thus, the approximations for σ̃S(β) and ωS(β) are taken as

σ̃S(β) =
√

(β − β1)(β − β2)
N∑
m=0

[Am cos(mβ) + Bm sin(mβ)] ,

ωS(β) =
√

(β − β1)(β − β2)
N∑
m=0

[Dm cos(mβ) + Em sin(mβ)] .

(39)
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Approximations of Eq. (39) can be further reduced to the following ones written in terms

of β̄ (after we omit the constant multiplier in the weight function):

σ̃S(β̄) =

√
1− β̄2

N∑
m=0

{
Am cos[m(θ/2β̄ + b)] + Bm sin[m(θ/2β̄ + b)]

}
=

√
1− β̄2

N∑
m=0

{
Am cos[mθ/2(β̄ − β̄0) +m(θ/2β̄0 + b)]+

Bm sin[mθ/2(β̄ − β̄0) +m(θ/2β̄0 + b)]
}

=

√
1− β̄2

N∑
m=0

{Am[cos(2mt) cos(mg)− sin(2mt) sin(mg)]+

Bm[sin(2mt) cos(mg) + cos(2mt) sin(mg)]} ,

(40a)

ωS(β̄) =

√
1− β̄2

N∑
m=0

{
Dm cos[m(θ/2β̄ + b)] + Em sin[m(θ/2β̄ + b)]

}
=

√
1− β̄2

N∑
m=0

{
Dm cos[mθ/2(β̄ − β̄0) +m(θ/2β̄0 + b)]+

Em sin[mθ/2(β̄ − β̄0) +m(θ/2β̄0 + b)]
}

=

√
1− β̄2

N∑
m=0

{Dm[cos(2mt) cos(mg)− sin(2mt) sin(mg)]+

Em[sin(2mt) cos(mg) + cos(2mt) sin(mg)]} ,

(40b)

where Am, Bm, Dm, and Em are unknown coefficients for the m-th terms in truncated series

and

t = t(β̄) = θ/4(β̄ − β̄0), g = g(β̄0) = θβ̄0/2 + b. (41)
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5.2. Evaluation of the integrals

5.2.1. List of integrals

Substitution of the approximations of Eq. (40) into the system of Eqs. (37), (38) (with

the use of the variables introduced in Eq. (41)) produces integrals of the following types:

Im1 =

∫ 1

−1

√
1− β̄2 cos(2mt)dβ̄,

Im2 =

∫ 1

−1

√
1− β̄2 sin(2mt)dβ̄,

Im3 =

∫ 1

−1

√
1− β̄2

sin(2mt) sin 2t

1− cos(2t)
dβ̄ =

∫ 1

−1

√
1− β̄2

sin(2mt)

tan t
dβ̄,

Im4 =

∫ 1

−1

√
1− β̄2

cos(2mt)

1− cos(2t)
dβ̄,

Im5 =

∫ 1

−1

√
1− β̄2

sin(2mt)

1− cos(2t)
dβ̄,

Im6 =

∫ 1

−1

√
1− β̄2

cos(2mt) sin 2t

1− cos(2t)
dβ̄ =

∫ 1

−1

√
1− β̄2

cos(2mt)

tan t
dβ̄,

(42)

where superscript m in Imi (i = 1, · · · , 6) denotes the integral related to the m-th term in

truncated series.

It can be easily seen that the integrals Im1 and Im2 in Eq. (42) are regular integrals, which

can be directly evaluated by the Gaussian quadrature. To determine the singularities of the

remaining integrals, one has to investigate the behavior of their integrands when t→ 0, i.e.,

β̄ → β̄0. Such investigation reveals that Im3 is also a regular integral, since the denominator

tan t behaves as t when t→ 0, while numerator sin(2mt) at the same time behaves as (2mt),

leading to the limiting value of the integrand to be 2m
√

1− β̄2, which is a regular function.

5.2.2. Singular behavior of the remaining integrals of Eq. (42)

We will now demonstrate that the integral Im4 of Eq. (42) can be represented as,

Im4 =

∫ 1

−1

√
1− β̄2

[
cos(2mt)

1− cos(2t)
− 1

2t2

]
dβ̄ +

1

2
=

∫ 1

−1

√
1− β̄2

t2
dβ̄, (43)
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in which the first term on the right-hand side is the regular integral while the second term

is the so-called hypersingular integral, see e.g. Lin’kov and Mogilevskaya (1990), Martin

(1992).

To prove that the first integral is regular, we represent the numerator and denominators

of the first term in the brackets of Eq. (43) by the truncated Taylor series and obtain the

following result:

∫ 1

−1

√
1− β̄2

[
cos(2mt)

1− cos(2t)
− 1

2t2

]
dβ̄

=

∫ 1

−1

√
1− β̄2

[
1− (2mt)2

2!
+O(t4)

(2t)2

2!
+O(t4)

− 1

2t2

]
dβ̄

=

∫ 1

−1

√
1− β̄2

1− (2mt)2

2!
+O(t4)− 1 + 1

3
t2 +O(t4)

2t2 [1 +O(t2)]
dβ̄

=

∫ 1

−1

√
1− β̄2

(
−m2 +

1

6

)
1 +O(t2)

1 +O(t2)
dβ̄

(44)

It is easy to see that that the kernel of the final expression of Eq. (44) has finite limit value

of (−m2 + 1/6)
√

1− β̄2 when t→ 0 and, thus, the first integral of Eq. (43) is regular.

The second, hypersingular, integral of Eq. (43) can be evaluated analytically as, see

Martin (1992)

=

∫ 1

−1

√
1− β̄2

t2
dβ̄ = =

∫ 1

−1

√
1− β̄2[

θ/4(β̄ − β̄0)
]2dβ̄ =

16

θ2
=

∫ √
1− β̄2(

β̄ − β̄0
)2dβ̄ = −16

θ2
π. (45)

Similarly, we represent the integral Im5 as,

Im5 =

∫ 1

−1

√
1− β̄2

[
sin(2mt)

1− cos(2t)
− m

t

]
dβ̄ +m−

∫ 1

−1

√
1− β̄2

t
dβ̄, (46)

where the first term on the right hand side of Eq. (46) is the regular integral, as it can be

proved (as it was done for Im4 ) that the limit value of its kernel is 0 when t→ 0. The second

term on the right hand side of Eq. (46) is the singular Cauchy type integral and it can be
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evaluated analytically as, see Martin (1992),

−
∫ 1

−1

√
1− β̄2

t
dβ̄ = −

∫ 1

−1

√
1− β̄2

θ/4(β̄ − β̄0)
dβ̄ =

4

θ
−
∫ √

1− β̄2

β̄ − β̄0
dβ̄ = −4

θ
β̄0π. (47)

Finally, the integral Im6 can be treated as,

Im6 =

∫ 1

−1

√
1− β̄2

[
cos(2mt)

tan t
− 1

t

]
dβ̄ +−

∫ 1

−1

√
1− β̄2

t
dβ̄ (48)

where the first term on the right hand side of Eq. (48) is the regular integral, as it can be

proved that its kernel has the limit value of 0 when t→ 0, while the second term is Cauchy

type singular integral, which can be evaluated using Eq. (47).

5.2.3. Treatments of regular integrals

Regular integrals Im1 , Im2 , Im3 of Eq. (42) and the first integrals on the right hand sides

of Eqs. (43), (46) and (48) are evaluated numerically using Gaussian quadrature.

GP m=0 m=10 m=20 m=30 m=40

20 0.26438 -67.5035 -144.851 -222.256 -299.658
50 0.26437 -67.5033 -144.851 -222.256 -299.668
100 0.26437 -67.5033 -144.851 -222.256 -299.668
200 0.26437 -67.5033 -144.851 -222.256 -299.668
400 0.26437 -67.5033 -144.851 -222.256 -299.668
800 0.26437 -67.5032 -144.851 -222.255 -299.668

Table 1: Convergence analysis of regular integral in Eq. (43) for β̄0 = 0.25.

The results of the convergence analysis for the regular integral of Eq. (43) are presented

in Table 1 in which “GP” denotes the number of Gaussian points and m is the truncation

number. The arc of unit radius is characterized by the angles β1 = π/4, β2 = 3π/4 and the

value of β̄0 is taken to be β̄0 = 0.25. In cases of large m, some of the Gaussian points are

located very close to the origin. In order to evaluate the values of the kernel at such points

accurately, we expanded the latter into Taylor series up to at least O(t11) when |β̄0−β̄| ≤ 0.1.
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From the results of Table 1, it can be concluded that 100 Gaussian points are sufficient

for accurate numerical evaluation of the regular integral of Eq. (43).

Similar results are presented in Table 2 for the regular integral of Eq. (46) and the same

values of β1, β2, and β̄0. Here too, 100 Gaussian points are sufficient for accurate numerical

evaluation of the regular integral of Eq. (46).

GP m=0 m=10 m=20 m=30 m=40

20 0.00000 17.2649 37.4370 57.3773 77.3928
50 0.00000 17.2656 37.4384 57.3793 77.4143
100 0.00000 17.2656 37.4385 57.3794 77.4145
200 0.00000 17.2656 37.4385 57.3794 77.4145
400 0.00000 17.2656 37.4385 57.3794 77.4145
800 0.00000 17.2656 37.4385 57.3794 77.4145

Table 2: Convergence analysis of regular integral in Eq. (46) related to β̄0 = 0.25.

To ensure that all regular integrals are accurately evaluated, we implemented 800 Gaus-

sian points in all numerical examples considered below.

5.2.4. Reduction to linear system equations

Standard collocation method is used to generate the system of linear algebraic equations

from the governing integral equations of Eq. (37) and Eq. (38).

If the series in Eq. (40) are truncated at m = N , the total number of unknown coefficients

in approximations for σ̃S and ωS is 4(N+1). To obtain these coefficients, 2(N+1) collocation

points are required. They are chosen to be uniformly distributed on the circular arc L away

from its tips, since the approximations of Eq. (40) already satisfy the tip conditions of Eq.

(7).

Substituting the approximations of Eq. (40) into the governing equations of Eq. (37),

Eq. (38) and evaluating all integrals of Eq. (42), we obtain the following system of linear
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algebraic equations for each collocation point β̄0j, where j = 1, · · · , 2(N + 1),

− γσ̃0 − Σ1j = −γσ̃S(β̄0j)+

(1− κ)θ2

8π(κ+ 1)

N∑
m=0

{
Am
[
cos(mgj)I

m
1j − sin(mgj)I

m
2j

]
+Bm

[
cos(mgj)I

m
2j + sin(mgj)I

m
1j

]}
+

κθ2

8π(κ+ 1)

N∑
m=0

{
Am
[
cos(mgj)I

m
4j − sin(mgj)I

m
5j

]
+Bm

[
cos(mgj)I

m
5j + sin(mgj)I

m
4j

]}
+

κθ2σ̃0
8π(κ+ 1)

N∑
m=0

{
Dm

[
cos(mgj)I

m
6j − sin(mgj)I

m
3j

]
+ Em

[
cos(mgj)I

m
3j + sin(mgj)I

m
6j

]}
,

(49a)

Σ2j = −ωS(β̄0j)+

κθ2σ̃0
16π(κ+ 1)

N∑
m=0

{
Dm

[
cos(mgj)I

m
4j − sin(mgj)I

m
5j

]
+ Em

[
cos(mgj)I

m
5j + sin(mgj)I

m
4j

]}
−

κθ2

16π(κ+ 1)

N∑
m=0

{
Am
[
cos(mgj)I

m
6j − sin(mgj)I

m
3j

]
+Bm

[
cos(mgj)I

m
3j + sin(mgj)I

m
6j

]}
−

σ̃0θ
2

16π

N∑
m=0

{
Dm

[
cos(mgj)I

m
1j − sin(mgj)I

m
2j

]
+ Em

[
cos(mgj)I

m
2j + sin(mgj)I

m
1j

]}
.

(49b)

in which gj = θβ̄0j/2 + b, Σ1j, Σ2j of Eq. (35) and integrals Im1j of Eq. (42) are all evaluated

at the j-th collocation point β̄0j.

After solving the system of equations Eq. (49a), Eq. (49b), one can obtain the coefficients

Am, Bm, Dm, and Em. Substitution of those coefficients into the approximations of Eq. (40)

provides the values of σ̃S and ωS on the arc L. The jumps ∆σ̃ = ∆σ/µ can be then evaluated

using Eqs. (2), (3).

The tractions σ(z) = σn(z) + iσ`(z) outside of L are evaluated using Eq. (19), while

the Cauchy stresses σij are evaluated using Eq. (19) with the set of appropriately chosen

normal vectors. For example, to calculate σ11(z) and σ12(z), one can set z = ix2 and assume

that normal vector to the line on which z is located (axis Ox2) points in Ox1 direction.

Thus, σn(z) = σ11(z) and σ`(z) = σ12(z) on that line. Similarly, to obtain σ22, one can set
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z = x1 and assume that the normal to the line on which z is located (axis Ox1) points in

Ox2 direction leading to σ22 = σn on that line.

6. Comparison with the solution for the rigid circular arc problem

It was shown in Mogilevskaya et al. (2021b) that the problem of the Gurtin-Murdoch

material surface (in plane strain setting) is reduced to that of a rigid line (stiffener) in the

case of L being a straight segment and γ = 0, σ0 = 0.

We now will demonstrate that this is not the case for the circular arc problem considered

here. To do so, we analyze the solution of Liu and Jiang (1994) for the problem of a rigid

circular arc embedded into an infinite isotropic elastic plane.

For simplicity, we consider a special case of uniaxial load σ∞11 for which ε = 0, see Eq.

(62) in Liu and Jiang (1994). Using the expressions for the complex potentials of Eqs. (15),

(55)-(56) in Liu and Jiang (1994), we first obtain the limit values of complex tractions at the

arc boundary (τ τ̄ = R2). Subtraction of these limit values leads to the following expression

for the complex traction jump across the rigid arc:

∆σ = χ+
0 (τ)

κ+ 1

κ

[
−R

3Γ̄′

τ 2
+
R3Γ̄′

τ 2
cos

θ

2
+ (κΓ−D)

(
τ −R cos

θ

2

)]
, (50)

in which

χ+
0 (τ) = −χ−0 (τ) = − 1√

(Reiβ +Ri)(Reiβ −Ri)
= − 1

R
√
e2iβ + 1

= − e−iβ/2

R
√

2 cos β
, (51)

and the meaning of the remaining parameters is explained in Liu and Jiang (1994).

Assuming that θ = β2 − β1 = π and taking into account that, for uniaxial load, see Eqs.

(59)-(61) in Liu and Jiang (1994),

Γ =
σ∞11
4
, Γ̄′ = −σ

∞
11

2
, D =

σ∞11
4

κ+ 1

2κ− 1
, cos

θ

2
= 0, (52)
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we get, after substituting Eqs. (51), (52) into Eq. (50), that

∆σ = −κ+ 1

2κ

σ∞11√
2 cos β

[
e−i5β/2 +

2κ2 − 2κ− 1

2(2κ− 1)
eiβ/2

]
. (53)

Therefore, the jumps in traction components across the rigid arc in the solution of Liu and

Jiang (1994) are,

∆σn = −κ+ 1

2κ

σ∞11√
2 cos β

[
cos

(
5

2
β

)
+

2κ2 − 2κ− 1

2(2κ− 1)
cos

(
β

2

)]
, (54a)

∆σ` =
κ+ 1

2κ

σ∞11√
2 cos β

[
sin

(
5

2
β

)
− 2κ2 − 2κ− 1

2(2κ− 1)
sin

(
β

2

)]
. (54b)

If we take σ0 = 0 and γ = 0 in the Gurtin-Murdoch theory, we get (according to Eqs.

(2) and (3) of the present paper) that

∆σn = −σ
S

R
, ∆σ` =

∂σS

∂s
=

1

R

∂σS

∂β
= − ∂

∂β
∆σn. (55)

It can be seen that jumps in traction components of Eq. (54) resulted from the rigid arc

solution of Liu and Jiang (1994) do not satisfy the second condition of Eq. (55).

This fact can be explained using the Benveniste and Miloh classification of thin interphase

layers, i.e. Benveniste and Miloh (2001), in which the Gurtin-Murdoch jump conditions and

those for the rigid interface describe two distinct interface regimes, see Eqs. (2.11), (2.17)

in Benveniste and Miloh (2001).

It is interesting to compare the dimensionless jumps ∆σn/µ and ∆σ`/µ obtained using

the solution of Liu and Jiang (1994) with the ones obtained from the Gurtin-Murdoch theory

with σ0 = 0 and γ = 0. The following parameters are chosen for the comparison: σ∞11/µ = 1,

ν = 0.35, R = 1, and β ∈ [−π/2, π/2]. The corresponding results are plotted on Fig. 2.

It should be seen from Fig. 2a that ∆σn/µ = 0 for our solution when β = −π/2 or
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Figure 2: Comparisons of stresses jumps ∆σn/µ and ∆σ`/µ obtained using the Gurtin-Murdoch theory with
σ0 = 0, γ = 0 and the ones by Liu and Jiang (1994).

β = π/2, while the the corresponding values calculated using the solution by Liu and Jiang

(1994) tend to infinity. It is also observed, see Fig. 2b, that the values of ∆σ`/µ for both

solutions are very close and their magnitudes become very large when β is approaching β1

and β2.

7. Numerical results

We reiterate that all the results of this section are obtained using 800 Gaussian points

to assure the accuracy of integration, as explained in Section 5.2.3. Also, the values of

the kernels of all regular integrals involved in Eq. (42) are evaluated using Taylor series

expansions when |β̄ − β̄0| ≤ 0.1, in order to avoid near singularity. As in Mogilevskaya

et al. (2021b), we adopted the intervals for the parameters σ̃0 and γ to be σ̃0 ∈ [10−4, 10−1],

γ ∈ [10−1, 103].

7.1. Convergence analysis

Consider the following arcs: (i) short arc (β1 = 89π/180, β2 = 91π/180), (ii) medium

arc (β1 = π/4, β2 = 3π/4), and (iii) long arc (β1 = 0, β2 = π), all with the radius R = 1.

Assume that σ0 = 0, in which case Eq. (37) and Eq. (38) are fully decoupled, σ̃S can be
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evaluated independently from ωS, and the elastic fields outside of the arcs and across them

can be expressed via σ̃S only. The rest of the parameters are set as σ̃∞22 = 1, σ̃∞11 = σ̃∞12 = 0,

ν = 0.33, and γ = 0.1. Convergence of the results for σ̃S for the three types of arcs with

the increase in value of the truncation parameter m is demonstrated on Fig. 3. It can be

concluded that, for the chosen value of γ, the results converge at m = 40.
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Figure 3: Values of σ̃S as functions of m for the three types of arcs.

We also investigated the convergence of the results for the dimensionless traction jumps

∆σ̃ = ∆σ/µ = ∆σ̃n + i∆σ̃` obtained via σ̃S using Eqs. (55). From the latter equations

it can be seen that ∆σ̃n is a linear function of σ̃S and, therefore, on Fig. 4 we plot the

corresponding results for ∆σ̃` only.
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Figure 4: Values of ∆σ̃` as functions of m for the three types of arcs.

From Fig. 4, it can also be seen that, for the chosen value of γ, the results converge

at m = 40. We will use this number in numerical simulations below for the cases of small
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to medium values of γ. However, as in the case of the straight segment considered in

Mogilevskaya et al. (2021b), accurate solutions for the cases of γ ≥ 102 would require the

use of larger truncation numbers. We will discuss this issue in Section 7.2.2.

7.2. Parametric study

7.2.1. Influence of arc length θ
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Figure 5: Distributions of σ̃S and ∆σ̃` along the arcs.

As in Section 7.1, we consider the three types of arcs and assume the same values for

the remaining parameters, except for γ that is now taken to be γ = 1. The plots of Fig. 5

illustrate the distributions of σ̃S and ∆σ̃` along the arcs. It can be seen that the values of

σ̃S for arcs (i) and (ii) are negative. The interval of variations of σ̃S decreases from roughly

−0.25 < β̄ < 0 for arc (i) to −0.18 < β̄ < 0 for arc (ii) and, in each case, there exists a

single minimum at β̄ = 0. The corresponding results for arc (iii) are located within a wider

interval that includes both negative and positive values. In addition, the plot of σ̃S has three

local extremes: maximum values of σ̃S = 0.159 are reached at β̄ = ±0.8 and its minimum
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value of σ̃S = −0.0804 is reached at β̄ = 0. The influence of arc length on ∆σ̃` is even

more dramatic, as can be seen from the same figure. The interval of variation of ∆σ̃` first

decreases as the arc length increases from case (i) to case (ii) but then significantly increases

for case (iii); the behavior of the plot for case (iii) is completely reversed as compared to

that for case (i). We can, therefore, conclude that the arc length has a profound effect on

the problem’s solutions. We have also compared the plots on Fig. 5 with those shown on

Figs. 3 and 4 and concluded that with the increase in γ, the absolute values of σ̃S and

∆σ̃` decrease, while the analysis of their behavior reveal the same trends when arc length

increases, i.e. it can be seen from Fig. 3c, that, for a long arc, there also exist two maximum

values σ̃S = 0.205 reached at β̄ = ±0.8 and one minimum value σ̃S = −0.113 reached at

β̄ = 0.
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Figure 6: Distribution of σ̃S along short arcs vs that for a straight line.

It is interesting to compare our results with the results for the straight segment case

shown on Fig. 5 of Mogilevskaya et al. (2021b), which were obtained here with the same

parameters as in the latter paper. To do that, we set the arcs lengths to be θ = 10π/180,

5π/180, 2π/180, 1π/180 and plot the obtained results for σ̃S on Fig. 6. From that figure, it

can be seen that the overall behavior of σ̃S does not change significantly in case of chosen

values for θ and is somewhat similar to that for the straight segment case.
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7.2.2. Influence of γ

We have already compared the results obtained with two values of γ for the case of arcs

of various lengths. Here we perform more detailed comparison for the case of short arc (i).
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Figure 7: Distributions of σ̃S and ∆σ̃` along the arc as functions of γ.

To do that, we adopt the same values for the parameters R, σ̃∞ij , ν, and σ̃0 as in the

previous examples, while considering four different values of γ, i.e. γ = 0.1, 1, 10, 100. The

corresponding results for σ̃S and ∆σ̃` obtained with our solutions are plotted on Fig. 7.

The results for σ̃S for γ ≥ 100 exhibited oscillations, due to the Gibbs phenomenon near

the tips. Similarly as in Mogilevskaya et al. (2021b), see the results of Fig. 5 of that paper,

higher order truncation number up to m = 125 as well as spectral filter procedure in Sarra

(2006) are required to obtain smoother solutions.

From Fig. 7a we can conclude that with the increase in γ, the value of σ̃S tends to 0,

as it should, because according Eq. (37) σ̃S → σ̃0 as γ → ∞ and we took σ̃0=0. With the

decrease in γ, the interval of variation of σ̃S significantly increases and, for small γ, a single

minimum is reached at β̄ = 0, as it can be clearly seen for the case of γ = 0.1. The changes

in behavior of ∆σ̃` with the increase in γ, shown on Fig. 7b, are mostly happening near the

tips. This can be explained by the fact that ∆σ̃` is proportional to the derivative σ̃S where

the value of σ̃S changes abruptly.
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7.2.3. Influences of surface tension σ̃0

Consider the case of arc (ii), assume that γ = 1, σ̃∞22 = 1, R = 1, ν = 0.33, and take the

following values of σ̃0 = 0.01, 0.05, 0.1. In this case, σ̃0 6= 0 and, therefore, the system of

Eqs. (37), (38) cannot be decoupled. The values of σ̃S and ωS obtained from that equations

are plotted on Fig. 8.
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Figure 8: Distributions of σ̃S and ωS along the arc as functions of σ̃0.

From Fig. 8a we can see that the plots of σ̃S exhibit similar behavior with Fig. 5b, but

the absolute values of surface stress decrease with the increase of surface tension σ̃0. The

same is true for the plots of and ωS. Due to symmetry of the geometry and remote load, σ̃S

is symmetric in respect to y-axis, while ωS is anti-symmetric.

Since σ0 6= 0, the values of ∆σ̃n and ∆σ̃` are computed from Eqs. 2, 3 using both σ̃S

and ωS. These values are plotted on Fig. 9. Due to fast change in values of σ̃S and ωS near

the tips, the values of ∆σ̃n and ∆σ̃` become very large there, while the corresponding values

outside of the tips vicinities vary less.

7.2.4. Modeling of local fields in composites reinforced with graphene-oxide membranes

For illustration purposes, we consider epoxy matrix with µ = 2 GPa, ν = 0.35 containing

the arc characterized by R = 5 nm and β1 = π/4, β2 = 3π/4. The two-dimensional elastic



7 NUMERICAL RESULTS 26

� � � � � � � � 0.0 0.5 1.0
� � � �

0.0

0.5

1.0

1.5

  
  
  

medium arc

a )

� � � � � � � � 0.0 0.5 1.0
� � � �

� � � �

0.0

0.4

0.8

  
  
  

medium arc

b )

Figure 9: Distributions of ∆σ̃n and ∆σ̃` along the arc as functions of σ̃0.

properties of the arc are chosen to be equal to those reported in Suk et al. (2010), which

results in the following dimensionless parameters: γ = 0.12 and σ̃0 = 0.025.
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Figure 10: Dimensionless Cauchy stresses for the case of remote loading σ̃∞22 = 0.05.

We first assume that the only non-zero component of the far-field is σ∞22 = 100 MPa

Mogilevskaya et al. (2008), which is σ̃∞22 = σ∞22/µ = 0.05. The dimensionless Cauchy stresses

σ̃ij in the domain x1 ⊗ x2 ∈ [−6.5, 6.5] ⊗ [−1.25, 8.5] (nm) are plotted on Fig. 10. It can

be seen from Fig. 10a and b that while the distributions of σ̃11 and σ̃22 are symmetric with

respect to x2-axis, the distribution σ̃12 is anti-symmetric as in Fig. 10c. The mechanical

properties in this example are the same as those used in Mogilevskaya et al. (2021b), where

L was assumed to be a straight segment and far-field load was of the same type (but of
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different magnitude). Comparison of our results with the corresponding contour plots of

Fig. 11 in Mogilevskaya et al. (2021b), shows that the curvature-induced effects manifest

themself in lack of symmetry of stress fields with respect to x1-axis, which is expected. Also,

it can be clearly seen that all components σ̃ij in Fig. 10 undergo jumps across the arc.

From Fig. 10a, it can be observed that σ̃11 are tensile inside of the most of the region,

which demonstrates that the effect of Poisson’s ratio in the bulk (under the vertical far-filed

σ̃∞22 = 0.05) is less than that of positive surface tension σ̃0. Near the tips σ̃11 is compressive

and exhibits singular behavior, while the tensile stresses are concentrated right under the

arc. From Fig. 10b, it can be concluded that σ̃22 is tensile everywhere in the region of

interest. It is seen from Fig. 10c that σ̃12 along the arc is anti-symmetric and exhibit

singular behavior near the tips.

We then consider the same example but take the remote load to be σ̃∞11 = 0.05. The me-

chanical properties and geometries are the same with the previous example. Dimensionless

Cauchy stresses σ̃ij in the same region are plotted on Fig. 11, from which we can conclude

that the resulting σ̃11 and σ̃22 are symmetric to x2-axis, while σ̃12 is anti-symmetric.
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Figure 11: Dimensionless Cauchy stresses for the case of remote loading σ̃∞11 = 0.05.

From Fig. 11a, it is found that σ̃11 is tensile inside the most of the region. However,

it is interesting to note that σ̃11 is compressive right under the arc, which illustrates an

important role of the curvature and surface tension. From Fig. 11b, we observe that stress
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σ̃22 is mostly tensile, which, again, indicates that the effect of the Poisson ratio in the bulk

is less than that of positive surface tension. The values of σ̃22 are negative in close vicinities

of the tips. Fig. 11c indicate again that σ̃12 is anti-symmetric.

We finally consider the remote shear load σ̃∞12 = 0.05. The mechanical properties and

geometries are again the same as in the previous examples. Dimensionless Cauchy stresses

σ̃ij inside the same region are plotted on Fig. 12.
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Figure 12: Dimensionless Cauchy stress fields or the case of remote loading σ̃∞12 = 0.05.

From Fig. 12 we can conclude that under remote shear load σ̃12, σ̃11 and σ̃22 are anti-

symmetric, while σ̃12 is symmetric due to the symmetry of remote load and geometry. In

this case, the traction jumps are not as pronounced as ones shown on Fig. 10 and Fig. 11.

We could still observe singular behavior of the stresses near the tips.

8. Conclusions

In this paper, we solved for the first time the plane strain problem of an infinite isotropic

elastic matrix subjected to uniform far-field load and containing a Gurtin-Murdoch material

surface of cylindrical shape. The solution allows for accurate evaluations of all elastic fields

everywhere in the material system. The analysis of the analytical and numerical results,

obtained in the paper, lead to the following important conclusions. First, we demonstrated

that, unlike for the straight segment case considered in Mogilevskaya et al. (2021b), the
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equations for the components of the surface stress tensor are always coupled, when the

surface tension is present. Second, we found out that, unlike for the straight segment case,

the problem under study is never reducible to that of a rigid arc. This fact can be explained

using the Benveniste and Miloh classification of thin interphase layers in which the Gurtin-

Murdoch jump conditions and those for a rigid arc describe two distinct interface regimes.

Third, we demonstrated that, even for the case of zero surface tension, the arc length

has a profound influence on the distribution of surface stress, which represents one of the

curvature-induced effects. We also investigated the influence of the remaining dimensionless

parameters with the focus on curvature-induced effects.

The obtained solution has important theoretical and practical applications. From the

theoretical standpoint it can be used as a benchmark example for the numerical solutions of

the problems involving membranes of arbitrary sufficiently smooth shapes, that is a subject

of our future work. We plan to modify the present approach in order to use the more

complete Steigmann-Ogden theory that includes bending effects of the material surface.

The methods developed here will be helpful for solving more complex three-dimensional

problems that are also a subject of our future work. On a practical side, the solution could

be used for modeling mechanical processes in composite materials reinforced by ultra thin

prestressed stiff flexible membranes.
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