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Abstract

The problem of an infinite isotropic elastic matrix subjected to uniform far-field load and con-
taining a Gurtin-Murdoch material surface of cylindrical shape is considered in plane strain
setting. The governing equations and the boundary conditions for the problem, reduced to
that of an infinite plane containing a material curve along a circular arc, are reviewed. The
displacements inside the matrix are sought in the complex variables form of a single layer
elastic potential whose density represents the jump in complex tractions across the curve.
Exact complex integral representations for the elastic fields everywhere in the material are
provided and the problem is further reduced to the system of real variables hypersingular
boundary integral equations in terms of the strain and rotation components associated with
the curve. The components are then approximated by the series of trigonometric functions
that are multiplied by the square root weight functions to allow for automatic incorporation
of the tip conditions. The unknown coefficients in the series are found from the system of
linear algebraic equations that is solved using standard collocation method. The numerical
examples are presented to illustrate the influence of dimensionless parameters with the main

focus on the study of curvature-induced effects.

Keywords: Composites with ultra thin and stiff reinforcements, Gurtin-Murdoch theory,



Complex variables integral equations, Hypersingular integrals

1. Introduction

In this paper, we consider the plane strain problem of an infinite isotropic elastic ma-
trix that contains a Gurtin-Murdoch material surface of cylindrical shape and subjected to
uniform far-field load. The surface represents a membrane of vanishing thickness that is
characterized by its own elastic stiffness and the residual surface tension. The possible ap-
plications of the problem are in the area of modeling composite materials that use ultra-thin
stiff membranes as reinforcements, e.g., Cao (2014), Giiler and Bagc (2020), Papageorgiou
et al. (2017, 2020), Suk et al. (2010), in particular, thick graphene reinforced composite
cylindrical panels, e.g. Mirzaei and Abbasi (2023).

The idea that the existing material surface theories, Gurtin and Murdoch (1975, 1978),
Steigmann and Ogden (1997, 1999), could be useful for modeling materials with flexible and
extensible or inextensible reinforcements was suggested in several recent publications, see
e.g. Baranova et al. (2020), Mogilevskaya et al. (2021b), Zemlyanova et al. (2023). However,
the numerical solutions were reported there only for the case of a material surface along a
straight segment.

Here, we present the numerical algorithm for solving the two-dimensional plane-strain
problem involving a Gurtin-Murdoch curve along a circular arc and use it to investigate the
influence of the curvature-related effects. As in Mogilevskaya et al. (2021b), Zemlyanova
et al. (2023), we use the theories of elastic layer potentials and integral equations in order to
present exact expressions for the elastic fields everywhere in the material. The problem is
further reduced to the solution of the system of coupled real variables hypersingular bound-

ary integral equations written in terms of the strain and rotation components associated
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with the arc. Using the approximations for the components that include the truncated se-
ries of trigonometric functions multiplied by the square root weight functions and employing
standard collocation, we obtain the system of linear algebraic equations for the unknown
series coefficients. The elastic fields in the matrix are then found using appropriate com-
plex integral representations. The obtained solution is used to illustrate the influence of
governing dimensionless parameters with the main focus on the curvature-induced effects.
Additionally, we demonstrate that, unlike in the case of a material surface along a straight
segment, the problem under study is not reducible to the problem of a rigid circular arc,
solved in Liu and Jiang (1994).

The paper is structured as follows. In Section 2, we formulate the problem under study
and review its governing equations. In Section 3, we introduce the complex variables rep-
resentations for the geometry and fields involved, list the exact complex variables integral
representations for the fields, and present the governing complex variable boundary integral
equation. In Section 4, we reduce the latter equation to the system of real variables bound-
ary integral equations and, after introducing the dimensionless parameters, reformulate the
system in dimensionless settings. In Section 5, we describe major steps of the proposed
numerical algorithm. In Section 6, we demonstrate that, unlike in the case of a material sur-
face along a straight segment, the problem under study is not reducible to the problem of a
rigid circular arc. Section 7 contains several examples of numerical simulations. Concluding

remarks are presented in Section 8.

2. Problem formulation and governing equations

Consider the plane strain problem of an infinite isotropic elastic matrix that contains a
Gurtin-Murdoch material curve located along the circular arc L of radius R with the tips
at the points & = a, £ = b, see Fig. 1. The matrix, characterized by the shear modulus

1 and Poisson’s ratio v, is subjected to the uniform far-field load oy, 055, 075. The origin
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Figure 1: Problem configuration: a Gurtin-Murdoch circular material curve in an elastic matrix.

of the global Cartesian coordinate system with the unit basis vectors ey, e; is chosen to be
located at the center of the arc. Additionally, the local coordinate system with the mutually
orthogonal unit vectors n, £ is introduced and shown on Fig. 1.

According to the Gurtin-Murdoch theory, it is assumed that L is characterized by its
own elastic stiffness parameters ug, Ag and by the residual surface tension oy. The governing
equations for the theory include the standard Navier equation for the displacements inside
the matrix supplemented by the conditions across L and at its tips. The supplemental
conditions for the problem under study can be deduced from the corresponding conditions
for a curve of an arbitrary sufficiently smooth shape reported in Mogilevskaya et al. (2021b),
Zemlyanova et al. (2023), see also a review in Mogilevskaya et al. (2021a), by assuming that
the local radius of curvature R = R(s) on L is constant.

Thus, the conditions for the fields across L at the point & € L are (here and below we

omitted the argument & for brevity)

ul =uy =wy, ud =uy; = u, (1)
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S 5
Ao =af — 0y =7 402 )
Do’ w?
Aoy =0 —0; = —— - 3
o =0, — 0, 95 +UOR> (3)

where u; and uy are the displacement components of the bulk material in the global coordi-
nate system, o, and o, are the corresponding normal and shear tractions, and s is the arc
length. The superscripts “+7, “—” here and below describe the limit values of the fields

when L is approached from the direction of that of the normal vector or from the opposite

direction, respectively. The expressions for the surface stress o, surface strain €, and
surface rotation w® involved in Eqgs. (2)-(3) are
o = oo + ()\S + 2#5)85, (4)
s U, Ou
e’ = —+ —, 5
R  Os (5)
U ou,,
W= —— 4 (6)

R 0s’

in which u,, and u, are the normal and shear components of the displacements.

The conditions at the tips & = a and £ = b of L are given by the following equations:

0% =0, opw’ = 0. (7)

3. Representation of the geometry and fields by complex variables

3.1. Complex variables combinations

We assume that the coordinates of the point & € L are combined in the complex variable

T = 11 +im9. The equation of the arc then can be expressed in complex variables as

7 = R?, (8)



3 REPRESENTATION OF THE GEOMETRY AND FIELDS BY COMPLEX VARIABLES6

where a bar over a symbol denotes complex conjugation.

As in Mogilevskaya et al. (2021a,b), Zemlyanova et al. (2023), we introduce the complex

variables displacements and tractions as

u = uy +iug, o =0, + ioy, (9)

where i2 = —1.

Using the following transformation formulae, see e.g., Mogilevskaya et al. (2021a):

Up, + iup = lwexp (—ia), (10)
% = exp (ia) %, (11)
da 1
— — 12
== R (12)

where av = «v () is the angle between the axis Oz and the tangent at the point € € L, and

taking into account that for the circle
exp (i) = expli(8 +7/2)] = i, (13)

where 5 = [ (s) is the angle between the axis Oz; and the normal to the arc at the point
characterized by complex variable 7 (s), one can rewrite Eqgs. (4)-(6), in complex variables

notations as

o = oo + (/\S + 2#5)85 =09 + ()\5 + 2#5) Re/, (14&)
s Up  Ouy ,

— " 2 _R 14b

€ 7 + s eu, (14b)

W=y Oun _ —TIma/, (14c)

R 0s
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where v’ is defined as follows:
, du d7du

_du drdu 1
ar Tarar (15)

u

3.2. Complex variables integral representations for the fields

The integral representations for the elastic fields in the material system under study can
be deduced from the representations for more general case of a curve of an arbitrary shape,
see Linkov and Mogilevskaya (1998), Mogilevskaya and Linkov (1998), Mogilevskaya et al.
(2021a,b), Zemlyanova et al. (2023).

The representation for the complex displacements outside of L is

u(z) =u>*(z) — m /Aa (1) [26In(z — 7) — kKK (7, 2)] dT
- (16)
—ﬁ/Aa(ﬂB@@3@d? ,

in which z = 7 + izs is the complex combination of the Cartesian coordinates of the point

2 ¢ L, Ao = Ao, +1A0y, k =3 — 4v,

T—Z

9
|
N

K, (T,z):ln?_z, K, (T,Z):?_E, (17)
and
u> (2) = % |:(I€ —1) 711 1022:5 _ T2 Ulé 10125] : (18)
The expressions for the complex tractions on some line outside of L is
() =0 () = gy 4 [ B0 () |66 = ) 4wl K (7,2
z) = 2) — ———— K — K— z
’ 7 21 (k + 1) 7 T2 o1\ !

' (19)

— 0
— | A —K. T
[3ea R ar
L
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where

o o0 (oe) o 3 o0 =
oo( )_ 071 T 03 +022_011 — 2io75 dz
o>®(z2) = 5 —

2 dz’

(20)

As in Mogilevskaya et al. (2021b), Zemlyanova et al. (2023), the boundary integral equa-

tion will be obtained using the following representation that results from Eqs. (15), (16):

o (2) = ()] + 4m — / Ao (7 [ = maﬁKl (r.2)| dr

—/Aa (T)%KQ (1,2)dT ¢,

L
where

o0 oo o0 o0 7 o0 =
1 o7 035 05 —of] — 205 dz

oM [Oﬂ——l) T > - |- (22)

3.3. Boundary integral equation in terms of complex variables

[u(2)] =

Using the limiting procedure in which the field point is allowed to reach the boundary
point 70 = 70 +i7) from the direction normal to the boundary at that point, the following
boundary integral equation is obtained, see Mogilevskaya et al. (2021b), Zemlyanova et al.

(2023):

(1) = o (O] + ——— ){][ Aa()[zﬁ ! HafoKl(T,w)} dr

Amip(k + 1 T—70 (23)
/Aa o Ka(r, T )df}.
Using Egs. (8), (17), we get for the points on L
(1 — 79770 770 770
Klzlnmzln _ﬁ s Kz:_ﬁ’ (24&)

2 K 1 K.
dr= g, 9K _ 1 0K, T (24D)
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Substituting the expressions of Eq. (24) into Eq. (23), we obtain the following boundary

integral equation:

W' (%) = u® (70 ;) [][ LAU(T) (25 + m%) dr — /L W%df] . (25)

+ —
Amip(k + 1 T —70

4. The system of hypersingular boundary integral equations

4.1. Reduction of Eq. (25) to the system of real variables equations

Using the following representations for the points on L:

. . o d7 d R? :
= Re”, 1% = Rei® dr = iReds, 0 — = —e 20,

= 2
dT() dT() T0 ( 6)

and substituting Eq. (26) into Eq. (25), we get (here and below, we omitted the arguments

79 and 7 for brevity)

i8
I / K . (&
=u* + — A Aoy)————
u =u™ + GX 1)][L( on +1i Jg)elﬁ _elﬁodﬁ
K .
———— (Ao, +iAgy)e PPl 27
+47T/L(/€+1)][L( on +1A0y)e B (27)
1
- Ao, —iAoy)dp.

Taking into account that

e? 1 sin(B— )

@B —efo 2 21— cos(B — fo)]

, €0700) = cos(B — By) +isin(B— By),  (28)

and using Egs. (2), (3), (12), (13), (14a), (14c), (27), (28), one can arrive, after some algebra,



4 THE SYSTEM OF HYPERSINGULAR BOUNDARY INTEGRAL EQUATIONS 10

at the following system of real variables integral equations in terms of ¢° and w?:

0% =(\g + 2us) Reu™ + o

As + 2 /’32 { o cos(B — Bo) + aow sin(8 — o)
drRu(k +1) Jg, " 1 —cos(8 — Bo)

(29)

—Fas}dﬁ,

S mu 4 1 ) /52 {F&aows cos(B — By) — o sin(B — By)

= _ _ S
YT drRu(k +1) Jg 1 —cos(B8 — Bo) Tow ] ds, (30)

where 31 and (3, are the angles associated with the tips of L and Reu®’, Im >’ are obtained

from Eqs. (22), (26) as

Reu™ — 1 {(’i B 1)af§ + 0% 2075 sin(26) + cos(280) (of] — USS):| |
2u 4 2
oy — o3 . -
Imu™ = ﬂ [% sin(200) — o713 cos(25) | -
4.2. Dimensionless integral equations
Introducing the following dimensionless parameters
. o5 uRO 20° 200
0 =04, — o _ Y o T 55 = 32
ﬁQ 617U1j 1 » 2MS+>\S7U /LR070-0 ,LLRQ, ( )
one can re-write Eq. (29) and Eq. (30) as follows:
0/2 B2
&S =81 + v + ;/ 4B
2m(k+1) Jg, (33)
K62 /ﬁ2 7 cos(8 — Bo) + Gow” sin(B — BO)dﬁ
2m(k +1) Jg, 1 —cos(B — fo) ’
500 /2 B2
WS = —22—40-(0—1_1)/ wsdﬁ
(K

k0 /2 P2 GowS cos(f — By) — &3 sin(8 — Bo)
) /1 dgs.

Am(k 41 1 — cos(B — Bo)
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where ~ ~ o R R
O + 05 2075 sin(20) + cos(260)(55F — 955)
011 Y

%‘22 sin(25y) — % cos(20p).

le(li—1>

22:

Using the linear transformation

§=08+b, (36)

in which b = (8; + f2)/2, the integrals involved in Egs. (33) and (34) can be transformed

to those over the interval 5 € [—1,1] and the resulting equations become

(1-x) 3)dj

8(—%)/ 55(8)dp

/ 53(B) + Gow®(B) sin[0/2(3 — Bo)]
1 —cos[0/2(8 — Bo)]

—21—750_—70 ( )
(37)

.
S(a L e
22=—w10%%—1&r/}w(6kw

K0? ! 50WS(B) - 55(5) sin[9/2(B - BO)]
+ 167(k + 1) / 1 — cos[f/2(B — Bo)]

5. Numerical solution

5.1. Approximations of the unknown functions

On a circular arc, it is reasonable to approximate sufficiently smooth functions by trun-
cated series of trigonometric functions. To account for the tip conditions of Eq. (7), we sug-
gest to use the square root weight function, as in Mogilevskaya et al. (2021b), Zemlyanova
et al. (2023).

Thus, the approximations for °(3) and w”(j3) are taken as

WE

65(5) _ \/(5 — 61)(B = B2) [Ap, cos(mfB) + By, sin(mp)],

3
Il
=)

(39)

WI(B) = (B—=B)B =) [Dmcos(mpB) + E,,sin(mf)].

WE

3
I
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Approximations of Eq. (39) can be further reduced to the following ones written in terms

of B (after we omit the constant multiplier in the weight function):

55(B) = \J1= 32D { Ay cos[m(0/25 + b)] + By, sin[m(0/25 + b)]}

—4/1— 32 Z { Ay, cosimB/2(3 — Bo) +m(6/280 + b))+

B, sin[m8/2(B — o) +m(6/25, + b))} (402)

N

=4/1— 32 Z { A, [cos(2mt) cos(mg) — sin(2mt) sin(mg)]+

m=0

By, [sin(2mt) cos(mg) + cos(2mt) sin(mg)]},

WS(B) = \J1 = B2 > { Dy coslm(8/28 + b)) + By, sinlm(8/28 + b)] }

=/1—p2 Z {D,, cosim8/2(B — Bo) +m(6/25y + b)|+

Ey sin[m0/2(3 — Bo) +m(0/25, + b))} (40b)

N

=4/1— 32 Z {D,,[cos(2mt) cos(mg) — sin(2mt) sin(mg)]+

m=0

E.,[sin(2mt) cos(mg) + cos(2mt) sin(mg)]},

where A,,, B, D,,, and E,, are unknown coeflicients for the m-th terms in truncated series

and

t=1t(B8)=0/4(8— B), g=9(Bo) = 050/2 +b. (41)
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5.2. Fvaluation of the integrals

5.2.1. List of integrals

Substitution of the approximations of Eq. (40) into the system of Eqs. (37), (38) (with

the use of the variables introduced in Eq. (41)) produces integrals of the following types:

32 cos(2mt)d3,

1
I :/ \/1 — B%sin(2mt)dB,
sin(2mt) sin 2t , sin( 2mt
I = \/1— /2 /1
3 /_1 ﬂ 1 — cos(2t) ﬁ / tant
1

(2mt) (42)
cos(2m -
;" = 1—p2———~d
4 /_1 g 1 — cos(2t) b,
1 .
sin(2mt)
I = 2~ d
b b 1 — cos(2t) b,
m ,€os(2mt) sin 2t , €os( th
Ig' = df =
1 — cos(2t) tant
where superscript m in I (i = 1,--- ,6) denotes the integral related to the m-th term in

truncated series.

It can be easily seen that the integrals I7* and IJ" in Eq. (42) are regular integrals, which
can be directly evaluated by the Gaussian quadrature. To determine the singularities of the
remaining integrals, one has to investigate the behavior of their integrands when ¢ — 0, i.e.,
B — Bo. Such investigation reveals that I} is also a regular integral, since the denominator
tant behaves as t when ¢ — 0, while numerator sin(2mt) at the same time behaves as (2mt),

leading to the limiting value of the integrand to be 2m+/1 — 32, which is a regular function.

5.2.2. Singular behavior of the remaining integrals of Eq. (42)

We will now demonstrate that the integral I7* of Eq. (42) can be represented as,

= I T T
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in which the first term on the right-hand side is the regular integral while the second term
is the so-called hypersingular integral, see e.g. Lin’kov and Mogilevskaya (1990), Martin
(1992).

To prove that the first integral is regular, we represent the numerator and denominators
of the first term in the brackets of Eq. (43) by the truncated Taylor series and obtain the

following result:
/ cos(2mt) 1 -
/ - p |:1—COS 2t) Q_ﬂ]dﬁ
- oy 1]
/ 1—52[ (Qt +Ot4) ﬁ] dﬁ
B —1 = @t L O — 1+ L2+ Ot
- [V e o
e - 1\ 1+0(t?)
- [ 1= () T

It is easy to see that that the kernel of the final expression of Eq. (44) has finite limit value

of (—m?+1/6)\/1 — 52 when t — 0 and, thus, the first integral of Eq. (43) is regular.
The second, hypersingular, integral of Eq. (43) can be evaluated analytically as, see
Martin (1992)

1 /1 _R2 _ 1 /1 _ A2 B /1 _ A2
7[1 —lﬂﬁdﬁzié[ ot D @)

TG - BT Gy e

Similarly, we represent the integral I as,

Ig_/l [ _ 3 LSI_HCZ"L; :|d/6—{—m][ \ dﬁ, (46)

where the first term on the right hand side of Eq. (46) is the regular integral, as it can be
proved (as it was done for I}* ) that the limit value of its kernel is 0 when ¢t — 0. The second

term on the right hand side of Eq. (46) is the singular Cauchy type integral and it can be
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evaluated analytically as, see Martin (1992),

][llwt—ixﬁdgz][l V- oo 4]N1—7/82d5

4
SRR Y: B Sl Y. By
oG- =6l 55 glom (47)

Finally, the integral I can be treated as,

m — [cos(2mt) 1] L /1—-p52
we [ [ e f S -

where the first term on the right hand side of Eq. (48) is the regular integral, as it can be
proved that its kernel has the limit value of 0 when ¢ — 0, while the second term is Cauchy

type singular integral, which can be evaluated using Eq. (47).

5.2.8. Treatments of reqular integrals
Regular integrals 7", I3*, It of Eq. (42) and the first integrals on the right hand sides

of Egs. (43), (46) and (48) are evaluated numerically using Gaussian quadrature.

GP m=0 m=10 m=20 m=30 m=40

20 0.26438 -67.5035 -144.851 -222.256 -299.658
50  0.26437 -67.5033 -144.851 -222.256 -299.668
100 0.26437 -67.5033 -144.851 -222.256 -299.668
200 0.26437 -67.5033 -144.851 -222.256 -299.668
400 0.26437 -67.5033 -144.851 -222.256 -299.668
800 0.26437 -67.5032 -144.851 -222.255 -299.668

Table 1: Convergence analysis of regular integral in Eq. (43) for By = 0.25.

The results of the convergence analysis for the regular integral of Eq. (43) are presented
in Table 1 in which “GP” denotes the number of Gaussian points and m is the truncation
number. The arc of unit radius is characterized by the angles 51 = 7/4, fs = 37/4 and the
value of f, is taken to be By = 0.25. In cases of large m, some of the Gaussian points are
located very close to the origin. In order to evaluate the values of the kernel at such points

accurately, we expanded the latter into Taylor series up to at least O(t'') when |5, — 3| < 0.1.
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From the results of Table 1, it can be concluded that 100 Gaussian points are sufficient
for accurate numerical evaluation of the regular integral of Eq. (43).
Similar results are presented in Table 2 for the regular integral of Eq. (46) and the same
values of f1, B2, and fy. Here too, 100 Gaussian points are sufficient for accurate numerical

evaluation of the regular integral of Eq. (46).

GP m=0 m=10 m=20 m=30 m=40
20 0.00000 17.2649 37.4370 57.3773 77.3928
50  0.00000 17.2656 37.4384 57.3793 77.4143
100 0.00000 17.2656 37.4385 57.3794 77.4145

200 0.00000 17.2656 37.4385 57.3794 77.4145

400 0.00000 17.2656 37.4385 57.3794 77.4145

800 0.00000 17.2656 37.4385 57.3794 77.4145

Table 2: Convergence analysis of regular integral in Eq. (46) related to By = 0.25.

To ensure that all regular integrals are accurately evaluated, we implemented 800 Gaus-

sian points in all numerical examples considered below.

5.2.4. Reduction to linear system equations

Standard collocation method is used to generate the system of linear algebraic equations
from the governing integral equations of Eq. (37) and Eq. (38).

If the series in Eq. (40) are truncated at m = N, the total number of unknown coefficients
in approximations for & and w® is 4(N+1). To obtain these coefficients, 2( N +1) collocation
points are required. They are chosen to be uniformly distributed on the circular arc L away
from its tips, since the approximations of Eq. (40) already satisfy the tip conditions of Eq.
(7).

Substituting the approximations of Eq. (40) into the governing equations of Eq. (37),

Eq. (38) and evaluating all integrals of Eq. (42), we obtain the following system of linear
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algebraic equations for each collocation point Boj, where j =1,--- ,2(N + 1),

— Y00 — Elj = —5%(fo;)+

1 . . m m . m
ﬁ Z {Anm [cos(mg))IT; — sin(mg;)I3;] + B [cos(mg;) I3} + sin(mg;)I77] } +

N
k0?2

e mzzo { Ay, [cos(mg;)Ij} — sin(mg;)IT] + Bu, [cos(mg;) I} + sin(mg;) I]1] } +

KGQ& m : m m . m
W"‘Ol) mZ:O {Dm [cos(mgj)IGj - Sln(mgj)f3j} + B, [Cos(mgj)ISj + sm(mgj)IGj} } ,

(49a)
S5 = —w® (Bo;)+

"{026_ m . m m . m
W—El) mzzo {Dm [cos(mgj)l4j — sm(mgj)]@-} + B, [cos(mgj)l5j + 81n(mgj)l4j] } —

N
kB>

W Z { A [cos(mg;) I§; — sin(mg;)I57] + Bn, [cos(mg;) 15 4 sin(mg; ) 1T } —
Ul(éi Z {D cos(mg; I”;‘ — sin(mgj)fgﬂ + E,, [cos(mgj)lg;” + sin(mgj)fm } .

) (49b)
in which g; = 050;/2+ b, £1;, B of Eq. (35) and integrals I7? of Eq. (42) are all evaluated
at the j-th collocation point Boj.

After solving the system of equations Eq. (49a), Eq. (49b), one can obtain the coefficients
A, B, Dy, and E,,. Substitution of those coefficients into the approximations of Eq. (40)
provides the values of & and w® on the arc L. The jumps AG = Ao /i can be then evaluated
using Eqgs. (2), (3).

The tractions o(z) = 0,(z) + ioy(z) outside of L are evaluated using Eq. (19), while
the Cauchy stresses o;; are evaluated using Eq. (19) with the set of appropriately chosen
normal vectors. For example, to calculate oq1(z) and 012(2), one can set z = iz, and assume

that normal vector to the line on which z is located (axis Oxs) points in Ox; direction.

Thus, 0,(z) = 011(2) and o4(z) = 012(z) on that line. Similarly, to obtain o9y, one can set
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z = z7 and assume that the normal to the line on which z is located (axis Ox;) points in

Oz direction leading to o995 = o, on that line.

6. Comparison with the solution for the rigid circular arc problem

It was shown in Mogilevskaya et al. (2021b) that the problem of the Gurtin-Murdoch
material surface (in plane strain setting) is reduced to that of a rigid line (stiffener) in the
case of L being a straight segment and v =0, gy = 0.

We now will demonstrate that this is not the case for the circular arc problem considered
here. To do so, we analyze the solution of Liu and Jiang (1994) for the problem of a rigid
circular arc embedded into an infinite isotropic elastic plane.

For simplicity, we consider a special case of uniaxial load o¢} for which ¢ = 0, see Eq.
(62) in Liu and Jiang (1994). Using the expressions for the complex potentials of Eqs. (15),
(55)-(56) in Liu and Jiang (1994), we first obtain the limit values of complex tractions at the
arc boundary (77 = R?). Subtraction of these limit values leads to the following expression

for the complex traction jump across the rigid arc:

1 31 3TV
Aazxar(T)K—i_ R +R COS;+(M‘-D) (T—Rcosg)], (50)

K T2 T2
in which

1 1 e_i6/2

SN () — _ ___°
Xo (T) = —Xo (7) \/(Reiﬁ + Ri)(Re® — Ri) RVe2B 1 R\/2cosf’

(51)

and the meaning of the remaining parameters is explained in Liu and Jiang (1994).
Assuming that § = Sy — $; = 7 and taking into account that, for uniaxial load, see Egs.

(59)-(61) in Liu and Jiang (1994),

cos — =0, (52)
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we get, after substituting Eqgs. (51), (52) into Eq. (50), that

k+1 off : 262 — 26k — 1 .
A _ 11 —i53/2 ahv —ahv T 2 ip)2 ) 53
7 2% /2c0s 0 [6 T e —n ¢ (53)

Therefore, the jumps in traction components across the rigid arc in the solution of Liu and

Jiang (1994) are,

_ k+1 off 5 2k% — 2k — 1 I6]
Ao, = — 2n oo B {cos (§6> + —2(2,1 Y coS (5)} , (54a)

_k+1 off . (5 2k —2k—1 . (B
AO’E = o \/m |:Sln (56) - m Sin (5):| . (54b)

If we take oy = 0 and v = 0 in the Gurtin-Murdoch theory, we get (according to Egs.

(2) and (3) of the present paper) that

Ao, = —U—;, Aoy = %f = %88;‘; = —%Aan. (55)
It can be seen that jumps in traction components of Eq. (54) resulted from the rigid arc
solution of Liu and Jiang (1994) do not satisfy the second condition of Eq. (55).

This fact can be explained using the Benveniste and Miloh classification of thin interphase
layers, i.e. Benveniste and Miloh (2001), in which the Gurtin-Murdoch jump conditions and
those for the rigid interface describe two distinct interface regimes, see Eqs. (2.11), (2.17)
in Benveniste and Miloh (2001).

It is interesting to compare the dimensionless jumps Ao, /u and Aoy/u obtained using
the solution of Liu and Jiang (1994) with the ones obtained from the Gurtin-Murdoch theory
with g = 0 and 7 = 0. The following parameters are chosen for the comparison: o5y /u = 1,

v=0.35, R=1,and g € [-7/2,7/2]. The corresponding results are plotted on Fig. 2.

It should be seen from Fig. 2a that Ao,/u = 0 for our solution when § = —7/2 or
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Figure 2: Comparisons of stresses jumps Ao, /u and Acy/p obtained using the Gurtin-Murdoch theory with
09 =0, v =0 and the ones by Liu and Jiang (1994).

[ = /2, while the the corresponding values calculated using the solution by Liu and Jiang
(1994) tend to infinity. It is also observed, see Fig. 2b, that the values of Ac,/u for both
solutions are very close and their magnitudes become very large when [ is approaching (;

and ﬁg .

7. Numerical results

We reiterate that all the results of this section are obtained using 800 Gaussian points
to assure the accuracy of integration, as explained in Section 5.2.3. Also, the values of
the kernels of all regular integrals involved in Eq. (42) are evaluated using Taylor series
expansions when |3 — By| < 0.1, in order to avoid near singularity. As in Mogilevskaya
et al. (2021b), we adopted the intervals for the parameters 7, and 7 to be 5o € [1074,107!],

v € [1071,107].

7.1. Convergence analysis
Consider the following arcs: (i) short arc (51 = 897/180, 2 = 917 /180), (ii) medium
arc (01 = w/4, By = 3w/4), and (iii) long arc () = 0, Sy = m), all with the radius R = 1.

Assume that oy = 0, in which case Eq. (37) and Eq. (38) are fully decoupled, 6° can be
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evaluated independently from w?, and the elastic fields outside of the arcs and across them

can be expressed via 7° only. The rest of the parameters are set as 655 = 1, 655 = 655 = 0,

v = 0.33, and v = 0.1. Convergence of the results for ° for the three types of arcs with

the increase in value of the truncation parameter m is demonstrated on Fig. 3. It can be

concluded that, for the chosen value of v, the results converge at m = 40.

0.0
@ — m=10 i
0.1 1 - - -m=20 /
\\ - m=30 /
*0-2’\\ - - m=40
® 03 =10 =0,7=01
y,
\
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~ _~
—0.5 T
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b ) \ ~00
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% 20l \ m=30 /
N - - m=40 /
-025} \ ) /
\ mediumarc /
-030} N /
\
—0.35 \\\,/'/
~0.40 \ \ \
-1.0 -0.5 0.0 0.5

0.00

) c)

=]

0.25
0.20F //\\ m=10 /x\
OAISf/‘ \\ -~ - m=20 / \\
0.0/ \ "~ m=30 / \
\ - - m=40 / |
0.05 FE—1\ / |
0.00F \ y
Go=10 \ /  long arc
005F g1\ /
~0.10F N
-0.15 . : :
-1.0 -0.5 0.0 0.5 1.0

Figure 3: Values of 5° as functions of m for the three types of arcs.

We also investigated the convergence of the results for the dimensionless traction jumps

AG = Ao/ = AG, + iAd, obtained via ¢° using Eqs. (55). From the latter equations

it can be seen that Ag, is a linear function of ° and, therefore, on Fig. 4 we plot the

corresponding results for Ag, only.

short arc

0.5

0.0

I8

medium arc

—0.5

0.0 0.

5 1.0

Figure 4: Values of Ad, as functions of m for the three types of arcs.

From Fig. 4, it can also be seen that, for the chosen value of 7, the results converge

at m = 40. We will use this number in numerical simulations below for the cases of small
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to medium values of v. However, as in the case of the straight segment considered in

Mogilevskaya et al. (2021b), accurate solutions for the cases of v > 10? would require the

use of larger truncation numbers. We will discuss this issue in Section 7.2.2.

7.2. Parametric study

7.2.1. Influence of arc length 0
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—0.10 -

—0.15
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65 =160=0y=1
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Figure 5: Distributions of & and Ag, along the arcs.

long arc

65 =1,60=0y=1

long arc
-1.0 -0.5 0.0 0.5 1.0

As in Section 7.1, we consider the three types of arcs and assume the same values for

the remaining parameters, except for v that is now taken to be v = 1. The plots of Fig. 5

illustrate the distributions of &° and Ad, along the arcs. It can be seen that the values of

& for arcs (i) and (ii) are negative. The interval of variations of 7° decreases from roughly

—0.25 < B < 0 for arc (i) to —0.18 < B < 0 for arc (ii) and, in each case, there exists a

single minimum at 3 = 0. The corresponding results for arc (iii) are located within a wider

interval that includes both negative and positive values. In addition, the plot of &° has three

local extremes: maximum values of 5° = 0.159 are reached at 3 = 0.8 and its minimum
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value of 3% = —0.0804 is reached at 5 = 0. The influence of arc length on Ag, is even
more dramatic, as can be seen from the same figure. The interval of variation of Ag, first
decreases as the arc length increases from case (i) to case (ii) but then significantly increases
for case (iii); the behavior of the plot for case (iii) is completely reversed as compared to
that for case (i). We can, therefore, conclude that the arc length has a profound effect on
the problem’s solutions. We have also compared the plots on Fig. 5 with those shown on
Figs. 3 and 4 and concluded that with the increase in +, the absolute values of 6% and
Adcy decrease, while the analysis of their behavior reveal the same trends when arc length

increases, i.e. it can be seen from Fig. 3c, that, for a long arc, there also exist two maximum

values ° = 0.205 reached at 3 = £0.8 and one minimum value &° = —0.113 reached at
B =0.
0.00
I Mogilevskaya et al. 2021b J
—005¢ 6 = 107/180
I — — 6=57/180 /
~0.10 9 =2r/180
0N
S L\ 0 = 17/180
0151\,
N\ 03 =1,00=0,7=1 Yy
~0.20 - -
_025 I I I
-1.0 -0.5 0.0 0.5 1.0

B

Figure 6: Distribution of 5 along short arcs vs that for a straight line.

It is interesting to compare our results with the results for the straight segment case
shown on Fig. 5 of Mogilevskaya et al. (2021b), which were obtained here with the same
parameters as in the latter paper. To do that, we set the arcs lengths to be § = 107 /180,
5 /180, 2w /180, 17 /180 and plot the obtained results for 5° on Fig. 6. From that figure, it
can be seen that the overall behavior of ° does not change significantly in case of chosen

values for f and is somewhat similar to that for the straight segment case.
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7.2.2. Influence of
We have already compared the results obtained with two values of v for the case of arcs

of various lengths. Here we perform more detailed comparison for the case of short arc (i).

0.0 10 ]
a — o o
) - - b) ol
—0.1h 55 =1,60=0 6 Gos=1,60=0 |
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-0.2 - o 2L |
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3 v =100
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-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
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Figure 7: Distributions of 5 and Ag, along the arc as functions of 7.

o

o v, and gg as in the

To do that, we adopt the same values for the parameters R, &
previous examples, while considering four different values of v, i.e. v = 0.1, 1, 10, 100. The
corresponding results for &° and Ag, obtained with our solutions are plotted on Fig. 7.
The results for % for v > 100 exhibited oscillations, due to the Gibbs phenomenon near
the tips. Similarly as in Mogilevskaya et al. (2021b), see the results of Fig. 5 of that paper,
higher order truncation number up to m = 125 as well as spectral filter procedure in Sarra
(2006) are required to obtain smoother solutions.

From Fig. 7a we can conclude that with the increase in 7, the value of 6° tends to 0,
as it should, because according Eq. (37) 6° — ¢ as v — oo and we took Go=0. With the
decrease in vy, the interval of variation of 7° significantly increases and, for small 7, a single
minimum is reached at 5 = 0, as it can be clearly seen for the case of ¥ = 0.1. The changes
in behavior of Ag, with the increase in v, shown on Fig. 7b, are mostly happening near the

tips. This can be explained by the fact that Ag, is proportional to the derivative 6° where

the value of & changes abruptly.
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7.2.3. Influences of surface tension oy

Consider the case of arc (ii), assume that v =1, 655 = 1, R =1, v = 0.33, and take the
following values of 6o = 0.01, 0.05, 0.1. In this case, 69 # 0 and, therefore, the system of
Eqgs. (37), (38) cannot be decoupled. The values of 3% and w® obtained from that equations

are plotted on Fig. 8.

0.05 0.3
a) b)
0.00 L oo =0.01 0.2 \
- — 00=0.05 i h AN medium arc
o Fy= 0.1r \ N
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oY 3 00 e \
N , \
~0.10- - ol Go=001 ‘
' ~ — 6=0.05 N |
~0.15- ‘ . 5p=0.1 s
0151 medium arc — G =1v=1 -0.2+ 0 X |
70.20 L L L 703 1 1 1 _
-1.0 —-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 8: Distributions of ° and w® along the arc as functions of &.

From Fig. 8a we can see that the plots of &° exhibit similar behavior with Fig. 5b, but
the absolute values of surface stress decrease with the increase of surface tension 3. The
same is true for the plots of and w®. Due to symmetry of the geometry and remote load, &°
is symmetric in respect to y-axis, while w® is anti-symmetric.

Since oy # 0, the values of Ag, and A, are computed from Eqs. 2, 3 using both 5%
and w®. These values are plotted on Fig. 9. Due to fast change in values of 6° and w® near
the tips, the values of Ad,, and Ad, become very large there, while the corresponding values

outside of the tips vicinities vary less.

7.2.4. Modeling of local fields in composites reinforced with graphene-oxide membranes
For illustration purposes, we consider epoxy matrix with u = 2 GPa, v = 0.35 containing

the arc characterized by R = 5 nm and 5y = 7/4, B2 = 37/4. The two-dimensional elastic
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Figure 9: Distributions of Ag,, and Ag, along the arc as functions of &y.

properties of the arc are chosen to be equal to those reported in Suk et al. (2010), which

results in the following dimensionless parameters: v = 0.12 and 7y = 0.025.
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Figure 10: Dimensionless Cauchy stresses for the case of remote loading 55 = 0.05.

We first assume that the only non-zero component of the far-field is ¢35 = 100 MPa
Mogilevskaya et al. (2008), which is 655 = 055/ = 0.05. The dimensionless Cauchy stresses
;; in the domain 71 ® 9 € [—6.5,6.5] ® [—1.25,8.5] (nm) are plotted on Fig. 10. It can
be seen from Fig. 10a and b that while the distributions of 617 and G99 are symmetric with
respect to xs-axis, the distribution 5 is anti-symmetric as in Fig. 10c. The mechanical
properties in this example are the same as those used in Mogilevskaya et al. (2021b), where

L was assumed to be a straight segment and far-field load was of the same type (but of
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different magnitude). Comparison of our results with the corresponding contour plots of
Fig. 11 in Mogilevskaya et al. (2021b), shows that the curvature-induced effects manifest
themself in lack of symmetry of stress fields with respect to xj-axis, which is expected. Also,
it can be clearly seen that all components ¢;; in Fig. 10 undergo jumps across the arc.

From Fig. 10a, it can be observed that &;; are tensile inside of the most of the region,
which demonstrates that the effect of Poisson’s ratio in the bulk (under the vertical far-filed
755 = 0.05) is less than that of positive surface tension &y. Near the tips 611 is compressive
and exhibits singular behavior, while the tensile stresses are concentrated right under the
arc. From Fig. 10b, it can be concluded that 9o is tensile everywhere in the region of
interest. It is seen from Fig. 10c that 1o along the arc is anti-symmetric and exhibit
singular behavior near the tips.

We then consider the same example but take the remote load to be 677 = 0.05. The me-
chanical properties and geometries are the same with the previous example. Dimensionless
Cauchy stresses 7;; in the same region are plotted on Fig. 11, from which we can conclude

that the resulting o;; and 99 are symmetric to x9-axis, while 15 is anti-symmetric.
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Figure 11: Dimensionless Cauchy stresses for the case of remote loading 7% = 0.05.

From Fig. 1la, it is found that &y, is tensile inside the most of the region. However,
it is interesting to note that &i; is compressive right under the arc, which illustrates an

important role of the curvature and surface tension. From Fig. 11b, we observe that stress
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092 is mostly tensile, which, again, indicates that the effect of the Poisson ratio in the bulk
is less than that of positive surface tension. The values of 99 are negative in close vicinities
of the tips. Fig. 11c indicate again that &5 is anti-symmetric.

We finally consider the remote shear load 695 = 0.05. The mechanical properties and
geometries are again the same as in the previous examples. Dimensionless Cauchy stresses

0;; inside the same region are plotted on Fig. 12.
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Figure 12: Dimensionless Cauchy stress fields or the case of remote loading 75 = 0.05.

From Fig. 12 we can conclude that under remote shear load 712, 617 and 699 are anti-
symmetric, while 615 is symmetric due to the symmetry of remote load and geometry. In
this case, the traction jumps are not as pronounced as ones shown on Fig. 10 and Fig. 11.

We could still observe singular behavior of the stresses near the tips.

8. Conclusions

In this paper, we solved for the first time the plane strain problem of an infinite isotropic
elastic matrix subjected to uniform far-field load and containing a Gurtin-Murdoch material
surface of cylindrical shape. The solution allows for accurate evaluations of all elastic fields
everywhere in the material system. The analysis of the analytical and numerical results,
obtained in the paper, lead to the following important conclusions. First, we demonstrated

that, unlike for the straight segment case considered in Mogilevskaya et al. (2021b), the
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equations for the components of the surface stress tensor are always coupled, when the
surface tension is present. Second, we found out that, unlike for the straight segment case,
the problem under study is never reducible to that of a rigid arc. This fact can be explained
using the Benveniste and Miloh classification of thin interphase layers in which the Gurtin-
Murdoch jump conditions and those for a rigid arc describe two distinct interface regimes.
Third, we demonstrated that, even for the case of zero surface tension, the arc length
has a profound influence on the distribution of surface stress, which represents one of the
curvature-induced effects. We also investigated the influence of the remaining dimensionless
parameters with the focus on curvature-induced effects.

The obtained solution has important theoretical and practical applications. From the
theoretical standpoint it can be used as a benchmark example for the numerical solutions of
the problems involving membranes of arbitrary sufficiently smooth shapes, that is a subject
of our future work. We plan to modify the present approach in order to use the more
complete Steigmann-Ogden theory that includes bending effects of the material surface.
The methods developed here will be helpful for solving more complex three-dimensional
problems that are also a subject of our future work. On a practical side, the solution could
be used for modeling mechanical processes in composite materials reinforced by ultra thin

prestressed stiff flexible membranes.
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