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Abstract

This paper presents the study of the plane strain problem of an infinite
isotropic elastic medium subjected to far-field load and containing multiple
Gurtin-Murdoch material surfaces located along straight segments. Each
material segment represents a membrane of vanishing thickness character-
ized by its own elastic stiffness and residual surface tension. The governing
equations, the jump conditions, and the surface tip conditions are reviewed.
The displacements in the matrix are sought as the sum of complex variable
single-layer elastic potentials whose densities are equal to the jumps in com-
plex tractions across the segments. The densities are found by solving the
system of coupled hypersingular boundary integral equations. The approxi-
mations by a series of Chebyshev’s polynomials of the second kind are used
with the square root weight functions chosen to satisfy the tip conditions
automatically. Numerical examples are presented to illustrate the influence
of dimensionless parameters and to study the effects of interactions.
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1. Introduction

In this paper, we consider the plane strain model that can be used to sim-
ulate a class of composite materials reinforced with thin, stiff, and prestressed
inhomogeneities/layers.

Most of the literature on modeling materials with thin and stiff rein-
forcements treat them as rigid line inclusions (the so-called stiffeners or anti-
cracks). Early papers deal with the problems involving a single straight line
rigid inclusion, e.g., [1],[2],[3],[4],[5]. The theoretical and numerical treat-
ments of the problems with multiple rigid straight line inclusions are de-
scribed in, e.g., [6], [7],[8],[9],[10]; while experimental investigations are re-
ported in, e.g., [11],[12],[13]. Comprehensive reviews of relevant literature
can be found in, e.g., [14],[15].

The list of literature related to stiff elastic line inclusions is less ex-
tensive. The corresponding boundary value problems include conditions
for the fields across the lines of inclusions in terms of the thickness and
elastic parameters of original inhomogeneities of finite thicknesses. Those
conditions are derived by various types of asymptotic analyses, see, e.g.,
[16],[17],[18],[19],[20],[21],[22],[23],[24], and the references therein. In those
papers, the conditions for both stiff and soft inhomogeneities are derived.
The adequate conditions for stiff inhomogeneities include continuity in dis-
placements and jumps in tractions.

Numerical techniques for solving two-dimensional problems with a sin-
gle or multiple stiff elastic line inclusions in isotropic or anisotropic matrices
are reported in several publications, e.g., [25],[26],[27],[28]. In [25] and [27],
the problems of multiple elastic line inclusions are solved by using the com-
plex Kolosov-Muskhelishvili potentials and integral representations for the
holomorphic functions. In those papers, the line inclusions are arranged in
collinear configurations. In [26], the problem of a strip containing a rectilin-
ear arbitrary inclined thin-walled elastic inclusion of finite length is reduced
to the system of four singular integral equations and solved using Fourier
integral transformation. In [28], the problems of multiple stiff elastic or rigid
line inclusions in the multilayered orthotropic medium are studied. The solu-
tion technique is based on the use of Fourier transform. The methods used in
the above studies are restricted to two-dimensional problems and mostly deal
with inclusions located along straight segments. Therefore, those methods
cannot be extended for the problems of line inclusions of arbitrary shapes.
Additionally, all the above-mentioned publications made an assumption that
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inclusions are not prestressed.
In several recent publications, it was proposed to model materials with ul-

trathin and stiff inhomogeneities using Gurtin-Murdoch [29],[30] and Steigmann-
Ogden [31],[32] material surface theories, see [33],[34],[35],[36],[37]. These
theories treat the inhomogeneities as either membranes or shells of vanish-
ing thickness characterized by surface elastic parameters and surface tension.
The boundary conditions assume continuity of displacements and jumps in
tractions across the surfaces. In [34] and [35], it was suggested to use a single-
layer elastic potential as a modeling tool, which allows for handling surfaces
of arbitrary shapes, both in two and three dimensions. However, the nu-
merical solutions in [33],[34],[35] were obtained for the problems involving a
single straight-line inhomogeneity.

Here, we study the problem involving multiple material surfaces located
along arbitrarily arranged straight segments inside an infinite isotropic elastic
matrix. The theoretical formulation is based on the Gurtin-Murdoch theory,
and the single-layer elastic potential tool is used for solving the problem. The
paper is organized as follows. Section 2 introduces the problem formulation.
In Section 3, we review the governing equations and boundary conditions for
the Gurtin-Murdoch model in plane strain setting for the case of material
surfaces of arbitrary shapes. The equations and conditions are reformulated
in terms of complex variables in Section 4. Section 5 presents the real and
complex variable forms of integral representations for the displacements and
the complex variable representation for the tractions inside the bulk mate-
rial, as well as the boundary integral equations for the derivatives of the
displacement over the surface. Section 6 focuses on the case of surfaces along
straight segments for which it reduces to a system of coupled hypersingular
boundary integral equations in terms of the two unknown components of the
surface stress tensor. This section also introduces dimensionless variables
and the resulting system of coupled dimensionless hypersingular boundary
integral equations. The numerical technique for solving the system and for
evaluating the elastic fields inside the material system and the stress intensity
factors at the tips of the surfaces is described in Section 7, with some details
provided in the Appendix A. In Section 8, our model is validated by the
comparison with available benchmark solutions. We also present numerical
examples showcasing the effects of interactions, the influence of dimensionless
surface elasticity and surface tension parameters, as well as far-field loading
conditions. Finally, concluding remarks are provided in Section 9.
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2. Problem Formulation

Consider the two-dimensional plane strain problem involving an infinite
isotropic elastic matrix subjected to uniform far-field stresses σ∞ (σ∞

11, σ
∞
12,

σ∞
22) and containing N material surfaces L =

⋃N
k=1 Lk each located along

the straight segment Lk = [ak, bk], see Fig. 1. The Gurtin-Murdoch model
of material surface is adopted in which a segment represents a vanishing
thickness membrane characterized by the shear modulus µS, Lamé parameter
λS, and surface tension σ0. The elastic properties of the matrix are given by
the shear modulus µ and Poisson’s ratio ν. Note that the material surface
parameters have dimensions N/m, unlike the elastic parameters of the bulk,
whose dimensions are N/m2. The goal is to evaluate the elastic fields at any
point of the material system and the stress intensity factors at the membranes
tips.
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Fig. 1. Problem formulation.
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3. Review of governing equations of the Gurtin-Murdoch model
for the plane strain case

The governing equations for the Gurtin-Murdoch theory are derived in
[29],[30] and particularized for the plane strain case in [34], [38]. Here, we
review the latter equations for the case of material surface of arbitrary shape.
They include the standard Navier equation for the displacements of bulk
material and the following supplementary conditions for the elastic fields
across and at each material surface (those are valid at any point of the
surface):

u+1 = u−1 = u1 ,

u+2 = u−2 = u2 ,
(1)

σ+
l − σ−

l =
∂σS

∂s
+ σ0

ωS

R
,

σ+
n − σ−

n = −σ
S

R
+ σ0

∂ωS

∂s
.

(2)

The superscripts “+” and “–”, used in Eqs. (1)-(2) and throughout the
paper, represent the limit values of the corresponding fields as the surface
is approached from the direction of the normal vector or from the oppo-
site direction, respectively. The quantities u1 and u2 of Eq. (1) denote the
components of the displacement vector in the Cartesian coordinates (x1, x2),
while σn and σl of Eq. (2) represent the normal and shear components of
bulk tractions in the local coordinates (n, l), see Fig. 1. Additional quanti-
ties involved in Eq. (2) are: the arc length parameter s, the local radius of
curvature R = R(s), and the only non-vanishing components σS and ωS of
the surface stress tensor that are defined as

σS = σ0 + (λS + 2µS)ε
S ,

ωS = −ul
R

+
∂un
∂s

,

(3)

in which un and ul are the components of displacements in the local coordi-
nates (n, l) and εS is the only nonvanishing component of the surface strain
tensor that can be expressed via displacements as
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εS =
un
R

+
∂ul
∂s

. (4)

In addition, the following tip conditions must be enforced at the points
ak & bk, k = 1, 2, ...N :

σS = 0,

σ0ω
S = 0 .

(5)

4. Complex variables form of the equations

As demonstrated in [34] and [38], it is beneficial to reformulate Eqs. (1)-
(4) using the formalism of complex variables as

u+ = u− , (6a)

∆σ = σ+ − σ− = −R̃
R

[
σ0

R̃
+ 2η1u

′
+ 2η2u

′

]
+2iR̃[η1u

′′ exp (iα) + η2u′′ exp (−iα)] ,

(6b)

σS = σ0 + (2µS + λS)Re(u
′) , (6c)

ωS = −Im(u′) , (6d)

where u = u1+iu2, σ = σn+iσl, i
2 = −1, α is the angle between the axis Ox1

and the tangent at the point where the traction jumps are evaluated, R̃ is a
characteristic geometric parameter, such as, e.g., the average radius of surface
curvature, and the bar above the symbol indicates complex conjugation. The
notation u′ is used to identify the first derivative of the complex displacement
u on the surface, e.g.

u′ =
∂u

∂z
+
∂u

∂z

dz

dz
, (7)

and the second derivative, u′′ is defined in a similar manner.
Additional notations used in Eq. (6) are
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η1 =
2µS + λS + σ0

4R̃
,

η2 =
2µS + λS − σ0

4R̃
.

(8)

5. Governing integral representations

If the displacements in the matrix are expressed in the form of a single
layer elastic potential, [39], the conditions of continuity of the displacements
and jumps in tractions are automatically fulfilled, as explained in [40],[41]. In
real variables, the corresponding expression for each displacement component
has the following form:

uk(x) = u∞k (x) +

ˆ
L

∆tj(ζ)Gkj(x, ζ)dsζ ; k, j = 1, 2 , (9)

where L is the totality of the material surfaces, u∞k (x) is the corresponding
component of the displacements in the homogeneous plane (without material
surfaces) due to the far-field load, ∆tj(ζ) = t+j (ζ)−t−j (ζ) are the components
of jumps in tractions across the surfaces in the Cartesian coordinate system,
and the repeated index implies summation. The kernel Gkj(x, ζ) of Eq. (9)
is the following Kelvin fundamental solution:

Gkj(x, ζ) =
1

2πµ(κ+ 1)
[−κδkj ln r + r,k r,j ] , (10)

in which δkj is Kronecker’s symbol, κ = 3 − 4ν, r = |x − ζ|, rk = xk − ζk,
r,k = ∂r/∂xk.

The complex variables form of the above representations were obtained
in [41], [42], [43]. The integral representation for the complex displacements
outside of L can be expressed as follows:

u(z) = u∞(z)− 1

4πiµ(κ+ 1)

{ˆ
L

∆σ(τ)[2κ ln(z − τ)− κK1(τ, z)]dτ

+

ˆ
L

∆σ(τ)K2(τ, z)dτ

}
,

(11)
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in which z = x1 + ix2 /∈ L,

K1(τ, z) = ln

(
τ − z

τ − z

)
,

K2(τ, z) =

(
τ − z

τ − z

)
,

(12)

and

u∞(z) =
1

2µ

[
(κ− 1)

σ∞
11 + σ∞

22

4
z − σ∞

22 − σ∞
11 − 2iσ∞

12

2
z

]
. (13)

The complex tractions on some line outside of L can be represented by
the following integral expression:

σ (z) = σ∞ (z)− 1

2πi(κ+ 1)

{ˆ
L

∆σ(τ)

[
(κ− 1)

τ − z
+ κ

∂K1(τ, z)

∂z

]
dτ

−
ˆ
L

∆σ(τ)
∂K2(τ, z)

∂z
dτ

}
, (14)

where

σ∞ (z) =
σ∞
11 + σ∞

22

2
+
σ∞
22 − σ∞

11 − 2iσ∞
12

2

dz

dz
. (15)

Using Eq. (11), one can obtain the following equation (in which the deriva-
tives are defined as in Eq. (7)):

u′(z) = [u∞(z)]′ − 1

4πiµ(κ+ 1)

{ˆ
L

∆σ(τ)

[
2κ

1

z − τ
− κ

∂K1(τ, z)

∂z

]
dτ

+

ˆ
L

∆σ(τ)
∂K2(τ, z)

∂z
dτ

}
, (16)

where

[u∞(z)]′ =
1

2µ

[
(κ− 1)

σ∞
11 + σ∞

22

4
− σ∞

22 − σ∞
11 − 2iσ∞

12

2

dz

dz

]
. (17)
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It has been proved in [34] that u′(z) is continuous when z → τ 0 = τ 01 +
iτ 02 ∈ L, thus the resulting boundary integral equation on L is

lim
z→±τ0

u′(z) = u′(τ 0) = [u∞(τ 0)]′

− 1

4πiµ(κ+ 1)

{ 
L

∆σ(τ)

[
2κ

τ 0 − τ
− κ

∂K1(τ, τ
0)

∂τ 0

]
dτ

+

ˆ
L

∆σ(τ)
∂K2(τ, τ

0)

∂τ 0
dτ

}
, (18)

where the symbol
ffl
identifies the principal value of Cauchy types integral.

6. The particularization for the case of straight segments

The equations reviewed in Sections 3-5 were for the case of arbitrarily
curved surfaces. Here, we particularize them for the case under study in
which the surfaces are located along straight segments. In such case, 1/R = 0
and angle α is constant along each segment but can be different for different
segments. Thus, Eq. (2) reduces to

σ+
l − σ−

l =
∂σS

∂s
,

σ+
n − σ−

n = σ0
∂ωS

∂s
,

(19)

and the expression for the jumps in complex tractions across each segment
can be recast as

∆σ = σ0
∂ωS

∂s
+ i

∂σS

∂s
. (20)

Taking into account that dτ = exp(iα)ds , Eqs. (19)-(20) can be rewritten
as follows (the arguments were omitted for brevity):
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σ+
l − σ−

l = exp(iα)
∂σS

∂τ
,

σ+
n − σ−

n = σ0 exp(iα)
∂ωS

∂τ
,

∆σ =

(
σ0
∂ωS

∂τ
+ i

∂σS

∂τ

)
exp(iα) .

(21)

From Eq. (18) we obtain the following system of equations for τ 0 ∈
Lk , k = 1, 2, ..N for our case:

u′(τ 0) = [u∞(τ 0)]′

+
1

4πiµ(κ+ 1)

{ 
Lk

∆σ(τ)

(
2κ

τ − τ 0

)
dτ

+
N∑

p=1,p ̸=k

[ˆ
Lp

∆σ(τ)

[
2κ

τ 0 − τ
− κ

∂K1(τ, τ
0)

∂τ 0

]
dτ +

ˆ
Lp

∆σ(τ)
∂K2(τ, τ

0)

∂τ 0
dτ

]}
,

(22)

where

∂K1(τ, τ
0)

∂τ 0
=

{
0 if τ 0, τ ∈ Lk
exp(−2iαk)

τ−τ0
− 1

(τ−τ0)
if τ 0 ∈ Lk, τ /∈ Lk

,

∂K2(τ, τ
0)

∂τ 0
=

{
0 if τ 0, τ ∈ Lk

(τ−τ0) exp(−2iαk)−(τ−τ0)

(τ−τ0)2
if τ 0 ∈ Lk , τ /∈ Lk

,

(23)

in which the angles αk are shown on Fig .1.
With the use of Eqs. ( 6(c)-(d) ), system of Eq. (22) can be rewritten as

the system of 2N coupled hypersingular boundary integral equations in terms
of σS and ωS. The resulting expressions are rather long and not presented
here.
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6.1. Integral equations in dimensionless form

Introducing the following dimensionless variables:

σ̃ = σn/µ+ i σl/µ ,

σ̃ij = σij/µ ,

σ̃S|Lk
= σS(τ)/µlk ; τ ∈ Lk ,

σ̃0|Lk
= σ0(τ)/µlk ; τ ∈ Lk ,

γk =
2µlk

2µS + λS
,

ũ = (u1/a) + i (u2/a) ,

(24)

where lk is the half-length of the Lk, and a is the characteristic length, e.g.,
the arithmatic average of all lk, k = 1, 2, ..N . One can also rewrite τ ∈ Lk

as Zck + lk exp (iαk) τ̃ with Zck = (ak + bk)/2 and −1 ≤ τ̃ ≤ 1.
With those notations, the coupled system of 2N dimensionless hypersin-

gular boundary integral equations has the following form (k = 1, 2, .., N):

γk σ̃
S|Lk

= γk σ̃0|Lk
+ Σ̃k

1 +
κ

π (κ+ 1)

ˆ 1

−1

= σ̃S|Lk

dτ̃

(τ̃ − τ̃ 0)2

+
1

π(κ+ 1)

N∑
p=1,p ̸=k

Re

{
C

(σk)
1p

ˆ 1

−1

σ̃S|Lp

dτ̃

(τ̃ + Ẑpk)2
+ C

(σk)
2p

ˆ 1

−1

σ̃S|Lp

dτ̃

(τ̃ + Ẑpk)3

+C
(σk)
3p

ˆ 1

−1

ωS|Lp

dτ̃

(τ̃ + Ẑpk)2
+ C

(σk)
4p

ˆ 1

−1

ωS|Lp

dτ̃

(τ̃ + Ẑpk)3

}
, (25)
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ωS|Lk
= −Σ̃k

2 +
σ̃0|Lk

κ

2π(κ+ 1)

ˆ 1

−1

= ωS|Lk

dτ̃

(τ̃ − τ̃ 0)2

+
1

2π(κ+ 1)

N∑
p=1,p ̸=k

Re

{
C

(ωk)
1p

ˆ 1

−1

σ̃S|Lp

dτ̃

(τ̃ + Ẑpk)2
+ C

(ωk)
2p

ˆ 1

−1

σ̃S|Lp

dτ̃

(τ̃ + Ẑpk)3

+ C
(ωk)
3p

ˆ 1

−1

ωS|Lp

dτ̃

(τ̃ + Ẑpk)2
+ C

(ωk)
4p

ˆ 1

−1

ωS|Lp

dτ̃

(τ̃ + Ẑpk)3

}
, (26)

where the symbol

ˆ
= denotes the Hadamard finite part integral, and

Σ̃k
1 =

(κ− 1) + 2 cos (2αk)

4
σ̃∞
11 +

(κ− 1)− 2 cos (2αk)

4
σ̃∞
22 + sin (2αk) σ̃

∞
12 ,

Σ̃k
2 =

sin (2αk)

2
( σ̃∞

22 − σ̃∞
11) +

cos (2αk)

2
σ̃∞
12 ,

Ẑpk =

(
Zcp − z

lp

)
exp (−iαp) . . . z ∈ Lk .

(27)

The complex constants for Eqs. (25)-(26) are given by:

• Constants for Eq. (25)

C
(σk)
1p =

1

2
[(1 + κ) exp (2i(αp − αk))− (1− κ)] ,

C
(σk)
2p = 2i Im(Ẑpk) exp (2i(αp − αk)) ,

C
(σk)
3p =

σ̃0|Lp

2i
(1− κ) [1− exp (2i(αp − αk))] ,

C
(σk)
4p = −2 (σ̃0|Lp) Im(Ẑpk) exp (2i(αp − αk)) .

(28)
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• Constants for Eq. (26)

C
(ωk)
1p =

1

2i
(1 + κ) [1− exp (2i(αp − αk))] ,

C
(ωk)
2p = −2 Im(Ẑpk) exp (2i(αp − αk)) ,

C
(ωk)
3p =

σ̃0|Lp

2
[(1 + κ)− (1− κ) exp (2i(αp − αk))] ,

C
(ωk)
4p = −2i (σ̃0|Lp) exp (2i(αp − αk)) .

(29)

7. Numerical solution technique

7.1. Approximations

As in [34], we will use the following approximations for σ̃S and ωS:

σ̃S|Lk
=
√
1− (τ̃)2

n∑
m=0

(Ak)mUm(τ̃) . . . τ ∈ Lk , (30)

ωS|Lk
=
√
1− (τ̃)2

n∑
m=0

(Bk)mUm(τ̃) . . . τ̃ ∈ Lk , (31)

where Um(τ̃) is the Chebyshev polynomial of second kind of degree m, (Ak)m,
(Bk)m are the unknown coefficients for the k-th segment, and n is the max-
imum degree of the approximation, which we assume to be the same for all
segments. The square root weight function is used in order to automatically
satisfy the tip conditions, i.e., σ̃S = 0, σ̃0 ω

S = 0.

7.2. System of linear algebraic equations

Substituting approximations of Eqs. (30)-(31), into hypersingular equa-
tions Eqs. (25)-(26), multiplying them by Uj(τ̃), j = {0, 1, ..., n}, and using
orthogonality properties of Chebyshev polynomials, we obtain the following
systems of linear algebraic equations with respect to the unknown coefficients
(Ak)m , (Bk)m , k = {1, 2, .., N}:
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n∑
m=0

(Φk)jm(Ak)m−
1

π(1 + κ)

{
N∑

p=1,p ̸=k

[
n∑

m=0

(ϕp)jm (Ap)m +
n∑

m=0

(φp)jm (Bp)m

]}

=
(
γk(σ̃0)k + Σ̃k

1

)(1 + (−1)j

1 + j

)
; j = {0, 1, 2, ..n} , (32)

n∑
m=0

(Ψk)jm(Bk)m−
1

2π(1 + κ)

{
N∑

p=1,p ̸=k

[
n∑

m=0

(χp)jm (Ap)m +
n∑

m=0

(ψp)jm (Bp)m

]}

= −Σ̃k
2

(
1 + (−1)j

j + 1

)
; j = {0, 1, 2, ..n} , (33)

where,

(Φk)jm =
π

2
γkδjm +

k

1 + k
(m+ 1)

ˆ 1

−1

Um(τ̃)Uj(τ̃)dτ̃ ,

(Ψk)mj =
π

2
δjm +

(σ̃0)k k

2(1 + k)
(m+ 1)

ˆ 1

−1

Um(τ̃)Uj(τ̃)dτ̃ ,

(34)

(ϕp)jm =

ˆ 1

−1

Re

{
C

(σk)
1p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)2
dτ̃+

C
(σk)
2p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)3
dτ̃

}
Uj(τ̃)dτ̃ , (35)

(φp)jm =

ˆ 1

−1

Re

{
C

(σk)
3p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)2
dτ̃+

C
(σk)
4p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)3
dτ̃

}
Uj(τ̃)dτ̃ , (36)
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(χp)jm =

ˆ 1

−1

Re

{
C

(ωk)
1p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)2
dτ̃+

C
(ωk)
2p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)3
dτ̃

}
Uj(τ̃)dτ̃ , (37)

(ψp)jm =

ˆ 1

−1

Re

{
C

(ωk)
3p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)2
dτ̃+

C
(ωk)
4p

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)3
dτ̃

}
Uj(τ̃)dτ̃ . (38)

7.3. Evaluation of integrals

The system described in Section 7.2 involves several types of integrals.
The non-singular integral of Eq. (34) was computed using the built-in numer-
ical integration function ‘integral’ in MATLAB, which performs numerical
integration using global adaptive quadrature. This method numerically eval-
uates the integral of the function Um(τ̃) Uj(τ̃) over the interval [-1,1]. The
global adaptive quadrature algorithm automatically adjusts the number and
placement of integration points to ensure accurate and efficient computation
of the integral.

The right-hand sides of Eqs. (35)-(38) involve double integrals. The inner
integrals of Eqs. (35)-(38) are of the following types:

Ism =

ˆ 1

−1

Um(τ̃)

√
1− (τ̃)2

(τ̃ + Ẑpk)s
dτ̃ ; s = {2, 3}&m = {0, 1, 2, ...n} , (39)

in which Ẑpk is located outside the interval [-1,1].
They can be evaluated analytically by employing the following recursive

relation between Chebyshev polynomials:

Um+1(τ̃) = 2τ̃ Um(τ̃)− Um−1(τ̃) . (40)

To use this relation, we have to have closed-form expressions for the
integrals with m = 0 and m = 1. Those expressions are
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I11 = π + 2π

(
−1 +

√
1− 1

(Ẑpk)2

)
(Ẑpk)

2, (41)

I20 = −π − Ẑpk I

2

√
1− (Ẑpk)2

, (42)

I21 = 4πẐpk +
2− 4(Ẑpk)

2√
1− (Ẑpk)2

[
ln
(
1− Ẑpk

)
− ln

(
Ẑpk − 1

)]
, (43)

I30 =
I

4

√(
1− (Ẑpk)2

)3 , (44)

I31 = 2 (I20 − Ẑpk I30) , (45)

where,

I =

[
ln

(
1

Z̃pk

)
− ln

(
−
√

1

Z̃pk

)
+ ln

(
−
√
Z̃pk

)]
, (46)

in which Z̃pk =
1−Ẑpk

1+Ẑpk
.

In expressions (42)-(46), proper care has to be taken in evaluations of
complex logarithms to ensure that their branch cuts are chosen along the
negative real axis.

If the complex variable t is defined as t = |t| exp (iϑ), where |t| is its
absolute value and ϑ is its principal argument (−π < ϑ ≤ π ), then the
branch cuts of multi-valued logarithmic and square root functions are defined
as

√
t =

√
|t| exp (iϑ/2) , −π < ϑ ≤ π ,

ln t = ln |t|+ iϑ , −π < ϑ ≤ π .

The value of I of Eq. (46) is computed as

I =

{
2iπ if θ ∈ (−π, 0]
−2iπ if θ ∈ (0, π] ,

(47)
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in which θ is the principal argument of Z̃pk that belongs to the interval
(−π, π].

Similarly, considering that the principal argument ϕ of
(
1− Ẑpk

)
is lo-

cated within the interval (−π, π], the logarithmic terms in Eq. (43) are com-
puted as

[
ln
(
1− Ẑpk

)
− ln

(
−(1− Ẑpk)

)]
=

{
−iπ if ϕ ∈ (−π, 0]
iπ if ϕ ∈ (0, π] .

(48)

The outer integrals on the right-hand sides of Eqs. (35)-(38) are eval-
uated numerically by using the ‘trapz’ function in MATLAB. This function
estimates the definite integral of a given set of data points using the trape-
zoidal rule. The integrals are computed over the interval [-1, 1] at Chebyshev
points defined as

xp = cos

(
pπ

n+ 1

)
; p = {1, 2, ..,K} . (49)

In the numerical section of this paper, we took K=100.

7.4. Solution of the system and evaluations of elastic fields outside of mate-
rial surfaces

Once the system of Eqs. (32)-(33) is solved and approximations for σ̃S

and ωS are known, real and imaginary components of ∆σ̃ can be found from
the relations

Re[(∆σ̃)j] = (σ̃0)j
∂ωS

j

∂τ̃
,

Im[(∆σ̃)j] =
∂σ̃S

j

∂τ̃
.

(50)

The use of expressions Eq. (50) in Eq. (18) particularized for the case of
straight segments, facilitates computation of the displacements within the
domain of interest at the points outside L.

The stresses σkj(z) at those points can be determined by using Eqs. (14)-
(15) and Eq. (12), modified for the case of straight segments. To evaluate
σ11 + iσ12, the point z should be chosen on the line such that the normal of
the line is parallel to the positive x1 axis of the Cartesian coordinate system.
This choice corresponds to dz/dz = −1. Similarly, to evaluate σ22− iσ12, the
point z should be chosen on the line such that the normal of a line is parallel
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to the positive x2 axis of the Cartesian coordinate system. This leads to
dz/dz = 1.

Strains at the same points can be obtained by using standard Hooke’s
law as

ε11(z) + ε22(z) =
κ− 1

4µ
[σ11(z) + σ22(z)] ,

ε22(z)− ε11(z) + 2iε12(z) =
1

2µ
[σ22(z)− σ11(z) + 2iσ12(z)] .

(51)

Finally, the stress intensity factors K1 and K2 can be evaluated as

K1 = lim
r̃→0

σ̃22
√
2πr̃ ,

K2 = lim
r̃→0

σ̃12
√
2πr̃ ,

(52)

where r̃ is the dimensionalized radial distance from the corresponding tip of
the surface and σ̃ij are asymptotic expansions for the dimensionless stresses
in its vicinity.

The asymptotic expansions near the tip τ̃ 0 = 1 of p-th surface, p =
1, 2, ..N , and the corresponding expressions for the stress intensity factors at
that tip were obtained in [35] as

σ̃11 =
2√

2πr̃ (1− κ)

[
K2 sin

θ

2

(
κ− 3

2
− cos

θ

2
cos

3θ

2

)
+K1 cos

θ

2

(
κ+ 3

2
− sin

θ

2
cos

3θ

2

)]
,

(53)

σ̃22 =
2√

2πr̃ (κ− 1)

[
K2 sin

θ

2

(
κ+ 1

2
− cos

θ

2
cos

3θ

2

)
+K1 cos

θ

2

(
κ− 1

2
− sin

θ

2
sin

3θ

2

)]
,

(54)

σ̃12 =
2√

2πr̃ (κ− 1)

[
K2 cos

θ

2

(
κ− 1

2
+ sin

θ

2
sin

3θ

2

)
−K1 sin

θ

2

(
κ+ 1

2
+ cos

θ

2
cos

3θ

2

)]
,

(55)
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where

K1 =

√
π(κ− 1)Im(σ∗

p)

2(1 + κ)
,

K2 =

√
π(κ− 1)Re(σ∗

p)

2(1 + κ)
,

(56)

σ∗
p = −

n∑
m=0

[(σ̃0)p(Bp)m + i(Ap)m] (1 +m) . (57)

Using the limiting procedure similar to that of [35] (see Appendix A for
the details), we obtained the expansions for the stresses near the tip τ̃ 0 = −1
of p-th surface, p = 1, 2, ..N , and the corresponding expressions for the stress
intensity factors. They are

σ̃11 =
2√

2πr̃ (1− κ)

[
K2 cos

θ

2

(
κ− 3

2
+ sin

θ

2
sin

3θ

2

)
−K1 sin

θ

2

(
κ+ 3

2
+ cos

θ

2
cos

3θ

2

)]
,

(58)

σ̃22 =
2√

2πr̃ (1− κ)

[
K1 sin

θ

2

(
κ− 1

2
+ cos

θ

2
cos

3θ

2

)
−K2 cos

θ

2

(
κ+ 1

2
+ sin

θ

2
sin

3θ

2

)]
,

(59)

σ̃12 =
2√

2πr̃ (1− κ)

[
K2 sin

θ

2

(
κ− 1

2
− cos

θ

2
cos

3θ

2

)
+K1 cos

θ

2

(
κ+ 1

2
− sin

θ

2
sin

3θ

2

)]
,

(60)

where

K1 =

√
π(1− κ)Im(σ∗

p)

2(1 + κ)
,

K2 =

√
π(1− κ)Re(σ∗

p)

2(1 + κ)
,

(61)
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σ∗
p = −

n∑
m=0

(−1)1+m [(σ̃0)p(Bp)m + i(Ap)m] (1 +m) . (62)

8. Numerical Results

8.1. Validation

We first made sure that, for the cases of Gurtin-Murdoch material sur-
faces located sufficiently far away from each other, the obtained fields at
each surface were consistent with the corresponding results reported in [34]
for a matrix material containing a single surface. To do that, we placed
two Gurtin-Murdoch surfaces at substantial distances and observed notable
agreements with the results depicted in Figs. 5, 6, 8, 9, 11 of [34]. We have
also validated the stress intensity factors near the tips of the surfaces by
comparison with those reported in Table 1 of the same paper.

Second, we compared our results with the results reported in [15] for the
problem involving two rigid line inclusions, each of length 2a arranged either
in collinear or parallel configurations. As in the latter paper, we considered
the matrix material characterized by E = 22 MPa and ν = 0.45, took the
loading conditions to be ε∞11 = 0.01, ε∞22 = ε∞12 = 0, and assumed that γ1 =
γ2 = 0 and σ̃0 = 0.

In both configurations, the inclusions were separated by the dimensionless
distance h/a, as can be seen from Figs. 2, 3, which also present the contours
of relative strains in the region surrounding the inclusions. Specifically, Fig. 2
presents the contours of ε11/ε

∞
11 for the collinear configurations with h/a = 2,

Fig. 2a, and h/a = 0.2, Fig. 2b. Similarly, Fig. 3 presents the contours of
ε11/ε

∞
11 for the parallel configuration with h/a = 1, Fig. 3a, and h/a = 0.5,

Fig. 3b.
Comparing those two figures with Figs. 12, 13 of [15], we can conclude

that there is a satisfactory qualitative agreement between our results and
those presented in [15].

In [15], the authors also presented the results for the relative strain in-
tensity factor Kϵ/K

Single
ϵ that, for rigid line inclusions, can be expressed via

the corresponding relative stress intensity factor as

K1

KSingle
1

=
Kϵ

KSingle
ϵ

, (63)

in which K1 is the Mode I stress intensity factor for a system with two rigid
line inclusions, KSingle

1 is that for a single rigid line, and Kϵ, K
Single
ϵ are the
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Fig. 2. Normalized strain ε11/ε
∞
11 for the collinear configuration: (a) h/a = 2 (left) and

(b) h/a = 0.2 (right).
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Fig. 3. Normalized strain ε11/ε
∞
11 for the parallel configuration: (a) h/a = 1 (left) and

(b) h/a = 0.5 (right).
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corresponding strain intensity factors. Using relation (63), we compared our
results to those presented in Figs. 17, 18 of [15] and obtained satisfactory
qualitative agreement.

8.2. Selected Parametric Studies

As the parametric space for our problem is quite large, in this section, we
focus on the studies of the effects due to the locations and orientations of the
surfaces, as well as on the influences of the dimensionless parameters γ and
σ̃0. For these studies, we selected three distinct configurations of N surfaces
of equal sizes of 2a, as illustrated in Fig. 4.
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Fig. 4. (a) Collinear configuration, (b) Parallel configuration, (c) Radial configuration.

We considered the material composed of an epoxy matrix reinforced by
the graphene-oxide nanoplatelets. The elastic properties of the material were
taken from [44]. The epoxy matrix was considered to be isotropic and char-
acterized by µ = 2 GPa, ν = 0.35. The dimensionless parameters for each
surface were set as γ = 0.12, σ̃0 = 0.025, and the only non-zero applied
loading was taken to be σ̃∞

22 = 0.05. To study the influence of the dimension-
less parameters, γ and σ̃0 more rigorously, we considered wider intervals of
variations of those parameters. Based on the results of convergence studies,
we obtained the numerical results using our approach with 20 terms in the
Chebyshev series and 100 points in the Gaussian quadrature.

Collinear configuration with three surfaces Here, we examine the
effects of surface tension and the influence of interactions based on the loca-
tions of the three surfaces, L1, L2, and L3, in the collinear configuration. The
surfaces are separated from one another by the normalized distance denoted
by h̃ = h/a, see Fig. 5.
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Fig. 5. Collinear configuration.

Fig. 6 presents the plots of the distribution of σ̃S along each surface for
specified values of h̃ selected to be h̃ = 1, 0.25. For comparison purposes, we
also consider the case of σ̃0 = 0, γ = 0.012 for each surface.

-1 -0.5 0 0.5 1
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

(a)

-1 -0.5 0 0.5 1
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

(b)

Fig. 6. Distribution of σ̃S along each surface for σ̃0 = 0 (Black) and σ̃0 = 0.025 (Red):

(a) h̃ = 1, (b) h̃ = 0.25.

As the surfaces are equally spaced from each other, it was anticipated that
the distribution of σ̃S along the L1 surface would exhibit symmetry around
τ̃ = 0, while the distribution of σ̃S along the L2, and L3 might lack symmetry
around τ̃ = 0. The interval τ̃ = [0, 1] of the L3 surface was expected to be
influenced by the L1 surface, and similarly, the interval τ̃ = [−1, 0] of the
L2 surface was anticipated to be influenced by the L1 surface. Additionally,
it was also anticipated that, as the surfaces move farther apart from each
other, the distributions of σ̃S along each surface would converge towards the
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distribution of σ̃S corresponding to the matrix material containing a single
surface. All these expectations have been met, as demonstrated by the plots
of Fig. 6.

From Fig. 6, it can also be seen that the presence of surface tension leads
to decrease in the magnitudes of σ̃S. To understand this phenomenon, we con-
sidered two scenarios of loading conditions. In the first scenario, we assumed
zero surface tension and accounted for the influence of external loading, while
in the second scenario, we only considered the effect of surface tension and
assumed zero external loading. In the first scenario, σ̃S was compressive,
while, in the second scenario, σ̃S was tensile. That explains the reduction in
the magnitudes of σ̃S mentioned above.

Under chosen geometrical arrangement, material parameters, and loading
conditions, the only nonzero complex constant of Eq. (29) is C

(ωk)
3p . Taking

that into account, it is clear that ωS = 0 is the only trivial solution of Eq. (29).
Therefore, the plots of ωS do not need to be presented for this case.

Table 1
Stress intensity factor K1 at various tips for collinear configuration as function of h̃.

No Surface Tension With Surface Tension

h̃ (K1)A (K1)B (K1)C (K1)A (K1)B (K1)C

h̃ = 10.0 0.0052 0.0052 0.0052 0.0043 0.0043 0.0043

h̃ = 3.0 0.0054 0.0053 0.0053 0.0045 0.0044 0.0044

h̃ = 1.0 0.0059 0.0058 0.0055 0.0049 0.0047 0.0045

h̃ = 0.5 0.0066 0.0065 0.0057 0.0055 0.0054 0.0047

h̃ = 0.25 0.0087 0.0077 0.0075 0.0064 0.0062 0.0048

In Table 1, we present the results for the Mode I stress intensity factor K1

at the tips A, B, and C shown in Fig. 5. It can be concluded that the value
of K1 increases with the decrease of the normalized distance h̃. It can also be
seen that the values of K1 for the case of non-zero surface tension are smaller
than those for the case of vanishing surface tension. Naturally, the values of
K1 are larger at the tips that are located closer to each other. The increase
in the value of K1 is more pronounced at tip A, followed by tip B, and then
by tip C. Under the given geometry, material properties, and applied loading
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conditions, the values of the Mode II stress intensity factor K2 at all tips
are found to be zero both in the presence and absence of surface tension.
Additionally, it was observed that the interactions between the surfaces in
the collinear configuration do not play a role when the distances between
them become roughly five times larger than the half of their lengths.

Parallel configuration with three surfaces Now, we perform similar
analysis for the parallel configuration involving three surfaces, L1, L2, and
L3. We maintain the same loading conditions and material properties as in
the case of collinear configuration. The same symbol h̃ is used to characterize
the normalized vertical separation distance between the neighboring surfaces,
as shown in Fig. 7.
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Fig. 7. Parallel configuration.

Figs. 8-9 present the plots of the distribution of σ̃S and ωS along each
surface for two values of h̃ selected to be h̃ = 1, 0.25. For comparison pur-
poses, we also consider the case of σ̃0 = 0 for each surface and, as before,
take γ = 0.012.

As the three surfaces are arranged in a manner that assures geometric
symmetry, it was expected that the distribution of σ̃S and ωS along all three
surfaces would display symmetry around τ̃ = 0. Additional anticipation was
that, with increasing value of h̃, the distributions of σ̃S and ωS along each
surface would gradually approach the distributions corresponding to a matrix
material containing a single surface. These expectations have been met, as
illustrated by the plots of Figs. 8, 9. It can be seen from Figs. 8- 9 that the
presence of surface tension leads to a decrease in the magnitudes of σ̃S and
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Fig. 8. Distribution of σ̃S along each segment for σ̃0 = 0 (Black) and σ̃0 = 0.025 (Red):

(a) h̃ = 1, (b) h̃ = 0.25.

ωS. This phenomenon has been explained in detail in the case of collinear
configuration.

Figs. 8b and 9b also provide insights into how the interaction between the
surfaces affects the behavior of σ̃S and ωS in the vicinity of the mid-zones of
the surfaces.

Table 2
Stress intensity factor K1 at various tips for parallel configuration as function of h̃.

No Surface Tension With Surface Tension

h̃ (K1)A (K1)B = (K1)C (K1)A (K1)B = (K1)C

h̃ = 10.0 0.0052 0.0052 0.0043 0.0043

h̃ = 3.0 0.0052 0.0052 0.0043 0.0043

h̃ = 1.0 0.0045 0.0048 0.0037 0.0040

h̃ = 0.5 0.0038 0.0043 0.0032 0.0036

h̃ = 0.25 0.0034 0.0040 0.0028 0.0033

In Table 2, we present the values of K1 at the tips A, B, and C, see Fig. 7,
for various values of h̃. Given the geometric and material symmetry of the
system under the specified loading conditions, we can infer that the values
of K1 at the tips B and C are equal, and the values of K1 at the tips P,
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Fig. 9. Distribution of ωS along each segment for σ̃0 = 0 (Black) and σ̃0 = 0.025 (Red):

(a) h̃ = 1, (b)h̃ = 0.25.

Q, and R are identical to those at the tips A, B, and C, respectively. We
can conclude from the data of Table 2 that, when the surfaces approach each
other, the value of K1 associated with each surface decreases in both cases
(with and without surface tension), which manifests shielding effects of this
particular geometrical arrangement. Also, in the case of non-zero surface
tension, the values of K1 related to each surface are smaller than that for the
case of vanishing surface tension, indicating that, as in the case of collinear
configuration, the residual surface tension reduces stress concentrations at
the tips.

In Table 3, we present the values of K2 at the tips B, C, Q, and R,
see Fig. 7, for the case of non-vanishing surface tension. The values of K2

at tips A and P are practically zero; thus, they are not presented in the
table. From the analyses of the data of Table 3, it becomes evident that the
absolute value of K2 increases as the surfaces come closer to each other. This
trend is opposite to that for the values of K1 observed in Table 2. However,
the absolute values of K1 are a few orders of magnitude larger than those
of K2. Under the given geometry, material properties, and applied loading
conditions, K2 = 0 at all tips for the case when σ̃0 = 0. It was also observed
that, in the parallel configuration, the effects of interactions disappear when
the distances between the surfaces become roughly four times larger than the
half of their lengths.
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Table 3
Stress intensity factor K2 at various tips for parallel configuration as function of h̃ for
non-zero surface tension.

h̃ (K2)B = −(K2)C (K2)Q = −(K2)R

h̃ = 10.0 4.9305e-07 -1.7823e-07

h̃ = 3.0 1.1956e-05 -4.3895e-06

h̃ = 1.0 6.0941e-05 -2.3464e-05

h̃ = 0.5 8.6487e-05 -3.6469e-05

h̃ = 0.25 1.0950e-04 -4.6754e-05

Radial configuration with three surfaces To establish a radial ar-
rangement, we select a random point within some domain to act as the
center of a circle. The notation r̃j signifies the normalized radial distance
between that point and the mid-point of the j-th surface. It is assumed that
r̃1 = r̃2 = r̃3 = r̃. Additionally, the angle between the adjacent surfaces is
2π/N , where N represents the number of surfaces, N = 3 in our specific case,
as shown in Fig. 10a.
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(b)

Fig. 10. Radial configuration with three surfaces a) geometrical arrangement, b) adopted
notations for the tips of the surfaces.

Study of influence of interactions: We assume the same loading con-
ditions, σ̃∞

22 = 0.05, and the same surface parameters: γ = 0.12, σ̃0 = 0.025,
as in Subsection 8.2 and vary the values of r̃ to study the effects of inter-
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actions. As the distance between the surfaces increases, the level of interac-
tions diminishes, and conversely, as they approach each other, interactions
become more pronounced. To visualize these effects, we provide the plots of
distributions of σ̃S and ωS along each surface generated for specific values of
r̃ = 1.5, 1.25, 1.125, see Figs. 11- 12.
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Fig. 11. Distribution of σ̃S along each segment for: (a) r̃ = 1.5, (b) r̃ = 1.25, (c)
r̃ = 1.125 .
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Fig. 12. Distribution of ωS along each segment for: (a) r̃ = 1.5, (b) r̃ = 1.25, (c)
r̃ = 1.125 .

Notably, in Fig. 11, significant change in the curvature of the σ̃S
1 plots

and the emergence of symmetry-breaking patterns in the plots for σ̃S can be
observed, as one transitions from Fig. 11a to Fig. 11c. This trend becomes
apparent as the surfaces draw closer to each other. Likewise, as the surfaces
approach each other, the effects of interactions become increasingly evident,
leading to symmetry-breaking patterns around τ̃ = 0 for ωS

2 and ωS
3 , as one

transitions from Fig. 12a to Fig. 12c.
To further showcase the effects of interactions, in Table 4, we present

the values of K1 at the tips A, B, C, P, Q, and R, see Fig. 10b. Due to
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Table 4
Stress intensity factor K1 at various tips for radial configuration as function of r̃.

r̃ (K1)A = (K1)B (K1)C (K1)P = (K1)Q (K1)R

r̃ = 2.5 -0.0068 0.0040 -0.0069 0.0041

r̃ = 2.0 -0.0069 0.0037 -0.0069 0.0040

r̃ = 1.5 -0.0071 0.0032 -0.0070 0.0038

r̃ = 1.3 -0.0073 0.0026 -0.0070 0.0037

r̃ = 1.15 -0.0077 0.0016 -0.0071 0.0035

Table 5
Stress intensity factor K2 at various tips for radial configuration as function of r̃.

r̃ (K2)A = −(K2)B (K2)P = −(K2)Q

r̃ = 2.5 -1.4200e-04 -4.4610e-04

r̃ = 2.0 -1.4962e-04 -4.4879e-04

r̃ = 1.5 -1.7311e-04 -4.5300e-04

r̃ = 1.3 -2.0007e-04 -4.5549e-04

r̃ = 1.15 -2.4769e-04 -4.5829e-04
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the geometric and material symmetry within the system, under the specified
loading conditions, we can deduce that the absolute values of K1 at the tips
A and B are identical. The same is true for the absolute values of K1 at the
tips P and Q. Analysis of Table (4) reveals that, as the surfaces draw closer
to each other, the absolute values of K1 at the tips A, P of L2 and B, Q of L3

are increasing, whereas those at the tips C, R of L1 decrease. Furthermore,
the reduction in the values of K1 at the tip C is more substantial than that
at the tip R. Conversely, the increase in the values of K1 at the tips A and
B is larger than that at the tips P and Q.

In Table 5, we present the results for the stress intensity factor K2 at the
tips A, B, P, and Q shown in Fig. 10b. As the values of K2 at the tips C
and R are practically zero, they are not presented in the table. It is observed
from Table 5 that, as the surfaces approach each other, the absolute values
of K2 increase. Under the given geometry, material properties, and applied
loading conditions, K2 = 0 at all tips when σ̃0 = 0. Additionally, it was
observed that the surfaces in the radial configuration are interacting with
each other when the distances between them become smaller than roughly
four times the half of their lengths.

Given that the effects of interaction are more pronounced when r̃ = 1.125,
we choose to maintain this value of r̃ for further investigations into the in-
fluences of dimensionless surface parameters γ and σ̃0.

Study of influence of γ: To perform this study, we retain the loading
conditions used previously and assume that σ̃0 = 0.025 and r̃ = 1.125. Addi-
tionally, we vary the parameter γ to attain the following values: γ = 0, 1, 10.
In Figs. 13 and 14, we present the plots of σ̃S and ωS corresponding to these
values of γ.
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Fig. 13. Distribution of σ̃S along each segment for: (a) γ = 0, (b) γ = 1, (c) γ = 10 .

As the value of γ increases, we can observe the development of symmetry-
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building patterns in the distributions of σ̃S and ωS along all surfaces, par-
ticularly about τ̃ = 0, as shown in Fig. 13-Fig. 14. Additionally, with an
increasing value of γ, it is clearly seen from Fig. 13 that the behavior of σ̃S

1

changes from compressive to tensile.
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Fig. 14. Distribution of ωS along each segment for: (a) γ = 0, (b) γ = 1, (c) γ = 10 .

Table 6
Stress intensity factor K1 at various tips for radial configuration as function of r̃ at γ = 0 .

r̃ (K1)A = (K1)B (K1)C (K1)P = (K1)Q (K1)R

r̃ = 2.5 -0.0067 0.0055 -0.0067 0.0056

r̃ = 2.0 -0.0067 0.0052 -0.0067 0.0055

r̃ = 1.5 -0.0068 0.0046 -0.0067 0.0052

r̃ = 1.3 -0.0070 0.0040 -0.0068 0.0051

r̃ = 1.15 -0.0074 0.0030 -0.0069 0.0049

Table 6 presents the values of K1 at the tips A, B, C, P, Q, and R shown
in Fig. 10b for various values of r̃ under the condition of γ = 0. Comparing
Table 4, which corresponds to γ = 0.12, with Table 6 for γ = 0, it is observed
that the absolute values of K1 at tips C and R decrease at a slower rate for
the lower value of γ. Additionally, the absolute values of K1 at the tips A,
B, P, and Q increase at a slower rate for the smaller value of γ.

Study of influence of σ̃0: To perform this study, we maintained the
same loading conditions and took r̃ = 1.125, γ = 0.12. To examine the
influence of σ̃0, we took the values of σ̃0 to be σ̃0 = 0, 0.025, 0.05. Fig. 15
presents the distributions of σ̃S.
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Fig. 15. Distribution of σ̃S along each segment for: (a) σ̃0 = 0, (b) σ̃0 = 0.025, (c)
σ̃0 = 0.05 .

From Fig. 15, it becomes evident that, as the values of σ̃0 increase, more
significant changes are observed in the distribution of σ̃S inside the interval
τ̃ = [−1, 0] of the surface L1 than inside the corresponding interval τ̃ = [0, 1].
Additionally, as the value of σ̃0 increases, the tensile nature of σ̃S becomes
more prominent. This shift is characterized by an increase in the magnitude
of tensile surface stress σ̃S along the surfaces L2 and L3 accompanied by a
reduction in the magnitude of compressive σ̃S for the surface L1. However,
no significant changes were observed in the plots of ωS.

Table 7
Stress intensity factor K1 at various tips for radial configuration as function of r̃ at σ̃0 = 0.

r̃ (K1)A = (K1)B (K1)C (K1)P = (K1)Q (K1)R

r̃ = 2.5 -0.0059 0.0049 -0.0060 0.0050

r̃ = 2.0 -0.0059 0.0047 -0.0060 0.0049

r̃ = 1.5 -0.0060 0.0042 -0.0060 0.0048

r̃ = 1.3 -0.0061 0.0037 -0.0060 0.0046

r̃ = 1.15 -0.0064 0.0029 -0.0061 0.0045

In Table 7, we present the results for the stress intensity factor K1 at the
tips A, B, C, P, Q, and R shown on Fig. 10b, assuming that σ̃0 = 0. From
the analysis of Table 7, we can observe that, when r̃ decreases, the absolute
values of K1 at the tips of inclined surfaces, L2 and L3, increase, while the
corresponding values at the tips of the horizontal surface, L1, decrease. Ad-
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ditionally, while comparing the results recorded in Tables 7 and 4, we could
see that, the absolute values of K1 change at slower rate when σ̃0 = 0. Un-
der the given geometry, material properties, and applied loading conditions,
K2 = 0 at all tips when σ̃0 = 0.

8.3. Comparison of the relative Von-Mises stresses for different geometrical
arrangements and shear far-field load

In previous sections, we exclusively studied the case of uniaxial far-field
loading conditions. Now, we study the influence of loading conditions by
comparing the behavior of relative Von-Mises stresses under the uniaxial
loading σ̃∞

22 = 0.05 and under the shear loading σ̃∞
12 = 0.05 for the three ar-

rangements of Fig. 4. For this study, we set the remaining surface parameters
as γ = 0.12 and σ̃0 = 0.025. Fig. 16 through Fig. 18 display the plots of the
relative Von-Mises stresses, σ̃v/σ̃

∞
v , in the vicinity of the surfaces for the two

cases of far-field load and for each of the three arrangements.
The Von-Mises stress, normalized with respect to the shear modulus µ,

is defined as follows:

σ̃v =

√
1

2
[(σ̃11 − σ̃22)2 + (σ̃22 − σ̃33)2 + (σ̃33 − σ̃11)2] + 3(σ̃12)2 ,

σ̃33 = ν(σ̃11 + σ̃22) ,

(64)

and σ̃∞
v is defined by Eq. (64) in which the stress components are taken to

be equal to those due to the loading of the homogeneous matrix without the
surfaces.

In Figs. 16 and 17, the contour plots of σ̃v/σ̃
∞
v are shown for the surfaces

in the collinear and parallel configurations, respectively, with h̃ = 0.25. In
both cases, the system’s response is symmetric for uniaxial loading and an-
tisymmetric for shear loading. For both configurations, intervals of variation
of σ̃v/σ̃

∞
v for uniaxial load is much wider than that for the shear load. The

values of σ̃v/σ̃
∞
v are significantly larger for the former type of loading than

for the latter one and, in both cases, maximum values occur near the tips.
In Fig. 18, the contour plots of σ̃v/σ̃

∞
v are shown for the surfaces arranged

in the radial configuration with r̃ = 1.125. Notably, the intervals of variation
of σ̃v/σ̃

∞
v for both cases (uniaxial loading and shear loading) are much wider

and the values of σ̃v/σ̃
∞
v are dramatically larger than the corresponding in-

tervals and values observed for the collinear and parallel configurations. The
maximum values of σ̃v/σ̃

∞
v occur near the tips of the inclined surfaces.
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(a) (b)

Fig. 16. Distribution of σ̃v/σ̃
∞
v in the vicinity of surfaces in collinear configuration with

h̃ = 0.25, for: a) uniaxial tension, σ̃22 = 0.05 b) pure shear, σ̃12 = 0.05 .

(a) (b)

Fig. 17. Distribution of σ̃v/σ̃
∞
v in the vicinity of surfaces in parallel configuration with

h̃ = 0.25, for: a) uniaxial tension, σ̃22 = 0.05 b) pure shear, σ̃12 = 0.05 .

35



(a) (b)

Fig. 18. Distribution of σ̃v/σ̃
∞
v in the vicinity of surfaces in radial configuration with

r̃ = 1.125, for: a) uniaxial tension, σ̃22 = 0.05 b) pure shear, σ̃12 = 0.05 .

When comparing Figs. 16, 17, and 18, it is evident that the interval varia-
tion of σ̃v/σ̃

∞
v in narrower and the maximum values of σ̃v/σ̃

∞
v are smaller for

the parallel configuration, as compared to those for the collinear and radial
configurations under both uniaxial and shear loading conditions.

9. Conclusion

In this paper, we studied the plane strain problem of an infinite isotropic
elastic matrix containing multiple thin, stiff, and prestressed inhomogeneities
/layers along the straight segments. We adopted the Gurtin-Murdoch model
of material surface, which treats these inhomogeneities/layers as the vanish-
ing thickness membranes characterized by surface tension and surface elastic-
ity. As the theory is based on the assumption of continuity of displacements
and jumps in tractions across the membranes, we adopted the classical tool
of a single-layer elastic potential that allows for the fulfillment of the above
conditions and for the exact integral representations for the local fields in
the entire material domain in terms of the two unknown components of the
surface stress tensor. Those components were approximated by the series
of Chebyshev polynomials of second-kind multiplied by the weight functions
to satisfy the tip conditions automatically. We presented closed-form ex-
pressions for the stress intensity factors at the tips of the membranes. The
comparison with the available benchmark solutions provided confidence in
the proposed theory and numerical algorithm. We conducted a compre-
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hensive study of the influences of various problem parameters for the three
geometrical configurations of three membranes.

In the collinear configuration, under uniaxial loading, several trends were
observed. Firstly, the absolute values of the Mode I stress intensity factor
increased with a decrease in the normalized separation distance. Secondly,
the absolute values of that factor were larger in the case of vanishing surface
tension. Lastly, the Mode II stress intensity factor was zero in both cases,
with and without surface tension.

In the parallel configuration under uniaxial loading, a shielding effect was
apparent, which manifested in decrease in the absolute values of the Mode
I stress intensity factor with a decrease in normalized separation distance.
Similarly, as for collinear configuration under the same loading, larger ab-
solute values of that factor were observed in the case of vanishing surface
tension as compared to that with non-zero surface tension. Moreover, for
the case of non-vanishing surface tension, non-zero values of Mode II stress
intensity factor were obtained at some tips.

The level of stress concentration for the radial configuration, under uni-
axial loading, was significantly higher than for the rest of studied configura-
tions, with larger absolute values of the Mode I stress intensity factors at the
tips of the horizontal surface than those at the tips of the inclined surfaces.
Furthermore, the former values decreased with decreasing normalized radial
distance, while the latter values increased. As anticipated, the absolute val-
ues of those factors were larger at the interacting tips (inner tips) of surfaces
than at the outer tips. The rate of change of the absolute values was found
to be lower for smaller values of surface elasticity parameter. Additionally,
the absolute values of the same factors at the tips of inclined surfaces were
smaller for smaller values of surface tension, while those at the tips of hor-
izontal surfaces were larger. Under the same far-field loading, the Mode II
stress intensity factor was zero at the tips of inclined surfaces, in the case
of vanishing surface tension, and had non-zero value in the case of non-zero
surface tension. Interestingly, the latter factor was zero at the tips of the
horizontal surface in both cases.

Finally, we presented the results that illustrated the influences of the two
types of applied far-field loads on the relative Von-Mises stresses for the three
configurations used in the numerical studies.

The theoretical framework presented here allows for natural extensions
to problems involving materials reinforced with thin, stiff, and prestressed
inhomogeneities/layers of arbitrary shapes. This will be a subject of our
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future work in which we also plan to extend the presented approach to allow
for evaluation of the effective properties of such materials. The results of
this paper can be used as benchmarks for proposed extensions as well as for
future investigators.
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Appendix A. Some details of derivations Eqs.58-60

The governing equations of plane strain problems in complex variables
are given by the following Kolosov-Muskhelishvili formulae [45]:

σ11 + σ22 = 4 Re[ϕ′(z)] ,

σ22 − σ11 + 2iσ12 = 2 [z ϕ′′(z) + ψ′(z)] ,
(A.1)

where ϕ(z) and ψ(z) are the holomorphic functions. It can be shown, see [42],
that those functions for our case of continuity of displacements and jump in
tractions can be represented as follows:

ϕ′(z) =
1

2πi(1 + κ)

ˆ
L

∆σ

(τ − z)
dτ,

ϕ′′(z) =
1

2πi(1 + κ)

ˆ
L

∆σ

(τ − z)2
dτ,

ψ′(z) =
1

2πi(1 + κ)

[
κ

ˆ
L

∆σ

(τ − z)
dτ −

ˆ
L

τ ∆σ

(τ − z)2
dτ

]
.

(A.2)

Using the appropriate dimensionlization, resulting expressions for the
stresses contain four integrals, see Eqns. A.3-A.6. Here, we present the
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asymptotic expansions at the point z̃ = z/a for the stresses in the vicin-
ity of the tip τ̃ = −1 in the form z̃ = −1 + r̃ exp (iθ), −π ≤ θ < π. The
corresponding expressions for the tip τ̃ = 1 can be found in [34], [35].

The leading terms in the near-tip expansions of those integrals are evalu-
ated using the results on the behavior of the singular integrals near the tips
reported in Chapter 4 of Ref. [46] and on page 21 of Ref. [47] as

Integral 1:

ˆ 1

−1

∆σ̃ dτ̃

(τ̃ − z̃)
≈ − πi√

2
σ∗(−1)

1√
1 + z̃

= − πi√
2 r̃

[σ∗(−1)] exp (−iθ/2) , (A.3)

Integral 2:

ˆ 1

−1

∆σ̃ dτ̃

τ̃ − z̃
≈ πi√

2
σ∗(−1)

1√
1 + z̃

=
πi√
2 r̃

[σ∗(−1)] exp (iθ/2) , (A.4)

Integral 3:

ˆ 1

−1

∆σ̃ dτ̃

τ̃ − z̃
≈ πi√

2
σ∗(−1)

1√
1 + z̃

=
πi√
2 r̃

[σ∗(−1)] exp (iθ/2) , (A.5)

Integral 4:

ˆ 1

−1

∆σ̃ (τ̃ − z̃) dτ̃

(τ̃ − z̃)2
≈ πi

2
√
2
σ∗(−1)

[
1 +

1 + z̃

1 + z̃

]
1√
1 + z̃

=
πi

2
√
2 r̃

[σ∗(−1)] exp (iθ/2)(1 + exp (2iθ)) ,

(A.6)

where

∆σ̃ =
σ∗(τ̃)√
1− (τ̃)2

. (A.7)

After substituting the expressions from Eqs. A.3 to A.6 into the dimen-
sionalized form of Eq. A.1 and performing some algebra, we can obtain the
expressions given by Eq. 58 through Eq. 60.
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