

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu

number of :-cliques in the output. An even more desirable version
of an output-sensitive algorithm is one that can also take as input
some parameter C , and can list up to C :-cliques in the graph. When
C is much smaller than the number of :-cliques in the graph, such
an algorithm could potentially be more e�cient. These two ver-
sions are actually runtime-equivalent up to logarithmic factors for
most natural running times (we provide a proof in Section 2 for
completeness). We thus use these two notions interchangeably.

Björklund, Pagh, Vassilevska W. and Zwick [9] designed such

output-sensitive algorithms for triangle listing with runtime $̃ (=l+

=
3(l−1)
5−l C

2(3−l)
5−l) and $̃ (<

2l
l+1 +<

3(l−1)
l+1 C

3−l
l+1)1, wherel < 2.372 [18,

38] is the exponent of matrix multiplication and C is the number

of triangles listed. If l = 2, the runtimes simplify to $̃ (=2 + =C2/3)

and $̃ (<4/3 + <C1/3), and these are shown to be conditionally
optimal for any C = Ω(=1.5) and C = Ω(<) respectively under
the popular 3SUM hypothesis [24, 29] and the even more believable
Exact Triangle hypothesis [37]. There have also been many recent
works focusing on output-sensitive cycle-listing algorithms. The

works of [4, 22] show$ (min{=2+C,<4/3+C}) algorithms for listing C

4-cycles, and the work of [21] shows $̃ (=2 + C) algorithm for listing
C 6-cycles. Moreover, matching conditional lower bounds for 4-
cycle listing were shown under the 3SUM hypothesis [3, 22], which
was subsequently strengthened to hold under the Exact Triangle
hypothesis [13].

While the output-sensitive questions for triangle listing and 4-
cycle listing are is well-understood by now, no similar conditionally
optimal results are known for :-clique listing when : ≥ 4.

�estion 1. What is the best output-sensitive algorithm for :-

clique listing for : > 3?

When analyzing algorithms, researchers look at a variety of
parameters to understand performance: the size of the input (typ-
ically = and < for graph problems), the size of the output (the
number of :-cliques), and other natural parameters of the input
(e.g. the arboricity, as in [14]). In this work, we study clique-listing
algorithms parameterized by Δℓ , the number of ℓ-cliques in the
graph for ℓ < : .

To motivate this, let us consider the �rst non-trivial algorithm
for :-clique �nding by Nešetril and Poljak [28]. For simplicity,
assume that : is divisible by 3. First, the algorithm enumerates
all :/3-cliques in the input graph � , and forms a new graph �
whose nodes represent the :/3-cliques of � and whose edges con-
nect two :/3-cliques that together form a 2:/3-clique. The trian-
gles of � correspond to :-cliques in � , and so Nešetril and Pol-
jak reduce :-clique �nding, counting and listing in � to �nding,
counting and listing (respectively) of triangles in �2. As there are

$ (=:/3) :/3-cliques in � , and since triangle �nding or counting
in # -node graphs can be done in $ (#l) time [20], [28] gave an

$ (=l:/3) time algorithm for :-clique �nding or counting in =-node
graphs. Eisenbrand and Grandoni [19] extended Nešetril and Pol-

jak’s reduction to obtain a :-clique runtime of $ (=V (:)) where
V (:) = l (⌈:/3⌉, ⌈(: − 1)/3⌉, ⌊:/3⌋), and l (0, 1, 2) is the exponent

of multiplying an =0 × =1 matrix by an =1 × =2 matrix. As the

1We use $̃ to hide polylog factors.
2Note the reduction also works for counting and listing because every :-clique is

represented by exactly
(

:

:/3,:/3,:/3

)
triangles.

runtime of :-clique detection has remained unchallenged for sev-
eral decades, the hypothesis that these algorithms are optimal has
been used to provide conditional lower bounds in several works
(e.g. [1, 8, 12]). Throughout the paper, we consider the word-RAM
model of computation with $ (log=) bit words.

Hypothesis 1.1 (:-Cliqe Hypothesis). On a word-RAM model

with $ (log=) bit words, detecting a :-clique in an =-node graph re-

quires =V (:)−> (1) time , where V (:) = l (⌈:/3⌉, ⌈(: − 1)/3⌉, ⌊:/3⌋).

Now, suppose� has a small number@ of :/3-cliques and suppose
we can list these :/3-cliques quickly, then Nešetril and Poljak’s
algorithm would run in only $ (@l) additional time which can be

much faster than $ (=l:/3).
More generally, if a graph has a small number Δℓ of ℓ-cliques for

ℓ < : , a simple generalization of Nešetril and Poljak’s reduction
would reduce :-clique to :/ℓ-clique in a graph with Δℓ nodes (as-
suming : is divisible by ℓ for simplicity). If one can list the ℓ-cliques
fast, then :-clique �nding, listing and detection can all be done
faster in graphs with small Δℓ .

In other words, for :-clique problems, the number of ℓ-cliques Δℓ ,
where ℓ < : is arguably themost natural parameter. The usual input
parameters = and< can be viewed as the special cases Δ1 and Δ2.
We are not the �rst to suggest this natural parameterization of the
input. In fact, small Δℓ values have been exploited to obtain faster
:-clique algorithms in experimental algorithmics: e.g., [30] and [16]
count :-cliques faster in graphs with a small number of triangles.
Motivated by these practical results, we are the �rst to consider the
following question within theoretical computer science:

�estion 2. Can we get a general conditionally optimal algo-

rithms for output-sensitive :-clique listing in terms of the number Δℓ
of ℓ-cliques for any ℓ < :?

1.1 Our Contributions

We present a systematic study of clique �nding and listing, and
provide answers to both Questions 1 and 2. We give the �rst output-
sensitive algorithms for listing :-cliques for : ≥ 4. We also give the
�rst general algorithms for detecting and listing :-cliques in terms
of the number of ℓ-cliques, and the �rst �ne-grained lower bounds
for the listing problem for general : . Our lower bounds show that
our algorithms are tight for a non-trivial range of the number of
:-cliques to output. We summarize our contributions in Table 1.
(:, ℓ)-Clique-Detection and (:, ℓ)-Clique-Listing refer to detecting

and listing :-cliques respectively given a list of all ℓ-cliques. Here,
C is the number of :-cliques we are asked to list.

Improved 4 and 5-clique detection in sparse graphs. We provide
a general algorithmic framework for detecting cliques. As special
cases of the framework, we give the �rst improvement over the
the runtime of Eisenbrand and Grandoni [19] for 4 and 5-clique
detection in sparse graphs (we show this in Examples 3.3 and 3.4 in
Section 3.2).

Theorem 1.2. There is an $ (<1.657) time algorithm for 4-clique

detection and an $ (<2.057) time algorithm for 5-clique detection in

<-edge graphs.

In comparison, the runtimes of the algorithms of [19] in terms of
the current bounds for square and rectangular matrix multiplication

924

Towards Optimal Output-Sensitive Clique Listing STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Table 1: Summary of our contributions. (:, ℓ)-Clique-Detection and (:, ℓ)-Clique-Listing refer to detecting and listing :-cliques

respectively given a list of all ℓ-cliques. Here, C is the number of :-cliques we are asked to list.

Results References

Detection
New (:, ℓ)-Clique-Detection framework Section 3

Improved (4, 2)-Clique-Detection and (5, 2)-Clique-Detection Theorem 1.2

Lower bounds Conditional lower bounds for (:, ℓ)-Clique-Listing Theorems 1.4, 1.10

Listing

Optimal algorithms for (4, 1) and (5, 1)-Clique-Listing Theorems 1.5, 1.6

Nearly-everywhere optimal algorithms for (4, ℓ), (5, ℓ)-Clique-Listing Theorems 1.7, 1.8

Optimal (:, ℓ)-Clique-Listing algorithms for large C Theorems 1.9, 1.11

Generalized (:, ℓ)-Clique-Listing algorithm for all C Section 5

Re�ned analysis for (6, 1)-Clique-Listing full version

[38] were $ (<1.668) and $ (<2.096) for 4 and 5-clique detection
respectively.

Lower bounds for :-clique listing. Prior works [24, 29, 37] give
�ne-grained lower bounds for listing triangles in an =-node,<-edge

graph: triangle-listing requires =1−> (1)C2/3 time in =-node graphs,

and requires<1−> (1)C1/3 in<-edge graphs time, under standard
�ne-grained hypotheses. The lower bounds imply tightness of the
known algorithms [9] if C is large enough: C = Ω(=1.5) or C = Ω(<)

respectively.
The lower bounds of [24, 29] are under the 3SUM hypothesis.

Extending these to lower bounds for :-clique listing seems di�cult.
Instead we focus on the approach of [37] who showed hardness
under the Exact-Triangle hypothesis which states that �nding a
triangle of weight sum 0 in an =-node edge-weighted graph re-

quires =3−> (1) time in the word-RAM model. The Exact-Triangle
hypothesis is one of the most believable hypotheses in �ne-grained
complexity, as it is implied by both the 3SUM hypothesis and the
APSP hypothesis (see [36]).

A natural generalization of the Exact-Triangle hypothesis is the
Exact-:-Clique hypothesis (which coincides with the Exact-Triangle
hypothesis for : = 3):

Hypothesis 1.3 (Exact-:-Cliqe hypothesis). For a constant

: ≥ 3, let Exact-:-Clique be the problem that given an =-node

graph with edge weights in {−=100: , . . . , =100: }, asks to determine

whether the graph contains a :-clique whose edges sum to 0. Then,

Exact-:-Clique requires =:−> (1) time, on the word-RAM model of

computation with $ (log=) bit words.

The Exact-:-Clique hypothesis is among the popular hardness
hypotheses in �ne-grained complexity. Most recently, it has been
used to give hardness for the Orthogonal Vectors problem in mod-
erate dimensions [2] and join queries in databases [10]. Moreover,
due to known reductions (see e.g. [36]), the Exact-:-Clique hypoth-
esis is at least as believable as the Max-Weight-:-Clique hypothesis
which is used in many previous papers (e.g. [5, 7, 8, 11, 27]).

Under the Exact-:-Clique hypothesis we prove lower bounds for
:-clique listing for all : ≥ 3. These are the �rst lower bounds for
output-sensitive clique listing for : ≥ 4.

Theorem 1.4. For any : ≥ 3, and W ∈ [0, :], listing C :-cliques in

a graph with = vertices, and in a graph with< nodes requires(
=

2
:−1 C

1− 2
: (:−1)

)1−> (1)
and

(
<

1
:−2 C

1− 2
: (:−2)

)1−> (1)
time respectively under the Exact-:-Clique hypothesis.

For : = 3 this is the same lower bound as previously proven
[24, 29, 37]. Shortly, we will present algorithms that match our
lower bound for all :,<, = and for large C if l = 2, implying that
our lower bound is tight. This is in fact the �rst output-sensitive
lower bound for :-clique listing problems for : ≥ 4, and the �rst
such lower bound for any graph pattern of size at least 5.

Optimal algorithms for 4 and 5-clique listing. For the special
cases of : = 4, 5, we give algorithms parametrized by the number
of vertices = and number of :-cliques C which are conditionally
optimal if l = 2 in the full version.

Similar to [9], we state our runtimes in terms of l . In our anal-
ysis, we compute rectangular matrix multiplication by truncating
it to multiple instances of square matrix multiplication. If one is
interested in better numerical values, one could instead use the
best upper bound on rectangular matrix multiplication [38] in these
steps.

Theorem 1.5. Given a graph on = nodes, one can list C 4-cliques in

$̃

(
=l+1 + =

4(l−1) (2l−3)

l2−5l+12 C
1−

(l−1) (2l−3)

l2−5l+12

)

time. If l = 2, the runtime is $̃ (=3 + =2/3C5/6).

Recall that the 4-Clique hypothesis, which is a special case of

Hypothesis 1.1 when : = 4, gives a lower bound of =3−> (1) if l = 2.

Moreover, Theorem 1.4 gives a lower bound of (=2/3C5/6)1−> (1) .
Therefore, this 4-clique listing algorithm is indeed conditionally
optimal.

Theorem 1.6. Given a graph on = nodes, one can list C 5-cliques in

$̃

(
=l+2 + =

5(l−1) (2l−3) (3l−5)

48−47l+16l2−l3 C
1−

(l−1) (2l−3) (3l−5)

48−47l+16l2−l3

)

time. If l = 2, the runtime is $̃ (=4 + =1/2C9/10) .

Recall that the 5-Clique hypothesis from Hypothesis 1.1 gives

us a lower bound of =4−> (1) if l = 2. Moreover, Theorem 1.4 gives

925

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu

a lower bound of (=1/2C9/10)1−> (1) . Therefore, this 5-clique listing
algorithm is also conditionally optimal.

Nearly-everywhere optimal algorithms for 4 and 5-clique listing in

sparse graphs. In the case of sparse graphs, we obtain conditionally
optimal runtimes for 4 and 5-clique listing for almost all values of
C if l = 2. The runtimes are stated in the following theorems and
are pictorially depicted in Figure 1.

Theorem 1.7. If l = 2, one can list C 4-cliques in a graph with<

edges in time



$̃ (<3/2) if C ≤ <5/4,

$̃ (<C2/5) if<5/4 ≤ C ≤ <10/7,

$̃ (<1/2C3/4) if C ≥ <10/7 .

This algorithm matches the lower bound in Hypothesis 1.1 when

C ≤ <5/4, and it matches our lower bound of Theorem 1.4 when
C ≥ <10/7.

Theorem 1.8. If l = 2, one can list C 5-cliques in a graph with<

edges in time



$̃ (<2) if C ≤ <19/10,

$̃ (<17/18C10/18) if<19/10 ≤ C ≤ <55/28,

$̃ (<1/3C13/15) if C ≥ <55/28 .

This algorithm matches the runtime of the lower bound in Hy-

pothesis 1.1 when C ≤ <19/10, and it matches our lower bound from

Theorem 1.4 when C ≥ <55/28.
We prove Theorem 1.7 and Theorem 1.8 are proved in the full

version of the paper.

Optimal algorithms for listing many :-cliques. More generally,
we consider the problem of listing :-cliques for : ≥ 3. For instance,
consider the problem of listing 6-cliques in sparse graphs with<
edges. If we adapt the existing approach for :-clique detection [19,
28] and directly reduce it to triangle listing in a graph with <

nodes and then use [9], we get an $̃ (<2 +<C2/3) runtime when
l = 2. In comparison, the lower bound from Theorem 1.10 is

(<1/4C11/12)1−> (1) . When C is close to maximum (as C → $ (<3)),

the $̃ (<2 +<C2/3) runtime is polynomially higher than the lower
bound. Therefore, we cannot only rely on such reductions.

Nevertheless, we give a conditionally tight algorithm for graphs
with many :-cliques, provided that l = 2 for su�ciently large
number of cliques. In particular, the runtime of the algorithm in
the theorem below matches the lower bound of Theorem 1.4.

Theorem 1.9 (Informal). If l = 2, there is an algorithm for

:-clique listing which runs in time

$̃
(
min

{
=

2
:−1 C

1− 2
: (:−1) ,<

1
:−2 C

1− 2
: (:−2)

})
when C is large.

We give more explicit bounds on C and the runtimes in terms
of l in Sections 4.2 and 4.3. In other words, we have an algorithm
which match the lower bound in Theorem 1.4 for graphs with
many :-cliques.

General listing algorithm for all C . In Section 5, we give a general
black-box approach (by non-trivially adapting previous reductions
[19, 28]) that uses our (conditionally) optimal algorithm for a large
number of :-cliques C to obtain a fast algorithm that works for
all C . The main advantage of this approach is its simplicity and
generality. In particular, we obtain an intuitive and simple analysis
of the runtime for all :, C . In Section 5, we show a comparison of
our lower bounds and the runtime of our general algorithm in some
examples. We illustrate the runtime of the general algorithm for
some speci�c cases in Figure 2.

Improved algorithm for 6-clique listing. We note that our generic
algorithm trades simplicity for optimality, and it is not always the
best algorithm one can obtain for �xed : . In the full version of
the paper, we give a more re�ned algorithm for 6-clique listing
in terms of = and C if l = 2 to illustrate how one might obtain a
tighter runtime bound for speci�c : . In Figure 3, we compare our
“general” bound, our best bound and our lower bounds to illustrate
the improvement in the algorithm. However, since the number of
terms and parameters in the runtime increases signi�cantly with : ,
we do not do this re�ned analysis for all : .

Listing cliques from smaller cliques. In fact, our frameworks are
much more general and it extends to the problems of �nding and
listing :-cliques given a list of all ℓ-cliques in the graph, for ℓ ≥ 1.
We use the notation Δℓ to denote the number of ℓ-cliques in the
graph.

Let (:, ℓ)-Clique-Detection be the problem of detecting a :-
clique in a graph � , given the list of all ℓ-cliques in the graph
for some ℓ ∈ {1, . . . , : − 1}. Our algorithmic framework in fact
applies to the general problem of (:, ℓ)-Clique-Detection for any
: ≥ 3, 1 ≤ ℓ < : . We note that while we only mention :-clique
detection, we can use well-known techniques to also �nd :-cliques
in the same runtime up to a log factor (see Section 2.2). Moreover,
our algorithm can also be used to count the number of cliques with
the same runtime.

In Table 2, we present our runtimes for (:, ℓ)-Clique-Detection
for small values of : and ℓ in terms of the current value of l . For
ℓ = 1, we captures the best known :-clique detection algorithm and
hence matches Hypothesis 1.1. Although our general framework is
simple, it is actually quite powerful, and allows us to obtain the �rst
improvement in almost 20 years over the runtime of Eisenbrand
and Grandoni [19], as discussed in Theorem 1.2.

Let (:, ℓ)-Clique-Listing be the problem of listing all :-cliques
in a graph � , given all the ℓ-cliques of � . Equivalently, it is the
problem of listing C :-cliques in a graph given all the ℓ-cliques,
where C is an input to the problem (see a proof in Section 2).

Under the Exact-:-Clique hypothesis we prove the following
lower bound for (:, ℓ)-Clique-Listing for all : ≥ 3, 1 ≤ ℓ < : . In
fact, Theorem 1.4 is a special case of this theorem.

Theorem 1.10. For any : ≥ 3, 1 ≤ ℓ < : , and W ∈ [0, :/ℓ],

(:, ℓ)-Clique-Listing in a graph with Δℓ given ℓ-cliques and C =

Θ̃(Δ
W
ℓ) :-cliques requires(

Δ

2
ℓ (:−ℓ)

ℓ C
1− 2

: (:−ℓ)

)1−> (1)
time under the Exact-:-Clique hypothesis.

926

Towards Optimal Output-Sensitive Clique Listing STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

0.0 0.5 1.0 1.5 2.0
logm t

1.5

1.6

1.7

1.8

1.9

2.0

E
xp
o
n
en
t
r

(4, 2)-Clique-Listing

Our algorithm

Lower bound

Best detection time

0.0 0.5 1.0 1.5 2.0 2.5
logm t

2.0

2.1

2.2

2.3

2.4

2.5

E
xp
o
n
en
t
r

(5, 2)-Clique-Listing

Our algorithm

Lower bound

Best detection time

Figure 1: Upper and lower bounds for 4 and 5-cliques in graphs with < edges, if l = 2. Here, A is such that one can list C

4-cliques or 5-cliques respectively, in $̃ (<A) time. The blue line corresponds to our upper bound from Theorems 1.7 and 1.8, the

dashed red line denotes our lower bound from Theorem 1.10, and the dashed black line corresponds to the lower bound from

Hypothesis 1.1. The shaded region highlights the portions of the algorithms which are not conditionally optimal.

0 5 10 15 20 25 30 35

log
n
t

24

26

28

30

32

34

36

E
xp
o
n
en
t
r

Listing 36-cliques in n-node graphs

General Algorithm

Lower bound

0 5 10 15 20 25

log
m
t

18

20

22

24

E
xp
o
n
en
t
r

Listing 51-cliques in m-edge graphs

General Algorithm

Lower bound

Figure 2: Upper and lower bounds listing 36-cliques in =-node graphs, and 51-cliques in<-edge graphs if l = 2. Here, the

exponent A is such that one can list C 36-cliques or 51-cliques respectively, in $̃ (=A) and $̃ (<A) time respectively. The blue line

corresponds to our upper bound from the general listing algorithm, and the dashed red line denotes the lower bounds from

Hypothesis 1.1 and Theorem 1.4.

0 1 2 3 4 5 6

log
n
t

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

E
xp
o
n
en
t
r

Listing 6-cliques in n node graphs

Our algorithm

General algorithm

Lower bound

Figure 3: Upper and lower bounds for listing 6-cliques in =-node graphs if l = 2. Here, A is such that one can list C 6-cliques in

$̃ (=A) time. The blue line corresponds to the upper bound of our general listing algorithm, the black line corresponds to the

upper bound of our re�ned algorithm (deferred to the full version of the paper), and the dashed red line denotes lower bound

from Theorem 1.4 and Hypothesis 1.1.

We give an overview of the proof in 1.2, and defer the full proof
to the full version of the paper.

Moreover, we give a conditionally tight algorithm for graphs
with many :-cliques, provided thatl = 2. In particular, the runtime
of the algorithm in the theorem below matches the lower bound of
Theorem 1.10.

Theorem 1.11 (Informal). If l = 2, there exists an algorithm for

(:, ℓ)-Clique-Listing which runs in time

$̃

(
Δ

2
ℓ (:−ℓ)

ℓ Δ
1− 2

: (:−ℓ)

:

)

for Δ: ≥ Δ
W:,ℓ
ℓ where W:,ℓ =

: (:2−2:−1)
ℓ (:2−:−ℓ−1)

.

Theorem 1.9 is a special case of this theorem.

927

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu

1.2 Our Techniques

In this section, we highlight our main techniques used in the algo-
rithms and lower bounds.

Detection algorithms. The previous algorithms for :-clique de-
tection in =-node graphs [19, 28] can be viewed as reductions to tri-
angle detection, as mentioned earlier. Here is how they work when
: is not necessarily divisible by 3. For some integers 0, 1, 2 ∈ [1, :]

where 0 +1 +2 = : , the algorithm creates a tripartite graph on node

parts �, �,� with =0, =1 , =2 nodes respectively, which represent
tuples of 0, 1, 2 nodes respectively. It also su�ces to keep only the
tuples of nodes that form a clique in the original graph. For every
node (D1, . . . , D0) ∈ � and every node (E1, . . . , E1) ∈ �, the algo-
rithm adds an edge between them if and only ifD1, . . . , D0, E1, . . . , E1
form an (0 + 1)-clique in the original graph. It similarly adds edges
between �,� and between �,� . It is not di�cult to see that there is
a triangle in the new graph if and only if there is a :-clique in the
original graph, so we can simply detect triangles by multiplying an
|�| × |� | matrix with a |� | × |� | matrix.

We generalize this approach to :-clique detection in terms of
the number of ℓ-cliques for ℓ < : .

Suppose we are given a list of all ℓ-cliques in the graph, and
we want to �nd a :-clique. Let 0, 1, 2 ∈ [1, :] be as before where
0 + 1 + 2 = : . Let �, �, and � , respectively, be the sets of 0-, 1-
and 2-cliques in the graph. We would like to bound their sizes in
terms of Δℓ . Let us focus on bounding |�|; bounding |� |, |� | is done
similarly.

For 0 ≥ ℓ , a (probably folklore) bound shows that Δ0 ≤ $ (Δ
0/ℓ
ℓ)

(we also provide a proof for completeness in Section 2).
For 0 < ℓ , we set a parameter Λ and consider two types of 0-

cliques: “low-degree" ones that are contained in < Λ ℓ-cliques, and
“high-degree” ones that are contained in ≥ Λ ℓ-cliques. There are at
most $ (Δℓ/Λ) high-degree 0-cliques.

Consider a low-degree 0-clique and its neighborhood consist-
ing of the nodes adjacent to all nodes of . We can recurse on the
neighborhood: �nd a (: −0)-clique, given the list of (ℓ −0)-cliques
formed by excluding from all ℓ-cliques that contain . We can
bound the recursion runtime using the fact that has low degree.
Since we have handled all low-degree 0-cliques, we can set � to
be only the $ (Δℓ/Λ) high-degree 0-cliques. Similarly, we can get
bounds on |� | and |� |.

Finally, following previous :-clique detection algorithms [19, 28],
we perform a rectangular matrix multiplication between an |�|× |� |

matrix and a |� | × |� | matrix. By analyzing the recursive steps and
setting parameters appropriately, we obtain our detection runtimes.
As we show in Examples 3.3 and 3.4, our recursion and its analysis
are more careful than in prior work, allowing us to obtain improved
runtimes for 4 and 5-clique detection.

We give some explicit examples of this algorithm in Section 3.2.
We also analyze the asymptotic e�ciency of this algorithm in the
full version.

Lower bounds for listing. We obtain our lower bound in Theo-
rem 1.10 for listing from the Exact-:-Clique hypothesis. Our lower
bound technique can be seen as a generalization of the reduction
from Exact Triangle to triangle listing problems in [37].

We note that there is also a di�erent generalization of the tech-
nique of [37] that shows a conditional lower bound for the :-Set-
Intersection problem [10]. We brie�y describe the problem. At a
very high level, the lower bound of [10] applies to the following
hypergraph problem: the nodes are partitioned into : + 1 parts:
+1, . . . ,+: (these correspond to the sets) and* (this corresponds to
the universe). There are hyperedges among the nodes in +1, . . . ,+:
(corresponding to :-set-intersection queries) and there are edges
between * and +8 for 8 ∈ [:] (corresponding to elements belong-
ing to each set). Given this hypergraph, the problem asks for each
hyperedge, whether its nodes share a common neighbor in* (i.e.,
whether the sets intersect). As the lower bound of [10] is for a prob-
lem in a hypergraph with hyperedges of cardinality > 2, it does not
directly apply to our applications. Hypergraph problems are gener-
ally harder than their graph counterparts (see e.g. [27]), and there
is no easy way to convert a hardness proof for hypergraphs into
one for graphs without increasing the instance size signi�cantly.

Now, we describe the high-level ideas of our reduction. Without
loss of generality, we can assume the input instance of Exact-:-
Clique is a :-partite graph on nodes +1 ⊔ · · · ⊔+: , where each +8
contains = nodes. At a high level, we �rst hash the edge weights so
that they behave random enough. For simplicity, we assume all edge

weights are independently uniformly at random from [−=: , =:] in
this overview (we deal with the randomness properly in our proof).

Then we split [−=: , =:] equally into B contiguous intervals, each

of size $ (=:/B) for some parameter B . We then enumerate com-
binations of intervals (!8, 9)1≤8< 9≤: , and consider the subgraph
where we only keep edges between +8 and +9 whose weight is in
!8, 9 . Note that a subgraph cannot contain a :-clique of weight 0
if 0 ∉

∑
1≤8< 9≤: !8, 9 (we denote the sum of two intervals as the

sumset of them). Therefore, we only need to consider combinations

of intervals where 0 ∈
∑
1≤8< 9≤: !8, 9 . If we choose the �rst

(:
2

)
− 1

intervals (!8, 9)1≤8< 9≤:,(8, 9)≠(:−1,:) , the �nal interval must inter-

sect −
∑
1≤8< 9≤:,(8, 9)≠(:−1,:) !8, 9 , which has size$ (=

:

B). Therefore,
there are only$ (1) choices for the �nal interval, and the total num-

ber of combinations of intervals we need to consider is $ (B (
:

2)−1).
For each combination of intervals, we form the subgraph only

containing edges with weights in the intervals, and we list all the
:-cliques in this subgraph. The expected number of ℓ-cliques in

the subgraph is$ (=ℓ/B (
ℓ

2)) and the expected number of :-cliques is

$ (=:/B (
:

2)). For simplicity, we assume these upper bounds always
hold in this overview (instead of only holding in expectation). Also,
we can list all the ℓ-cliques in the subgraphs e�ciently, i.e., in nearly

linear time in their number, which is faster than =: when B is small
enough.

Then suppose we have an $

((
Δ

2
ℓ (:−ℓ)

ℓ C
1− 2

: (:−ℓ)

)1−Y)
time al-

gorithm for listing all :-cliques in a graph with C :-cliques and
with a given list of Δℓ ℓ-cliques. We can list all :-cliques in all the
subgraphs in time

$̃

(
B (

:

2)−1
((
=ℓ/B (

ℓ

2)
) 2
ℓ (:−ℓ)

(
=:/B (

:

2)
)1− 2

: (:−ℓ)

)1−Y)

=$̃
(
=:−:Y

(
B (

:

2)−1
)Y)

,

928

Towards Optimal Output-Sensitive Clique Listing STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

which is $̃ (=:−Y
′
) time for Y′ > 0 for su�ciently small B , and

violates the Exact-:-Clique hypothesis.

Listing algorithms for graphs with a large number C of :-cliques.

We describe our optimal algorithm for (:, ℓ)-Clique-Listing in Theo-
rem 1.11, for all ℓ < : and large enough C . We give the full algorithm
in Section 4. The framework works for all values of C , but the run-
time is conditionally optimal only for large C . We will later explain
how to improve upon the framework for small C .

As a �rst step, we obtain output-sensitive algorithms for :-clique
listing in terms of = (ℓ = 1). We then use these algorithms in a black-
box way for ℓ ≥ 2.

Björklund, Pagh, VassilevskaW. and Zwick [9] gave an algorithm
for triangle listing using a dense-sparse paradigm. We generalize
this algorithm to : ≥ 4. Let C be the number of :-cliques in the
graph which we want to list.

• Dense algorithm:When the input graph has many edges,
we use sampling and rectangular matrix multiplication to
�nd all the edges that occur in at most _ :-cliques, for some
parameter _. We then list all :-cliques incident to such edges,
and can then delete these edges to obtain a graph with at
most $ (C/_) edges. We then call the algorithm for sparse
graphs.

• Sparse algorithm: When the input graph has few edges,
we list all :-cliques incident to nodes with degree at most G
by listing (: − 1)-cliques in their neighborhoods, for some
parameter G . We are then left with a graph with at most
$ (</G) nodes, at which point we call the dense algorithm.

The key change from the framework of [9] is in the sparse
algorithm. There, [9] uses brute-force to list triangles through
low-degree nodes. We on the other hand, recursively use (: −

1, 1)-Clique-Listing algorithms to list the (: − 1)-cliques in the
neighborhoods of low-degree nodes. This makes our algorithm
e�cient, but also complicates the analysis signi�cantly.

For ℓ ≥ 2, we exploit recursion even more: we recursively use
algorithms for both :-clique listing in terms of nodes, and (: − 1)-
clique listing in terms of (ℓ − 1)-cliques. At a high level, we �rst
�nd all nodes that are contained in at most ~ ℓ-cliques, for some
parameter ~. Then, in the neighborhoods of such nodes, we can
�nd all (: − 1)-cliques based on the list of all (ℓ − 1)-cliques in the
neighborhood. We can then delete all the low-degree nodes. The
resulting graph now only has$ (Δℓ/~) nodes. Now, we can call the
:-clique listing algorithm in terms of =.

Because of the extra recursion, the analysis gets more compli-
cated, but we are able to keep the algorithms relatively simple. Thus
we get the best of both worlds: simplicity and optimality (at least
for large C).

The reason why our (:, 1)-Clique-Listing algorithm is only op-
timal for large C is that our dense algorithm has an inherent cost

of Ω(=:−1) due to the rectangular matrix multiplication that we
use. This bottleneck extends to (:, ℓ)-Clique-Listing for all ℓ as well
since all of these algorithms call (:, 1)-Clique-Listing.

Generalizing the listing algorithm to all values of C . In Section 5,
we explain how to improve upon our listing framework above when
C is smaller. While our general runtime analysis for arbitrary :, C and

ℓ quickly gets complicated, here we will focus on a small example,
to give intuition.

Let us consider the example of 6-clique listing in an=-node graph
� assuming l = 2. The algorithm in Theorem 1.11 has runtime

$̃ (=
2
5 C

14
15) only when C ≥ =4+

13
14 , and otherwise runs in $̃ (=5) time3

which is worse than the 6-clique detection runtime $̃ (=4).
We improve the runtime for C smaller than the threshold of

=4+
13
14 by instead following the techniques of [19, 28]. We create

a new graph � ′ whose nodes correspond to the pairs of nodes of
the original graph � , i.e. the new graph has =2 nodes. We then
add an edge between two nodes (0, 1) and (2, 3) if (0, 1, 2, 3) forms
a 4-clique in the original graph. Now, we run the triangle listing
algorithm (in [9] or Theorem 1.11) in the new graph. This has

runtime $̃ (=2C2/3) when C ≥ (=2)1.5 = =3. This also allows us
to obtain an algorithm for all C ≤ =3, running in time $̃ (=4), the
6-clique detection runtime, which is tight under Hypothesis 1.1.

The corresponding runtime is depicted in blue in Figure 3.
More generally, for larger : , we create a new graph where the

nodes represent ℓ′-cliques in the original graph. Then, we list
⌈:/ℓ′⌉-cliques in the new graph. The best ℓ′ varies for di�erent C ,
and this gives us the trade-o�s as seen in Figure 2.

Roughly speaking, the algorithm can be viewed as using di�erent
dimensions of rectangular matrix multiplication depending on the
value of C . For example, in the case of : = 6, the algorithm for large

C ≥ =4+
13
14 uses $̃ (_) matrix multiplications of size roughly =×=4/_

by =4/_ × = for some parameter _ ≥ 1, and this requires at least

Ω(=5) time. For =3 ≤ C ≤ =4+
13
14 , the algorithm uses $̃ (d) matrix

multiplications of size =2 × =2/d by =2/d × =2 for some parameter
d ≥ 1, which requires at least Ω(=4) time.

1.3 Organization

In Section 2, we give necessary de�nitions and standard algorithms.
In Section 3, we show our framework for detecting cliques. In
Section 4, we show our optimal algorithm for clique listing in graphs
with many :-cliques, and we extend this algorithm to graphs with
fewer :-cliques in Section 5. We defer the proof of our lower bound
in Theorem 1.10, as well as our more e�cient algorithm for 6-clique
listing in Figure 3 to the full version of the paper.

2 PRELIMINARIES

Notation. Throughout this paper, we denote the number of nodes
in a graph by =, the number of edges by<, and the number of ℓ-
cliques by Δℓ . For an ℓ

′-clique for some 1 ≤ ℓ′ ≤ ℓ , we use Δℓ ()
to denote the number of ℓ-cliques containing . For the special
case of ℓ = 2, we use deg(E) := Δ2 (E). For integer : , we use : to
denote a :-clique.

For a nonnegative integer =, we use [=] to denote {1, 2, . . . , =}.

Matrix multiplication. We use l < 2.372 to denote the matrix
multiplication exponent [18, 38]. For any constants 0, 1, 2 ≥ 0,

we use l (0, 1, 2) to denote the exponent of multiplying an =0 × =1

matrix by an=1×=2 matrix. The current best bounds for rectangular
matrix multiplication are given by [38].

3Clearly, when C is smaller, the runtime can only be smaller or equal, so for any

C < =4+
13
14 , the runtime of this algorithm is $̃ (=

2
5 (=4+

13
14)

14
15) = $̃ (=5) whenl = 2.

929

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu

We denote by MM(�, �,�) the runtime of multiplying an � × �

by a �×� matrix. If� ≤ � ≤ � , we can loosely boundMM(�, �,�)

in terms of l as follows:

MM(�, �,�) ≤ $

(
�l ·

��

�2

)
= $ (�l−2��).

This bound is obtained by splitting the matrix multiplication into
�
� · �� instances of square matrix multiplication of size �, and it is
in general weaker than the bound in [26].

2.1 Problem De�nitions

Now, we de�ne the main clique problems that we consider in this
paper.

Definition 2.1 ((:, ℓ)-Clique-Detection). Given a graph � =

(+ , �) and the list ! of all ℓ-cliques in � , decide whether � contains

a :-clique.

Definition 2.2 ((:, ℓ)-Clique-Listing). Given a graph� = (+ , �)

and the list ! of all ℓ-cliques in � , list all :-cliques in � .

In (:, ℓ)-Clique-Listing, we use C to denote the total number of
:-cliques in the graph. However, as we will show in Section 2.2, we

can equivalently (up to $̃ (1) factor) use C to denote the number of
:-cliques we wish to list.

2.2 Basic Clique Listing Algorithms

Next, we give some standard algorithms and reductions. We defer
the proofs from this section to the full version of the paper.

Lemma 2.3. Suppose (:, ℓ)-Clique-Detection can be solved in time

� (Δℓ). Then, given the list of all ℓ-cliques in a graph, one can �nd a

:-clique in $̃ (� (Δℓ)) time.

Lemma 2.4. (:, ℓ)-Clique-Listing can be solved in time $̃ (Δ
:/ℓ
ℓ).

The proof of Lemma 2.4 also implies that the number of :-cliques

in a graph with Δℓ ℓ-cliques is $ (Δ
:/ℓ
ℓ).

Lemma 2.5. Fix 1 ≤ ℓ < : . Suppose there is a) (Δℓ , G) time algo-

rithm for (:, ℓ)-Clique-Listing where the total number of :-cliques is

Θ(ΔGℓ). Then for any G ′ < G , (:, ℓ)-Clique-Listing on graphs where

the total number of :-cliques is Θ(ΔG
′

ℓ) can be solved in $ () (Δℓ , G))

time.

Let 5 (Δℓ , C) be the runtime of (:, ℓ)-Clique-Listing when the
graph has (an unknown number of) C cliques in total, and let6(Δℓ , C)
be the runtime of listingmin{Δ: , C} distinct :-cliques, given the list
of all ℓ-cliques in the graph and a speci�ed C as input. We assume

5 ($̃ (Δℓ), $̃ (C)) = $̃ (5 (Δℓ , C)) and 6($̃ (Δℓ), $̃ (C)) = $̃ (6(Δℓ , C)).
This is true for all of our algorithms as well as any algorithm that
has at most a polynomial dependence on Δℓ and C .

The following lemma shows that 5 (Δℓ , C) = Θ̃(6(Δℓ , C)). There-
fore, we use both of these two notions interchangeably for the
de�nition of (:, ℓ)-Clique-Listing. In particular, given an instance
of (:, ℓ)-Clique-Listing with an unknown number of :-cliques,
the proof of Lemma 2.6 allows us to assume that we know an

2-approximation of Δ: , with only $̃ (1) loss in the running time.

Lemma 2.6. 5 (Δℓ , C) = Θ̃(6(Δℓ , C)).

[9] gave similar reductions from listing a speci�ed number of C
triangles to listing allΔ3 triangles in=-node or<-edge graphs. Their
reduction is more e�cient than ours when C is much smaller than
Δ3. However, their reduction requires an algorithm for counting
the number of triangles. We instead provide a black box reduction
that does not rely on counting, that works for arbitrary :, ℓ , and is
more self-contained and e�cient enough for our purpose.

3 DETECTING CLIQUES

In this section, we �rst give our (:, ℓ)-Clique-Detection algorithm,
and then analyze its running time in some interesting cases.

We use 6(:, ℓ) to denote our algorithm’s running time expo-
nent on the number of ℓ-cliques of (:, ℓ)-Clique-Detection, i.e., our

algorithm for (:, ℓ)-Clique-Detection runs in $̃ (Δ
6 (:,ℓ)
ℓ) time.

3.1 General Detection Framework

Now we describe a generic algorithm for (:, ℓ)-Clique-Detection
for : ≥ 3 (for : = 2, we trivially list all edges in the graph, so
6(2, 1) = 2) in Algorithm 1.

The correctness of this algorithm is immediate. We also remark
that the algorithm can be used to count the number of :-cliques,
by replacing all the recursive calls with the counting version of the
algorithm, using the matrix multiplication to count the number of
:-cliques in the remaining graph, and properly summing up and
scaling the numbers. Clearly, the counting version of the algorithm
will have the same running time.

3.2 Examples

Let us give some explicit examples to illustrate the algorithm.

(:, 1)-Clique-Detection. The simplest example of our algorithm
is (:, 1)-Clique-Detection for : ≥ 3. Let ⌊:/3⌋ ≤ 2 ≤ 1 ≤ 0 ≤

⌈:/3⌉ be integers such that 0+1+2 = : , which is one of the possible
choices of 0, 1, 2 for the algorithm. Note that 2 = ⌊:/3⌋, 1 = ⌈(: −

1)/3⌉, 0 = ⌈:/3⌉. Since 0, 1, 2 ≥ ℓ = 1, the algorithm would choose
to use Lemma 2.4 to bound the number of cliques of sizes 0, 1, 2 as

=0, =1 , =2 respectively. Thus, the running time of the algorithm is

$̃ (=l (0,1,2)) = $̃ (=V (:)), matching the previous running time [19].

(:, ℓ)-Clique-Detection for ℓ ≤ ⌊:/3⌋. Similar as above, let 2 =
⌊:/3⌋, 1 = ⌈(: − 1)/3⌉, 0 = ⌈:/3⌉ and the algorithm would choose
to use Lemma 2.4 to bound the number of cliques of sizes 0, 1, 2 .

Thus, the running time of the algorithm is $̃ (Δ
l (0/ℓ,1/ℓ,2/ℓ)
ℓ) ≤

$̃ (Δ
l (⌈:/3⌉,⌈ (:−1)/3⌉,⌊:/3⌋)/ℓ
ℓ). This running time is optimal bar-

ring improvements for (:, 1)-Clique-Detection:

Proposition 3.1. Fix any positive integers : ≥ 3 and ℓ ≤ ⌊:/3⌋,

and let

V (:) = l (⌈:/3⌉, ⌈(: − 1)/3⌉, ⌊:/3⌋) .

If (:, 1)-Clique-Detection requires =V (:)−> (1) time, then we have

that (:, ℓ)-Clique-Detection requires Δ
V (:)/ℓ−> (1)
ℓ time.

Proof. Suppose for contradiction that (:, ℓ)-Clique-Detection

has an$ (Δ
V (:)/ℓ−Y
ℓ) time algorithmA for some Y > 0. Then given a

(:, 1)-Clique-Detection instance, we can �rst use Lemma 2.4 to list
all ℓ-cliques in $ (=ℓ) time, and the number of ℓ-cliques is bounded

930

Towards Optimal Output-Sensitive Clique Listing STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 1 Generic (:, ℓ)-Clique-Detection algorithm.

Input: Graph � = (+ , �) and the list ! of all ℓ-cliques.
Output: Output yes if � contains a :-cliques, and no otherwise.
The Algorithm:

• Let integers : ≥ 0 ≥ 1 ≥ 2 ≥ 1 be such that : = 0 + 1 + 2 (the algorithm chooses 0, 1, 2 optimally). Then goal is then to bound the
number of 3-cliques for 3 ∈ {0, 1, 2}.

– If 3 ≥ ℓ , we can use Lemma 2.4 to upper bound the number of 3-cliques with (3 = Θ̃(Δ
3/ℓ
ℓ), and add these 3-cliques to a list !3 in the

same time.
– If 3 < ℓ , for every 3-clique with Δℓ () ≤ Δ

G3
ℓ (for some parameter G3 ∈ [0, 1] to be chosen), we check if is in a :-clique by

recursively running (: − 3, ℓ − 3)-Clique-Detection in its neighbourhood. Then, let !3 denote the set of remaining 3-cliques. Then,

(3 := |!3 | = Θ(Δ
1−G3
ℓ). The running time of this step is

$̃

©­­­­­«

∑
 :3-clique

Δℓ ()≤Δ
G3
ℓ

Δℓ ()
6 (:−3,ℓ−3)

ª®®®®®¬
≤ $̃

©­­­­­«

∑
 :3-clique

Δℓ ()≤Δ
G3
ℓ

Δℓ () · Δ
G3 (6 (:−3,ℓ−3)−1)
ℓ

ª®®®®®¬
≤ $̃

(
Δ
1+G3 (6 (:−3,ℓ−3)−1)
ℓ

)
.

• Finally, we conduct a usual matrix multiplication of dimensions (0, (1 , (2 in timeMM((0, (1 , (2) as follows. If we �nd a :-clique, output
yes, otherwise we output no.
– Create a matrix - whose rows are indexed by 0-cliques in !0 and columns are indexed by 1-cliques in !1 . Set �[0, 1] = 1 if the

nodes of 0 and 1 form an (0 + 1)-clique, and 0 otherwise.
– Create a matrix . whose rows are indexed by 1-cliques in !1 and columns are indexed by 2-cliques in !2 , and set the entries similarly.
– Compute / = -. . For each pair of remaining 0-clique 0 and 2-clique 2 that form an (0 + 2)-clique, check if / [0, 2] > 0. If such

an entry exists, output yes. Otherwise, output no.

Table 2: Our (:, ℓ)-Clique-Detection exponent for various values of :, ℓ with the best current bound on l and rectangular matrix

multiplication [38]. See also [35] for a way to bound l (0, 1, 2) for arbitrary 0, 1, 2 > 0 from values of l (1, G, 1). The (:, ℓ)th entry

corresponds to the exponent U such that the runtime to detect a :-clique is $̃ (ΔUℓ) , where Δℓ is the number of ℓ-cliques.

ℓ

:
3 4 5 6 7 8 9 10 11 12

1 2.372 3.251 4.086 4.744 5.590 6.397 7.115 7.952 8.745 9.487
2 1.407 1.657 2.057 2.372 2.795 3.199 3.558 3.976 4.373 4.744
3 - 1.248 1.422 1.668 1.918 2.149 2.372 2.651 2.915 3.163
4 - - 1.174 1.298 1.487 1.657 1.840 2.028 2.205 2.372
5 - - - 1.130 1.232 1.377 1.503 1.660 1.811 1.953

by $ (=ℓ). Then we can use A to solve the (:, 1)-Clique-Detection

instance in $ ((=ℓ)V (:)/ℓ−Y) = =V (:)−Yℓ time, a contradiction. □

Example 3.2 ((3, 2)-Clique-Detection). In this case, the algo-
rithm can only choose 0 = 1 = 2 = 1, and it would naturally
choose G0 = G1 = G2 . The time it takes to bound the number of

1-cliques (nodes) is $̃ (Δ
1+G0 (6 (2,1)−1)
2) = $̃ (<1+G0). Then we have

(0, (1 , (2 ≤ Θ(<1−G0). Thus, the running time for the matrix mul-

tiplication of dimensions (0, (1 , (2 is $̃ (< (1−G0)l). Overall, the

running time is $̃ (<
2l
l+1) by setting G0 =

l−1
l+1 . This is essentially

Alon, Yuster and Zwick [6]’s triangle detection algorithm for sparse
graphs.

Example 3.3 ((4, 2)-Clique-Detection). In this case, the algo-
rithm can only choose 0 = 2, 1 = 2 = 1, and it would naturally
choose G1 = G2 . The algorithm uses Lemma 2.4 to (trivially) bound
the number of edges as<. The time it takes to bound the number

of nodes is $̃ (Δ
1+G1 (6 (3,1)−1)
2) = $̃ (<1+G1 (l−1)). Then we have

(0 ≤ Θ(<), (1 , (2 ≤ Θ(<1−G1). Thus, the running time for the ma-

trix multiplication of dimensions (0, (1 , (2 is $̃ (<l (1,1−G1 ,1−G1)).
The algorithm chooses G1 so that 1+G1 (l −1) = l (1, 1−G1 , 1−G1).
If we simply bound l (1, 1 − G1 , 1 − G1) by G1 + l (1 − G1), we

can get 6(4, 2) ≤ l+1
2 by setting G1 =

1
2 . For the current best

bound of square and rectangular matrix multiplication [38], we can
set G1 = 0.478 to get an upper bound 6(4, 2) ≤ 1.657. This is an
improvement over the previous best algorithm of Eisenbrand and
Grandoni [19], which runs in$ (<1.668) time. The key di�erence be-
tween our algorithm and [19]’s algorithm is that, after they perform
a similar �rst stage, they recursively call a (4, 1)-Clique-Detection
algorithm on graphs with (1 nodes, losing the information that
the graph has (0 =< edges to begin with. We instead utilize this
information with rectangular matrix multiplication to get a better
running time.

Example 3.4 ((5, 2)-Clique-Detection). In this case, let the algo-
rithm choose 0 = 1 = 2, 2 = 1 (the choice 0 = 3, 1 = 2 = 1 gives a
worse bound). The algorithm uses Lemma 2.4 to (trivially) bound

931

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu

the number of edges as<. The time it takes to bound the number of

nodes is $̃ (Δ
1+G2 (6 (4,1)−1)
2) = $̃ (<1+G2 (l (1,2,1)−1)). Then we have

(0, (1 ≤ Θ(<), (2 ≤ Θ(<1−G2). Thus, the running time for the ma-

trix multiplication of dimensions (0, (1 , (2 is $̃ (<l (1,1,1−G2)). The
algorithm chooses G2 so that 1+G2 (l (1, 2, 1) −1) = l (1, 1, 1−G2). If
we simply bound l (1, 2, 1) by l + 1 and l (1, 1, 1−G2) by 2G2 + (1−

G2)l , we can get 6(5, 2) ≤ l+2
2 by setting G2 =

1
2 . For the current

best bound of rectangular matrix multiplication [38], we can set
G2 = 0.469 to get an upper bound 6(5, 2) ≤ 2.057. This is an im-
provement over the previous best known algorithm of Eisenbrand
and Grandoni [19], which runs in $ (<2.096) time.

Example 3.5 (More Small Examples). See Tables 2 for more
examples of the running times of our algorithm. These running
times were obtained by �nding the optimal values of 0, 1, 2 using
dynamic programming.

From previous examples, one might wonder whether the algo-
rithm always sets 0, 1, 2 as close to :/3 as possible. The following
example shows that it is not the case (for l = 2).

In (8, 4)-Clique-Detection, if the algorithm chooses 0 = 4, 1 =

2 = 2, then the running time is

$̃
(
Δ
1+G1 (6 (6,2)−1)
4 + Δ

1+G2 (6 (6,2)−1)
4 + Δ

l (1,1−G1 ,1−G2)
4

)
.

By setting G1 = G2 =
1
2 , this running time is bounded by $̃ (Δ

3/2
4)

when l = 2 (See Table 2 for the value of 6(6, 2) when l = 2).
However, if the algorithm chooses a more balanced choice 0 =

1 = 3, 2 = 2, then the running time is

$̃
(
Δ
1+G0 (6 (5,1)−1)
4 + Δ

1+G1 (6 (5,1)−1)
4

+Δ
1+G2 (6 (6,2)−1)
4 + Δ

l (1−G0,1−G1 ,1−G2)
4

)
.

One optimal way to set the parameters when l = 2 is G0 = G1 =
1
5

and G2 =
3
5 , which only gives an $̃ (Δ

8/5
4) running time when l = 2

(See Table 2 for the values of 6(5, 1) and 6(6, 2) when l = 2).

We provide more analyses for Algorithm 1 in the full version of
the paper.

4 OPTIMAL LISTING ALGORITHMS FOR
GRAPHS WITH MANY :-CLIQUES

In this section, we give a (:, 1)-Clique-Listing algorithm that is
optimal for graphs with many :-cliques under Hypothesis 1.3. This
algorithm can be seen as a generalization of the densifying and
sparsifying paradigm of [9].

We then show how we can extend this algorithm to obtain the
conditionally optimal algorithms for all (:, ℓ)-Clique-Listing for
graphs with many :-cliques.

4.1 Algorithm

First, we describe the algorithm for (:, 1)-Clique-Listing in Algo-
rithm 2.

In the Dense algorithm, we use matrix multiplication to enumer-
ate all :-cliques containing light edges, i.e. edges that are part of
very few :-cliques. These edges are then removed to result in a
sparse graph with only edges that are part of many :-cliques.

In the Sparse algorithm, we enumerate all :-cliques containing
low-degree nodes by recursively listing all (: − 1)-cliques in their
neighborhoods, and delete all such nodes. Deleting these nodes re-
sults in a dense graph with only high degree nodes. While one could
brute-force the (:−1)-cliques in the neighborhoods, our key insight
is that we can instead recursively use a (: − 1, 1)-Clique-Listing
algorithm to be more e�cient. We defer the correctness of Algo-
rithm 2.

(:, ℓ)-Clique-Listing when ℓ ≥ 2. To generalize this algorithm
to (:, ℓ)-Clique-Listing for ℓ ≥ 2, we recursively use (: − 1, ℓ −

1)-Clique-Listing to reduce the problem to (:, 1)-Clique-Listing.
At a high level, the algorithm considers all nodes E in fewer than
G ℓ-cliques and recursively calls (: − 1, ℓ − 1)-Clique-Listing to
list all :-cliques containing E . See Algorithm 3. The correctness of
Algorithm 3 is deferred to the full version.

4.2 Analysis for (:, 1)-Clique-Listing

For : ≥ 2, de�ne

G: = :

:∏
9=2

((5 − 2 9) + (9 − 2)l) (1)

~: = (3 − l):−2 +

:−1∑
9=2

(3 − l):−1− 9G 9 (2)

Theorem 4.1. Let U: = G:/~: . For any : ≥ 2 and large C ≥ =W:

where

W: =

{
0 if : = 2

:
(
1 − 3−l

:−U:

)
if : ≥ 3

,

there exists an algorithm that lists all C :-cliques in time $̃ (=U: C1−
U:
:).

If l = 2, we have that G: = : and ~: =
: (:−1)

2 , therefore giving a

runtime of $̃ (=
2

:−1 C
1− 2

: (:−1)) for C ≥ =
:−1− 2

:2−:−2 .

We defer the analysis to the full version of the paper.

4.3 Analysis for (:, ℓ)-Clique-Listing for ℓ ≥ 2

We have shown an algorithm for (:, 1)-Clique-Listing that is con-
ditionally optimal when Δ: ≥ =W: . Now, we use this to show that
there exists a (:, ℓ)-Clique-Listing algorithm for all ℓ that is con-

ditionally optimal for Δ: ≥ =W:,ℓ , for some 0 ≤ W:,ℓ <
:
ℓ . First, we

de�ne the following variable

I:,ℓ = G:

ℓ−1∑
8=0

: − ℓ

: − 8 − 1
·
~:−8
G:−8

where G: and ~: are just as de�ned in (1) and (2). From this
de�nition, the following identity is immediate.

Claim 4.2. For ℓ ≥ 2 and : > ℓ , I:,ℓ =
G:
G:−1

I:−1,ℓ−1 +
:−ℓ
:−1

~: .

Theorem 4.3. Fix any constant integers : − 1 ≥ ℓ ≥ 1. Let

U:,ℓ = G:/I:,ℓ . Then, there exists some W:,ℓ = (1 − Y:,ℓ):/ℓ for

Y:,ℓ > 0 such that for large C ≥ =W: there exists an algorithm that

lists all C :-cliques given the ℓ-cliques in time $̃ (Δ
U:,ℓ
ℓ C1−

ℓU:,ℓ

:).

932

Towards Optimal Output-Sensitive Clique Listing STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 2 (:, 1)-Clique-Listing Algorithm for large C ≥ =W: , where W: is de�ned in Theorem 4.1

Dense(� := (+ , �), =, C):
• Input: Graph � = (+ , �) with |+ | ≤ = and at most C :-cliques.
• Output: List of :-cliques in � .
• The Algorithm:

(1) If = < : , it returns no :-cliques.
(2) Choose a parameter _. Let an edge be _-light if it is in fewer than _ :-cliques.
(3) Use the algorithm in Lemma 2.4 to obtain a list ! of all (: − 2)-cliques (there are at most =:−2 such cliques).
(4) Initialize an empty list) .
(5) Repeat the following $ (_ log=) times:

– Sample a subset !′ of ! of size |! |/_.
– Construct adjacency matrices � and � where the rows are indexed by + and columns are indexed by !′.
– Let �[E,�] = 1 if node E is distinct from and adjacent to every node in the (: − 1)-clique � , and set �[E,�] = 0 otherwise.
– Let �[E,�] = �[E,�] ·� , i.e. column � contains entries 0 or � .

– Compute � = � · �) and � = � · �
)
. This takes $ (MM(=, |!′ |, =)) time.

– For every edge (D, E) ∈ � that is _-light, if � [D, E] = 1, add (D, E, � [D, E]) to) .
(6) Output) .
(7) Delete all _-light edges from � to obtain �′ (all _-light edges are found in Step 5 w.h.p.).

(8) Call Sparse(� ′ := (+ , �′),
(:
2

)
C/_, C).

Sparse(� := (+ , �),<, C):
• Input: Graph � = (+ , �) with |� | ≤ < and at most C :-cliques.
• Output: List of :-cliques in � .
• The Algorithm:

(1) If< <

(:
2

)
, it returns no :-cliques.

(2) Choose a parameter G .
(3) Find all nodes such that deg(E) ≤ G , and call the (: − 1, 1)-Clique-Listing algorithm in the neighbourhoods of all such nodes with

=′ = deg(E).
(4) Delete all nodes in + of degree less than G to obtain set + ′.
(5) Call Dense(� ′ := (+ ′, � ∩ (+ ′ ×+ ′)), 2</G, C)

Algorithm 3 (:, ℓ)-Clique-Listing Algorithm for large C ≥ =W:,ℓ , where W:,ℓ is de�ned in Theorem 4.3

Input: A graph � and a list ! of all ℓ-cliques.
Output: All :-cliques in the graph.
The Algorithm:

(1) Call a node E light if Δℓ (E) ≤ G , for some parameter G .
(2) For all light nodes, call (: − 1, ℓ − 1)-Clique-Listing in the neighbourhoods to �nd all :-cliques incident to G .
(3) Delete all light nodes and incident edges from � .
(4) Call the (:, 1)-Clique-Listing algorithm Dense(� ′ := (+ ′, �′), ℓΔℓ/G, C) (from Algorithm 2).

If l = 2, we have G: = : and I:,ℓ =
:ℓ (:−ℓ)

2 , giving a runtime of

$̃ (Δ
2

ℓ (:−ℓ)

ℓ C
1− 2

: (:−ℓ)) for all C ≥ =W:,ℓ , where

W:,ℓ =
: (:2 − 2: − 1)

ℓ (:2 − : − ℓ − 1)
.

We defer the analysis to the full version of the paper.

5 EXTENDING THE ALGORITHM TO GRAPHS
WITH FEWER :-CLIQUES

In this section, we show how to apply our algorithm in Section 4
which only works for very large C (or rather, does not have improved
runtime for smaller C) to other ranges of C as well, via black-box
reductions. In the full version, we will also give some examples to
show how to use Theorem 5.1.

Theorem 5.1. Suppose for every 1 ≤ ℓ < : , (:, ℓ)-Clique-Listing

can be solved in $̃ (Δ
U:,ℓ
ℓ C1−

ℓU:,ℓ

:) time when C ≥ Δ
W:,ℓ
ℓ . Then for every

1 ≤ ℓ ≤ : and 1 ≤ B < : where ⌈:B ⌉ ≠ ⌈ ℓB ⌉, (:, ℓ)-Clique-Listing

can be solved in

$̃

((
Δ

B
ℓ
⌈ ℓ
B
⌉

ℓ

)U:′,ℓ ′
C1−

ℓ ′U:′,ℓ ′

:′

)

time for C ≥

(
Δ

B
ℓ
⌈ ℓ
B
⌉

ℓ

)W:′,ℓ ′
, where :′ = ⌈:B ⌉ and ℓ

′
= ⌈ ℓB ⌉.

ACKNOWLEDGMENTS

Mina Dalirrooyfard is supported by a Google Faculty Research
Award and an Akamai MIT CS Theory Group Fellowship while
at MIT. Surya Mathialagan is supported by the Siebel Scholars
program, by DARPA under Agreement No. HR00112020023 and by
NSF grant CNS-2154149. Virginia Vassilevska Williams is partially

933

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Mina Dalirrooyfard, Surya Mathialagan, Virginia Vassilevska Williams, and Yinzhan Xu

supported by NSF Career Award CCF-1651838, NSF Grant CCF-
2129139, a Sloan Research Fellowship and aGoogle Faculty Research
Award. Yinzhan Xu is supported by NSF Grant CCF-2129139.

REFERENCES
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2018. If the

Current Clique Algorithms Are Optimal, so Is Valiant’s Parser. SIAM J. Comput.
47, 6 (2018), 2527–2555.

[2] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. 2018. More
consequences of falsifying SETH and the orthogonal vectors conjecture. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
(STOC). 253–266.

[3] Amir Abboud, Karl Bringmann, and Nick Fischer. 2023. Stronger 3-SUM Lower
Bounds for Approximate Distance Oracles via Additive Combinatorics. In Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC).
391–404. https://doi.org/10.1145/3564246.3585240

[4] Amir Abboud, Seri Khoury, Oree Leibowitz, and Ron Sa�er. 2022. Listing 4-Cycles.
arXiv preprint arXiv:2211.10022 (2022).

[5] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. 2014. Conse-
quences of Faster Alignment of Sequences. In Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming (ICALP). 39–51.

[6] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and counting given
length cycles. Algorithmica 17, 3 (1997), 209–223.

[7] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. 2016. Tight Hardness
Results for Maximum Weight Rectangles. In Proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming (ICALP). 81:1–81:13.

[8] Arturs Backurs and Christos Tzamos. 2017. Improving Viterbi is Hard: Better
Runtimes Imply Faster Clique Algorithms. In Proceedings of the 34th International
Conference on Machine Learning (ICML). 311–321.

[9] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick.
2014. Listing triangles. In Proceedings of the 41st International Colloquium on
Automata, Languages, and Programming (ICALP). 223–234.

[10] Karl Bringmann, Nofar Carmeli, and Stefan Mengel. 2022. Tight Fine-Grained
Bounds for Direct Access on Join Queries. In Proceedings of the 41st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS). 427–436.
https://doi.org/10.1145/3517804.3526234

[11] Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2020.
Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (Unless APSP
Can). ACM Trans. Algorithms 16, 4 (2020), 48:1–48:22.

[12] Karl Bringmann and Philip Wellnitz. 2017. Clique-Based Lower Bounds for
Parsing Tree-Adjoining Grammars. In Proceedings of the 28th Annual Symposium
on Combinatorial Pattern Matching (CPM). 12:1–12:14.

[13] Timothy M. Chan and Yinzhan Xu. 2024. Simpler Reductions from Exact Triangle.
In Proceedings of the 2024 SIAM Symposium on Simplicity in Algorithms (SOSA).
to appear.

[14] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing
Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.

[15] Shumo Chu and James Cheng. 2011. Triangle listing in massive networks and its
applications. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). 672–680.

[16] Seshadhri Comandur, Joshua Wang, Rishi Gupta, and Tim Roughgarden. 2014.
Counting small cliques in social networks via triangle-preserving decompositions.
Sandia Technical Report SAND2014-1516C 504950 (2 2014). https://www.osti.gov/
biblio/1141233

[17] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing K-Cliques in
Sparse Real-World Graphs. In Proceedings of the 2018 World Wide Web Conference
(WWW). 589–598.

[18] Ran Duan, HongxunWu, and Renfei Zhou. 2023. Faster Matrix Multiplication via
Asymmetric Hashing. In Proceedings of the 64th IEEE Symposium on Foundations

of Computer Science (FOCS).
[19] Friedrich Eisenbrand and Fabrizio Grandoni. 2004. On the complexity of �xed

parameter clique and dominating set. Theor. Comput. Sci. 326, 1-3 (2004), 57–67.
[20] Alon Itai and Michael Rodeh. 1978. Finding a Minimum Circuit in a Graph. SIAM

J. Comput. 7, 4 (1978), 413–423.
[21] Ce Jin, Virginia Vassilevska Williams, and Renfei Zhou. 2024. Listing 6-Cycles.

In Proceedings of the 2024 SIAM Symposium on Simplicity in Algorithms (SOSA).
to appear.

[22] Ce Jin and Yinzhan Xu. 2023. Removing Additive Structure in 3SUM-Based
Reductions. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing (STOC). 405–418. https://doi.org/10.1145/3564246.3585157

[23] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Com-
plexity of Computer Computations: Proceedings of a symposium on the Complexity
of Computer Computations. 85–103.

[24] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from the
3SUM conjecture. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 1272–1287.

[25] Matthieu Latapy. 2008. Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theor. Comput. Sci. 407, 1 (2008), 458–473.

[26] François Le Gall and Florent Urrutia. 2018. Improved rectangular matrix multipli-
cation using powers of the Coppersmith-Winograd tensor. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1029–1046.

[27] Andrea Lincoln, Virginia VassilevskaWilliams, and R. RyanWilliams. 2018. Tight
Hardness for Shortest Cycles and Paths in Sparse Graphs. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1236–1252.

[28] Jaroslav Nešetřil and Svatopluk Poljak. 1985. On the complexity of the subgraph
problem. Comment. Math. Univ. Carol. 26, 2 (1985), 415–419.

[29] Mihai Pătraşcu. 2010. Towards polynomial lower bounds for dynamic problems.
In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC).
603–610.

[30] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: E�ciently
Counting All 5-Vertex Subgraphs. In Proceedings of the 26th International Confer-
ence on World Wide Web (WWW). 1431–1440.

[31] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.
Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In
Proceedings of the International Conference on the World Wide Web (WWW). 927–
937.

[32] Thomas Schank and Dorothea Wagner. 2005. Finding, Counting and Listing
All Triangles in Large Graphs, an Experimental Study. In Proceedings of the
4th International Conference on Experimental and E�cient Algorithms (WEA).
606–609.

[33] Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle computations
without tuning. In Proceedings of the 31st IEEE International Conference on Data
Engineering (ICDE). 149–160.

[34] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In
Proceedings of the International Conference on the World Wide Web (WWW). 1122–
1132.

[35] Jan van den Brand and Danupon Nanongkai. 2019. Dynamic approximate shortest
paths and beyond: Subquadratic and worst-case update time. In Proceedings of
the 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).
436–455.

[36] Virginia Vassilevska Williams. 2018. On some �ne-grained questions in al-
gorithms and complexity. In Proceedings of the ICM, Vol. 3. World Scienti�c,
3431–3472.

[37] Virginia Vassilevska Williams and Yinzhan Xu. 2020. Monochromatic triangles,
triangle listing and APSP. In Proceedings of the 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS). 786–797.

[38] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. 2024.
New Bounds for Matrix Multiplication: from Alpha to Omega. In Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA). to appear.

934

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Problem Definitions
	2.2 Basic Clique Listing Algorithms

	3 Detecting Cliques
	3.1 General Detection Framework
	3.2 Examples

	4 Optimal Listing Algorithms for Graphs with Many k-Cliques
	4.1 Algorithm
	4.2 Analysis for (k,1)-Clique-Listing
	4.3 Analysis for (k, l)-Clique-Listing for l >= 2

	5 Extending the Algorithm to Graphs with Fewer k-Cliques
	Acknowledgments
	References

