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Bounded Output Feedback Control of Planar
Systems With Unknown Nonlinear Structures
and Application to Output Consensus

Chih-Chiang Chen

Abstract—This letter addresses the problem of out-
put feedback stabilization for a class of uncertain planar
systems with unknown nonlinear structures. The underly-
ing philosophy behind the proposed approach is primarily
to revamp/advance the classical lead compensator with
an arctangent function-based mechanism that assures
bounded control magnitudes, leading to a new design
methodology not only conquering the obstruction in con-
structing state observers but also directing the design of
a bounded output feedback stabilizer. Inheriting and lever-
aging the stability-increasing capability offered by lead
compensators, the resultant controller is capable of deal-
ing with systems even suffering from unknown nonlinear
structures and measurements concurrently. The strategy
presented is further expanded to formulate a bounded
output feedback output consensus protocol for uncertain
planar two-agent systems with unknown nonlinear hetero-
geneous dynamics.

Index Terms—Planar systems, unknown nonlinear struc-
ture, output feedback, bounded control.

[. INTRODUCTION

N THIS letter, we primarily focus on the issue of attaining
I global stabilization via bounded output feedback for a class
of uncertain planar systems with unknown nonlinear structure
described by

(D

where (x1, )7 € R2, y € R and u € R are respectively the
system state, output, and control input. The control coefficient
0 € R.o is an unknown constant, and the nonlinearity
g : R — R is an unknown continuous function. In the field

X1 =gx), X2=0u, y=ux
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of nonlinear control, planar nonlinear systems play a crucial
role as fundamental for comprehending and describing the
dynamic behaviors of diverse practical real-world systems,
such as pendulums, robotic manipulators, and chemical reac-
tions [1]. Attaining stabilization of planar nonlinear systems
is of paramount significance as an initial step, serving as
a fundamental precursor for subsequent control objectives
including regulation and/or trajectory tracking [2], [3].

In the literature, most achievements in state feedback sta-
bilization for planar or higher-order nonlinear systems often
rely on the assumption of securing prior knowledge of system
structures. (see, e.g., [4], [5], [6], [7], [8], [9], [10]); however,
this assumption is challenged by practical systems, such as the
boiler turbine unit in [11] whose simplified dynamic model
takes the form of system (1) with g(xp) = sign(xy)|x2|P and
6 = 1 where p is an unknown power parameter fluctuating
under various operational conditions, thus posing difficulties
in identifying and acquiring the system structure necessary
for designing an effective state feedback controller. Recently,
the work [12] presented an interval homogeneity-based control
method mainly to address the global state feedback stabiliza-
tion for the systems in the same form of the boiler turbine
unit (i.e., system (1) with g(xp) = sign(xp)|x2|’ and 6 = 1),
assuming that the power p is an unknown fixed constant lying
within a known interval. Building upon the idea of [12], the
study [13] delves deeper into the state feedback stabilization
issue for the same type of systems under a more general
circumstance that the power p is a time-varying scalar with
known bounds. Later, several advances dedicated to state
feedback stabilization have been subsequently achieved for this
kind of systems with multiple unknown powers p’s based on
similar assumptions [14], [15], [16].

Without a doubt, the challenge of the output feedback
stabilization problem for planar or general nonlinear systems
far surpasses the one of state feedback stabilization due to
the inapplicability of the separation principle for nonlinear
systems [17], [18]. Over the past two decades, numerous
works leveraging high gain feedback design have emerged
in the literature (see, for instance, [17], [18], [19], [20],
[21], [22], [23], [24]), demonstrating success in achiev-
ing output feedback stabilization of systems with clearly
known structures subject to diverse structural requirements,
including linear [19], [20], homogeneous [21], [22], and
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polynomial [23], [24] growth conditions. In addition, the
utilization of high gain feedback has also led to solu-
tions [25], [26] for output feedback stabilization of systems
having known structures but suffering from an uncertain
measurement y = h(x;) where A(-) is often assumed to a
differentiable function with bounded derivatives, represent-
ing the relation between the output y and the state xj.
Notably, in scenarios when system structures are unknown,
the output feedback stabilization of nonlinear systems is sig-
nificantly formidable owing to the intractable quandary/hurdle
stemming from handling and coping with the unknown struc-
tures in constructing a suitable state observer capable of
acquiring unmeasurable states for feedback purposes, and
thus preventing the applications of the existing results [17],
[18], [19], [20], [21], [22], [23], [24]. Furthermore, when
uncertain/unknown measurements are also involved, the task
of stabilizing nonlinear systems with unknown structures
using output feedback becomes immensely insurmountable
and inevitably inhibits the feasibility of the strategies
in [25], [26], mainly due to the absence of applicable state
observers/estimators, as well as the unavailability of precise
state information required for estimating unmeasurable states.

In this letter, we concentrate on designing an output
feedback controller to globally asymptotically stabilize the
planar system (1) with unknown nonlinear structures (i.e., g(-)
and 6 are unknown). The underlying philosophy behind our
approach is chiefly to revamp the classical lead compensator
by incorporating an arctangent function-based mechanism
that guarantees bounded control magnitudes, thereby offering
a novel design methodology not only triumphing over the
obstruction associated with the construction of state observers
but also providing an explicit design of a bounded output
feedback stabilizer, as described in Theorem 1, that contains
a tunable/assignable at will control gain so that magnitude
constraints/limitations imposed on system (1) can be effi-
ciently yet straightforwardly satisfied (see Remark 2). Also,
technically inheriting and leveraging the stability-increasing
capability offered by lead compensators, the resultant output
feedback stabilizer, as substantiated in Theorem 2, is capable
of dealing with system (1) even in the presence of unknown
nonlinear structures (namely, g(-) and 6;) and measurement
y = h(x1) concurrently, without requiring the differentiability
of h(-), and thus enjoying wider applicability as delineated
in [25], [26]. With the capability to handle unknown nonlinear
structures, the presented methodology (design framework) is
further expanded, as depicted in Theorem 3, to formulate
a bounded output feedback output consensus protocol for
uncertain planar two-agent systems with unknown nonlinear
heterogeneous dynamics, each of which possesses a distinct
dynamic model and behavior.

II. MAIN RESULTS

Owing to the continuity exhibited by the unknown function
g(), the closed-loop system (1) is only ensured to maintain
continuity while also harboring the possibility of non-unique
solutions, even when a smooth feedback controller u(-) is
applied. To lay a theoretical foundation for our analysis
and investigation, we hereby recall an essential lemma that
elaborates on an extension of LaSalle’s invariance principle,

thoughtfully tailored to accommodate continuous systems,

and skillfully sidesteps the prerequisite of the uniqueness of

solutions/trajectories starting from arbitrary initial states.
Lemma 1 ([27], [28]): Consider a nonlinear system

n=¢@m, n(0) eR" @

with ¢ : R" — R" being a continuous function. Suppose
that V : R — Ry is a positive definite, continu-
ously differentiable and proper function such that V(y) =
@V(n)/dn)¢(n) <O0foralln e R". Let H = {n € R"|V(n) =
0} € R" and M C H be the union of all forward complete
solutions 7n(#)’s of system (2) that remain in! H. Then, for any
initial state n(0) € R”, every solution 7(f) of system (2) with
respect to 1(0) is defined on [0, co) and fulfilling n(f) - M
as t — o0.

Remark 1: Note that, the proof of Lemma 1 has been
solidly substantiated in [27, Th. 2, p. 62] or [28, Th. 3.2,
Corollary 3.3, p. 243]. Due to the continuity of ¢ (-), system (2)
in Lemma 1 essentially exhibits the non-uniqueness in the
solutions emanating from a given initial state; therefore,
Lemma 1 serves as a crucial tool that aids in systematically
assessing the convergence behavior of the multiple solutions
n(t)’s to the set M, starting at any initial state n(0) € R".

A. Bounded Output Feedback Controller for System (1)

We now impose an assumption on the unknown nonlinear
structure g(-) of system (1) and present our first result.

Assumption 1: The unknown continuous function g(-) is
strictly increasing and satisfies g(0) = 0.

Theorem 1: Under Assumption 1, the following dynamic
bounded output feedback controller

u=—-Lo(y)—Lo(z), z=u—Mo(z) 3)

with any constants L,M € R.o globally asymptotically
stabilizes system (1), where o : R — R is defined as o (s) =
tan—'(s)/7 for all s € R.

Proof: By letting e = xp — 6z, it can be deduced that

. Xy — e
e:@u—@(u—Ma(z)):OMo( 0 ) 4)
and the output feedback controller (3) becomes
Xp —e
u:—Lo(xl)—La( 7 ) &)
Substituting (5) into system (1) and involving (4) yields
X1 = g(x2)
. Xp —e
Xy = —0Lo(x) — 0La< 7 )
¢ =6Mo (xze_ e) (6)

whose right-hand side is only continuous for all (x, e) € R? x
R; thus, system (6) might have non-unique (multiple) solutions
with respect to any initial state (x(0), e(0)) € R? x R.

IThat is, the set M is the union of all solutions n(t)’s of system (2) initiating
at n(0) € H and satisfying the properties that 1(¢) are defined on [0, co) and
n(¢) € H for all ¢ € [0, 00).
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Now, we denote n = (x, e) € R? x R = R3 and consider a
L

function V : R? — R of the form
X2 e
g(s)ds + — / g(s)ds
/0 M Jo

which is positive definite as both o (-) and g(-) are functions
in the first and third quadrants. Furthermore, by the monotone
properties of g(-) and o (), it is also clear that V(n) — oo as
|Inll = oo which reveals that V(n) is proper. Because V(n) is
continuously differentiable, the time derivative of V(-) along
system (6) is

V(n) = ()561+ 8V()5C2+ BV()é
0x] 0x2 de

= 0Lo (x1)g(x2) — OLo (x1)g(x2)
oL Xy —e L oM. X2 —e€
- U( P >g(x2) + Mg(e) U( 7 )

—0L(g(x2) — gle))o (xze_ e) <0

V(n) =6L /XI o(s)ds +
0

= (7)
for all n € R3. Observing the inequality (7) and noting
Assumption 1 (i.e., the strict monotonicity of g(-)), one can
derive H := {n € R3|V(n) = 0} € R? as H = {(x,¢) €
R3|x; — e = 0).

On the other hand, considering the continuity of system (6)
and Peano’s theorem [29], we let n : [0,#) — R3 having
the form n(f) = (x(¢), e(r)) with ¢, € R.o be any saturation
(uncontinuable) solution of system (6) with respect to any
initial state 7(0) = (x(0), e(0)) € R3. It follows from (7)
that dV(n(?))/dt < 0 for all + € [0, ); this implies that
Vin@®) < V(#nO)) < oo for all + € [0,t) which along
with Assumption 1 ensures that n(f) = (x(¢), e(?)) is bounded
uniformly in ¢z € [0,1). Hence, in accordance with the
continuation theorem [29], each solution 7 () = (x(¢), e(¢)) of
system (6) in regard to any initial state n(0) = (x(0), e¢(0)) €
R3 is bounded uniformly and defined on [0, co). With this
in mind, it is evident that for all # € [0, o0) and for every
solution n(f) = (x(1), e(r)) of system (6) originating from
n(0) = (x(0), e(0)) € R3, there hold i (¢) = g(x2(7)) and

%2(1) — e(t) = — OLo (x (1)) — OLo (M)

oMo <x2(1)0— e(t))

for all 7 € [0, o0), which together with Assumption 1 directly
show that the union of all forward complete solutions 7(¢)’s of
system (6) that remain in H is M := {5(r) € R3|ix(r) —eé(t) =
0 for all t € [0, c0)} € H which takes the form

M = {(x(t), e) € R |x1(t) = xa(t) = e(t) = 0
for all £ € [0, oo)}.

As a results, it can be concluded from Lemma 1 that each
solution 7(f) = (x(?), e()) of system (6) starting at any initial
state 7(0) = (x(0), e(0)) € R? fulfills n(r) = (x(1), e(t)) — M
as t — oo; that is, n(f) = (x(¢), e(r)) - 0 as t — oo. This
completes the proof. |

Remark 2: It is interesting to mention that, due to the
distinctive but simple structure, the controller u(-) given by (3),

3381
y o () ——»{}~E>>——_+u
o L fi D
=
Fig. 1. Block diangMhe proposed controller (3).

to a certain extent, can be thought of as a similar form
of second-order sliding mode controllers (e.g., the twisting
algorithm [30]) with a (saturation) arctangent function o (-)
acting as a smoother to effectively increase the smoothness
of the control signal, at the expense of compromising the
robustness to persistent (or fast oscillations) bounded external
disturbances. In addition, owing to the use of the (saturation)
arctangent function o (-) in the construction, the magnitude
of u(-) is uniformly bounded by the limit of L € R.o,
i.e., [u(-)| < L holds throughout control operations. Because
L € R. g is a freely tunable/assignable constant, it technically
enables and facilitates the efficient yet straightforward satis-
faction of control magnitude constraints/limitations imposed
on system (1) when utilizing the proposed controller (3). Such
an idea of employing saturation (bounded) control was also
presented in the recent work [31] for addressing feedforward
systems with nonlinear parametrization and delays.

Remark 3: It is noteworthy to highlight that the underlying
philosophy behind the bounded output feedback controller (3),
having the architecture depicted in Fig. 1, is the construc-
tion of a revamped lead compensator adeptly equipped with
a mechanism securing bounded control magnitudes. To be
specific, upon removing the function o (-) = tan~!(-)/z from
the controller (3), which corresponds to the elimination of
the mechanism responsible for confining control magnitudes,
it can be noticed that the output feedback controller (3)
undergoes a direct degeneration into

u=—-Ly—Lz, z=u—Mz (8)

whose Laplace transforms are

U(s) = —LY(s) — LZ(s), sZ(s) = U(s) — MZ(s).

A simple calculation shows that the transfer function of the
output feedback controller (8) is

s+ M

“”=LG:IIM

)(—Y (s))

with L, M € R. ¢, which in turn exposes that the degenerated
controller (8) functions primarily as a lead compensator.
Building upon the fact that the lead compensator is renowned
for its remarkable ability to increase/enhance the stability of
linear systems [32], [33], as extensively recognized in classic
control theory, Theorem 1 sheds further light on the revelation
that the proposed bounded output feedback controller (3),
which intrinsically inherits the superior nature of increasing
stability from the lead compensator, is capable of stabilizing
the uncertain planar nonlinear system (1).
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Remark 4: It is worth noting that Assumption 1 is
somewhat necessary, as demonstrated by the system x; =
sin(x2), X» = u, y = x; which is in the same struc-
ture as system (1) with g(xp) = sin(xp) failing to satisfy
Assumption 1. We assert that this system cannot be stabilized
by any bounded continuous output feedback controller u(y, z)
with z = ¥ (y, z, u). In fact, when x1(0) = 0, x2(0) = = and
z(0) = 0, it follows that u(r) = 0 and thus x;(#) = 0 and
x(t) = mr for all t € [0, 00); i.e., the stabilization task is not
achievable for this system.

B. Extension to System (1) With Unknown Measurement

Based on the analysis and proof of Theorem 1, we next show
that the presented bounded output feedback controller (3),
enjoying the stability-increasing capability intrinsically, can
be also utilized to handle system (1) with an wunknown
measurement depicted by

y = h(x1) (€))

where (x1, x2)! € R2, y € R and u € R represent, respectively,
the system state, output, and control input. As described in
system (1), the control coefficient & € R- and the continuous
nonlinearity g : R — R are unknown; in addition, the
measurement function 2 : R — R is an unknown continuous
function complying with the assumption below.

Assumption 2: The unknown continuous function A(-) sat-
isfies the following

1) A(0) =0 and h(§) # 0 for all £ € R with £ #0

2) [5o(h(@)da > 0 for all £ € R with & #0

3) 1imjg| oo fi 0 (h(@))da = +oo.

Remark 5: It is apparent that Assumption 2 encom-
passes a broader class of functions, such as h(x;) =
sign(x1) min{|x1|, B} and h(x;) = Bx1/(1 + x%) for some
unknown constant 8 € R.o, both of which are not strictly
increasing and even exhibit saturation. Undoubtedly, the satu-
ration phenomenon of the measurement output y substantially
challenges the feasibility and validity of output feedback
design using conventional observer-based methods, due to
the inherent difficulty in attaining and/or extracting a usable
state value from the measured reading. Such an obstacle is
in fact a particular case of systems suffering from unknown
measurement y = h(x;), which can be effectively surmounted
through the presented controller (3), as shown in the theorem
below.

Theorem 2: Under Assumptions 1 and 2, the dynamic
bounded output feedback controller (3) with any constants
L, M € R. globally asymptotically stabilizes system (9).

Proof: Following the argument performed in the proof of
Theorem 1 and using y = h(x;), one has

X1 =gx2), X2 =0u,

X1 = g(x2)

— 0Lo (h(x))) — 6Lo <x29_ e)

. Xy —e
e:@Ma( )
%

By considering the function V : R? — R-( as below

Xy =

(10)

X1 X2 L e
V(n) = QL/ o (h(s))ds +/ g(s)ds + —/ g(s)ds
0 0 M Jo

N
vy =h(z)
\

le(t)

.Tg(t)

' --- ()

50 5 10 15 0 5 10 15
time (sec) time (sec)
3 10
20 U A G —u()[
1 ---2(t) )
0
R AV A -
-2 -10
0 5 10 15 0 5 10 15
time (sec) time (sec)

Fig. 2. Timing responses of x1(t), xo(t), z(t) and u(t) of systems (11).

with n = (x,e) € R3 and ¢ = X3 — 0z, which, in view of
Assumptions 1 and 2 together with the strict increasingness
of o(-), is positive definite, continuously differentiable and
proper, it follows readily from (3) and (10) that

V() = — 0L(3(x2) — g(e))o (’C2 ~ e) <0

for all n € R3, which is completely identical to (7). The
remaining part of the proof can be straightforwardly derived in
a manner consistent with that of Theorem 1, thereby proving
that (3) is a global asymptotic stabilizer for system (9). H

We now proceed by providing an illustrative example to
demonstrate that the bounded output feedback controller (3)
is capable of attaining global asymptotic stabilization for both
systems (1) and (9).

Example 1: Consider the following system

(1)

where 6 = and B = 1. Clearly, system (11) has the
same form as system (9) with g(xp) = 3x§/ 3 and h(x;) =
sign(x1) min(|x1|, B); hence, Assumptions 1 and 2 are evi-
dently fulfilled. It is worth noting that the measurement y
of system (11) becomes saturated as |xj| of system (11)
approaches one; if the measurement y of system (11) is
replaced by y = x1, which corresponds to the scenario with
B — oo (i.e., no saturation in the measurement), system (11)
is exactly of the same form as system (1). By choosing
the gains L = 8 and M = 1.3 for the output feedback
controller (3), along with the initial state (x1(0), x2(0), z(0)) =
(7.5,4, 2), the simulation results for system (11) with two
different measurements y = h(x;) = sign(x;) min(|x|, 8) (red
line) and y = x (blue line) are depicted in Fig. 2. These results
disclose the effectiveness of the output feedback controller (3)
as well as its boundedness (i.e., |u(-)| < 8).

5
X1 =3x5, X2 =0u, y=sign(x;)min(|x|, B)
2

C. Bounded Output Feedback Output Consensus
Protocol

As an immediate consequence of Theorem 1, the method-
ology and framework for devising the dynamic bounded
output feedback (3) can be readily extended to construct a
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bounded output feedback consensus protocol for uncertain
planar heterogeneous two-agent systems, each of which owns
the same structure as system (1). To demonstrate this aspect,
we consider a two-agent system described by

Wi = gi(vi), Vi =0ui, yi=w; (12)
with i = 1,2, where (w;,v;) € R?, y; € R, and u; denote
the system state, output, and control input, respectively. The
control coefficient ; € R.o and the continuous nonlinearity
gi : R — R are unknown. We also assume that the adjacency
elements between the two agents are aj» a; = 1. In
what follows, the leaderless output consensus problem of
system (12) is said to be achieved by a protocol u; with i =
1,2 if for all i = 1,2 and for any initial states (w;(0), v;(0)),
every solution (w;(f), v;(t)) of system (12) commencing at
(w;(0), v;(0)) is defined on [0, co) and realizes lim;_, oo w; (1) —
wi(t) =0 forall i,j=1,2 and i #j.

Theorem 3: If the unknown continuous function g;(-) of
system (12) satisfies Assumption 1 for all i = 1, 2, then the

following dynamic bounded output feedback protocol

ui = — Lo (yi —yj) — Lo (z)

Zi=ui—Mo(z), i,j=1,2andi#] 13)

with any constants L, M € R.( achieves the output consensus
of system (12).

Proof: The idea introduced for proving Theorem 1 can be
mostly carried over into this proof.

Letting ¢; = v; —6z; and ¢; = w; —wj for all i,j = 1, 2 and
i # j, one instantly obtains

& = givi) — gi(v))

vi = —0iLo(g) — 9[LO’<

Vi i
Vi — €;

i)
i)

withi,j = 1,2 and i # j. We denote n = (¢1, &2, v1, V2, €1, €2)
€ R% and select a function V : R® — R as

2 &
V) = L(Z / kaU(s)ds>
k=179
2 61+ 6,
d
+ (;/O ( o >gk(S) S>

L 2 € (0] + 6
+A—4(§/0< m )gk(s)ds>.

Because of the strict increasingness of o () and Assumption 1,
it is obvious that V(n) is positive definite, continuously
differentiable and proper. From (14), we have

V(n) = 01Lo (1) (1 (v1) — g2(12))
+ 6Lo(e2)(g2(v2) — g1(v1))

2
— (61 +62)L Z 8k (vi) (U (&) +o (%))

k=1

¢ = QiMcr< (14)

2
+ (O + 92)L28k(ek)0<Vk W ek)

k=1

for all n € R®. Because o (-) is an odd function, leading to
o(e1) = —o(e2) for all n € RO, it follows that

— (61 + 62)L(g2(v2) — g2(e2))o (%) =0

Vi — €1

V() = — (01 +6)L(g1(v) — g1 (e1>)o(

for all n € R®. Similarly, in view of Assumption 1 and the
definition of o (-), the set H = {n € RV (n) = 0} is of the
form H = {(e1, €2, v, v2, e1, €2) € RO|v; — ¢; = 0 for all i =
1,2}.

In line with the derivations performed in the proof
of Theorem 1, we immediately know that each solution
n@) = (e1(1), &2(0), vi(1), va(2), e1(2), e2(r)) of system (14) in
respect of any initial state n(f) = (&1(0), £2(0), v1(0), v2(0),
€1(0), e2(0)) € R is indeed bounded uniformly and defined
on [0,00). This in conjunction with the definition of H
indicates that the union of all forward complete solutions 7(z)’s
of system (14) always staying in H is M = {(r) € R®|v;(r) —
ei(t)y =0 forall i=1,2 and ¢ € [0, c0)} € H, which on the
basis of the relations below

vi(f) — ei(t)

)

vi(t) — éi(t) = — 6iLo(&i(1)) — 9iL0(
oMo <Vi(t) - ei(t)>
0;

&) = gi(vi) — gj(vi(0)
for all i,j = 1,2 with i # j and ¢ € [0, c0), becomes

M = {(e1(). e20, v1 (0. 1200, e1(0), 2(0)) € Y|
ei(1) = 0,v;(1) — ei(t) = 0 and g;(vi(t)) = g;(vj (1))
for all i,j = 1,2 with i % j and £ € [0, oo)}.

Therefore, from Lemma 1 we can conclude that each solution
n@® = (e1(0), &2(1), vi(), va2(t), e1 (1), e2(t)) of system (14)
starting at any initial state n(0) = (¢1(0), £2(0), v1(0), v2(0),
€1(0), e2(0)) € RO satisfies n(t) — M as r — oo, which
implies that the output consensus of system (12) can be
successfully accomplished. The proof is completed. |

We present an example below to showcase the effectiveness
of the bounded output feedback protocol (13) in achieving the
output consensus task for system (12).

Example 2: Consider two systems as below

3

wi = 2v] W2 =3
Sysi 1 3 vi = 01uy Sysy 1§ vy = 6hup (15)
Y1 =Wwi Y2 = w2
where 6 = 2.3 and 6, = 1.5. Both of them constitute

system (12) with g;(vi) = 2v; and g2(v2) = v%, satisfying 1.
The simulation result shown in Fig. 3 is conducted using the
gains L = 2.5 and M = 1 for the output feedback proto-
col (13), together with the initial state (w;(0), w2(0), v1(0),
v2(0), z1(0), z2(0)) 4,3,1,-8,—2,-3). It has been
demonstrated that the output consensus problem of system (12)
can be reliably carried out by the output feedback protocol (13)
with the bounded magnitudes |u;(-)| < 2.5 for all i =1, 2.
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Fig. 3. Timing responses of w;(t), v;(t), zj(t) and u;(t) of system (15).

IIl. CONCLUSION

This letter has introduced a novel approach to address
the issue of output feedback stabilization for a class of
uncertain planar systems with unknown nonlinear structures.
The proposed method involves an innovative revamp of
the classical lead compensator, incorporating an arctangent
function-based mechanism that guarantees bounded control
magnitudes, thus not only surmounting the obstacle in con-
structing state observers but also clarifying the design of a
bounded output feedback stabilizer. Based on the stability-
increasing nature inherited from lead compensators, the
resultant controller was also proved to be effective in handling
systems afflicted by both unknown nonlinear structures and
measurements simultaneously. Finally, the applicability of
the proposed strategy was extended to the development of
a bounded output feedback output consensus protocol for
uncertain planar two-agent systems with unknown nonlinear
heterogeneous/distinct dynamics. An intriguing issue for future
research lies in the extension of the proposed approach to
higher dimensional cases by integrating the nested saturation
scheme [31].
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