
An FPGA-based Max-K-Cut Accelerator Exploiting Oscillator 
Synchronization Model

Abstract— In this work, we demonstrate a one of its kind 

FPGA-based compute engine that uses new computational 

models inspired by the synchronization dynamics of 

coupled oscillators to solve the general form of the 

computationally intractable Max-K-Cut combinatorial 

optimization problem (COP). Prior work on developing 

oscillator-inspired models for solving COPs, namely 

oscillator Ising machines, only directly map the MaxCut 

(K=2) problem. Solving other COPs (e.g., K>2) using such 

models entails graph decomposition and the use of auxiliary 

variables that effectively increase the graph size that must 

be solved by the hardware. This not only increases the 

computation time but also degrades the solution quality. In 

contrast, our model offers a generalized formulation that 

can directly solve the general form of the Max-K-Cut 

problem for any value of K without the need for auxiliary 

variables. Subsequently, by mapping the models on an 

FPGA platform in a way that exploits its fine-grained 

parallelism, we accelerate the Max-K-Cut problem (K=2, 3, 

and 4 shown here) on graphs with up to 10,000 nodes. When 

benchmarking against the state-of-the-art simulated 

bifurcation machine (SBM) that only uses the Ising model, 

our implementation offers an average 17× speedup for the 

Max-2-Cut and up to 390× average speedup for the Max-3-

Cut and Max-4-Cut problems for similar solution quality in 

all cases. 

Keywords—combinatorial optimization, Ising machine, 

FPGA, oscillator, Max-K-Cut 

I. INTRODUCTION  

 Combinatorial optimization problem (COP) is a subset of 
optimization problems that entail finding the optimal value of a 
function in a discrete or combinatorial domain. COPs find 
extensive applications in various fields ranging from VLSI 
design to neural network training. From a computational 
standpoint, many COPs remain computationally intractable, 
requiring exponentially increasing computational resources with 
increasing problem size [1]. Examples of such NP-hard COPs 
include the Traveling Salesman Problem, Max-K-Cut problem 
to name a few. The NP-hard Max-K-Cut problem, the focus of 

the present work, is defined as the challenge of dividing a graph 
into K partitions such that the weight sum of the edges crossing 
different subsets is maximized (Fig. 1). When K=2, the Max-K-
Cut problem transforms into the archetypal MaxCut problem. 
While various computational models and design approaches 
have been investigated for solving MaxCut (K=2), it has limited 
direct applications. In contrast, the general Max-K-Cut problem 
(K>2)-the focus of the present work- finds direct practical 
applications in fields such as protein interaction analysis [2], 
wireless communication [3], and scheduling [4] among others. 
 The approaches to solving such COPs can be classified into 
two broad classes: Methods and algorithms designed to yield 
exact solutions, and approximate solvers. Owing to the 
fundamental NP-hard complexity of such COPs, the former 
approach typically results in exponentially increasing time-to-
solution and /or memory requirements. Consequently, even 
COPs of small size become impractical to solve using exact 
solvers. The only practical alternative is to use approximate 
solvers such as heuristics. While such methods cannot guarantee 
an exact solution, they promise significant speedup. However, 
purely algorithmic heuristic approaches also face challenges in 
solving intractable COPs. The tradeoff between speedup and 
solution quality can be substantial. Furthermore, such heuristics 
are extremely sensitive to the nature of the input problems and 
typically need extensive parameter optimization. Consequently, 
there is active research interest in exploring alternate 
computational approaches and models to accelerate such 
problems [5]. 

 

 
Figure 1: Illustration of the Max-K-Cut problem (for k=2, 3, and 4) 
for a representative 6-node graph. While prior work on physics-
inspired computing has focused on accelerating MaxCut (K=2), here 
we develop, for the first time, an FPGA accelerator for the general 

case of Max-K-Cut (K≥2). 
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 Physics inspired computational paradigms such as Ising 
machines, based on the Ising model, represent a promising 
approach to solving COPs [6], [7]. The underlying idea behind 
this method is that the natural energy minimization in the 
physical systems finds a natural analogue to the minimization of 
the objective function that defines a COP. Consequently, as the 
system evolves towards the ground state by minimizing its 
energy, it naturally solves the COP. As an archetypal example 

of such mapping, the Ising Hamiltonian given by  =− ∑ ,,  [8] can directly map the objective function of the 

MaxCut problem using the following relationship: edge weight 

between node i  and j ,  = − . Here, the i  spin   (  ∈−1, +1 ) maps the i  node of the input graph. Such spin 
assignments to the nodes divide them into two sets that yield a 
MaxCut solution. Furthermore, such Ising machines, that 
minimize the Ising Hamiltonian, can be mapped to the dynamics 
of coupled electronic oscillators [8]-[10], qubits [11] etc. There 
have been many demonstrations that have shown the promise of 
such systems in solving the MaxCut problem. As elucidated in 
the following section, this physics inspired approach has been 
exploited either by developing the actual physical 
implementation of the system (e.g., a network of coupled 
oscillators [9],[10]) or by developing emulators (e.g., SBM: 
simulated bifurcation machine [12]) that use the computational 
models inspired by the physics of such systems. While the 
former approach which entails an application specific 
implementation promises larger speedups, scaling such designs 
are challenging. In contrast, the latter approach essentially aims 
to use the physics-based approach as a computational model to 
solve the COP and has been shown to be much more scalable as 
well as offer substantial speedup.   

However, one of the long-standing limitations of this paradigm 
is that such physics inspired methods lack flexibility, and only 
COPs whose objective functions are exactly equivalent can be 
directly mapped. For example, in the case of Ising machines, 
only the specific case of the MaxCut problem (K=2) can be 
directly solved. Solving the general Max-K-Cut problem (K>2) 
entails transforming or decomposing the problem that is 
compatible with Ising model by introducing additional auxiliary 
variables (nodes) and edges. Consequently, the actual graph that 
must be mapped to the hardware is significantly larger than the 

input problem size [6], [8]. This not only degrades the time-to-
solution and solution quality but also increases the energy 
consumption of the hardware (physical implementation or 
emulator). Fig. 2 compares the size of the actual graph that must 
be solved by the hardware as a function of the size of the input 
problem for K=2, 3, and 4 in the Max-K-Cut problem. For 
example, to solve the Max-3-Cut using an Ising machine, a 
10,000-node graph needs to be converted to a 30,000-node graph 
[6], [8] that will then be mapped to the Ising machine.  
 Therefore, in this work, we present a novel physics-based 
computational model that is implemented on FPGA to solve the 
general Max-K-Cut problem (for any K) without incurring any 
additional (auxiliary) nodes i.e., the size of the input problem is 
exactly the same as that of the input graph. The contributions of 
this work can be listed as shown below: 

 We implement novel computational models inspired by the 
synchronization dynamics of oscillators that solve the 
general form of the Max-K-Cut problem. Unlike the 
conventional Ising machine-based solvers / annealers, our 
approach can directly solve the Max-K-Cut without 
expanding the problem size. Mapping the Max-K-Cut 
problem to an Ising machine entails the use of additional 
auxiliary variables (nodes) that are not required in our 
approach. 

 We develop an FPGA accelerator (AWS F1 instance) that 
exploits design techniques such as sparse matrix random 
access parallelization and design an efficient dataflow 
architecture to accelerate the oscillator synchronization-
based computational models. 

 By leveraging the inherent parallelism in the computational 
models and the FPGA implementation, we demonstrate the 
solutions to the Max-K-Cut problem (K=2,3,4) on graphs up 
to 10,000 nodes with speedups ranging from 17× - 390× over 
a state-of-the-art Ising machine-based accelerator, while 

maintaining similar solution quality.  

The paper is divided into 5 sections. Prior related work is 
described in the following section. Subsequently, Section III 
delves into the proposed approach, providing comprehensive 
details regarding the computational model and the FPGA design. 
Results and performance benchmarking are discussed in section 
IV. Section V summarizes the key accomplishments. 

II. RELATED WORK 

In the past, many approaches have leveraged the idea of the 
energy minimization in physical systems to solve hard COPs 
including simulated annealing [13], simulated bifurcation [12], 
synchronized oscillators [8]-[10], [14], quantum annealing [11], 
artificial neural networks [15], p-bit-based methods [16], and 
coherent Ising machines [17] among others. Simulated 
annealing (SA) was one of the early approaches to be 
investigated. One of the primary challenges of this approach is 
the sensitivity of the parameters (e.g., schedule for annealing and 
update) to the input problem [18]. Recently, a state-of-the-art 
simulated bifurcation-based algorithm was proposed to solve the 
MaxCut problem (SBM) [12]. There have been various FPGA- 
and GPU-based implementations for these physics-inspired 
algorithms. A few examples include: (a) Tatsumura et al. [19], 

 
Figure 2: The variation in (a) the number of nodes and (b) the 
number of edges of the graph required to solve the Max-K-Cut 
problem, as a function of the corresponding quantities in the 
original input graph. It can be observed that, in the case of our 
approach, these quantities coincide with the original graph 
quantities as no conversion is required. 
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and Yoshimura et al. [20], showcased FPGA-based 
implementations of the SBM and SA, respectively, capable of 
solving the MaxCut problems on graphs with up to 4096 nodes. 
(b) Cook et al. [21], demonstrated GPU-based Metropolis 
annealing to solve the MaxCut (i.e., only for K=2). Besides 
FPGA and GPU-based implementations, ASIC implementations 
such as an SRAM based CMOS annealing processor IC [22] and 
stochastic cellular automata-based annealing processor [23] 
have also been developed to solve the MaxCut problem. 

Complementing the digital accelerators, analog 
demonstrations that rely on the physics of the hardware have also 
been developed. For example, the following works [10], [14], 
[24] developed coupled oscillator based Ising machines 
exploiting the fact that the dynamics of a network of coupled 
oscillators under second harmonic injection can minimize the 
Ising Hamiltonian. Using the same principle, other hardware 
platforms such as optoelectronic oscillators (Coherent Ising 
Machines [17]) and p-bits [16] have also been showcased. 

While all these approaches bring forth their own innovations, 
they are inherently limited to solving binary optimization. 
Solving other problems (e.g., Max-K-Cut, K>2) using the above 
methods will involve the need for graph transformation and the 
use of additional auxiliary variables – a limitation that we aim to 
overcome in this work. Efforts on developing physics (energy 
minimization)-inspired approaches for solving COPs beyond the 
MaxCut e.g., the Max-K-Cut problem, have been very sparse, 
and have generally relied on traditional approximation 
algorithms. Our work is inspired by [25] which extends the 
theory of Ising machines to the more general Potts model. 
Therefore, this work represents a unique direct implementation 
of a novel physics-inspired algorithm on a hardware accelerator 

for solving the general form of the Max-K-Cut problem. 

III. THE PROPOSED SOLVER  

A. Computational Model 

The objective function of the Max-K-Cut problem can be 
expressed as, 

 = −  . ∗
,,     (1) 

Where,  represents real part,  represents imaginary unit (  =√−1 ), i  represents ith index,  =  ;  ∈ 0,  ,  …  .  
represents the ith state variable that corresponds to an individual 

node in the graph.  can be considered analogous to the Ising 

spin except with K number of states.  = −  (  : edge 

weight). The function f(. ) is defined as, 

f() =  → 
⎝
⎜⎜⎜
⎜⎛(2 − 1) − 2  . − ∆ − 2 

2  − 1


+ 2 − (2 − 1) . − ∆ + 2 
2 

⎠
⎟⎟⎟
⎟⎞

 

    

   

    (2) 

and essentially makes the coupling coefficient sensitive to the 
phase. The phase configuration that yields the minimum value 
of H corresponds to the solution of the Max-K-Cut problem [25]. 
Moreover, Eq. (1) can be minimized by a coupled oscillator 

system whose energy function (E) and dynamics (d d ) can be 

described by: 

() = − 2   cos ∆ + f
,, 
−  cos(())

  

   (3) 

d()d = −   sin ∆ + f
,   − sin(()) 

   (4) 

 represents the coupling strength among the oscillators and  
represents the strength of the Kth harmonic signal injected into 
the system. The ground state (global minima) of Eq. (3) can be 
shown to be equivalent to the global minima of objective 
function for the Max-K-Cut problem (Eq. (1)). The system of 
equations in Eq. (4) describes the corresponding dynamics 
which detail how the system evolves towards the ground state. It 
can be observed that Eq. (4) represents a unique set of dynamics 
to solve the general form of the Max-K-Cut problem without 
requiring any additional variables.  

B. Numerical Implementation 

The computational model, represented by Eq. (4), is solved 
using a stochastic differential equation (SDE) framework 
developed on an FPGA platform. The SDE kernel adds noise to 
the dynamics. The presence of noise helps the system escape 
from local minima (corresponding to sub-optimal solutions) in 
the high dimensional phase space and help improve the solution 
quality while incurring minimum performance penalty. Hence, 
the dynamics can be written as,  d()d = g(. ) + d    (5) 

Where, d describes the Weiner process [26] that introduces 
stochasticity into the dynamics. g(.) is the right-hand side of  
Eq. (4). Additionally, we use a tanh(.) that augments the phase 
dynamics as used in earlier works [27], [28]. The numerical 
integration technique used to solve the system of equations 
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described in Eq. (5) is a simple trapezoidal integrator [29]. 
Solving Eq. (5) yields the time evolution of the oscillator phases 
( ). Upon achieving a steady state, the dynamics create K 
number of partitions which correspond to the K vertex clusters 
created by the Max-K-Cut. Fig. 3 shows the Max-K-Cut (K=2, 
3, and 4) solution for a representative 200 node graph obtained 

using the proposed platform. 

C. Architecture of the FPGA Implementation 

Since the conventional energy minimization-based 
computing approaches such as Ising machines are unable to 
directly solve the Max-K-Cut problem, here we design an 
efficient FPGA platform to accelerate the computational model 
for solving the Max-K-Cut problem described above. Our 
design strategies are governed by three main objectives: 1) 
exploiting a maximum level of parallelism; 2) consuming a 
reasonable amount of hardware resources; 3) ensuring 
flexibility so that it supports the general case of the Max-K-Cut 
for any graph of arbitrary size without FPGA reconfiguration. 
The details of the FPGA system design are described below: 

 
Fig. 4 shows the high-level block diagram of the accelerator. 

The computational model is implemented on the FPGA using 
two major kernels: (a) Graph Initializer; and (b) Kuramoto 
Kernel. Initially, the graph data in CSR (compressed row 

storage) format, is stored in the host DRAM, and is 
subsequently transferred to the FPGA DRAM through PCIe. 
Additionally, a set of control registers are accessible between 
the host and the FPGA through the AXI-lite kernel interface 
which allows dynamical modification of the essentials such as 
the graph size, K (in Max-K-Cut), number of iterations without 
the need for reconfiguring the FPGA platform each time. Once 
the graph data is transferred to the FPGA, the Graph Initializer 
kernel processes the data and transfers it to the high-bandwidth 
on-chip Block RAMs which allow parallel access. Thus, the 
off-chip DRAM is only read once. After initialization, the 
Kuramoto Kernel (details in the following subsections) is 
responsible for performing the computation. Table I lists key 
parameters used in the design. 

TABLE I.  PARAMETER USED IN THE FPGA 

IMPLEMENTATION  

Parameters Definition Parameter values used 
in the evaluation 

N Size of the graph Input problem dependent 
(up to 10,000) 

K 

(Max-K-Cut) 

Number of partitions required 
from the Cut 

Input problem dependent 
(2, 3, 4) 

        X Size of each segment in Block 
RAM 

                 80 

         

          n 

Number of bits used to 
represent the fractional part in 

standard fixed-point format 

               19 bits 

(Fractional part) 

D. Graph Initializer 

Since most practical graphs have limited connectivity 
(within 5-10%) [30], using a full matrix representation is 
inefficient since both the computation and the storage space will 
be wasted on zero entries. Our platform adopts the standard 
CSR format for sparse matrix representation and re-organizes it 
using the Graph Initializer to enable row-wise fine-grained 
parallelism in FPGA. As shown in Fig. 5, the Graph Initializer 
reads the raw sparse matrix from the FPGA DRAM and 
transforms it to non-overlapping segments of size X.  Each 

segment stores a fixed number of non-zero indices in a way that 
all indices are from the same row of the sparse graph matrix. In 
case of any empty indices, a -1 value is inserted. When 
transferring segments to Block RAMs, each segment is fully 
partitioned which allows parallel access to all indices within 
one segment every cycle.  

 
Figure 3: Illustration example showing the Max-K-Cut solution 
obtained using the proposed FPGA accelerator for a 200-node 
graph. The solutions are calculated for K=2, K=3, and K=4.  
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Figure 4:  Block diagram depicting the architecture of the proposed 

FPGA-based Max-K-Cut solver. 
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Figure 5:  Role of the Graph Initializer which transforms the 
sparse graph matrix (J) in raw format (Column, Row) to non-
overlapping Block RAM segments with size X. Empty entries are 

represented as -1. 
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E. Kuramoto Kernel 

Fig. 6 shows the architecture of the Kuramoto Kernel. The 
kernel is designed using a streaming dataflow architecture, 
where inputs and outputs of each stage are connected with 
stream FIFOs. Thus, all stages are operating concurrently as 
soon as the input data is available. All Block RAMs accesses 
are done only on the first and the last stage, thus greatly 
reducing the control overhead and routing challenges. 
Depending on the available resources, the throughput of the 
kernel can be scaled by customizing the parallelism of each 
stage and the stream FIFO width. All stages, subfunctions 
within the stages, and stream FIFO are designed and 
implemented using Vitis HLS 2021.2. 

1) Delta Stage: The Delta Stage (Fig. 6) is responsible for 

Block RAM reading and generating primary inputs, specifically ∆, for upcoming stages. It first reads the Block RAM for the  vector generated from the previous iteration and the non-zero 

indices stored in non-overlapping segments, as discussed 

before. In each cycle, one segment of non-zero indices from the 

Block RAM is accessed. Subsequently, X (=80 in our design) 

number of primary inputs ∆  are generated parallelly using 

the subtraction units implemented in this stage. The Row 

Tracker unit detects the row number of the current segment and 

sends dynamics (i.e., g(.) in equation (5)) calculated during the 

prior iteration along with  to the Injection Stage. 

Sparse Matrix Random Access Parallelization: It can be 
observed from the dynamics in equation (5) that only the non-

zero indices of ∆  need to be computed. Assuming each 

segment has X parallel accessible indices and  is a vector of 
size N (N: size of the input graph), then an X to N crossbar, and 
a fully partitioned   array is required to support X parallel 
access. Obviously, this method is challenging to scale as the 
graph size grows. While previous efforts have used banked row 
buffer strategy [31], the latency cannot be guaranteed in such 
schemes due to bank conflict. Here we design a method where 
we maintain X individual copies of the  vector to support X 
parallel random accesses. Thus, no memory partition and 
crossbar are required, and no bank conflict will occur in any 
case. As new   values are generated in each iteration, we 
simultaneously update X copies. Details are depicted in Fig. 7a. 

The rationale behind utilizing this approach of maintain 
multiple copies of the   vector is that present FPGA designs 
have abundant Block RAM which can be usefully exploited to 
achieve speed up in the memory access. 

2) Tanh Compute Stage:  The Tanh Compute Stage  

supports X number of inputs in each cycle to avoid any stalls in 

dataflow. X copies of all the subfunctions inside the Tanh 

Compute stage are instantiated to facilitate parallel computing.  

Compute Logic Optimization: To minimize the hardware 
resource consumption while maintaining enough parallelism, 
we re-formulate the f(.) function as a piecewise linear 
approximation where all the entry points are pre-stored in 
RAM-based LUTs (Look Up Table) (Fig. 7b). Computing f(.) 
function for different K cuts only requires switching to different 
dedicated LUTs. For trigonometric functions such as sin(.), we 
design a customized hybrid CORDIC [32] pipeline where the 
first 10 bits of the result are obtained by directly looking at the 
pre-stored RAM-based LUT, thus, eliminating the first 10 
pipeline stages. Consequently, hardware resource consumption 
is reduced in all categories as shown in Fig. 7c (maintaining 
similar accuracies). With the native implementation, the f(.) 

function alone will require more than available (110%) DSP 
resources when X is scaled to 80. 

3) Accumulation Stage: The Accumulation Stage is 

pipelined to support the accumulation of X inputs in each cycle 

 
Figure 7: (a) Depiction of the sparse matrix random access 
parallelization technique utilized to parallelly update state 
variables (  ). (b) Piecewise linear approximation of the f(.) 
function used in the computational model. (c) Resource 
utilization breakdown in the implementation of the resource 
hungry f(.) function and the sine function.  
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Figure 6:  Block diagram showing the architecture of the Kuramoto Kernel. Kuramoto Kernel fetches one segment every cycle from Block 
RAMs. Each segment has X (=80 used here) non-zero entries. The Kuramoto Kernel then uses X non-zero entries every cycle in a fully 
streaming dataflow fashion. 
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so that the dataflow does not stall in any case. All segments in 

the same row will be accumulated to produce one Accumulated 

Dynamic (Fig. 6). 

4) Injection Stage: Depending on the number of segments 
initialized for each row, an Accumulated Dynamic is received 

by the Injection Stage every few cycles. The  vector from the 
current iteration is then read from the stream FIFO and used to 

calculate the injection term (sin(())). Additionally, the  
vector along with the accumulated dynamics from the previous 
iteration (read from the stream FIFOs) are used as inputs for the 
SDE process. The normal distributed stochastic noise required 
for the SDE Process is generated using a standard Box-Muller 
Random Generator [33].  

IV. RESULTS 

A. Computing Max-K-Cut  

 We evaluate the performance of our implementation using 
instances from the G-Set benchmark database. The database 
contains hard non-planar random graphs with a broad size range 
allowing us to solve graphs with sizes ranging from 800 to 
10,000 nodes (specified in Fig. 8a). The oscillator dynamics are 
evaluated for 4000 iterations (epochs). During evaluation, we set 
the FPGA frequency to 100 MHz. We first compare our results 
(mean computation time) for the MaxCut case with two other 
GPU-based implementations, namely the MARS (Mean-field 

Annealing from a Random State) algorithm [34] and PBBM 
(Population Based Boltzmann Machine) algorithm [35] that 
have also evaluated problems from the G-Set database. 
Furthermore, the FPGA-based implementations for solving 
MaxCut demonstrated in [36] and [37] have only focused on 
simpler planar and toroidal graphs. Additionally,  they do not 
address the general case of the Max-K-Cut problem for K>2 
cases. Hence, We have not included these results in the 
benchmarking. From Fig. 8, it can be observed that our approach 
provides 18× and 2× mean speedup, respectively, compared to 
the MARS and the PBBM approach, while providing similar 
solution quality (>98.5 %); here, solution quality is defined as 
the ratio of the obtained solution to the best-known cut [38]. We 
note that none of the GPU, FPGA, and ASIC based annealing 
approaches reported direct implementation (i.e., without 
preprocessing and auxiliary variables) of the broader Max-K-

Cut (K>2) problem. Current methods have to rely on 
transforming the Max-K-Cut problem to a binary optimization 
form (QUBO: quadratic unconstrained binary optimization) 
entailing additional nodes (axillary variables) so that it can be 
mapped to an Ising machine. We now compare our direct 
implementation (using the new models) with the Ising machine 
implementation for the Max-K-Cut (after the problem 
transformation). We use the GPU-based simulated bifurcation 
(Ising) machine (SBM; from Toshiba and available on AWS 
[39]) for this comparison. While we experimentally evaluate the 
Max-3-Cut and Max-4-Cut solutions on the SBM, we use the 
SBM-based results reported for the MaxCut (K=2) [38]. 

 Fig. 9a presents a comparison of the cumulative computation 
time between our approach and the state-of-the-art GPU-based 
SBM approach [38] for solving the archetypal Max-2-Cut 
problem over the G-set graphs (Fig. 8a). While for smaller 
graphs, computation time from our approach is comparable with 
the SBM approach, it provides a 20x speedup over the SBM for 
graphs exceeding 5000 nodes. However, we note that this comes 
at the cost of a small degradation in solution quality. The average 
solution produced by our approach is within 98.5% of the best-
known solutions for the Max-2-Cut instances tested whereas the 
average SBM solutions are within 99.9% of the best-known 
solutions. 

 Next, we evaluate the computation time for the Max3-Cut 
and Max-4-Cut problems. The comparison of computation times 
for Max-3-Cut and Max-4-Cut are presented in Fig. 9b and Fig. 
9c, respectively. It can be observed that our method achieves a 
remarkable ~510x and ~270x mean speedup compared to the 

 
Figure 8: Comparison of our approach for the baseline MaxCut 
(K=2) with prior works. (a) Graph instances from the G-Set 
database used for benchmarking. (b) Comparison of the mean 
computation time for the GPU-based MARS algorithm and the 
GPU-based PBBM algorithm. Our approach exhibits solution 
quality comparable to that of the MARS approach. PPBM did not 

report average solution quality. 
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Figure 9: Cumulative time-to-compute for solving the (a) Max-2-
Cut, (b) Max-3-Cut, (c) Max-4-Cut on the G-set graph instances 
and their comparison with state-of-the art SBM approach. In all 
cases, we maintain a high mean accuracy exceeding >95% of the 

best-known solution. 
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SBM in solving the Max-3-Cut and Max-4-Cut problems, 
respectively (~390x average speedup for the Max-3-Cut and 
Max-4-Cut combinedly), while maintaining similar solution 
quality. In our approach, the time-to-compute primarily consists 
of the Kuramoto Kernel computation time, which accounts for 
most of the overall time-to-solution. We calculate the K-Cut 
values in the host system using the Kernel results obtained from 
the FPGA. Similarly, the SBM computation time consists of 
only the Ising problem computing time; the pre-processing 
(conversion to Ising problem) and post-processing (finding K-
Cut solution from Ising solution) are performed in the host and 
their computation time is not added in the overall computation 
time presented here. Also, we are unable to solve the Max-3-Cut 
and Max-4-Cut for some of the larger graphs (here, 5000 to 
10000 node graphs) using SBM since after converting them to 
Ising problems, their size exceeds 10,000 nodes that is the 
maximum limit for the SBM available on AWS. 

 We also analyze how time-to-compute scales with problem 
size and the value of K. Fig. 10 presents the average time-to-
compute as a function of graph size. It can be observed that as 
the number of nodes increases, the computation time scales 
linearly, which can be attributed to the parallel access of each 
graph rows by the FPGA platform (i.e., row-wise 
parallelization). Most importantly, the computation time does 
not change with the value of K, unlike prior designs and 
implementations. It can be attributed to the computational model 
that facilitates the solution of the Max-K-Cut without increasing 
the problem size. Furthermore, if K value changes, the only 
operational change that the FPGA system needs to make is 
switching the LUT for the f(.) function. Hence, the computation 
time remains the same regardless of the value of K for a 

particular graph. 

B. Resource Utilization and Energy Benchmark 

TABLE II.  OVERALL RESOURCE UTILIZATION 

Resource  Xilinx VU9P 
FPGA 

Resource  Xilinx VU9P 
FPGA 

Kernel 
Frequency 

100 MHz DSP 2.7K (38%) 

Block RAMs 1.3K (30%) Flip Flops 470K (19%) 

Ultra RAMs 0.5K (50%) Logic Slices 518K (43%) 

  

 Table II presents a detailed overview of the resource 
utilization in the FPGA implementation. Table III compares the 
energy consumption between our FPGA implementation 
(collected using the AWS ‘FPGA image describe’ command) 
and the SBM implementation used for benchmarking in this 
work. While the SBM energy data for the Max-2-Cut has been 
reported, the energy numbers for K=3, 4 are projected since the 
SBM energy data (on AWS) is unavailable. It can be observed 
that our approach not only offers better computational capability 
but also enables over 8x improvement in the energy 
consumption / iteration. 

TABLE III.  COMPARISON WITH OTHER APPROACHES 

Approach Platform Problem 
Solved 

Energy (mJ) / Iteration (2000 node) 

Max-2-Cut  Max-3-Cut  Max-4-Cut  

SBM 
[19] 

GPU MaxCut 3.44 
(reported) 

10.32 
(Projected) 

13.76 
(Projected) 

This 
Work  

FPGA Max-K-
Cut & 

MaxCut 

0.4225 
(measured) 

0.4225 
(measured) 

0.4225 
(measured) 

 

V. CONCLUSION 

 In summary, we have demonstrated an FPGA accelerator 
with the unique capability of solving the general class of Max-
K-Cut problems without reconfiguring the FPGA platform. To 
accomplish this, our approach exploits novel oscillator-
synchronization-inspired computational models in combination 
with the inherent fine-grained parallelism of the FPGA. We 
showcase the ability of the platform to accelerate graphs up to 
10,000 nodes with up to 390x speedup and orders of magnitude 
reduction in energy consumption. Among the physics-based 
approaches, our method uniquely stands out in its capability, 
flexibility, and efficiency, and thus, advances the state-of-art in 
solving computationally hard COPs.  
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