
An FPGA-based Max-K-Cut Accelerator Exploiting Oscillator
Synchronization Model

Abstract— In this work, we demonstrate a one of its kind

FPGA-based compute engine that uses new computational

models inspired by the synchronization dynamics of

coupled oscillators to solve the general form of the

computationally intractable Max-K-Cut combinatorial

optimization problem (COP). Prior work on developing

oscillator-inspired models for solving COPs, namely

oscillator Ising machines, only directly map the MaxCut

(K=2) problem. Solving other COPs (e.g., K>2) using such

models entails graph decomposition and the use of auxiliary

variables that effectively increase the graph size that must

be solved by the hardware. This not only increases the

computation time but also degrades the solution quality. In

contrast, our model offers a generalized formulation that

can directly solve the general form of the Max-K-Cut

problem for any value of K without the need for auxiliary

variables. Subsequently, by mapping the models on an

FPGA platform in a way that exploits its fine-grained

parallelism, we accelerate the Max-K-Cut problem (K=2, 3,

and 4 shown here) on graphs with up to 10,000 nodes. When

benchmarking against the state-of-the-art simulated

bifurcation machine (SBM) that only uses the Ising model,

our implementation offers an average 17× speedup for the

Max-2-Cut and up to 390× average speedup for the Max-3-

Cut and Max-4-Cut problems for similar solution quality in

all cases.

Keywords—combinatorial optimization, Ising machine,

FPGA, oscillator, Max-K-Cut

I. INTRODUCTION

 Combinatorial optimization problem (COP) is a subset of
optimization problems that entail finding the optimal value of a
function in a discrete or combinatorial domain. COPs find
extensive applications in various fields ranging from VLSI
design to neural network training. From a computational
standpoint, many COPs remain computationally intractable,
requiring exponentially increasing computational resources with
increasing problem size [1]. Examples of such NP-hard COPs
include the Traveling Salesman Problem, Max-K-Cut problem
to name a few. The NP-hard Max-K-Cut problem, the focus of

the present work, is defined as the challenge of dividing a graph
into K partitions such that the weight sum of the edges crossing
different subsets is maximized (Fig. 1). When K=2, the Max-K-
Cut problem transforms into the archetypal MaxCut problem.
While various computational models and design approaches
have been investigated for solving MaxCut (K=2), it has limited
direct applications. In contrast, the general Max-K-Cut problem
(K>2)-the focus of the present work- finds direct practical
applications in fields such as protein interaction analysis [2],
wireless communication [3], and scheduling [4] among others.
 The approaches to solving such COPs can be classified into
two broad classes: Methods and algorithms designed to yield
exact solutions, and approximate solvers. Owing to the
fundamental NP-hard complexity of such COPs, the former
approach typically results in exponentially increasing time-to-
solution and /or memory requirements. Consequently, even
COPs of small size become impractical to solve using exact
solvers. The only practical alternative is to use approximate
solvers such as heuristics. While such methods cannot guarantee
an exact solution, they promise significant speedup. However,
purely algorithmic heuristic approaches also face challenges in
solving intractable COPs. The tradeoff between speedup and
solution quality can be substantial. Furthermore, such heuristics
are extremely sensitive to the nature of the input problems and
typically need extensive parameter optimization. Consequently,
there is active research interest in exploring alternate
computational approaches and models to accelerate such
problems [5].

Figure 1: Illustration of the Max-K-Cut problem (for k=2, 3, and 4)
for a representative 6-node graph. While prior work on physics-
inspired computing has focused on accelerating MaxCut (K=2), here
we develop, for the first time, an FPGA accelerator for the general

case of Max-K-Cut (K≥2).

2

6

3

4

5

1

Set I Set II

1

2

6

5

3

4

Max-K-Cut

2

5 1

3

64

Set III

Set I

Set II

K=3

2

5 1

3

6

4

Set III

Set I

Set IV

Set II

K=4
Input Graph

MaxCut=7 Max-3-Cut=8 Max-4-Cut=9

K=2

Mohammad Khairul Bashar1†, Zheyu Li2†, Vijaykrishnan Narayanan2, Nikhil Shukla1*

1University of Virginia, VA, USA, 2Pennsylvania State University, PA, USA

†Equal Contribution, *Email: ns6pf@virginia.edu

20
24

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
09

27
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
60

70
6.

20
24

.1
05

28
74

2

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

 Physics inspired computational paradigms such as Ising
machines, based on the Ising model, represent a promising
approach to solving COPs [6], [7]. The underlying idea behind
this method is that the natural energy minimization in the
physical systems finds a natural analogue to the minimization of
the objective function that defines a COP. Consequently, as the
system evolves towards the ground state by minimizing its
energy, it naturally solves the COP. As an archetypal example

of such mapping, the Ising Hamiltonian given by  =− ∑ ,, [8] can directly map the objective function of the

MaxCut problem using the following relationship: edge weight

between node i and j ,  = − . Here, the i spin  ( ∈−1, +1) maps the i node of the input graph. Such spin
assignments to the nodes divide them into two sets that yield a
MaxCut solution. Furthermore, such Ising machines, that
minimize the Ising Hamiltonian, can be mapped to the dynamics
of coupled electronic oscillators [8]-[10], qubits [11] etc. There
have been many demonstrations that have shown the promise of
such systems in solving the MaxCut problem. As elucidated in
the following section, this physics inspired approach has been
exploited either by developing the actual physical
implementation of the system (e.g., a network of coupled
oscillators [9],[10]) or by developing emulators (e.g., SBM:
simulated bifurcation machine [12]) that use the computational
models inspired by the physics of such systems. While the
former approach which entails an application specific
implementation promises larger speedups, scaling such designs
are challenging. In contrast, the latter approach essentially aims
to use the physics-based approach as a computational model to
solve the COP and has been shown to be much more scalable as
well as offer substantial speedup.

However, one of the long-standing limitations of this paradigm
is that such physics inspired methods lack flexibility, and only
COPs whose objective functions are exactly equivalent can be
directly mapped. For example, in the case of Ising machines,
only the specific case of the MaxCut problem (K=2) can be
directly solved. Solving the general Max-K-Cut problem (K>2)
entails transforming or decomposing the problem that is
compatible with Ising model by introducing additional auxiliary
variables (nodes) and edges. Consequently, the actual graph that
must be mapped to the hardware is significantly larger than the

input problem size [6], [8]. This not only degrades the time-to-
solution and solution quality but also increases the energy
consumption of the hardware (physical implementation or
emulator). Fig. 2 compares the size of the actual graph that must
be solved by the hardware as a function of the size of the input
problem for K=2, 3, and 4 in the Max-K-Cut problem. For
example, to solve the Max-3-Cut using an Ising machine, a
10,000-node graph needs to be converted to a 30,000-node graph
[6], [8] that will then be mapped to the Ising machine.
 Therefore, in this work, we present a novel physics-based
computational model that is implemented on FPGA to solve the
general Max-K-Cut problem (for any K) without incurring any
additional (auxiliary) nodes i.e., the size of the input problem is
exactly the same as that of the input graph. The contributions of
this work can be listed as shown below:

 We implement novel computational models inspired by the
synchronization dynamics of oscillators that solve the
general form of the Max-K-Cut problem. Unlike the
conventional Ising machine-based solvers / annealers, our
approach can directly solve the Max-K-Cut without
expanding the problem size. Mapping the Max-K-Cut
problem to an Ising machine entails the use of additional
auxiliary variables (nodes) that are not required in our
approach.

 We develop an FPGA accelerator (AWS F1 instance) that
exploits design techniques such as sparse matrix random
access parallelization and design an efficient dataflow
architecture to accelerate the oscillator synchronization-
based computational models.

 By leveraging the inherent parallelism in the computational
models and the FPGA implementation, we demonstrate the
solutions to the Max-K-Cut problem (K=2,3,4) on graphs up
to 10,000 nodes with speedups ranging from 17× - 390× over
a state-of-the-art Ising machine-based accelerator, while

maintaining similar solution quality.

The paper is divided into 5 sections. Prior related work is
described in the following section. Subsequently, Section III
delves into the proposed approach, providing comprehensive
details regarding the computational model and the FPGA design.
Results and performance benchmarking are discussed in section
IV. Section V summarizes the key accomplishments.

II. RELATED WORK

In the past, many approaches have leveraged the idea of the
energy minimization in physical systems to solve hard COPs
including simulated annealing [13], simulated bifurcation [12],
synchronized oscillators [8]-[10], [14], quantum annealing [11],
artificial neural networks [15], p-bit-based methods [16], and
coherent Ising machines [17] among others. Simulated
annealing (SA) was one of the early approaches to be
investigated. One of the primary challenges of this approach is
the sensitivity of the parameters (e.g., schedule for annealing and
update) to the input problem [18]. Recently, a state-of-the-art
simulated bifurcation-based algorithm was proposed to solve the
MaxCut problem (SBM) [12]. There have been various FPGA-
and GPU-based implementations for these physics-inspired
algorithms. A few examples include: (a) Tatsumura et al. [19],

Figure 2: The variation in (a) the number of nodes and (b) the
number of edges of the graph required to solve the Max-K-Cut
problem, as a function of the corresponding quantities in the
original input graph. It can be observed that, in the case of our
approach, these quantities coincide with the original graph
quantities as no conversion is required.

Solving Max-K-Cut

0.5 1.0 1.5 2.0 2.5 3.0

3

6

9

12

x103

#
 E

d
g

e
 o

f
th

e
 p

ro
b

le
m

 t
o

 b
e

 s
o

lv
e

d x105

Conventional Ising Machine

x105

Edge of the original problem

(b)

K=4

K=3
K=2

This Work

K=2,3,4

2 4 6 8 10

10

20

30

40

#
 N

o
d

e
 o

f
th

e
 p

ro
b

le
m

 t
o

 b
e

 s
o

lv
e

d x103

Conventional Ising Machine

Node of the original problem

(a)

K=4

K=3
K=2

This Work

K=2,3,4

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

and Yoshimura et al. [20], showcased FPGA-based
implementations of the SBM and SA, respectively, capable of
solving the MaxCut problems on graphs with up to 4096 nodes.
(b) Cook et al. [21], demonstrated GPU-based Metropolis
annealing to solve the MaxCut (i.e., only for K=2). Besides
FPGA and GPU-based implementations, ASIC implementations
such as an SRAM based CMOS annealing processor IC [22] and
stochastic cellular automata-based annealing processor [23]
have also been developed to solve the MaxCut problem.

Complementing the digital accelerators, analog
demonstrations that rely on the physics of the hardware have also
been developed. For example, the following works [10], [14],
[24] developed coupled oscillator based Ising machines
exploiting the fact that the dynamics of a network of coupled
oscillators under second harmonic injection can minimize the
Ising Hamiltonian. Using the same principle, other hardware
platforms such as optoelectronic oscillators (Coherent Ising
Machines [17]) and p-bits [16] have also been showcased.

While all these approaches bring forth their own innovations,
they are inherently limited to solving binary optimization.
Solving other problems (e.g., Max-K-Cut, K>2) using the above
methods will involve the need for graph transformation and the
use of additional auxiliary variables – a limitation that we aim to
overcome in this work. Efforts on developing physics (energy
minimization)-inspired approaches for solving COPs beyond the
MaxCut e.g., the Max-K-Cut problem, have been very sparse,
and have generally relied on traditional approximation
algorithms. Our work is inspired by [25] which extends the
theory of Ising machines to the more general Potts model.
Therefore, this work represents a unique direct implementation
of a novel physics-inspired algorithm on a hardware accelerator

for solving the general form of the Max-K-Cut problem.

III. THE PROPOSED SOLVER

A. Computational Model

The objective function of the Max-K-Cut problem can be
expressed as,

 = −  . ∗
,, (1)

Where,  represents real part,  represents imaginary unit ( =√−1), i represents ith index,  =  ;  ∈ 0,  ,  …  . 
represents the ith state variable that corresponds to an individual

node in the graph.  can be considered analogous to the Ising

spin except with K number of states.  = − ( : edge

weight). The function f(.) is defined as,

f() = → 
⎝
⎜⎜⎜
⎜⎛(2 − 1) − 2  . − ∆ − 2 

2  − 1


+ 2 − (2 − 1) . − ∆ + 2 
2 

⎠
⎟⎟⎟
⎟⎞

 (2)

and essentially makes the coupling coefficient sensitive to the
phase. The phase configuration that yields the minimum value
of H corresponds to the solution of the Max-K-Cut problem [25].
Moreover, Eq. (1) can be minimized by a coupled oscillator

system whose energy function (E) and dynamics (d d) can be

described by:

() = − 2   cos ∆ + f
,, 
−  cos(())



 (3)

d()d = −   sin ∆ + f
, − sin(())

 (4)

 represents the coupling strength among the oscillators and 
represents the strength of the Kth harmonic signal injected into
the system. The ground state (global minima) of Eq. (3) can be
shown to be equivalent to the global minima of objective
function for the Max-K-Cut problem (Eq. (1)). The system of
equations in Eq. (4) describes the corresponding dynamics
which detail how the system evolves towards the ground state. It
can be observed that Eq. (4) represents a unique set of dynamics
to solve the general form of the Max-K-Cut problem without
requiring any additional variables.

B. Numerical Implementation

The computational model, represented by Eq. (4), is solved
using a stochastic differential equation (SDE) framework
developed on an FPGA platform. The SDE kernel adds noise to
the dynamics. The presence of noise helps the system escape
from local minima (corresponding to sub-optimal solutions) in
the high dimensional phase space and help improve the solution
quality while incurring minimum performance penalty. Hence,
the dynamics can be written as, d()d = g(.) + d (5)

Where, d describes the Weiner process [26] that introduces
stochasticity into the dynamics. g(.) is the right-hand side of
Eq. (4). Additionally, we use a tanh(.) that augments the phase
dynamics as used in earlier works [27], [28]. The numerical
integration technique used to solve the system of equations

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

described in Eq. (5) is a simple trapezoidal integrator [29].
Solving Eq. (5) yields the time evolution of the oscillator phases
(). Upon achieving a steady state, the dynamics create K
number of partitions which correspond to the K vertex clusters
created by the Max-K-Cut. Fig. 3 shows the Max-K-Cut (K=2,
3, and 4) solution for a representative 200 node graph obtained

using the proposed platform.

C. Architecture of the FPGA Implementation

Since the conventional energy minimization-based
computing approaches such as Ising machines are unable to
directly solve the Max-K-Cut problem, here we design an
efficient FPGA platform to accelerate the computational model
for solving the Max-K-Cut problem described above. Our
design strategies are governed by three main objectives: 1)
exploiting a maximum level of parallelism; 2) consuming a
reasonable amount of hardware resources; 3) ensuring
flexibility so that it supports the general case of the Max-K-Cut
for any graph of arbitrary size without FPGA reconfiguration.
The details of the FPGA system design are described below:

Fig. 4 shows the high-level block diagram of the accelerator.

The computational model is implemented on the FPGA using
two major kernels: (a) Graph Initializer; and (b) Kuramoto
Kernel. Initially, the graph data in CSR (compressed row

storage) format, is stored in the host DRAM, and is
subsequently transferred to the FPGA DRAM through PCIe.
Additionally, a set of control registers are accessible between
the host and the FPGA through the AXI-lite kernel interface
which allows dynamical modification of the essentials such as
the graph size, K (in Max-K-Cut), number of iterations without
the need for reconfiguring the FPGA platform each time. Once
the graph data is transferred to the FPGA, the Graph Initializer
kernel processes the data and transfers it to the high-bandwidth
on-chip Block RAMs which allow parallel access. Thus, the
off-chip DRAM is only read once. After initialization, the
Kuramoto Kernel (details in the following subsections) is
responsible for performing the computation. Table I lists key
parameters used in the design.

TABLE I. PARAMETER USED IN THE FPGA

IMPLEMENTATION

Parameters Definition Parameter values used
in the evaluation

N Size of the graph Input problem dependent
(up to 10,000)

K

(Max-K-Cut)

Number of partitions required
from the Cut

Input problem dependent
(2, 3, 4)

 X Size of each segment in Block
RAM

 80

 n

Number of bits used to
represent the fractional part in

standard fixed-point format

 19 bits

(Fractional part)

D. Graph Initializer

Since most practical graphs have limited connectivity
(within 5-10%) [30], using a full matrix representation is
inefficient since both the computation and the storage space will
be wasted on zero entries. Our platform adopts the standard
CSR format for sparse matrix representation and re-organizes it
using the Graph Initializer to enable row-wise fine-grained
parallelism in FPGA. As shown in Fig. 5, the Graph Initializer
reads the raw sparse matrix from the FPGA DRAM and
transforms it to non-overlapping segments of size X. Each

segment stores a fixed number of non-zero indices in a way that
all indices are from the same row of the sparse graph matrix. In
case of any empty indices, a -1 value is inserted. When
transferring segments to Block RAMs, each segment is fully
partitioned which allows parallel access to all indices within
one segment every cycle.

Figure 3: Illustration example showing the Max-K-Cut solution
obtained using the proposed FPGA accelerator for a 200-node
graph. The solutions are calculated for K=2, K=3, and K=4.

Evolution of KInput Graph

2

Node=200

Edge=1990

3

4

0 2 4 6 8
-0.5

0.0

0.5

1.0

1.5

time (a.u.)

(
)

Set II ()

Set I ()

Max-2-Cut=1250

0 2 4 6 8
-0.5

0.0

0.5

1.0

1.5

Set II ()

time (a.u.)

Set I ()

Set III ()

(
)

Max-3-Cut=1399

0 2 4 6 8
-0.5

0.0

0.5

1.0

1.5

time (a.u.)

Set I ()

Set II ()

Set III ()

Set IV ()

(
)

Max-4-Cut=1645

Figure 4: Block diagram depicting the architecture of the proposed

FPGA-based Max-K-Cut solver.

Graph Data

Host DRAM

Host C++ API

FPGA DRAMPCIe

Iteration Results

Post AnalysisFILE I/O

FPGA

Graph Initializer

Kuramoto Kernel

B
lo

c
k
 R

A
M

s

Passing

Parameters

AXI LITE

Overall Platform Architecture

Passing

Graph

Passing

Output

Figure 5: Role of the Graph Initializer which transforms the
sparse graph matrix (J) in raw format (Column, Row) to non-
overlapping Block RAM segments with size X. Empty entries are

represented as -1.

(1,4)

(1,18)

(1,44)

(2,5)

(1,4)

(1,18)

(1,44)

(1,56)

(1,78)

(1,85)

(1,95)

-1

……

(2,5)

(2,15)

(2,100)

(2,101)

Graph Initializer: Row-wise parallelization

G
ra

p
h
 I
n
it
ia

liz
e
r

…

…

…

…

FPGA DRAM: stores

B
lo

c
k
 R

A
M

s

: Sparse

Graph Matrix
No Entry

(1,95)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

E. Kuramoto Kernel

Fig. 6 shows the architecture of the Kuramoto Kernel. The
kernel is designed using a streaming dataflow architecture,
where inputs and outputs of each stage are connected with
stream FIFOs. Thus, all stages are operating concurrently as
soon as the input data is available. All Block RAMs accesses
are done only on the first and the last stage, thus greatly
reducing the control overhead and routing challenges.
Depending on the available resources, the throughput of the
kernel can be scaled by customizing the parallelism of each
stage and the stream FIFO width. All stages, subfunctions
within the stages, and stream FIFO are designed and
implemented using Vitis HLS 2021.2.

1) Delta Stage: The Delta Stage (Fig. 6) is responsible for

Block RAM reading and generating primary inputs, specifically ∆, for upcoming stages. It first reads the Block RAM for the  vector generated from the previous iteration and the non-zero

indices stored in non-overlapping segments, as discussed

before. In each cycle, one segment of non-zero indices from the

Block RAM is accessed. Subsequently, X (=80 in our design)

number of primary inputs ∆ are generated parallelly using

the subtraction units implemented in this stage. The Row

Tracker unit detects the row number of the current segment and

sends dynamics (i.e., g(.) in equation (5)) calculated during the

prior iteration along with  to the Injection Stage.

Sparse Matrix Random Access Parallelization: It can be
observed from the dynamics in equation (5) that only the non-

zero indices of ∆ need to be computed. Assuming each

segment has X parallel accessible indices and  is a vector of
size N (N: size of the input graph), then an X to N crossbar, and
a fully partitioned  array is required to support X parallel
access. Obviously, this method is challenging to scale as the
graph size grows. While previous efforts have used banked row
buffer strategy [31], the latency cannot be guaranteed in such
schemes due to bank conflict. Here we design a method where
we maintain X individual copies of the  vector to support X
parallel random accesses. Thus, no memory partition and
crossbar are required, and no bank conflict will occur in any
case. As new  values are generated in each iteration, we
simultaneously update X copies. Details are depicted in Fig. 7a.

The rationale behind utilizing this approach of maintain
multiple copies of the  vector is that present FPGA designs
have abundant Block RAM which can be usefully exploited to
achieve speed up in the memory access.

2) Tanh Compute Stage: The Tanh Compute Stage

supports X number of inputs in each cycle to avoid any stalls in

dataflow. X copies of all the subfunctions inside the Tanh

Compute stage are instantiated to facilitate parallel computing.

Compute Logic Optimization: To minimize the hardware
resource consumption while maintaining enough parallelism,
we re-formulate the f(.) function as a piecewise linear
approximation where all the entry points are pre-stored in
RAM-based LUTs (Look Up Table) (Fig. 7b). Computing f(.)
function for different K cuts only requires switching to different
dedicated LUTs. For trigonometric functions such as sin(.), we
design a customized hybrid CORDIC [32] pipeline where the
first 10 bits of the result are obtained by directly looking at the
pre-stored RAM-based LUT, thus, eliminating the first 10
pipeline stages. Consequently, hardware resource consumption
is reduced in all categories as shown in Fig. 7c (maintaining
similar accuracies). With the native implementation, the f(.)

function alone will require more than available (110%) DSP
resources when X is scaled to 80.

3) Accumulation Stage: The Accumulation Stage is

pipelined to support the accumulation of X inputs in each cycle

Figure 7: (a) Depiction of the sparse matrix random access
parallelization technique utilized to parallelly update state
variables (). (b) Piecewise linear approximation of the f(.)
function used in the computational model. (c) Resource
utilization breakdown in the implementation of the resource
hungry f(.) function and the sine function.

Native

f func()

f() func

(LUT)

Resource Utilization

(Scaled to X=80)

2.4k (40%)0.3k (5%)Block RAMs

11k (110%)0.3k (3%)DSP

910k (34%)54k (2%)Flip Flops

1081k (78%)69k (5%)Logic Slices

Native

Sin()

Hybrid

Sin()

Resource Utilization

(Scaled to X=80)

0 (0%)0.3k (5%)Block RAMs

0.4k (4%)0.4k (4%)DSP

108k (5%)76k (3%)Flip Flops

544k (46%)276k (23%)Logic Slices

(c)

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

LUT based

Linear piecewise

approximation

(b)

()

-1720

9876543210

9876543210

9876543210

9876543210
(a)

Figure 6: Block diagram showing the architecture of the Kuramoto Kernel. Kuramoto Kernel fetches one segment every cycle from Block
RAMs. Each segment has X (=80 used here) non-zero entries. The Kuramoto Kernel then uses X non-zero entries every cycle in a fully
streaming dataflow fashion.

Stream FIFO

, Dynamics (Previous Iteration)

Accumulated

Dynamics

Delta

Stage

Tanh Compute Stage Accumulation

Stage

Stream FIFO

Injection Stage

f() LUTs (k=2,3,4…) and sin() LUTs

… … …

…

t

Results

Stream FIFO Stream FIFO

B
lo

c
k
 R

A
M

s

B
lo

c
k
 R

A
M

s

Kuramoto Kernel

S
D

E
P

ro
c
e
s
s

Box-Muller Random Number Generator

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

so that the dataflow does not stall in any case. All segments in

the same row will be accumulated to produce one Accumulated

Dynamic (Fig. 6).

4) Injection Stage: Depending on the number of segments
initialized for each row, an Accumulated Dynamic is received

by the Injection Stage every few cycles. The  vector from the
current iteration is then read from the stream FIFO and used to

calculate the injection term (sin(())). Additionally, the 
vector along with the accumulated dynamics from the previous
iteration (read from the stream FIFOs) are used as inputs for the
SDE process. The normal distributed stochastic noise required
for the SDE Process is generated using a standard Box-Muller
Random Generator [33].

IV. RESULTS

A. Computing Max-K-Cut

 We evaluate the performance of our implementation using
instances from the G-Set benchmark database. The database
contains hard non-planar random graphs with a broad size range
allowing us to solve graphs with sizes ranging from 800 to
10,000 nodes (specified in Fig. 8a). The oscillator dynamics are
evaluated for 4000 iterations (epochs). During evaluation, we set
the FPGA frequency to 100 MHz. We first compare our results
(mean computation time) for the MaxCut case with two other
GPU-based implementations, namely the MARS (Mean-field

Annealing from a Random State) algorithm [34] and PBBM
(Population Based Boltzmann Machine) algorithm [35] that
have also evaluated problems from the G-Set database.
Furthermore, the FPGA-based implementations for solving
MaxCut demonstrated in [36] and [37] have only focused on
simpler planar and toroidal graphs. Additionally, they do not
address the general case of the Max-K-Cut problem for K>2
cases. Hence, We have not included these results in the
benchmarking. From Fig. 8, it can be observed that our approach
provides 18× and 2× mean speedup, respectively, compared to
the MARS and the PBBM approach, while providing similar
solution quality (>98.5 %); here, solution quality is defined as
the ratio of the obtained solution to the best-known cut [38]. We
note that none of the GPU, FPGA, and ASIC based annealing
approaches reported direct implementation (i.e., without
preprocessing and auxiliary variables) of the broader Max-K-

Cut (K>2) problem. Current methods have to rely on
transforming the Max-K-Cut problem to a binary optimization
form (QUBO: quadratic unconstrained binary optimization)
entailing additional nodes (axillary variables) so that it can be
mapped to an Ising machine. We now compare our direct
implementation (using the new models) with the Ising machine
implementation for the Max-K-Cut (after the problem
transformation). We use the GPU-based simulated bifurcation
(Ising) machine (SBM; from Toshiba and available on AWS
[39]) for this comparison. While we experimentally evaluate the
Max-3-Cut and Max-4-Cut solutions on the SBM, we use the
SBM-based results reported for the MaxCut (K=2) [38].

 Fig. 9a presents a comparison of the cumulative computation
time between our approach and the state-of-the-art GPU-based
SBM approach [38] for solving the archetypal Max-2-Cut
problem over the G-set graphs (Fig. 8a). While for smaller
graphs, computation time from our approach is comparable with
the SBM approach, it provides a 20x speedup over the SBM for
graphs exceeding 5000 nodes. However, we note that this comes
at the cost of a small degradation in solution quality. The average
solution produced by our approach is within 98.5% of the best-
known solutions for the Max-2-Cut instances tested whereas the
average SBM solutions are within 99.9% of the best-known
solutions.

 Next, we evaluate the computation time for the Max3-Cut
and Max-4-Cut problems. The comparison of computation times
for Max-3-Cut and Max-4-Cut are presented in Fig. 9b and Fig.
9c, respectively. It can be observed that our method achieves a
remarkable ~510x and ~270x mean speedup compared to the

Figure 8: Comparison of our approach for the baseline MaxCut
(K=2) with prior works. (a) Graph instances from the G-Set
database used for benchmarking. (b) Comparison of the mean
computation time for the GPU-based MARS algorithm and the
GPU-based PBBM algorithm. Our approach exhibits solution
quality comparable to that of the MARS approach. PPBM did not

report average solution quality.

G70G60, G63G55, G58G22-G25G43-G45G1-G5Graph

100007000500020001000800# Node

999917148, 4145912498, 2957019990999019176# Edge

(a)

10
2

10
3

10
4

M
e

a
n

 t
im

e
-t

o
-c

o
m

p
u

te
 (

m
s
)

(b)
MARS PBBM

This Work

Solution Not ReportedMax-2-Cut

Graph Size (nodes)
800 1000 2000 5000 7000 10000

Figure 9: Cumulative time-to-compute for solving the (a) Max-2-
Cut, (b) Max-3-Cut, (c) Max-4-Cut on the G-set graph instances
and their comparison with state-of-the art SBM approach. In all
cases, we maintain a high mean accuracy exceeding >95% of the

best-known solution.

C
u
m

u
la

ti
v
e
 t

im
e
-t

o
-c

o
m

p
u

te
 (

m
s
)

10
2

10
3

10
4

10
5

10
6 Max-3-Cut(b)

No Solution

SBM

This Work

510x

Graph

10
2

10
3

10
4

10
5

10
6

G1 G2 G3 G4 G5 G43 G44 G45 G22 G23 G24 G25 G55 G58 G60 G63 G70

Max-4-Cut(c)

No Solution
SBM

This Work

270x

10
2

10
3

10
4

Max-2-Cut(a)

8
0
0

1
0
0
0

SBM

This Work

17x

2
0
0
0

5
0
0
0

7
0
0
0

1
0
0
0

0

Nodes

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

SBM in solving the Max-3-Cut and Max-4-Cut problems,
respectively (~390x average speedup for the Max-3-Cut and
Max-4-Cut combinedly), while maintaining similar solution
quality. In our approach, the time-to-compute primarily consists
of the Kuramoto Kernel computation time, which accounts for
most of the overall time-to-solution. We calculate the K-Cut
values in the host system using the Kernel results obtained from
the FPGA. Similarly, the SBM computation time consists of
only the Ising problem computing time; the pre-processing
(conversion to Ising problem) and post-processing (finding K-
Cut solution from Ising solution) are performed in the host and
their computation time is not added in the overall computation
time presented here. Also, we are unable to solve the Max-3-Cut
and Max-4-Cut for some of the larger graphs (here, 5000 to
10000 node graphs) using SBM since after converting them to
Ising problems, their size exceeds 10,000 nodes that is the
maximum limit for the SBM available on AWS.

 We also analyze how time-to-compute scales with problem
size and the value of K. Fig. 10 presents the average time-to-
compute as a function of graph size. It can be observed that as
the number of nodes increases, the computation time scales
linearly, which can be attributed to the parallel access of each
graph rows by the FPGA platform (i.e., row-wise
parallelization). Most importantly, the computation time does
not change with the value of K, unlike prior designs and
implementations. It can be attributed to the computational model
that facilitates the solution of the Max-K-Cut without increasing
the problem size. Furthermore, if K value changes, the only
operational change that the FPGA system needs to make is
switching the LUT for the f(.) function. Hence, the computation
time remains the same regardless of the value of K for a

particular graph.

B. Resource Utilization and Energy Benchmark

TABLE II. OVERALL RESOURCE UTILIZATION

Resource Xilinx VU9P
FPGA

Resource Xilinx VU9P
FPGA

Kernel
Frequency

100 MHz DSP 2.7K (38%)

Block RAMs 1.3K (30%) Flip Flops 470K (19%)

Ultra RAMs 0.5K (50%) Logic Slices 518K (43%)

 Table II presents a detailed overview of the resource
utilization in the FPGA implementation. Table III compares the
energy consumption between our FPGA implementation
(collected using the AWS ‘FPGA image describe’ command)
and the SBM implementation used for benchmarking in this
work. While the SBM energy data for the Max-2-Cut has been
reported, the energy numbers for K=3, 4 are projected since the
SBM energy data (on AWS) is unavailable. It can be observed
that our approach not only offers better computational capability
but also enables over 8x improvement in the energy
consumption / iteration.

TABLE III. COMPARISON WITH OTHER APPROACHES

Approach Platform Problem
Solved

Energy (mJ) / Iteration (2000 node)

Max-2-Cut Max-3-Cut Max-4-Cut

SBM
[19]

GPU MaxCut 3.44
(reported)

10.32
(Projected)

13.76
(Projected)

This
Work

FPGA Max-K-
Cut &

MaxCut

0.4225
(measured)

0.4225
(measured)

0.4225
(measured)

V. CONCLUSION

 In summary, we have demonstrated an FPGA accelerator
with the unique capability of solving the general class of Max-
K-Cut problems without reconfiguring the FPGA platform. To
accomplish this, our approach exploits novel oscillator-
synchronization-inspired computational models in combination
with the inherent fine-grained parallelism of the FPGA. We
showcase the ability of the platform to accelerate graphs up to
10,000 nodes with up to 390x speedup and orders of magnitude
reduction in energy consumption. Among the physics-based
approaches, our method uniquely stands out in its capability,
flexibility, and efficiency, and thus, advances the state-of-art in
solving computationally hard COPs.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation
under Grant 2132918.

REFERENCES

[1] C. S. Calude, “Unconventional computing: A brief subjective
history,” Springer International Publishing, 2017.

[2] S. Choudhury et al., "An Approximation Algorithm for Max k-Uncut
with Capacity Constraints," in International Joint Conference on
Computational Sciences and Optimization, pp. 934-938, 2009.

[3] J. Fairbrother et al., “A two-level graph partitioning problem arising
in mobile wireless communications,” Computational Optimization
and Applications, vol. 69, pp. 653-676, 2018.

[4] J. E. Mitchell, "Realignment in the national football league: Did they
do it right?," Naval Research Logistics (NRL), vol. 50, no. 7, pp. 683-
701, 2003.

[5] A. Chen et al., "A survey on architecture advances enabled by
emerging beyond-CMOS technologies," IEEE Design & Test, vol.
36, no. 3, pp. 46-68, 2019.

[6] A. Lucas, "Ising formulations of many NP problems," Frontiers in
physics vol. 2, p. 5, 2014.

[7] N. Mohseni et al., "Ising machines as hardware solvers of
combinatorial optimization problems," Nature Reviews Physics vol.
4, pp. 363-379, 2022.

Figure 10: Mean time-to-compute as a function of graph size.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

[8] T. Wang, and J. Roychowdhury, "OIM: Oscillator-based Ising
machines for solving combinatorial optimisation problems." UCNC
2019.

[9] S. Dutta et al., "Experimental demonstration of phase transition nano-
oscillator based Ising machine," in 2019 IEDM, pp. 37-8. IEEE, 2019.

[10] A. Mallick et al., "Overcoming the accuracy vs. performance trade-
off in oscillator ising machines," in 2021 IEDM, pp. 40-2. IEEE,
2021.

[11] T. Albas et al., "Adiabatic quantum computation," RMP vol. 90, p.
015002, 2018.

[12] H. Goto et al., "Combinatorial optimization by simulating adiabatic
bifurcations in nonlinear Hamiltonian systems," Science advances
vol. 5, p. eaav2372, 2019.

[13] D. Bertsimas et al., "Simulated annealing," Statistical science vol. 8,
pp. 10-15, 1993.

[14] M. K. Bashar et al., "Experimental demonstration of a reconfigurable
coupled oscillator platform to solve the Max-cut problem," IEEE
JXCDC vol. 6, pp. 116-121, 2020.

[15] A. Fischer, and C. Igel, "An introduction to restricted Boltzmann
machines," In 17th Iberoamerican Congress, CIARP 2012, pp. 14-36,
2012.

[16] N. A. Aadit, et al., "Massively parallel probabilistic computing with
sparse Ising machines." Nature Electronics vol. 5, pp. 460-468, 2022.

[17] T. Honjo et al., "100,000-spin coherent Ising machine," Science
advances vol. 7, p. eabh0952, 2021.

[18] Computational issues of simulated annealing, retrieved on May 21,
2023.

https://www.pks.mpg.de/tisean/TISEAN_2.1/docs/surropaper/node18
.html

[19] K. Tatsumura et al., "FPGA-based simulated bifurcation machine," in
2019 FPL, 59-66. IEEE, 2019.

[20] C. Yoshimura et al., “Implementation and evaluation of FPGA-based
annealing processor for Ising model by use of resource sharing,” Int.
J. Net. and Com., vol. 7, pp.154-172, 2017.

[21] C. Cook et al., “GPU-based ising computing for solving max-cut
combinatorial optimization problems,” Integration, vol. 69, pp.335-
344, 2019.

[22] T. Takemoto, et al., "2.6 A 2× 30k-spin multichip scalable annealing
processor based on a processing-in-memory approach for solving
large-scale combinatorial optimization problems," ISSSCC, 2019.

[23] K. Yamamoto et al., "7.3 STATICA: A 512-spin 0.25 M-weight full-
digital annealing processor with a near-memory all-spin-updates-at-
once architecture for combinatorial optimization with complete spin-
spin interactions." ISSCC, 2020.

[24] H. Lo et al., "An Ising solver chip based on coupled ring oscillators
with a 48-node all-to-all connected array architecture," Nature
Electronics, pp. 1-8, 2023.

[25] A. Mallick et al., “Computational Models Based on Synchronized
Oscillators for Solving Combinatorial Optimization Problems,”
Physical Review Applied, vol. 17, p.064064, 2022.

[26] T. Szabados, "An elementary introduction to the Wiener process and
stochastic integrals." arXiv preprint arXiv:1008.1510, 2010.

[27] T. Wang, and J. Roychowdhury, "Oscillator-based Ising machine,"
arXiv preprint arXiv:1709.08102, 2017.

[28] M. K. Bashar et al., "Dynamical System-based Computational
Models for Solving Combinatorial Optimization on Hypergraphs,"
IEEE JxCDC vol. 9, pp. 21-28, 2023.

[29] Trapezoidal rule (differential equations), Retrieved at May, 10, 2023.
 At:

https://en.wikipedia.org/wiki/Trapezoidal_rule_(differential_equation
s)

[30] G. Melancon, "Just how dense are dense graphs in the real world? A
methodological note," in Proceedings of the 2006 AVI workshop on
BEyond time and errors: novel evaluation methods for information
visualization, pp. 1-7. 2006.

[31] J. Fowers et al., "A High Memory Bandwidth FPGA Accelerator for
Sparse Matrix-Vector Multiplication," 2014 FCCM, pp. 36-43, 2014.

[32] R. Andraka, "A survey of CORDIC algorithms for FPGA based
computers," ACM/SIGDA sixth international symposium on FPGA,
pp. 191-200. 1998.

[33] D-U. Lee et al., "A hardware Gaussian noise generator using the Box-
Muller method and its error analysis," IEEE Trans. Comput. vol. 55,
pp. 659-671, 2006.

[34] A. Yavorsky et al., "Highly parallel algorithm for the Ising ground
state searching problem," arXiv preprint arXiv:1907.05124, 2019.

[35] S. F. Mousavi, “A GPU-Accelerated Population-Based Boltzmann
Machine for Solving Combinatorial Optimization Problems,” Diss.
University of Toronto (Canada), 2020.

[36] Y. Zou, and M. Lin, "Massively simulating adiabatic bifurcations
with FPGA to solve combinatorial optimization," in Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 65-75, 2020.

[37] H. Gyoten, M. Hiromoto, and T. Sato, “Area efficient annealing
processor for ising model without random number generator,” IEICE
TRANSACTIONS on Information and Systems 101, pp. 314-323,
2018.

[38] Benchmarking the MAX-CUT problem on the Simulated Bifurcation
Machine, retrieved on May 10, 2023. At:
https://medium.com/toshiba-sbm/benchmarking-the-max-cut-
problem-on-the-simulated-bifurcation-machine-e26e1127c0b0

[39] Simulated Bifurcation Machine. At:
https://aws.amazon.com/marketplace/pp/prodview-
f3hbaz4q3y32y?ref=_ptnr_mdm

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 18,2024 at 16:28:52 UTC from IEEE Xplore. Restrictions apply.

