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ABSTRACT

Nonlinear dynamical systems such as coupled oscillators are being actively investigated as Ising machines for solving computationally hard
problems in combinatorial optimization. Prior works have established the equivalence between the global minima of the cost function
describing the coupled oscillator system and the ground state of the Ising Hamiltonian. However, the properties of the oscillator Ising
machine (OIM) from a nonlinear control viewpoint, such as the stability of the OIM solutions, remain unexplored. Therefore, in this work,
using nonlinear control-theoretic analysis, we (i) identify the conditions required to ensure the functionality of the coupled oscillators as an
Ising machine, (ii) show that all globally optimal phase configurations may not always be stable, resulting in some configurations being
more favored over others and, thus, creating a biased OIM, and (iii) elucidate the impact of the stability of locally optimal phase configura-
tions on the quality of the solution computed by the system. Our work, fostered through the unique convergence between nonlinear control
theory and analog systems for computing, provides a new toolbox for the design and implementation of dynamical system-based computing

platforms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157107

I. INTRODUCTION
Ising machines provide an elegant dynamical system platform
for minimizing the Ising Hamiltonian H = — " Wjs;s;, where

s; € {1,—1} corresponds to the ith spin and Wj; is the interaction
coefficient between nodes i and j; the Zeeman term has been
neglected here. Minimizing H is a quintessential NP-hard combi-
natorial optimization problem (COP). Moreover, such systems are
being actively investigated for solving many computationally chal-
lenging COPs, many of which can be directly mapped to the mini-
mization of H."” An archetypal example of such a mapping is the
MaxCut problem, which is defined as a graph cut that maximizes
the number of cut edges (unweighted graph considered here). The
relationship between H and the MaxCut (MC) can be defined as
H =XW — 2MC, where W is the sum of the weights of all the
edges in the graph. Thus, the optimal MaxCut directly corresponds
to the ground state (minimum H) of a topologically equivalent spin
network with antiferromagnetic interactions, i.e., Wi = -1 The
promise of Ising machines is that allowing physics to do the com-
putation can potentially provide a significant benefit in computa-
tional performance over digital algorithms.™*

While the Ising model has been well known for many
decades, recent interest in the field can be attributed to the develop-
ment of quantum annealers (by companies such as D-wave’) with
the objective of solving hard COPs while offering exponential
speedup over digital algorithms. Since then, many technology plat-
forms ranging from degenerate optical parametric oscillators,’ spin
waves,” bistable latches,” resonators,” memristors,'” Kerr-nonlinear
parametric oscillators,'’ spin torque nano-oscillators,'” and elec-
tronic oscillators'>—focus of the present work, have been used to
design Ising machines. Coherent Ising machines, with sizes as large
as 100000 spins, have recently been realized using degenerate
optical parametric oscillators."*

Coupled electronic oscillators are a promising candidate to
realize Ising machines, commonly referred to as oscillator Ising
machines (OIMs),"” owing to their compactness and compatibility
with integrated circuit (IC) technology. In groundbreaking work by
Wang et al.,”’ the authors demonstrated that a global minimum of
the cost function (referred to as the Lyapunov function by the
authors) for a topographically equivalent coupled oscillator
network under second harmonic injection can be equivalent to
computing a global minimum of H. We have briefly summarized
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FIG. 1. (a) lllustrative randomly generated unweighted graph with 20 nodes and 152 edges. (b) Corresponding histogram of energy (H) for all (2%°) possible spin

configurations.

this mapping in the Appendix for completeness. While the minimi-
zation of the cost function in OIMs'” as well as their
implementation™'*~'* has been explored in prior work, the stabil-
ity of the globally optimal and locally optimal spin (phase) configu-
rations and the resulting impact on the OIM dynamics has been
largely unexplored. The works by Erementchouk et al* and
Béhm et al.”" are a few examples that aim to investigate the dynam-
ics of the OIM, while a few more works have focused on analyzing
the dynamical properties of the spiking neural network.””™>
Consequently, understanding the properties of the OIM as a non-
linear dynamical system and elucidating their impact on the com-
putational properties are the primary focus of this work.

Il. RESULTS

The dynamics of the OIM are such that the oscillator phases
settle to 8 € {0, }, which, subsequently, represent s = +1 assign-
ment to the nodes. The computational capability of this system
arises from the fact that the resulting phase configuration of the
oscillators will correspond to a ground state of H. The cost function
E(0(t)) and the corresponding system dynamics are, respectively,
presented as

the system will evolve toward the ground state, except when
dEd(te) 0 (ie., M = 0). A point in the phase space where da(t) =0
defines a ﬁxed pomt and there are multiple such points 1n the
phase space. In fact, every possible spin assignment and its equiv-
alent in terms of the oscillator phases {0;, 65, ..., Oy}, where
6, € {0, 7} can correspond to a fixed point. Consequently, the
phase space contains 2V fixed points in the system (for
0 € {0, 7}); 27! points when symmetricity in the solutions is
considered. The fixed points lying at the lowest energy, if stable,
would correspond to an (globally) optimal solution to the Ising
model, while stable fixed points that do not lie at the lowest
energy would correspond to locally optimal (globally sub-
optimal) solutions. Furthermore, even for the same energy
(including the ground state), some fixed points (i.e., spin configu-
rations) may be stable, while others may not. This implies that the
system may intrinsically favor certain Ising solutions over others,
leading to a biased OIM. Consequently, engineering the system
stability can have a significant impact on the computational char-
acteristics and the performance of the system.

To elucidate our approach, we consider an illustrative ran-
domly generated unweighted graph with 20 nodes and 152 edges as
shown in Fig. 1(a). Figure 1(b) shows a histogram for the energy
(quantified using H here) for all possible solutions. It can be

N N observed in Fig. 1(b) that the graph has 22 spin configurations that
E(0() = -K Z Wijcos ( — K Z cos(26(1)), (1) yield the minimum energy (H = —28). However, as alluded to
b=l j#i =1 above, the system dynamics may not always be stable for all the 22
globally optimal configurations.
de;(t) N ) ) In order to investigate the stability of the globally and locally
# =-K Z Wisin(6; — 6;) — Ksin(26,(t)),  (2) optimal phase configurations, we analyze the Lyapunov exponents
=1, j#i

where (W) represents the coupling matrix between nodes and K
and K; represent the strength of coupling among the oscillators
and the strength of the second harmonic injection signal, respec-
tively. For the MaxCut problem, the weight of an edge Ej; in the
input graph is related to the coupling matrix by the relation
Wi = —E;. Using Egs. (1) and (2), it can be shown that

2
dE(s) 221 1 (d%"f’)) < 0,"*° which consequently implies that

(M5 A2, A3, ..., Ax) for the system dynamics. Lyapunov exponents
provide a powerful mathematical tool for analyzing the stability of
non-linear dynamical systems.”” Considering that dynamics are
continuous-time, and the corresponding Jacobian matrix is sym-
metric,”® the Lyapunov exponents are the same as the eigenvalues
of the Jacobian matrix. For a phase configuration to be stable, all
Lyapunov exponents should be negative. The Jacobian matrix (J)
for the OIM (assuming symmetric unweighted edges, ie.,
Wi; = W) can be defined as
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E(1,1)
—KW12COS(91 - 92)
—KW13COS(91 — 93)

—KW12COS(91 — 92)
EQ,2)
—KW23COS(02 — 03)

—KWncos(6, — 0y)

where E(i, i) = —K Z?]:lj# Wijcos(0; — ;) — 2K,cos(26;). The

. - J7L D de) _
eigenvalues of ] for a given point in the phase space where 3% =0
yield the Lyapunov exponents at that point. Since all the Lyapunov
exponents need to be negative in order for an energy minimum to
be stable, we focus on the largest Lyapunov exponent (referred to
here as A;) since all other exponents will be smaller than ;.

Figure 2(a) shows the evolution of the largest Lyapunov expo-
nent (A1) as a function of K; (K = 1) for the representative graph
shown in Fig. 1(a). All the 2%° possible phase configurations are
considered. The evolution of A; for only the globally optimal solu-
tions is emphasized in Fig. 2(b). It can be observed that the stability
of a spin configuration is significantly impacted by the strength K
(relative to K) of the second harmonic injection signal. In fact, if K;
is small enough (<0.5 for the graph considered here), then the
ground states, i.e., globally optimal configurations, themselves can
become unstable. In such a scenario, the system will cease to
behave as an Ising machine—the ground state energy of the system
will then correspond to an oscillator phase configuration where
some or all oscillator phases do not settle to 0 or 7.

Next, for different Ky (K = 1), we analyze the distribution
of A, for all phase configurations lying at a given energy (H).
Figures 3(a)-3(c) show the maximum and the minimum value of
Ay, for phase configurations corresponding to a given H, computed
for three different values of K, (0.1, 0.8, and 1.5), respectively. In
Fig. 3(a), it can be observed that since A;, for all spin configurations
(including the globally optimal solutions lying at H = —28) are

ARTICLE pubs.aip.org/aip/jap

—KW13COS(01 — 03)
—KW23COS(92 — 03)
E(3, 3)

—KWlNCOS(Ol — 9N)

E(N, N)

greater than zero, the ground state of the oscillator platform will
not be achieved for 8 € {0, z}. Consequently, it is expected that the
oscillator platform will cease to function as an Ising machine.
When K; = 0.8 [Fig. 3(b)], it can be observed that the maximum
and the minimum values of A, for the globally optimal solutions
straddle zero; i.e., A; for some solutions is less than zero, whereas it
is greater than zero for others. This implies that only a fraction of
the globally optimal spin configurations is stable, and consequently,
the system dynamics will preferentially converge to the stable
(globally optimal) solutions. This creates a biased OIM that favors
the stable states over the unstable ones. Additionally, it is also note-
worthy to point out that some of the fixed points corresponding to
locally optimal (but globally sub-optimal) solutions lying at low
energies (H = —24, —26) are also stabilized. This indicates that the
system may potentially get trapped in one of these states, leading to
sub-optimal solutions. However, the value of K is such that the
solutions lying at higher energies (H > —24) are destabilized, pre-
venting the system from getting trapped in those states. Finally,
when the strength of the second harmonic injection is increased
further to Ky = 1.5 [Fig. 3(c)], it can be observed that all the glob-
ally optimal solutions are stabilized. Additionally, increasing the
strength of the second harmonic injection also increases the
number and energy of the locally optimal (globally sub-optimal)
solutions where the system dynamics can be stabilized.
Consequently, this should increase the probability of the system
getting trapped at a local minimum. Here, we only consider the

A, for all spin configurations 4, for globally optimal configurations

20— . . . .
= (a)
10}
~
~<
Oxr
1!
I
-0l .
0 1 2

20
+ 22 phase configurations

10t (b)1

FIG. 2. (a) Evolution of the largest Lyapunov exponent (4,) as a function of K for all spin configurations; (b) evolution of A, as a function of K; for the subset of globally
optimal phase configurations. Note that A, > 0 implies that the particular solution is unstable.

8%:¥€:91 ¥20Z AInr 81

J. Appl. Phys. 134, 144901 (2023); doi: 10.1063/5.0157107
Published under an exclusive license by AIP Publishing

134, 144901-3


https://pubs.aip.org/aip/jap

Journal of

o o ARTICLE ubs.aip.org/aip/ja
Applied Physics P p.org/aip/jap

No Spin Configuration Stable Not all Global Solutions are Stable All Global Solutions are Stable

12 ' ' ' o] | | T ] ' ' ' e
ol Ks=01 (a) oottt 10 (0) seee 8t (©) soee ]
I _ ] _ XX | — XX
gt K=1 "“’ @ Largest, | 8 K=1 X 6 K=1 *¢
'Y ® Smallest A, 6 "" @ Largest 1, 4t ”"
67 o ol == . @ Smallest 1, | < .
41 ¢ .0‘. 1 & ¢ °® 2t " °
o eoe®® ® o®® e®®
Y] o0 ® 2 ¢ (X J ¢ _...
2iqe00®® ¢ e0® Of=¥~--"—"-2g o0 - ------—
!. r: .... 1 ....
0|—- —————————————————————————— Olgiwr®®®- == —----------- - _2|5._:oo'°
-28 -20 -12 -4 4 " -28 -20 -12 -4 4 11 -28 -20 -12 -4 4 1
H H H

FIG. 3. Minimum (blue) and maximum (orange) 4, for phase configurations lying at a particular energy (H). Three values of K, are considered—(a) Ks = 0.1 since all
spin configurations (including the globally optimal solutions) are unstable, it implies that the oscillator platform will cease to behave as an Ising machine. (b) Ks = 0.8:
some globally optimal solutions are stable, while others are unstable. Additionally, a few locally optimal low energy solutions are also stabilized; (c) Ks = 1.5: all globally
optimal solutions are stable. The red box indicates the globally optimal solutions.
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FIG. 4. Temporal evolution of the oscillator phases for (a) Ks = 0.1, (b) Ks = 0.8, (c) Ks = 1.5 (K = 1). The oscillator network is topologically equivalent to the graph
considered in Fig. 1(a). When Ks = 0.1, the phases do not converge to {0, =}, and thus, the system does not behave as an Ising machine. Measured H for (d) K; = 0.8
and (e) Ks = 1.5 over 50 trials. Since a smaller number of locally optimal solutions are stabilized at Ks = 0.8 compared to K; = 1.5, the system yields better solution
quality. No solution is obtained for K = 0.1.
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fixed points associated with Ising solutions (6 € {0, z}). There may computed by the system. Thus, this work presents a novel para-
be other fixed points in the phase space corresponding to configu- digm rooted in nonlinear control theory for analyzing dynamical
rations where 6 & {0, 7}. We also note that for the OIM dynamics, system-based computing platforms such as OIMs and creates a new
the stability of the fixed points can also be alternatively analyzed by toolkit for the design and implementation of such systems.

using the second-order partial derivative test.

We verify the system behavior predicted above using simula-
tions shown in Fig. 4. We consider an oscillator network that is ACKNOWLEDGMENTS
equivalent to the graph considered in Fig. 1(a) and, subsequently, This work was supported by NSF Grant No. 2132918.
evaluate the dynamics for different second harmonic injection
strengths. We simulate system dynamics (2) using a MATLAB’s”

SDE (stochastic differential equation) solver, where we consider a AUTHOR DECLARATIONS

time and phase independent noise amplitude of K, = 0.005. When
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machine. For larger injection strengths (K; = 0.8, 1.5), it can be
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the system’s ability to function as an Ising machine.
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can be observed in Fig. 4(e) that the system dynamics exhibit a s
higher probability of getting trapped at a local minimum (sub- %
optimal spin configuration). In fact, over 50 trials, the system never APPENDIX: THEORETICAL FRAMEWORK FOR S
converges to a globally optimal solution (H = —28). This indicates OSCILLATOR ISING MACHINE >
that the ability to engineer the stability of the local minima can sig- . . ) LS
nificantly impact the computational performance of the OIM. The theoretical frz.1m§w.0r1<. showing how coup l?d osc1lla.t0r &

under second harmonic injection works as an oscillator Ising

machine is shown by Wang et al."” For completeness, we briefly
11l. CONCLUSION summarize this here.

OIMs are being actively investigated for solving computation- The generalized Adler’s equation representing the phase
ally hard problems in combinatorial optimization. While such dynamics of a perturbed (or a coupled) oscillator can be shown as
problems find extensive practical applications in fields ranging d
from resource optimization to financial arbitrage, many of these — (0 (1)) = wy — @p + Wy CO() — Gy(1)). (A1)
problems are still considered intractable to solve efficiently using dr
digital algorithms. Hegce, Ising mfichines have the potential of cre- Here, 6(f) and 6, (t) are oscillator’s phase and perturbation’s
ating a transforrr}atlve impact. Whﬂ_e there have been many demon- phase, respectively; my and @, are the oscillator’s frequency and the
strations ,Of IS‘“S rpachmes using a ple.th(?ra of hardware perturbation’s frequency, respectively; C(.) is the perturbation pro-
techn.ologles, a principled approach to designing such systems jection vector (PPV) of the oscillator that quantifies the oscillator’s
remains le§s explored. . . . phase response when a perturbation acts on it. Using Eq. (A1), the

In this work, we‘have umquely exammedA the OIM design phase dynamics of the ith oscillator in an N-coupled oscillator
from a control theoretic standpoint. By calculating the Lyapunov s b d

) ) . - ystem can be represented as
exponents for various spin configurations, we analyze the stability
of the globally and locally optimal solutions. We show that not all N
globally optimal phase configurations may always be stable, in i(gi ®) = 0; — 0, + w; Z Ci (6:(t) — 6;(1)), (A2)
which case the system behaves as a biased OIM. Furthermore, our dt T
analysis also provides insights into the stability of the locally
optimal phase configurations, which can significantly impact the where ), is the natural frequency of the oscillators and ; is the fre-
probability of the system dynamics getting trapped at a local quency of the ith oscillator. If the oscillators are sinusoidal and
minimum. Subsequently, this impacts the quality of the solution oscillating with their natural frequency ,, under the presence of a
J. Appl. Phys. 134, 144901 (2023); doi: 10.1063/5.0157107 134, 144901-5
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second harmonic injection, Eq. (A2) can be written as

de; (t)

=-K Z Wisin(6; — 6)) — Ksin(26,(1)).
J=1 j#Fi

(A3)

Here, Wj; is the coupling weight between oscillators 7 and j.
For the dynamlcs shown in Eq. (A3), a cost function E can be
defined such that —VE = 6. It is shown as

N N
EO(1) =—K Y Wicos(6; — 6;) — K »_ cos(26i(1)). (A4)
ij=1,j#i i=1
Furthermore,
OE(6())
89, Kllzl: Wisin(0; — 6;) + K Z sin(@,, — 6;)
#i m=1,m#i
+ 2Ksin(26;(t)),
N (A5)
=-2|-K > Wysin(6;— 6)) — K.sin(26,(t))
j=1, j#i
_ L de
=-2 a
Hence,
dEO)) S~ OE(6(1) d6; N 7do;\?
= — == ) <
dt 90, dt 2 ; ar) =0 (A6)

Equation (A6) shows that % < 0; ie., E(6(t)) does not
increase with time. Furthermore, at the specific phase points
6 € {0, z}, which map to the spin states s € {1, —1} in the Ising
Hamiltonian, and K = 1/2, Eq. (A4) is equivalent to the Ising
Hamiltonian H with a constant offset,”®

N
E@O() = — Y Wicos(6; — 6;) — NK.. (A7)

iji<j

The coupling weights Wj; represent the weight of the edges E;
of the graph to be solved. For the MaxCut problem, the coupling
weights are calculated using the relationship W;; = —E;; when no
edge is present, Ej; = 0. This relationship arises from the funda-
mental mapping between solving the MaxCut problem and the
minimization of the Ising Hamiltonian."
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