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ABSTRACT

Nonlinear dynamical systems such as coupled oscillators are being actively investigated as Ising machines for solving computationally hard
problems in combinatorial optimization. Prior works have established the equivalence between the global minima of the cost function
describing the coupled oscillator system and the ground state of the Ising Hamiltonian. However, the properties of the oscillator Ising
machine (OIM) from a nonlinear control viewpoint, such as the stability of the OIM solutions, remain unexplored. Therefore, in this work,
using nonlinear control-theoretic analysis, we (i) identify the conditions required to ensure the functionality of the coupled oscillators as an
Ising machine, (ii) show that all globally optimal phase configurations may not always be stable, resulting in some configurations being
more favored over others and, thus, creating a biased OIM, and (iii) elucidate the impact of the stability of locally optimal phase configura-
tions on the quality of the solution computed by the system. Our work, fostered through the unique convergence between nonlinear control
theory and analog systems for computing, provides a new toolbox for the design and implementation of dynamical system-based computing
platforms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157107

I. INTRODUCTION

Ising machines provide an elegant dynamical system platform
for minimizing the Ising Hamiltonian H ¼ �P

Wijsisj, where
si [ {1,�1} corresponds to the ith spin and Wij is the interaction
coefficient between nodes i and j; the Zeeman term has been
neglected here. Minimizing H is a quintessential NP-hard combi-
natorial optimization problem (COP). Moreover, such systems are
being actively investigated for solving many computationally chal-
lenging COPs, many of which can be directly mapped to the mini-
mization of H.1,2 An archetypal example of such a mapping is the
MaxCut problem, which is defined as a graph cut that maximizes
the number of cut edges (unweighted graph considered here). The
relationship between H and the MaxCut (MC) can be defined as
H ¼ ΣW � 2MC, where ΣW is the sum of the weights of all the
edges in the graph. Thus, the optimal MaxCut directly corresponds
to the ground state (minimum H) of a topologically equivalent spin
network with antiferromagnetic interactions, i.e., Wij ¼ �1. The
promise of Ising machines is that allowing physics to do the com-
putation can potentially provide a significant benefit in computa-
tional performance over digital algorithms.3,4

While the Ising model has been well known for many
decades, recent interest in the field can be attributed to the develop-
ment of quantum annealers (by companies such as D-wave5) with
the objective of solving hard COPs while offering exponential
speedup over digital algorithms. Since then, many technology plat-
forms ranging from degenerate optical parametric oscillators,6 spin
waves,7 bistable latches,8 resonators,9 memristors,10 Kerr-nonlinear
parametric oscillators,11 spin torque nano-oscillators,12 and elec-
tronic oscillators13—focus of the present work, have been used to
design Ising machines. Coherent Ising machines, with sizes as large
as 100 000 spins, have recently been realized using degenerate
optical parametric oscillators.14

Coupled electronic oscillators are a promising candidate to
realize Ising machines, commonly referred to as oscillator Ising
machines (OIMs),13 owing to their compactness and compatibility
with integrated circuit (IC) technology. In groundbreaking work by
Wang et al.,13 the authors demonstrated that a global minimum of
the cost function (referred to as the Lyapunov function by the
authors) for a topographically equivalent coupled oscillator
network under second harmonic injection can be equivalent to
computing a global minimum of H. We have briefly summarized
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this mapping in the Appendix for completeness. While the minimi-
zation of the cost function in OIMs13 as well as their
implementation3,4,14–19 has been explored in prior work, the stabil-
ity of the globally optimal and locally optimal spin (phase) configu-
rations and the resulting impact on the OIM dynamics has been
largely unexplored. The works by Erementchouk et al.20 and
Böhm et al.21 are a few examples that aim to investigate the dynam-
ics of the OIM, while a few more works have focused on analyzing
the dynamical properties of the spiking neural network.22–25

Consequently, understanding the properties of the OIM as a non-
linear dynamical system and elucidating their impact on the com-
putational properties are the primary focus of this work.

II. RESULTS

The dynamics of the OIM are such that the oscillator phases
settle to θ [ {0, π}, which, subsequently, represent s ¼ +1 assign-
ment to the nodes. The computational capability of this system
arises from the fact that the resulting phase configuration of the
oscillators will correspond to a ground state of H. The cost function
E(θ(t)) and the corresponding system dynamics are, respectively,
presented as

E(θ(t)) ¼ �K
XN

i,j¼1, j=i

Wijcos θi � θj
� �� Ks

XN
i¼1

cos 2θi(t)ð Þ, (1)

dθi(t)
dt

¼ �K
XN

j¼1, j=i

Wijsin θi � θj
� �� Kssin 2θi(t)ð Þ, (2)

where (W) represents the coupling matrix between nodes and K
and Ks represent the strength of coupling among the oscillators
and the strength of the second harmonic injection signal, respec-
tively. For the MaxCut problem, the weight of an edge Eij in the
input graph is related to the coupling matrix by the relation
Wij ¼ �Eij. Using Eqs. (1) and (2), it can be shown that
dE(θ)
dt ¼ �2

PN
i¼1

dθi(t)
dt

� �2 � 0,13,26 which consequently implies that

the system will evolve toward the ground state, except when
dE(θ)
dt ¼ 0 (i.e., dθ(t)dt ¼ 0). A point in the phase space where dθ(t)

dt ¼ 0
defines a fixed point, and there are multiple such points in the
phase space. In fact, every possible spin assignment and its equiv-
alent in terms of the oscillator phases {θ1, θ2, . . . , θN }, where
θi [ {0, π} can correspond to a fixed point. Consequently, the
phase space contains 2N fixed points in the system (for
θ [ {0, π}); 2N�1 points when symmetricity in the solutions is
considered. The fixed points lying at the lowest energy, if stable,
would correspond to an (globally) optimal solution to the Ising
model, while stable fixed points that do not lie at the lowest
energy would correspond to locally optimal (globally sub-
optimal) solutions. Furthermore, even for the same energy
(including the ground state), some fixed points (i.e., spin configu-
rations) may be stable, while others may not. This implies that the
system may intrinsically favor certain Ising solutions over others,
leading to a biased OIM. Consequently, engineering the system
stability can have a significant impact on the computational char-
acteristics and the performance of the system.

To elucidate our approach, we consider an illustrative ran-
domly generated unweighted graph with 20 nodes and 152 edges as
shown in Fig. 1(a). Figure 1(b) shows a histogram for the energy
(quantified using H here) for all possible solutions. It can be
observed in Fig. 1(b) that the graph has 22 spin configurations that
yield the minimum energy (H ¼ �28). However, as alluded to
above, the system dynamics may not always be stable for all the 22
globally optimal configurations.

In order to investigate the stability of the globally and locally
optimal phase configurations, we analyze the Lyapunov exponents
(λ1, λ2, λ3, . . . , λN) for the system dynamics. Lyapunov exponents
provide a powerful mathematical tool for analyzing the stability of
non-linear dynamical systems.27 Considering that dynamics are
continuous-time, and the corresponding Jacobian matrix is sym-
metric,28 the Lyapunov exponents are the same as the eigenvalues
of the Jacobian matrix. For a phase configuration to be stable, all
Lyapunov exponents should be negative. The Jacobian matrix (J)
for the OIM (assuming symmetric unweighted edges, i.e.,
Wij ¼ Wji) can be defined as

FIG. 1. (a) Illustrative randomly generated unweighted graph with 20 nodes and 152 edges. (b) Corresponding histogram of energy (H) for all (220) possible spin
configurations.
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J ¼

E(1, 1) �KW12cos(θ1 � θ2) �KW13cos(θ1 � θ3) � � � �KW1Ncos(θ1 � θN )
�KW12cos(θ1 � θ2) E(2, 2) �KW23cos(θ2 � θ3) � � �
�KW13cos(θ1 � θ3)

..

.
�KW23cos(θ2 � θ3)

..

.
E(3, 3)

..

. � � � ..
.

�KW1Ncos(θ1 � θN ) � � � E(N , N)

2
666664

3
777775, (3)

where E(i, i) ¼ �K
PN

j¼1,j=i Wijcos(θi � θj)� 2Kscos(2θi). The
eigenvalues of J for a given point in the phase space where dθ(t)

dt ¼ 0
yield the Lyapunov exponents at that point. Since all the Lyapunov
exponents need to be negative in order for an energy minimum to
be stable, we focus on the largest Lyapunov exponent (referred to
here as λL) since all other exponents will be smaller than λL.

Figure 2(a) shows the evolution of the largest Lyapunov expo-
nent (λL) as a function of Ks (K ¼ 1) for the representative graph
shown in Fig. 1(a). All the 220 possible phase configurations are
considered. The evolution of λL for only the globally optimal solu-
tions is emphasized in Fig. 2(b). It can be observed that the stability
of a spin configuration is significantly impacted by the strength Ks

(relative to K) of the second harmonic injection signal. In fact, if Ks

is small enough (<0.5 for the graph considered here), then the
ground states, i.e., globally optimal configurations, themselves can
become unstable. In such a scenario, the system will cease to
behave as an Ising machine—the ground state energy of the system
will then correspond to an oscillator phase configuration where
some or all oscillator phases do not settle to 0 or π.

Next, for different Ks (K ¼ 1), we analyze the distribution
of λL for all phase configurations lying at a given energy (H).
Figures 3(a)–3(c) show the maximum and the minimum value of
λL for phase configurations corresponding to a given H, computed
for three different values of Ks (0.1, 0.8, and 1.5), respectively. In
Fig. 3(a), it can be observed that since λL for all spin configurations
(including the globally optimal solutions lying at H ¼ �28) are

greater than zero, the ground state of the oscillator platform will
not be achieved for θ [ {0, π}. Consequently, it is expected that the
oscillator platform will cease to function as an Ising machine.
When Ks ¼ 0:8 [Fig. 3(b)], it can be observed that the maximum
and the minimum values of λL for the globally optimal solutions
straddle zero; i.e., λL for some solutions is less than zero, whereas it
is greater than zero for others. This implies that only a fraction of
the globally optimal spin configurations is stable, and consequently,
the system dynamics will preferentially converge to the stable
(globally optimal) solutions. This creates a biased OIM that favors
the stable states over the unstable ones. Additionally, it is also note-
worthy to point out that some of the fixed points corresponding to
locally optimal (but globally sub-optimal) solutions lying at low
energies (H ¼ �24, �26) are also stabilized. This indicates that the
system may potentially get trapped in one of these states, leading to
sub-optimal solutions. However, the value of Ks is such that the
solutions lying at higher energies (H . �24) are destabilized, pre-
venting the system from getting trapped in those states. Finally,
when the strength of the second harmonic injection is increased
further to Ks ¼ 1:5 [Fig. 3(c)], it can be observed that all the glob-
ally optimal solutions are stabilized. Additionally, increasing the
strength of the second harmonic injection also increases the
number and energy of the locally optimal (globally sub-optimal)
solutions where the system dynamics can be stabilized.
Consequently, this should increase the probability of the system
getting trapped at a local minimum. Here, we only consider the

FIG. 2. (a) Evolution of the largest Lyapunov exponent (λL) as a function of Ks for all spin configurations; (b) evolution of λL as a function of Ks for the subset of globally
optimal phase configurations. Note that λL . 0 implies that the particular solution is unstable.
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FIG. 3. Minimum (blue) and maximum (orange) λL for phase configurations lying at a particular energy (H). Three values of Ks are considered—(a) Ks ¼ 0:1 since all
spin configurations (including the globally optimal solutions) are unstable, it implies that the oscillator platform will cease to behave as an Ising machine. (b) Ks ¼ 0:8:
some globally optimal solutions are stable, while others are unstable. Additionally, a few locally optimal low energy solutions are also stabilized; (c) Ks ¼ 1:5: all globally
optimal solutions are stable. The red box indicates the globally optimal solutions.

FIG. 4. Temporal evolution of the oscillator phases for (a) Ks ¼ 0:1, (b) Ks ¼ 0:8, (c) Ks ¼ 1:5 (K ¼ 1). The oscillator network is topologically equivalent to the graph
considered in Fig. 1(a). When Ks ¼ 0:1, the phases do not converge to {0, π}, and thus, the system does not behave as an Ising machine. Measured H for (d) Ks ¼ 0:8
and (e) Ks ¼ 1:5 over 50 trials. Since a smaller number of locally optimal solutions are stabilized at Ks ¼ 0:8 compared to Ks ¼ 1:5, the system yields better solution
quality. No solution is obtained for Ks ¼ 0:1.
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fixed points associated with Ising solutions (θ [ {0, π}). There may
be other fixed points in the phase space corresponding to configu-
rations where θ � {0, π}. We also note that for the OIM dynamics,
the stability of the fixed points can also be alternatively analyzed by
using the second-order partial derivative test.

We verify the system behavior predicted above using simula-
tions shown in Fig. 4. We consider an oscillator network that is
equivalent to the graph considered in Fig. 1(a) and, subsequently,
evaluate the dynamics for different second harmonic injection
strengths. We simulate system dynamics (2) using a MATLAB’s®

SDE (stochastic differential equation) solver, where we consider a
time and phase independent noise amplitude of Kn ¼ 0:005. When
Ks ¼ 0:1, the oscillator phases, as expected, do not converge to
{0, π} and the oscillator platform does not behave as an Ising
machine. For larger injection strengths (Ks ¼ 0:8, 1:5), it can be
observed that the oscillator phases are binarized to {0, π}, validating
the system’s ability to function as an Ising machine.

Figures 4(d) and 4(e) show a histogram of the computed H
for Ks ¼ 0:8 and Ks ¼ 1:5, respectively, over 50 trials with ran-
domly generated initial conditions. The spin assignments and the
solutions are not computed for Ks ¼ 0:1 since the system does not
behave as an Ising machine. Since Ks ¼ 0:8 only stabilizes some
globally optimal solutions and some phase configurations that lie at
low energy (H ¼ �26, �24), it can be observed that the system
dynamics always converge to one of these states. In contrast,
increasing the second harmonic injection strength to Ks ¼ 1:5 sta-
bilizes all the 22 global solutions as well as many other phase con-
figurations that lie at higher energies [Fig. 3(c)]. Consequently, it
can be observed in Fig. 4(e) that the system dynamics exhibit a
higher probability of getting trapped at a local minimum (sub-
optimal spin configuration). In fact, over 50 trials, the system never
converges to a globally optimal solution (H ¼ �28). This indicates
that the ability to engineer the stability of the local minima can sig-
nificantly impact the computational performance of the OIM.

III. CONCLUSION

OIMs are being actively investigated for solving computation-
ally hard problems in combinatorial optimization. While such
problems find extensive practical applications in fields ranging
from resource optimization to financial arbitrage, many of these
problems are still considered intractable to solve efficiently using
digital algorithms. Hence, Ising machines have the potential of cre-
ating a transformative impact. While there have been many demon-
strations of Ising machines using a plethora of hardware
technologies, a principled approach to designing such systems
remains less explored.

In this work, we have uniquely examined the OIM design
from a control theoretic standpoint. By calculating the Lyapunov
exponents for various spin configurations, we analyze the stability
of the globally and locally optimal solutions. We show that not all
globally optimal phase configurations may always be stable, in
which case the system behaves as a biased OIM. Furthermore, our
analysis also provides insights into the stability of the locally
optimal phase configurations, which can significantly impact the
probability of the system dynamics getting trapped at a local
minimum. Subsequently, this impacts the quality of the solution

computed by the system. Thus, this work presents a novel para-
digm rooted in nonlinear control theory for analyzing dynamical
system-based computing platforms such as OIMs and creates a new
toolkit for the design and implementation of such systems.
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APPENDIX: THEORETICAL FRAMEWORK FOR
OSCILLATOR ISING MACHINE

The theoretical framework showing how coupled oscillator
under second harmonic injection works as an oscillator Ising
machine is shown by Wang et al.13 For completeness, we briefly
summarize this here.

The generalized Adler’s equation representing the phase
dynamics of a perturbed (or a coupled) oscillator can be shown as

d
dt

(θ (t)) ¼ ω0 � ωb þ ω0 C(θ(t)� θb(t)): (A1)

Here, θ(t) and θb(t) are oscillator’s phase and perturbation’s
phase, respectively; ω0 and ωb are the oscillator’s frequency and the
perturbation’s frequency, respectively; C(:) is the perturbation pro-
jection vector (PPV) of the oscillator that quantifies the oscillator’s
phase response when a perturbation acts on it. Using Eq. (A1), the
phase dynamics of the ith oscillator in an N-coupled oscillator
system can be represented as

d
dt

(θi (t)) ¼ ωi � ωn þ ωi

XN
j¼1,j=i

Cij θi(t)� θj(t)
� �

, (A2)

where ωn is the natural frequency of the oscillators and ωi is the fre-
quency of the ith oscillator. If the oscillators are sinusoidal and
oscillating with their natural frequency ωn, under the presence of a
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second harmonic injection, Eq. (A2) can be written as

dθi(t)
dt

¼ �K
XN

j¼1, j=i

Wijsin θi � θj
� �� Kssin 2θi(t)ð Þ: (A3)

Here, Wij is the coupling weight between oscillators i and j.
For the dynamics shown in Eq. (A3), a cost function E can be

defined such that �∇E ¼ _θ. It is shown as

E(θ(t)) ¼ �K
XN

i,j¼1, j=i

Wijcos θi � θj
� �� Ks

XN
i¼1

cos(2θi(t)): (A4)

Furthermore,

@E(θ(t))
@θi

¼K
XN

l¼1, l=i

Wilsin(θi�θl)þK
XN

m¼1,m=i

sin(θm�θi)

þ2Kssin(2θi(t)),

¼�2 �K
XN

j¼1, j=i

Wijsin(θi�θj)�Kssin(2θi(t))

" #

¼�2
dθi(t)
dt

:

(A5)

Hence,

dE(θ(t))
dt

¼
XN
i¼1

@E(θ(t))
@θi

dθi
dt

¼ �2
XN
i¼1

dθi
dt

� �2

� 0: (A6)

Equation (A6) shows that dE(θ(t))
dt � 0; i.e., E(θ(t)) does not

increase with time. Furthermore, at the specific phase points
θ [ {0, π}, which map to the spin states s [ {1, �1} in the Ising
Hamiltonian, and K ¼ 1/2, Eq. (A4) is equivalent to the Ising
Hamiltonian H with a constant offset,26

E(θ(t)) ¼ �
XN
i,j,i,j

Wijcos(θi � θj)� NKs: (A7)

The coupling weights Wij represent the weight of the edges Eij
of the graph to be solved. For the MaxCut problem, the coupling
weights are calculated using the relationship Wij ¼ �Eij; when no
edge is present, Eij ¼ 0. This relationship arises from the funda-
mental mapping between solving the MaxCut problem and the
minimization of the Ising Hamiltonian.1
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