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Abstract— A plethora of modern machine learning tasks
require the utilization of large-scale distributed clusters as a
critical component of the training pipeline. However, abnormal
Byzantine behavior of the worker nodes can derail the training
and compromise the quality of the inference. Such behavior can
be attributed to unintentional system malfunctions or orches-
trated attacks; as a result, some nodes may return arbitrary
results to the parameter server (PS) that coordinates the training.
Recent work considers a wide range of attack models and has
explored robust aggregation and/or computational redundancy
to correct the distorted gradients. In this work, we consider
attack models ranging from strong ones: q omniscient adversaries
with full knowledge of the defense protocol that can change
from iteration to iteration to weak ones: q randomly chosen
adversaries with limited collusion abilities which only change
every few iterations at a time. Our algorithms rely on redundant
task assignments coupled with detection of adversarial behavior.
We also show the convergence of our method to the optimal point
under common assumptions and settings considered in literature.
For strong attacks, we demonstrate a reduction in the fraction
of distorted gradients ranging from 16%–99% as compared
to the prior state-of-the-art. Our top-1 classification accuracy
results on the CIFAR-10 data set demonstrate 25% advantage in
accuracy (averaged over strong and weak scenarios) under the
most sophisticated attacks compared to state-of-the-art methods.

Index Terms— Byzantine resilience, distributed training, gra-
dient descent, deep learning, optimization, security.

I. INTRODUCTION AND BACKGROUND

INCREASINGLY complex machine learning models with
large data set sizes are nowadays routinely trained on

distributed clusters. A typical setup consists of a single cen-
tral machine (parameter server or PS) and multiple worker
machines. The PS owns the data set, assigns gradient tasks
to workers, and coordinates the protocol. The workers then
compute gradients of the loss function with respect to the
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model parameters. These computations are returned to the PS,
which aggregates them, updates the model, and maintains the
global copy of it. The new copy is communicated back to
the workers. Multiple iterations of this process are performed
until convergence has been achieved. PyTorch [1], TensorFlow
[2], MXNet [3], CNTK [4] and other frameworks support this
architecture.

These setups offer significant speedup benefits and enable
training challenging, large-scale models. As inference
problems scale, such models would be impossible to solve
on one machine due to physical limitations on how many
resources a single system can be built with (vertical scaling);
instead, a cluster of servers is utilized (horizontal scaling)
to jointly execute the overall training task. Nevertheless, the
servers are vulnerable to misbehavior by the worker nodes,
i.e., when a subset of them returns erroneous computations to
the PS, either inadvertently or on purpose. This “Byzantine”
behavior can be attributed to a wide range of reasons. The
principal causes of inadvertent errors are hardware and
software malfunctions (e.g., [5]). Reference [6] exposes the
vulnerability of neural networks to such failures and identifies
weight parameters that could maximize accuracy degradation.
The gradients may also be distorted in an adversarial manner.
As ML problems demand more resources, many jobs are
often outsourced to external commodity servers (cloud) whose
security cannot be guaranteed. Thus, an adversary may be
able to gain control of some devices and fool the model. The
distorted gradients can derail the optimization and lead to
low test accuracy or slow convergence.

Achieving robustness in the presence of Byzantine node
behavior and devising training algorithms that can efficiently
aggregate the gradients has inspired several works [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18]. The
first idea is to filter the corrupted computations from the
training without attempting to identify the Byzantine workers.
Specifically, many existing papers use majority voting and
median-based defenses [7], [8], [9], [10], [11], [12], [13] for
this purpose. In addition, several works also operate by repli-
cating the gradient tasks [14], [15], [16], [17], [18] allowing
for consistency checks across the cluster. The second idea for
mitigating Byzantine behavior involves detecting the corrupted
devices and subsequently ignoring their calculations [19], [20],
[21], in some instances paired with redundancy [17]. In this
work, we propose a technique that combines the usage of
redundant tasks, filtering, and detection of Byzantine workers.
Our work is applicable to a broad range of assumptions on
the Byzantine behavior.

There is much variability in the adversarial assumptions
that prior work considers. For instance, prior work differs in
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the maximum number of adversaries considered, their ability
to collude, their possession of knowledge involving the data
assignment and the protocol, and whether the adversarial
machines are chosen at random or systematically. We will
initially examine our methods under strong adversarial models
similar to those in prior work [10], [11], [14], [22], [23], [24],
[25]. We will then extend our algorithms to tackle weaker
failures that are not necessarily adversarial but rather common
in commodity machines [5], [6], [26]. We expand on related
work in the upcoming Section II.

II. RELATED WORK AND SUMMARY OF CONTRIBUTIONS

A. Related Work
All work in this area (including ours) assumes a reliable

parameter server that possesses the global data set and can
assign specific subsets of it to workers. Robust aggregation
methods have also been proposed for federated learning [27],
[28]; however, as we make no assumption of privacy, our work,
as well as the methods we compare with do not apply to
federated learning.

One category of defenses splits the data set into K batches
and assigns one to each worker with the ultimate goal of
suitably aggregating the results from the workers. Early work
in the area [12] established that no linear aggregation method
(such as averaging) can be robust even to a single adversarial
worker. This has inspired alternative methods collectively
known as robust aggregation. Majority voting, geometric
median, and squared-distance-based techniques fall into this
category [8], [9], [10], [11], [12], [13].

One of the most popular robust aggregation techniques
is known as mean-around-median or trimmed mean [10],
[11]. It handles each dimension of the gradient separately
and returns the average of a subset of the values that are
closest to the median. Auror [25] is a variant of trimmed
mean which partitions the values of each dimension into two
clusters using k-means and discards the smaller cluster if the
distance between the two exceeds a threshold; the values of
the larger cluster are then averaged. signSGD in [26] transmits
only the sign of the gradient vectors from the workers to the
PS and exploits majority voting to decide the overall update;
this practice reduces the communication time and denies any
individual worker too much effect on the update.

Krum in [12] chooses a single honest worker for the next
model update, discarding the data from the rest of them.
The chosen gradient is the one closest to its k ∈ N nearest
neighbors. In later work [24], the authors recognized that
Krum may converge to an ineffectual model in the landscape
of non-convex high dimensional problems, such as in neural
networks. They showed that a large adversarial change to a
single parameter with a minor impact on the Lp norm can
make the model ineffective. In the same work, they present an
alternative defense called Bulyan to oppose such attacks. The
algorithm works in two stages. In the first part, a selection set
of potentially benign values is iteratively constructed. In the
second part, a variant of trimmed mean is applied to the
selection set. Nevertheless, if K machines are used, Bulyan is
designed to defend only up to (K−3)/4 fraction of corrupted
workers.

Another category of defenses is based on redundancy and
seeks resilience to Byzantines by replicating the gradient

computations such that each of them is processed by more
than one machine [15], [16], [17], [18]. Even though this
approach requires more computation load, it comes with
stronger guarantees of correcting the erroneous gradients.
Existing redundancy-based techniques are sometimes com-
bined with robust aggregation [16]. The main drawback of
recent work in this category is that the training can be easily
disrupted by a powerful, omniscient adversary that has full
control of a subset of the nodes and can mount judicious
attacks [14].

Redundancy-based method DRACO in [17] uses a simple
Fractional Repetition Code (FRC) (that operates by grouping
workers) and the cyclic repetition code introduced in [29]
and [30] to ensure robustness; majority voting and Fourier
decoders try to alleviate the adversarial effects. Their work
ensures exact recovery (as if the system had no adversaries)
with q Byzantine nodes, when each task is replicated r ≥
2q + 1 times; the bound is information-theoretic minimum,
and DRACO is not applicable if it is violated. Nonetheless,
this requirement is very restrictive for the typical assumption
that up to half of the workers can be Byzantine.

DETOX in [16] extends DRACO and uses a simple grouping
strategy to assign the gradients. It performs multiple stages
of aggregation to gradually filter the adversarial values. The
first stage involves majority voting, while the following stages
perform robust aggregation. Unlike DRACO, the authors do
not seek exact recovery; hence the minimum requirement in
r is small. However, the theoretical resilience guarantees that
DETOX provides depend heavily on a “random choice” of the
adversarial workers. In fact, we have crafted simple attacks
[14] to make this aggregator fail under a more careful choice
of adversaries. Furthermore, their theoretical results hold when
the fraction of Byzantines is less than 1/40.

A third category focuses on ranking and/or detection [17],
[19], [20]; the objective is to rank workers using a reputation
score to identify suspicious machines and exclude them or
give them lower weight in the model update. This is achieved
by means of computing reputation scores for each machine or
by using ideas from coding theory to assign tasks to workers
(encoding) and to detect the adversaries (decoding). Zeno in
[20] ranks each worker using a score that depends on the
estimated loss and the magnitude of the update. Zeno requires
strict assumptions on the smoothness of the loss function
and the gradient estimates’ variance to tolerate an adversarial
majority in the cluster. Similarly, ByGARS [19] computes
reputation scores for the nodes based on an auxiliary data
set; these scores are used to weigh the contribution of each
gradient to the model update.

B. Contributions
In this paper, we propose novel techniques which combine

redundancy, detection, and robust aggregation for Byzantine
resilience under a range of attack models and assumptions on
the dataset/loss function.

Our first scheme Aspis is a subset-based assignment method
for allocating tasks to workers in strong adversarial settings:
up to q omniscient, colluding adversaries that can change at
each iteration. We also consider weaker attacks: adversaries
chosen randomly with limited collusion abilities, changing
only after a few iterations at a time. It is conceivable that
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Aspis should continue to perform well with weaker attacks.
However, as discussed later (Section V-B), Aspis requires large
batch sizes (for the mini-batch SGD). It is well-recognized
that large batch sizes often cause performance degradation in
training [31]. Accordingly, for this class of attacks, we present
a different algorithm called Aspis+ that can work with much
smaller batch sizes. Both Aspis and Aspis+ use combinatorial
ideas to assign the tasks to the worker nodes. Our work
builds on our initial work in [22] and makes the following
contributions.

• We demonstrate a worst-case upper bound (under any
possible attack) on the fraction of corrupted gradients
when Aspis is used. Even in this adverse scenario, our
method enjoys a reduction in the fraction of corrupted
gradients of more than 90% compared with DETOX [16].
A weaker variation of this attack is where the adversaries
do not collude and act randomly. In this case, we demon-
strate that the Aspis protocol allows for detecting all
the adversaries. In both scenarios, we provide theoretical
guarantees on the fraction of corrupted gradients.

• In the setting where the dataset is distributed i.i.d. and
the loss function is strongly convex and other technical
conditions hold, we demonstrate a proof of convergence
for Aspis. We demonstrate numerical results on the linear
regression problem in this part; these show the advantage
of Aspis over competing methods such as DETOX.

• For weaker attacks (discussed above), our experimental
results indicate that Aspis+ detects all adversaries within
approximately 5 iterations.

• We present top-1 classification accuracy experiments on
the CIFAR-10 [32] data set for various gradient distor-
tion attacks coupled with choice/behavior patterns of the
adversarial nodes. Under the most sophisticated distortion
methods [23], the performance gap between Aspis/Aspis+
and other state-of-the-art methods is substantial, e.g., for
Aspis it is 43% in the strong scenario (cf. Figure 7a), and
for Aspis+ 19% in the weak scenario (cf. Figure 13).

III. DISTRIBUTED TRAINING FORMULATION

Assume a loss function li(w) for the ith sample of the dataset
where w ∈ Rd is the set of parameters of the model.1 The
objective of distributed training is to minimize the empirical
loss function L̂(w) with respect to w, where

L̂(w) =
1
n

n∑
i=1

li(w).

Here n denotes the number of samples.
We use either gradient descent (GD) or mini-batch Stochas-

tic Gradient Descent (SGD) to solve this optimization. In both
methods, initially w is randomly set to w0 (wt is the model
state at the end of iteration t). When using GD, the update
equation is

wt+1 = wt − ηt
1
n

n∑
i=1

∇li(wt). (1)

1The paper’s heavily-used notation is summarized in Appendix Table II.

Fig. 1. Aggregation of gradients on a cluster.

Under mini-batch SGD a random batch Bt of b samples is
chosen to perform the update in the tth iteration. Thus,

wt+1 = wt − ηt
1

|Bt|
∑
i∈Bt

∇li(wt). (2)

In both methods ηt is the learning rate at the tth iteration.
The workers denoted U1, U2, . . . , UK , compute gradients on
subsets of the batch. The training is synchronous, i.e., the PS
waits for all workers to return before performing an update.
It stores the data set and the model and coordinates the
protocol. It can be observed that GD can be considered an
instance of mini-batch SGD where the batch at each iteration
is the entire dataset. Our discussion below is in the context of
mini-batch SGD but can easily be applied to the GD case by
using this observation.

We consider settings in this work that depend on the
underlying assumptions on the dataset and the loss function.
Setting-I does not make any assumption on the dataset or the
loss function. In Setting-II at the top-level (technical details
appear in Section VI) we assume that the data samples are
distributed i.i.d. and the loss function is strongly-convex. The
results that we provide depend on the underlying setting.

Task assignment: Each batch Bt is split into f disjoint
subsets {Bt,i}f−1

i=0 , which are then assigned to the workers
according to our placement policy. In what follows we refer
to these as “files” to avoid confusion with other subsets that
we need to refer to. Computational redundancy is introduced
by assigning a given file to r > 1 workers. As the load
on all the workers is equal it follows that each worker is
responsible for l = fr/K files (l is the computation load).
We let Nw(Uj) be the set of files assigned to worker Uj and
N f (Bt,i) be the group of workers assigned to file Bt,i; our
placement scheme is such that N f (Bt,i) uniquely identifies
the file Bt,i; thus, we will sometimes refer to the file Bt,i by
its worker assignment, N f (Bt,i). We will also occasionally
use the term group (of the assigned workers) to refer to a file.
We discuss the actual placement algorithms used in this work
in the upcoming subsection III-A.

Training: Each worker Uj is given the task of comput-
ing the sum of the gradients on all its assigned files. For
example, if file Bt,i is assigned to Uj , then it calculates∑

i′∈Bt,i
∇li′(wt) and returns them to the PS. In every itera-

tion, the PS will run our detection algorithm once it receives
the results from all the users in an effort to identify the q
adversaries and will act according to the detection outcome.
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Figure 1 depicts this process. There are K = 6 machines
and f = 4 distinct files (represented by colored circles)
replicated r = 3 times.2 Each worker is assigned to l = 2 files
and computes the sum of gradients (or a distorted value)
on each of them. The “d” ellipses refer to PS’s detection
operations immediately after receiving all the gradients.

Metrics: We consider various metrics in our work. For
Setting-I we consider (i) the fraction of distorted files, and
(ii) the top-1 test accuracy of the final trained model. For the
distortion fraction, let us denote the number of distorted files
upon detection and aggregation by c(q) and its maximum value
(under a worst-case attack) by c

(q)
max. The distortion fraction

is ϵ := c(q)/f . The top-1 test accuracy is determined via
numerical experiments. In Setting-II, in addition we consider
proofs and rates of convergence of the proposed algorithms.
We provide theoretical results and supporting experimental
results on these.

A. Task Assignment

Let U be the set of workers. Our scheme has |U| ≤ f
(i.e., fewer workers than files). Our assignment of files to
worker nodes is specified by a bipartite graph Gtask where the
left vertices correspond to the workers, and the right vertices
correspond to the files. An edge in Gtask between worker
Ui and a file Bt,j indicates that the Ui is responsible for
processing file Bt,j .

1) Aspis: For the Aspis scheme we construct Gtask as
follows. The left vertex set is {1, 2, . . . ,K} and the right
vertex set corresponds to r-sized subsets of {1, 2, . . . ,K}
(there are

(
K
r

)
of them). An edge between 1 ≤ i ≤ K and

S ⊂ {1, 2, . . . ,K} (where |S| = r) exists if i ∈ S. The
worker set {U1, . . . , UK} is in one-to-one correspondence with
{1, 2, . . . ,K} and the files Bt,0, . . . , Bt,f−1 are in one-to-one
correspondence with the r-sized subsets.

Example 1: Consider K = 7 workers U1, U2 . . . , U7 and
r = 3. Based on our protocol, the f =

(
7
3

)
= 35 files of each

batch Bt are associated one-to-one with 3-subsets of U , e.g.,
the subset S = {U1, U2, U3} corresponds to file Bt,0 and will
be processed by U1, U2, and U3.

Remark 1: Our task assignment ensures that every pair
of workers processes

(
K−2
r−2

)
files. Moreover, the number of

adversaries is q < K/2. Thus, upon receiving the gradients
from the workers, the PS can examine them for consistency
and flag certain nodes as adversarial if their computed gradi-
ents differ from q + 1 or more of the other nodes. We use
this intuition to detect and mitigate the adversarial effects and
compute the fraction of corrupted files.

2) Aspis+: For Aspis+, we use combinatorial designs [33]
to assign the gradient tasks to workers. Formally, a design is a
pair (X , A) consisting of a set of v elements (points), X , and
a family A (i.e., multiset) of nonempty subsets of X called
blocks, where each block has the same cardinality k. Similar to
Aspis, the workers and files are in one-to-one correspondence
with the points and the blocks, respectively. Hence, for our
purposes, the k parameter of the design is the redundancy.
A t − (v, k, λ) design is one where any subset of t points
appear together in exactly λ blocks. The case of t = 2 has

2Some arrows and ellipses have been omitted from Figure 1; however, all
files will be going through detection.

been studied extensively in the literature and is referred to as
a balanced incomplete block design (BIBD). A bipartite graph
representing the incidence between the points and the blocks
can be obtained naturally by letting the points correspond to
the left vertices, and the blocks correspond to the right vertices.
An edge exists between a point and a block if the point is
contained in the block.

Example 2: A 2− (7, 3, 1) design, also known as the Fano
plane, consists of the v = 7 points X = {1, 2, . . . , 7} and
the block multiset A contains the blocks {1, 2, 3}, {1, 4, 7},
{2, 4, 6}, {3, 4, 5}, {2, 5, 7}, {1, 5, 6} and {3, 6, 7} with each
block being of size k = 3. In the bipartite graph Gtask

representation, we would have an edge, e.g., between point
2 and blocks {1, 2, 3}, {2, 4, 6}, and {2, 5, 7}.
In Aspis+ we construct Gtask by the bipartite graph repre-
senting an appropriate 2 − (v, k, λ) design.

Another change compared to the Aspis placement scheme
is that the points of the design will be randomly permuted
at each iteration, i.e., for permutation π, the PS will map
{U1, U2, . . . , UK} π−→ {π(U1), π(U2), . . . , π(UK)}. For
instance, let us circularly permute the points of the Fano
plane in Example 2 as π(Ui) = Ui+1, i = 1, 2, . . . ,K − 1 and
π(UK) = U1. Then, the file assignment at the next
iteration will be based on the block collection A =
{{2, 3, 4}, {1, 2, 5}, {3, 5, 7}, {4, 5, 6}, {1, 3, 6}, {2, 6, 7}, {1,
4, 7}}. Permuting the assignment causes each Byzantine to
disagree with more workers and to be detected in fewer
iterations; details will be discussed in Section V-C. Owing to
this permutation, we use a time subscript for the files assigned
to Ui for the tth iteration; this is denoted by Nw

t (Ui).

IV. ADVERSARIAL ATTACK MODELS AND GRADIENT
DISTORTION METHODS

We now discuss the different Byzantine models that we
consider in this work. For all the models, we assume that at
most q < K/2 workers can be adversarial. For each assigned
file Bt,i a worker Uj will return the value ĝ(j)

t,i to the PS. Then,

ĝ(j)
t,i =

{
gt,i if Uj is honest,
∗ otherwise,

(3)

where gt,i is the sum of the loss gradients on all samples in
file Bt,i, i.e.,

gt,i =
∑

j∈Bt,i

∇lj(wt)

and ∗ is any arbitrary vector in Rd. Within this setup, we exam-
ine adversarial scenarios that differ based on the behavior
of the workers. Table I provides a high-level summary of
the Byzantine models considered in this work as well as in
related papers. As we will discuss in Section VIII-B, for those
schemes that do not involve redundancy and merely split the
work equally among the K workers, all possible choices of
the Byzantine set are equivalent, and no orchestration3 of
them will change the defense’s output; hence, those cases are
denoted by “N/A” in the table.

3We will use the term orchestration to refer to the method adversaries use
to collude and attack collectively as a group.
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TABLE I
ADVERSARIAL MODELS CONSIDERED IN LITERATURE

A. Attack 1
We first consider a weak attack, denoted ATT-1, where the

Byzantine nodes operate independently (i.e., do not collude)
and attempt to distort the gradient on any file they participate
in. For instance, a node may try to return arbitrary gradients
on all its assigned files. For this attack, the identity of the
workers may be arbitrary at each iteration as long as there are
at most q of them.

Remark 2: We emphasize that even though we call this
attack “weak”, this is the attack model considered in several
prior works [16], [17]. To our best knowledge, most of them
have not considered the adversarial problem from the lens of
detection.

B. Attack 2
Our second scenario, named ATT-2, is the strongest one we

consider. We assume that the adversaries have full knowledge
of the task assignment at each iteration and the detection
strategies employed by the PS. The adversaries can collude
in the “best” possible way to corrupt as many gradients as
possible. Moreover, the set of adversaries can also change
from iteration to iteration as long as there are at most q of
them.

C. Attack 3
This attack is similar to ATT-1 and will be called ATT-3.

On the one hand, it is weaker in the sense that the set of
Byzantines (denoted A) does not change in every iteration.
Instead, we will assume that there is a “Byzantine window”
of Tb iterations in which the set A remains fixed. Also, the set
A will be a randomly chosen set of q workers from U , i.e.,
it will not be chosen systematically. A new set will be chosen
at random at all iterations t, where t ≡ 0 (mod Tb). Conversely,
it is stronger than ATT-1 since we allow for limited collusion
amongst the adversarial nodes. In particular, the Byzantines
simulated by ATT-3 will distort only the files for which a
Byzantine majority exists.

D. Gradient Distortion Methods
For each of the attacks considered above, the adversaries can

distort the gradient in specific ways. Several such techniques
have been considered in the literature and our numerical
experiments use these methods for comparing different meth-
ods. For instance, ALIE [23] involves communication among
the Byzantines in which they jointly estimate the mean µi

and standard deviation σi of the batch’s gradient for each
dimension i and subsequently use them to construct a distorted
gradient that attempts to distort the median of the results.

Another powerful attack is Fall of Empires (FoE) [34] which
performs “inner product manipulation” to make the inner
product between the true gradient and the robust estimator
to be negative even when their distance is upper bounded by
a small value. Reversed gradient distortion returns −cg for
c > 0, to the PS instead of the true gradient g. The constant
attack involves the Byzantine workers sending a constant
gradient with all elements equal to a fixed value. To our
best knowledge, the ALIE algorithm is the most sophisticated
attack in literature for deep learning techniques.

V. DEFENSE STRATEGIES IN ASPIS AND ASPIS+
In our work we use the Aspis task assignment and detection
strategy for attacks ATT-1 and ATT-2. For ATT-3, we will use
Aspis+. Recall that the methods differ in their corresponding
task assignments. Nevertheless, the central idea in both detec-
tion methods is for the PS to apply a set of consistency checks
on the obtained gradients from the different workers at each
iteration to identify the adversaries.

Let the current set of adversaries be A ⊂ {U1, U2, . . . , UK}
with |A| = q; also, let H be the honest worker set. The set A is
unknown, but our goal is to provide an estimate Â of it. Ideally,
the two sets should be identical. In general, depending on the
adversarial behavior, we will be able to provide a set Â such
that Â ⊆ A. For each file, there is a group of r workers which
have processed it, and there are

(
r
2

)
pairs of workers in each

group. Each such pair may or may not agree on the gradient
value for the file. For iteration t, let us encode the agreement of
workers Uj1 , Uj2 on common file i during the current iteration
t by

α
(j1,j2)
t,i :=

{
1 if ĝ(j1)

t,i = ĝ(j2)
t,i ,

0 otherwise.
(4)

Across all files, the total number of agreements between a
pair of workers Uj1 , Uj2 during the tth iteration is denoted by

α
(j1,j2)
t :=

∑
i∈Nw

t (Uj1 )∩Nw
t (Uj2 )

α
(j1,j2)
t,i . (5)

Since the placement is known, the PS can always perform
the above computation. Next, we form an undirected graph Gt

whose vertices correspond to all workers {U1, U2, . . . , UK}.
An edge (Uj1 , Uj2) exists in Gt only if the computed gradients
(at iteration t) of Uj1 and Uj2 match in “all” their common
assignments.

A. Aspis Detection Rule
In what follows, we suppress the iteration index t since the

Aspis algorithm is the same for each iteration. For the Aspis
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Algorithm 1 Proposed Aspis Graph-Based Detection

Input: Computed gradients ĝ(j)
t,i , i = 0, 1, . . . , f − 1,

j = 1, 2, . . . ,K , redundancy r and empty
graph G with worker vertices U .

1 for each pair (Uj1 , Uj2), j1 ̸= j2 of workers do
2 PS computes the number of agreements α(j1,j2) of

the pair Uj1 , Uj2 on the gradient value.
3 if α(j1,j2) =

(
K−2
r−2

)
then

4 Connect vertex Uj1 to vertex Uj2 in G.
5 end
6 end
7 PS enumerates all k maximum cliques

M
(1)
G , M

(2)
G , . . . ,M

(k)
G in G.

8 if there is a unique maximum clique MG (k = 1) then
9 PS determines the honest workers H = MG and

the adversarial machines Â = U − MG.
10 else
11 PS declares unsuccessful detection.
12 end

task assignment (cf. Section III-A.1), any two workers, Uj1

and Uj2 , have
(
K−2
r−2

)
common files.

Let us index the q adversaries in A = {A1, A2, . . . , Aq}
and the honest workers in H . We say that two workers Uj1

and Uj2 disagree if there is no edge between them in G. The
non-existence of an edge between Uj1 and Uj2 only means
that they disagree in at least one of the

(
K−2
r−2

)
files that

they jointly participate in. For corrupting the gradients, each
adversary has to disagree on the computations with a subset
of the honest workers. An adversary may also disagree with
other adversaries.

A clique in an undirected graph is defined as a subset of
vertices with an edge between any pair of them. A maximal
clique is one that cannot be enlarged by adding additional
vertices to it. A maximum clique is one such that there is no
clique with more vertices in the given graph. We note that the
set of honest workers H will pair-wise agree on all common
tasks. Thus, H forms a clique (of size K − q) within G. The
clique containing the honest workers may not be maximal.
However, it will have a size of at least K−q. Let the maximum
clique on G be MG. Any worker Uj with deg(Uj) < K −
q−1 will not belong to a maximum clique and can right away
be eliminated as a “detected” adversary.

The essential idea of our detection is to run a clique-finding
algorithm on G (summarized in Algorithm 1). The detection
may be successful or unsuccessful depending on which attack
is used; we discuss this in more detail shortly.

We note that clique-finding is well-known to be an
NP-complete problem [35]. Nevertheless, there are fast, prac-
tical algorithms with excellent performance on graphs even
up to hundreds of nodes [36], [37]. Specifically, the authors
of [37] have shown that their proposed algorithm, which
enumerates all maximal cliques, has similar complexity as
other methods [38], [39], which are used to find a single
maximum clique. We utilize this algorithm. Our extensive
experimental evidence suggests that clique-finding is not a
computation bottleneck for the size and structure of the graphs

Algorithm 2 Proposed Aspis/Aspis+ Aggregation Pro-
tocol to Alleviate Byzantine Effects
Input: Data set of n samples, batch size b,

computation load l, redundancy r, number of
files f , maximum iterations T , file assignments
{Nw(Ui)}K

i=1, robust estimator function m̂ed.
1 The PS randomly initializes model’s parameters to w0.
2 for t = 0 to T − 1 do
3 PS chooses a random batch Bt ⊆ {1, 2, . . . , n} of

b samples, partitions it into f files {Bt,i}f−1
i=0 and

assigns them to workers according to
{Nw(Ui)}K

i=1. It then transmits wt to all workers.
4 for each worker Uj do
5 if Uj is honest then
6 for each file i ∈ Nw(Uj) do
7 Uj computes the sum of gradients

ĝ(j)
t,i =

∑
k∈Bt,i

∇lk(wt).

8 end
9 else

10 Uj constructs l adversarial vectors
ĝ(j)

t,i1
, ĝ(j)

t,i2
, . . . , ĝ(j)

t,il
.

11 end
12 Uj returns ĝ(j)

t,i1
, ĝ(j)

t,i2
, . . . , ĝ(j)

t,il
to the PS.

13 end
14 PS runs a detection algorithm to identify the

adversaries.
15 if detection is successful then
16 Let H be the detected honest workers. Initialize

a non-corrupted gradient set as G = ∅.
17 for each file in {Bt,i}f−1

i=0 do
18 PS chooses the gradient of a worker in

N f (Bt,i) ∩ H (if non-empty) and adds it
to G.

19 end
20

wt+1 = wt − ηt
1
|G|
∑
g∈G

g.

21 else
22 for each file in {Bt,i}f−1

i=0 do
23 PS determines the r workers in N f (Bt,i)

which have processed Bt,i and computes
mi = majority

{
ĝ(j)

t,i : Uj ∈ N f (Bt,i)}
}

.

24 end
25 PS updates the model via

wt+1 = wt − ηt × m̂ed{mi : i = 0, 1, . . . , f − 1}.26

27 end
28 end

that Aspis uses. We have experimented with clique-finding on
a graph of K = 100 workers and r = 5 for different values of
q; in all cases, enumerating all maximal cliques took no more
than 15 milliseconds. These experiments and the asymptotic
complexity of the entire protocol are addressed in Supplement
Section XI-B.
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Fig. 2. Detection graph G for K = 7 workers among which U1, U2 and
U3 are the adversaries.

During aggregation (see Algorithm 2), the PS will perform
a majority vote across the computations of each file (imple-
mentation details in Supplement Section XI-C). Recall that r
workers have processed each file. For each such file Bt,i, the
PS decides a majority value mi

mi := majority
{
ĝ(j)

t,i : Uj ∈ N f (Bt,i)
}

. (6)

Assume that r is odd and let r′ = r+1
2 . Under the rule in

Eq. (6), the gradient on a file is distorted only if at least r′

of the computations are performed by Byzantines. Following
the majority vote, we will further filter the gradients using a
robust estimator m̂ed (see Algorithm 2, line 25). This robust
estimator is either the coordinate-wise median or the geometric
median; a similar setup was considered in [14] and [16]. For
example, in Figure 1, all returned values for the red file will
be evaluated by a majority vote function on the PS, which
decides a single output value; a similar voting is done for
the other 3 files. After the voting process, Aspis applies the
robust estimator m̂ed on the “winning” gradients mi, i =
0, 1, . . . , f − 1.

1) Defense Strategy Against ATT-1: Under ATT-1, it is clear
that a Byzantine node will disagree with at least K−q honest
nodes (as, by assumption in Section IV-A, it will disagree with
all of them), and thus, the degree of the node in G will be at
most q−1 < K−q−1, and it will not be part of the maximum
clique. Thus, each of the adversaries will be detected, and
their returned gradients will not be considered further. The
algorithm declares the (unique) maximum clique as honest and
proceeds to aggregation. In particular, assume that h workers
Ui1 , Ui2 , . . . , Uih

have been identified as honest. For each of
the f files, if at least one honest worker processed it, the
PS will pick one of the “honest” gradient values. The chosen
gradients are then averaged for the update (cf. Eq. (2)). For
instance, in Figure 1, assume that U1, U2, and U4 have been
identified as faulty. During aggregation, the PS will ignore the
red file as all 3 copies have been compromised. For the orange
file, it will pick either the gradient computed by U5 or U6 as
both of them are “honest.” The only files that can be distorted

in this case are those that consist exclusively of adversarial
nodes.

Figure 2a (corresponding to Example 1) shows an example
where in a cluster of size K = 7, the q = 3 adversaries
are A = {U1, U2, U3} and the remaining workers are honest
with H = {U4, U5, U6, U7}. In this case, the unique maximum
clique is MG = H , and detection is successful. Under this
attack, the distorted files are those whose all copies have been
compromised, i.e., c(q) =

(
q
r

)
.

2) Defense Strategy Against ATT-2 (Robust Aggregation):
Let Di denote the set of disagreement workers for adversary
Ai, i = 1, 2, . . . , q, where Di can contain members from A
and from H . If the attack ATT-2 is used on Aspis, upon the
formation of G we know that a worker Uj will be flagged
as adversarial if deg(Uj) < K−q − 1. Therefore to avoid
detection, a necessary condition is that |Dj | ≤ q.

We now upper bound the number of files that can be
corrupted under any possible strategy employed by the adver-
saries. Note that according to Algorithm 2, we resort to robust
aggregation in case of more than one maximum clique in G.
In this scenario, a gradient can only be corrupted if a majority
of the assigned workers computing it are adversarial and agree
on a wrong value. The proof of the following theorem appears
in Appendix Section IX-A.

Theorem 1: Consider a training cluster of K workers with
q adversaries using algorithm in Section III-A.1 to assign the
f =

(
K
r

)
files to workers, and Algorithm 1 for adversary detec-

tion. Under any adversarial strategy, the maximum number of
files that can be corrupted is

c(q)
max =

1
2

(
2q

r

)
. (7)

Furthermore, this upper bound can be achieved if all adver-
saries fix a set D ⊂ H of honest workers with which they
will consistently disagree on the gradient (by distorting it).

Remark 3: We emphasize that the maximum fraction of
corrupted gradients c

(q)
max/f is much lesser as compared to

the baseline q/K and with respect to other schemes as well
(details in Sec. VII). For instance K = 15 and q = 3, at most
0.022 fraction of the gradients are corrupted in Aspis as against
0.2 for the baseline scheme.
In Appendix Section IX-A we show that under ATT-2 there is
bound to be more than one maximum clique in the detection
graph. Thus, the PS cannot unambiguously decide which one
is the honest one; detection fails and we fall back to the robust
aggregation technique.

An example is shown in Figure 2 for the setup of Example 1.
The adversaries A = {U1, U2, U3} consistently disagree with
the workers in D = {U4, U5, U6} ⊂ H . The ambiguity
as to which of the two maximum cliques ({U1, U2, U3, U7}
or {U4, U5, U6, U7}) is the honest one makes an accurate
detection impossible; robust aggregation will be performed
instead.

B. Motivation for Aspis+
Our motivation for proposing Aspis+ originates in the

limitations of the subset assignment of Aspis. It is evident from
the experimental results in Section VIII-B that Aspis is more
suitable to worst-case attacks where the adversaries collude
and distort the maximum number of tasks in an undetected
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Algorithm 3 Proposed Aspis+ Graph-Based Detection

Input: Computed gradients ĝ(j)
t,i , i = 0, 1, . . . , f − 1,

j = 1, 2, . . . ,K , 2 − (v, k, λ) design, length of
detection window Td, maximum iterations T .

1 for t = 0 to T − 1 do
2 Let t′ = t (mod Td) + 1.
3 if t′ = 1 then
4 Set G as the complete graph with worker

vertices U .
5 ∀j1, j2, set α(j1,j2) = 0.
6 end
7 for each pair (Uj1 , Uj2), j1 ̸= j2 of workers do
8 PS computes the number of agreements α

(j1,j2)
t

of the pair Uj1 , Uj2 on the gradient value.
9 Update α(j1,j2) = α(j1,j2) + α

(j1,j2)
t .

10 end
11 for each pair (Uj1 , Uj2), j1 ̸= j2 of workers do
12 if α(j1,j2) < λ × t′ then
13 Remove edge (Uj1 , Uj2) from G.
14 end
15 end
16 for each worker Uj ∈ U do
17 if deg(Uj) < K−q − 1 then
18 Â = Â ∪ {Uj}.
19 end
20 end
21 if |Â| > q then
22 Set Â to be the q most recently detected

Byzantines.
23 end
24 end

fashion; in this case, the accuracy gap between Aspis and
prior methods is maximal. Aspis does not perform as well
under weaker attacks such as the reversed gradient attack (cf.
Figures 8a, 8b, 8c even though it achieves a much smaller
distortion fraction ϵ, as discussed in Section VII. This can
be attributed to the fact that the number of tasks is

(
K
r

)
and

even for the considered cluster of K = 15, r = 3, it would
require splitting the batch into 455 files; hence, the batch size
must be a multiple of 455. There is significant evidence that
large batch sizes can hurt generalization and make the model
converge slowly [31], [40], [41]. Some workarounds have been
proposed to solve this problem. For instance, the work of
[41] uses layer-wise adaptive rate scaling to update each layer
using a different learning rate. The authors of [42] perform
implicit regularization using warmup and cosine annealing to
tune the learning rate as well as gradient clipping. However,
these methods require training for a significantly larger number
of epochs. For the above reasons, we have extended our work
and proposed Aspis+ to handle weaker Byzantine failures (cf.
ATT-3) while requiring a much smaller batch size.

C. Aspis+ Detection Rule
The principal intuition of the Aspis+ detection approach

(used for ATT-3) is to iteratively keep refining the graph G

in which the edges encode the agreements of workers during
consecutive and non-overlapping windows of Td iterations.
At the beginning of each such window, the PS will reset
G to be a complete graph, i.e., as if all workers pairwise
agree with other. Then, it will gradually remove edges from
G as disagreements between the workers are observed; hence,
the graph will be updated at each of the Td iterations of the
window, and the PS will assume that the Byzantine set does
not change within a detection window. In practice, as we do
not know the “Byzantine window,” we will not assume an
alignment between the two kinds of windows, and we will set
Td ̸= Tb for our experiments. The detection method will be
the same for all detection windows; thus, we will analyze the
process in one window of Td steps.

For a detection window, let us encode the agreement of
workers Uj1 , Uj2 on common file i during the current iteration
t of the window t = 1, 2, . . . , Td as

α
(j1,j2)
t,i :=

{
1 if ĝ(j1)

t,i = ĝ(j2)
t,i ,

0 otherwise.
(8)

Across all files, the total number of agreements between a pair
of workers Uj1 , Uj2 during the tth iteration is denoted by

α
(j1,j2)
t :=

∑
i∈Nw

t (Uj1 )∩Nw
t (Uj2 )

α
(j1,j2)
t,i . (9)

Assume that the current iteration of the window is indexed
with t′ ∈ {1, 2, . . . , Td}. The PS will collect all agreements
for each pair of workers Uj1 , Uj2 up until the current iteration
as

α(j1,j2) :=
t′∑

t=1

α
(j1,j2)
t . (10)

Since the placement is known, the PS can always perform the
above computation. Next, it will examine the agreements and
update G as necessary.

Based on the task placement (cf. Section III-A.2), an edge
(Uj1 , Uj2) exists in G only if the computed gradients of Uj1

and Uj2 match in all their λ common groups in all iterations
up to the current one indexed with t′, i.e., a pair Uj1 , Uj2 needs
to have α(j1,j2) = λ × t′ for an edge (Uj1 , Uj2) to be in G.
If this is not the case, the edge (Uj1 , Uj2) will be removed
from G. After all such edges are examined, detection is done
using degree counting. Given that there are q Byzantines in the
cluster, after examining all pairs of workers and determining
the form of G, a worker Uj will be flagged as Byzantine if
deg(Uj) < K−q − 1. Based on Eq. (10), it is not hard to
see that such workers can be eliminated and their gradients
will not be considered again until the last iteration of the
current window. The only exception to this is if the Byzantine
set changes before the end of the current detection window.
This is possible due to a potential misalignment between the
“Byzantine window” and the detection window (recall that
Td ̸= Tb is assumed to avoid trivialities). In this case, more
than q workers may be detected as Byzantines; the PS will,
by convention, choose Â to be the most recently detected
Byzantines. Algorithm 3 discusses the detection protocol.
Following detection, the PS will act as follows. If at least
one Byzantine has been detected, it will ignore the votes
of detected Byzantines, and for each group, if there is at
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least one “honest” vote, it will use this as the output of
the majority voting group; also, if a group consists merely
of detected Byzantines, it will completely ignore the group.
The remaining groups will go through robust aggregation (as
in Section V-A). In our experiments in Section VIII-C, all
Byzantines are detected successfully in at most 5 iterations.
Example 3 showcases the utility of permutations in our detec-
tion algorithm using K = 7 workers.

Example 3: We will use the assignment of Example 2
with K = 7 workers U = {1, 2, . . . , 7} assigned to tasks
according to a 2 − (7, 3, 1) Fano plane and let us denote the
assignment of workers to groups (blocks of the design) during
the tth iteration by At , initially equal to A1 = {{1, 2, 3},
{1, 4, 7}, {2, 4, 6}, {3, 4, 5}, {2, 5, 7}, {1, 5, 6}, {3, 6, 7}}. For
the windows , assume that Td > 2 and Tb > 2. Also , let
q = 2 and the Byzantine set be A = {U1, U2}. Based on ATT-
3 , workers U1, U2 are in majority within a group in which
they disagree with worker U3. After the first permutation ,
a possible assignment is A2 = {{1, 3, 6}, {3, 4, 7}, {2, 4, 6},
{1, 4, 5}, {5, 6, 7}, {2, 3, 5}, {1, 2, 7}}. Then , U1, U2 are in
the same group as the honest U7 with which they disagree;
hence , deg(U1) = deg(U2) = 4 = K − q − 1 , and none
of them can afford to disagree with more honest workers to
remain undetected. However , if the next permutation assigns
the workers as A3 = {{1, 3, 6}, {1, 4, 7}, {4, 6, 5}, {2, 3, 4},
{2, 6, 7}, {1, 2, 5}, {3, 5, 7}} then the adversaries will cast a
different vote than U5 as well. Thus , both of them will be
detected after only three iterations.

Remark 4: Using a 2 − (v, 3, λ), i.e., a design with k = 3
(a typical value for the redundancy) to assign the files on a
cluster with q Byzantines, the maximum number of files one
can distort is λ

(
q
2

)
/|B| [33], where |B| is the total number of

files; this is when each possible pair of Byzantines, among
the

(
q
2

)
possible ones appear together in a distinct block and

distorts the corresponding file. In Aspis+, the focus is on weak
attacks and determining the worst-case choice of adversaries
that maximize the number of distorted files is beyond the scope
of our work.

VI. CONVERGENCE RESULTS AND EXPERIMENTS UNDER
SETTING-II

In this section, we operate under Setting-II (cf. Section III).
By leveraging the work of Chen et al. [13] we demonstrate
that our training algorithm converges to small enough neigh-
borhood of the optimal point; the neighborhood size shrinks
with the number of data samples.

We assume that the data samples are distributed i.i.d. from
some unknown distribution µ. We are interested in finding
w∗ that minimizes L(w) = E(l1(w)) over the w ∈ W;
here the expectation is over the distribution µ and the li(w)’s
are distributed i.i.d as well. In general, since the distribution
is unknown, E(l1(w)) cannot be computed and we instead
minimize the empirical loss function given by L̂(w) =
1
n

∑n
i=1 li(w). We need the following additional assumptions.

In the discussion below, we say that a random vector z
is sub-exponential with sub-exponential norm K if for every
unit-vector v, z⊤v is a sub-exponential random variable with
sub-exponential norm at most K, i.e., supv:||v||≤1 Pr(|z⊤v| >

t) ≤ exp(−t/K) [43, Sec 2.7]. To keep notation simple,
we reuse the letter C to denote different numerical constants in

Fig. 3. Distortion fraction of optimal and weak attacks for (K, r) = (50, 3)
and comparison.

each use. This practice is common when working with classes
of distributions such as sub-exponential.

• The minimization of L̂(w) is performed by using Aspis
or Aspis+ along with gradient descent (cf. Eq. (1)). This
means that in Algorithm 2, the batch size b = n for all
iterations (cf. discussion after (2)). The robust estimator
m̂ed is the geometric median.

• The function L(w) is β−strongly convex, and differen-
tiable with respect to w with M̃ -Lipschitz gradient. This
means that for all w and w′ we have

L(w′) ≥ L(w) + ∇L(w)T (w′ − w)

+
β

2
∥w − w′∥2

, and ∥∇L(w) −∇L(w′)∥

≤ M̃ ∥w − w′∥ .

• The random vectors ∇li(w) for i = 1, . . . , n are
sub-exponential with sub-exponential norm C. This
assumption ensures that 1

n

∑n
i=1 ∇li(w∗) concentrates

around its mean ∇L(w∗) = 0.
• Let hi(w) = ∇li(w) − ∇li(w∗). For i = 1, . . . , n,

the random vectors hi(w) are sub-exponential with sub-
exponential norm C ∥w − w∗∥.

• For any δ ∈ (0, 1) there exists M̃ ′ (dependent on n and δ)
that is non-increasing in n such that L̂(w) is M̃ ′-smooth
with high probability, i.e,

P

(
sup

w,w′∈W:w ̸=w′

∥∥ 1
n

∑n
i=1(∇li(w)−∇li(w′))

∥∥
∥w−w′∥

≤M̃ ′

)
≥ 1 − δ

3
.

Here W is the feasible parameter set.
We emphasize that such assumptions are similar to those

of related literature that establishes convergence results. For
example, ByGARS++ in [19] also assumes that loss is
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c-strongly convex and gradient is locally Lipschitz; also,
the adversaries merely use multiplicative noise. Zeno in
[20] assumes: (i) the stochastic loss function (averaging nr

samples) is an unbiased estimator of the global loss, (ii)
L-smoothness and µ-lower-bounded Taylor approximation of
the loss function, and (iii) any correct gradient estimator has
bounded variance.

For Aspis, Theorem 1 guarantees an upper bound on the
fraction of corrupted gradients regardless of what attack is
used. In particular, treating the majority logic and clique
finding as a pre-processing step, we arrive at a set of f

files, at most c
(q)
max (cf. Theorem 1) of which are “arbitrarily”

corrupted. At this point, the PS applies the robust estimator
m̂ed - “geometric median” and uses it to perform the update
step. We can leverage Theorem 5 of [13] to obtain the
following result where d is the length of the parameter vector
and for pi ∈ (0, 1), i = 1, 2 the quantity D(p1||p2) =
p1 log2(

p1
p2

) + (1 − p1) log2(
1−p1
1−p2

).
Theorem 2: (adapted from [13]) Suppose that β, M̃ are

all constants and log M̃ ′ = O(log d). Assume that W ⊂
{w : ∥w − w∗∥ ≤ r̃

√
d} for positive r̃ such that

log r̃ = O(d log(n/f)) and 2(1 + ϵ)c(q)
max ≤ f . Fix any α ∈

(c(q)
max/f, 1/2) and any δ > 0 such that δ ≤ α − c

(q)
max/f and

log(1/δ) = O(d). There exist universal constants c1, c2 such
that if

n

f
≥ c1C

2
αd log(n/f),

then with probability at least 1 − exp(−fD(α − c(q)
max
f || δ)),

for all t ≥ 1, the iterates of our algorithm with η = β/(2M̃2)
satisfy

∥wt − w∗∥ ≤

1
2

+
1
2

√
1 − β2

4M̃2

t

∥w0 − w∗∥+c2

√
df

n
.

(11)

An instance of a problem that satisfies the assumptions
presented above is the linear regression problem. Formally, the
data set consists of n vectors {x1,x2, . . . ,xn}, where ∀i,xi ∈
Rd. We construct the data matrix X of size n× d using these
vectors as its rows. The n labels corresponding to the data
points are computed as follows: y = Xw, where w denotes
the parameter set. For this problem, our loss function is the
least-squares loss, i.e., we have li(w) = 1

2 (yi − xT
i w)2 for

i = 1, . . . , n where xT
i denotes the ith row of X .

A. Numerical Experiments

We use the GD algorithm (1) with the initial randomly
chosen parameter vector w0 ∼ N (0d, Id). We partition the
data matrix X row-wise into f submatrices X1, X2, . . . , Xf ,
and correspondingly the label vector y into f sub-vectors
y1, y2, . . . , yf , where f is the number of files of the distributed
algorithm. A file Bt,i consists of a pair (Xi, yi). For each of
its assigned files Bti = (Xi, yi) ∈ Nw(Ui), worker Ui either
computes the honest partial gradient or a distorted value and
returns it to the PS. Using the formulation of Section IV,
the gradient in Eq. (3) for linear regression is the product
gt,i = XT

i Xiw − XT
i yi.

Metrics: For each scheme and value of q we run multiple
Carlo simulations, and calculated the average least-square loss
that each algorithm converges to across the Monte Carlo
simulations. For each simulation we declare convergence if
the final empirical loss is less than 0.1 We record the fraction
of experiments that converged and the rate of convergence.
In computing the average loss, the experiments that did not
converged are not taken into account (for more details, please
see Supplement Section XI-D).

1) Experiment Setup: In our experiments, we set n =
50000, d = 100 while our cluster consists of K = 15 work-
ers. All replication-based schemes use r = 3. For Aspis+,
we considered a 2 − (15, 3, 1) design [33].

The geometric median is available as a Python library [44].
Initially, we tuned the learning rate for each scheme and each
distortion method to decide the one to use for the Monte Carlo
simulations; all learning rates 10−x, x = {1, 2, . . . , 6} have
been tested. Also, we fix the random seeds of our experiments
to be the same across all schemes; this guarantees that the data
matrix as well as the original model estimate w0 will be the
same across all methods. At the beginning of the algorithm,
all elements of X and w are generated randomly according to
a N (0, 1) distribution. For all runs, we chose to terminate the
algorithm when the norm of gradient is less than 10−10 or the
algorithm has reached a maximum number of 2000 iterations.
Our code is available online.4

2) Results: The first set of experiments are for the strong
attack ATT-2. The baseline scheme where geometric median
is applied on all K gradients returned by the workers is
referred to as GeoMed and it has no redundancy. DETOX,
Aspis, and Aspis+ use geometric median as part of the robust
aggregation. Under reversed gradient (see Figure 4a), it is
clear that all schemes perform well and achieve similar loss
for q = 2, 4 Byzantines. Nevertheless, baseline geometric
median needed at least 100 iterations to converge while the
redundancy-based schemes have a faster convergence rate.
However, the situation is very different for q = 6 where Aspis
converges within 30 iterations. In contrast, the DETOX loss
diverged in all 100 simulations, while the convergence rate of
the baseline scheme is much slower.

For the constant attack (see Fig. 4b) however, the relative
performance of the baseline scheme and Aspis is reversed, i.e.,
the baseline scheme has a faster convergence rate as compared
with Aspis. Moreover, Aspis and DETOX have roughly similar
convergence rates for q = 2, 4. As before for q = 6, none of
the DETOX simulations converged.

Our last set of results are with the ALIE attack and the
results are reported in Figure 6. As the baseline geomet-
ric median simulations converged much slower than other
schemes, they could not fit properly into the figure; it achieved
final loss approximately equal to 2.07× 10−28, 9.71× 10−28,
and 1.77 × 10−28 for q = 2, 4, and 6 respectively. On the
other hand, Aspis converged to 1.69 × 10−23 in 30 iterations
for q = 6. For this attack all schemes converged to very low
loss values in all simulation runs. Nevertheless as is evident
from Figure 6, both Aspis and DETOX converge to loss values
less that 10−5 within 15 iterations.

Another experiment we performed compares our two
proposed methods, Aspis and Aspis+. For both schemes,

4https://github.com/kkonstantinidis/Aspis
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Fig. 4. Linear regression least-squares loss, optimal attacks, ATT-2 (Aspis),
geometric median defenses, K = 15.

Fig. 5. Linear regression least-squares loss, random Byzantines (ATT-3),
geometric median defenses, K = 15.

we generate a new random Byzantine set A every Tb = 50 iter-
ations (introduced as ATT-3 Section IV-C) while the detection
window for Aspis+ is of length Td = 15. For a comparable
attack we use ATT-1 on Aspis (cf. Section IV-A), i.e., all
adversaries distort all their assigned files. We compare the two
schemes under reversed gradient attack in Figure 5a and under
constant attack in Figure 5b. Both methods achieve low final
loss in the order of 10−20 or lower; Aspis converged to lower
losses of the order of 10−24 in approximately 280 iterations in
all cases. Nevertheless, Aspis+ achieves a faster convergence
rate which aligns with the fact that it’s mostly suitable for
weaker adversaries.

Fig. 6. Linear regression least-squares loss, ALIE distortion, optimal attacks,
ATT-2 (Aspis), geometric median defenses, K = 15.

VII. DISTORTION FRACTION EVALUATION

The main motivation of our distortion fraction analysis is
that our deep learning experiments (cf. Section VIII-B) and
prior work [14] show that ϵ = c(q)/f is a surrogate of the
model’s convergence with respect to accuracy. This compari-
son involves our work and state-of-the-art schemes under the
best- and worst-case choice of the q adversaries in terms of the
achievable value of ϵ. We also compare our work with baseline
approaches that do not involve redundancy or majority voting
and aggregation is applied directly to the K gradients returned
by the workers (f = K, c

(q)
max = q and ϵ = q/K).

For Aspis, we used the proposed attack ATT-2 from
Section IV-B and the corresponding computation of c(q),Aspis

of Theorem 1. DETOX in [16] employs a redundant assign-
ment followed by majority voting and offers robustness
guarantees which crucially rely on a “random choice” of the
Byzantines. Our prior work [14] (ByzShield) has demonstrated
the importance of a careful task assignment and observed that
redundancy by itself is not sufficient to allow for Byzantine
resilience. That work proposed an optimal choice of the q
Byzantines that maximizes ϵDETOX , which we used in our
current experiments. In short, DETOX splits the K workers
into K/r groups. All workers within a group process the same
subset of the batch, specifically containing br/K samples.
This phase is followed by majority voting on a group-by-
group basis. Reference [14] suggests choosing the Byzantines
so that at least r′ workers in each group are adversarial
in order to distort the corresponding gradients. In this case,
c(q),DETOX = ⌊ q

r′ ⌋ and ϵDETOX = ⌊ q
r′ ⌋ × r/K. We also

compare with the distortion fraction incurred by ByzShield
[14] under a worst-case scenario. For this scheme, there is
no known optimal attack, and we performed an exhaustive
combinatorial search to find the q adversaries that maximize
ϵByzShield among all possible options; we follow the same
process here to simulate ByzShield’s distortion fraction com-
putation while utilizing the scheme of that work based on
mutually orthogonal Latin squares. The reader can refer to
Figure 3a and Supplement Tables III, IV, and V for our
results. Aspis achieves major reductions in ϵ; for instance,
ϵAspis,ATT−2 is reduced by up to 99% compared to both
ϵBaseline and ϵDETOX in Figure 3a.

Next, we consider the weak attack, ATT-1. For our scheme,
we will make an arbitrary choice of q adversaries which
carry out the method introduced in Section V-A.1, i.e., they
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will distort all files, and a successful detection is possible.
As discussed in Section V-A.1, the fraction of corrupted
gradients is ϵAspis,ATT−1 =

(
q
r

)
/
(
K
r

)
. For DETOX, a simple

benign attack is used. To that end, let the K/r files be
Bt,0, Bt,1, . . . , Bt,K/r−1. Initialize A = ∅ and choose the q
Byzantines as follows: for i = 0, 1, . . . , q − 1, among the
remaining workers in {U1, U2, . . . , UK} − A add a worker
from the group Bt,i mod K/r to the adversarial set A. Then,

c(q),DETOX =

 q − K

r
(r′ − 1) if q >

K

r
(r′ − 1),

0 otherwise.

The results of this scenario are in Figure 3.

VIII. LARGE-SCALE DEEP LEARNING EXPERIMENTS

All these experiments are performed under Setting-I, i.e.,
no assumptions are made about the dataset or the loss func-
tion. Accordingly, the evaluation here is in terms of the
distortion fraction (see Section VII) and numerical experi-
ments (described below). For the experiments, we used the
mini-batch SGD (see (2)) and the robust estimator (see
Algorithm 2) is the coordinate-wise median.

A. Experiment Setup
We have evaluated the performance of our methods and

competing techniques in classification tasks on Amazon EC2
clusters. The project is written in PyTorch [1] and uses
the MPICH library for communication between the different
nodes. We worked with the CIFAR-10 data set [32] using
the ResNet-18 [45] model. We used clusters of K = 15,
21, 25 workers, redundancy r = 3, and simulated values of
q = 2, 4, 6, 7, 9 during training. Detailed information about the
implementation can be found in Supplement Section XI-A.

Competing methods: We compare Aspis against the base-
line implementations of median-of-means [46], Bulyan [24],
and Multi-Krum [12]. If c

(q)
max is the number of adversar-

ial computations, then Bulyan requires at least 4c
(q)
max +

3 total number of computations while the same number for
Multi-Krum is 2c

(q)
max +3. These constraints make these meth-

ods inapplicable for larger values of q for which our methods
are robust. The second class of comparisons is with meth-
ods that use redundancy, specifically DETOX [16]. For the
baseline scheme we compare with median-based techniques
since they originate from robust statistics and are the basis
for many aggregators. Multi-Krum combines the intuitions
of majority-based and squared-distance-based methods. Draco
[17] is a closely related method that uses redundancy. However
we do not compare with it since it is very limited in the number
of Byzantines that it is resilient to.

Note that for a baseline scheme, all choices of A are
equivalent in terms of the value of ϵ. In our comparisons
between Aspis and DETOX we will consider two attack
scenarios concerning the choice of the adversaries. For the
optimal attack on DETOX, we will use the method proposed in
[14] and compare with the attack introduced in Section V-A.2.
For the weak one, we will choose the adversaries such that
they incur the minimum value of ϵ in DETOX for given q and
compare its performance with the scenario of Section V-A.1.
All schemes compared with Aspis+ consider random sets of
Byzantines, and for Aspis+, we will use the attack ATT-3.

B. Aspis Experimental Results

1) Comparison Under Optimal Attacks: We compare the
different defense algorithms under optimal attack scenarios
using ATT-2 for Aspis. Figure 7a compares our scheme Aspis
with the baseline implementation of coordinate-wise median
(ϵ = 0.133, 0.267 for q = 2, 4, respectively) and DETOX
with median-of-means (ϵ = 0.2, 0.4 for q = 2, 4, respectively)
under the ALIE attack. Aspis converges faster and achieves at
least a 35% average accuracy boost (at the end of the training)
for both values of q (ϵAspis = 0.004, 0.062 for q = 2, 4,
respectively).5 In Figures 7b and 7c, we observe similar trends
in our experiments with Bulyan and Multi-Krum, where Aspis
significantly outperforms these techniques. For the current
setup, Bulyan is not applicable for q = 4 since K = 15 <

4c
(q)
max+3 = 4q+3 = 19. Also, neither Bulyan nor Multi-Krum

can be paired with DETOX for q ≥ 4 since the inequalities
f ≥ 4c

(q)
max+3 and f ≥ 2c

(q)
max+3, where f = fDETOX = K/r,

cannot be satisfied; for the specific case of Bulyan even
q = 2, 3 would not be supported by DETOX. Please refer
to Section VIII-A and Section VII for more details on these
requirements. Also, note that the accuracy of most competing
methods fluctuates more than in the results presented in
the corresponding papers [16] and [23]. This is expected as
we consider stronger attacks than those papers, i.e., optimal
deterministic attacks on DETOX and, in general, up to 27%
adversarial workers in the cluster. Also, we have done multiple
experiments with different random seeds to demonstrate the
stability and superiority of our accuracy results compared to
other methods (against median-based defenses in Supplement
Figure 15, Bulyan in Supplement Figure 16 and Multi-Krum
in Supplement Figure 17); we point the reader to Supplement
Section 17 for this analysis. This analysis is clearly missing
from most prior work, including that of ALIE [23] and their
presented results are only a snapshot of a single experiment.
The results for the reversed gradient attack are shown in
Figures 8a, 8b, and 8c. Given that this is a weaker attack
[14], [16] all schemes, including the baseline methods, are
expected to perform well; indeed, in most cases, the model
converges to approximately 80% accuracy. However, DETOX
fails to converge to high accuracy for q = 4 as in the case
of ALIE; one explanation is that ϵDETOX = 0.4 for q = 4.
Under the Fall of Empires (FoE) distortion (cf. Figure 9) our
method still enjoys an accuracy advantage over the baseline
and DETOX schemes which becomes more important as the
number of Byzantines in the cluster increases.

We have also performed experiments on larger clusters
(K = 21 workers) as well. The results for the ALIE distortion
with the ATT-2 attack can be found in Figure 12. They exhibit
similar behavior as in the case of K = 15.

2) Comparison Under Weak Attacks: For baseline schemes,
the discussion of weak versus optimal choice of the adversaries
is not very relevant as any choice of the q Byzantines can
overall distort exactly q out of the K gradients. Hence, for
weak scenarios, we chose to compare mostly with DETOX
while using ATT-1 on Aspis. The accuracy is reported in
Figures 10 and 11, according to which Aspis shows an
improvement under attacks on the more challenging end of the

5Please refer to Supplement Table III(a) for the values of the distortion
fraction ϵ each scheme incurs.
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Fig. 7. ALIE distortion under optimal attack scenarios, ATT-2 for Aspis, CIFAR-10, K = 15.

Fig. 8. Reversed gradient distortion under optimal attack scenarios, ATT-2 for Aspis, CIFAR-10, K = 15.

Fig. 9. FoE distortion, optimal attacks, ATT-2 (Aspis) and median-based
defenses (CIFAR-10), K = 15.

Fig. 10. Reversed gradient distortion, weak attacks, ATT-1 (Aspis) and
median-based defenses (CIFAR-10), K = 15.

spectrum (ALIE). According to Supplement Table III(b), Aspis
enjoys a fraction ϵAspis = 0.044 while ϵBaseline = 0.4 and
ϵDETOX = 0.2 for q = 6.

C. Aspis+ Experimental Results
For Aspis+, we considered the attack ATT-3 discussed in

Section IV-C. We tested clusters of K = 15 with q = 2, 4 and
K = 25 workers among which q = 7, 9 are Byzantine. In the
former case, a 2 − (15, 3, 1) design [33] with f = 35 blocks
(files) was used for the placement, while in the latter case,

Fig. 11. ALIE distortion, weak attacks, ATT-1 (Aspis) and median-based
defenses (CIFAR-10), K = 15.

we used a 2 − (25, 3, 1) design [33] with f = 100 blocks
(files). A new random Byzantine set A is generated every Tb =
50 iterations while the detection window is of length Td = 15.

The results for K = 15 are in Figure 13. We tested
against the ALIE distortion, and all compared methods use
median-based defenses to filter the gradients. Aspis+ demon-
strates an advantage of at least 15% compared with other
algorithms (cf. q = 2). For K = 25, we tried a weaker
distortion than ALIE, i.e., the constant attack paired with
signSGD-based defenses [26]. In signSGD, the PS will output
the majority of the gradients’ signs for each dimension.
Following the advice of [16], we pair this defense with the
stronger constant attack as sign flips (e.g., reversed gradient)
are unlikely to affect the gradient’s distribution. Aspis+ with
median still enjoys an accuracy improvement of at least 20%
for q = 7 and a larger one for q = 9. The results are in
Figure 14; in this figure, the DETOX accuracy is an average
of two experiments using two different random seeds.

IX. CONCLUSION AND FUTURE WORK

In this work, we have presented Aspis and Aspis+, two
Byzantine-resilient distributed schemes that use redundancy
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Fig. 12. ALIE distortion under optimal attack scenarios, ATT-2 for Aspis, CIFAR-10, K = 21.

Fig. 13. ALIE distortion and random Byzantines, K = 15 (median-based
defenses). ATT-3 used on Aspis+.

Fig. 14. Constant distortion and random Byzantines, K = 25
(signSGD-based defenses). ATT-3 used on Aspis+.

and robust aggregation in novel ways to detect failures of the
workers. Our theoretical analysis and numerical experiments
clearly indicate their superior performance compared to state-
of-the-art. Our experiments show that these methods require
increased computation and communication time as compared
to prior work, e.g., note that each worker has to transmit l
gradients instead of 1 in related work [16], [17] (see Supple-
ment Section XI-A4 for details). We emphasize, however, that
our schemes converge to high accuracy in our experiments,
while other methods remain at much lower accuracy values
regardless of how long the algorithm runs for.

Our experiments involve clusters of up to 25 workers. As we
scale Aspis to more workers, the total number of files and
the computation load l of each worker will also scale; this

increases the memory needed to store the gradients during
aggregation. For complex neural networks, the memory to
store the model and the intermediate gradient computations is
by far the most memory-consuming aspect of the algorithm.
For these reasons, Aspis is mostly suitable for training large
data sets using fairly compact models that do not require too
much memory. Aspis+, on the other hand, is a good fit for
clusters that suffer from non-adversarial failures that can lead
to inaccurate gradients. Finally, utilizing GPUs and investi-
gating algorithmic communication-related improvements are
worth exploring to reduce the time overhead.

APPENDIX

A. Proof of Theorem 1

For a given file F , let A′ ⊆ A with |A′| ≥ r′ be the set of
“active adversaries” in it, i.e., A′ ⊆ F consists of Byzantines
that collude to create a majority that distorts the gradient on it.
In this case, the remaining workers in F belong to ∩i∈A′Di,
where we note that |∩i∈A′Di| ≤ q. Let Xj , j = r′, r′+1, . . . , r
denote the subset of files where the set of active adversaries
is of size j; note that Xj depends on the disagreement sets
Di, i = 1, 2, . . . , q. Formally,

Xj = {F : ∃A′ ⊆ A ∩ F, |A′| = j,

and ∀ Uj ∈ F \ A′, Uj ∈ ∩i∈A′Di}. (12)

Then, for a given choice of disagreement sets, the number of
files that can be corrupted is given by | ∪r

j=r′ Xj |. We obtain
an upper bound on the maximum number of corrupted files by
maximizing this quantity with respect to the choice of Di, i =
1, 2, . . . , q, i.e.,

c(q)
max = max

Di,|Di|≤q,i=1,2,...,q
| ∪r

j=r′ Xj | (13)

where the maximization is over the choice of the disagreement
sets D1, D2, . . . , Dq . With Xj given in (12), assuming q ≥ r′,
the number of distorted files is upper bounded by

| ∪r
j=r′ Xj | ≤

r∑
j=r′

|Xj | (by the union bound). (14)

For that, recall that r′ = (r + 1)/2 and that an adversarial
majority of at least r′ distorted computations for a file is
needed to corrupt that particular file. Note that Xj consists of
those files where the active adversaries A′ are of size j; these
can be chosen in

(
q
j

)
ways. The remaining workers in the file
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TABLE II
MAIN NOTATION OF THE PAPER

belong to ∩i∈A′Di where |∩i∈A′Di| ≤ q. Thus, the remaining
workers can be chosen in at most

(
q

r−j

)
ways. It follows that

|Xj | ≤
(

q

j

)(
q

r − j

)
. (15)

Therefore,

c(q)
max ≤

(
q

r′

)(
q

r − r′

)
+
(

q

r′ + 1

)(
q

r − (r′ + 1)

)
+ · · ·

+
(

q

r − 1

)(
q

r − (r − 1)

)
+
(

q

r

)
(16)

=
q∑

i=r′

(
q

i

)(
q

r − i

)
(17)

=
q∑

i=0

(
q

i

)(
q

r − i

)
−

r′−1∑
i=0

(
q

i

)(
q

r − i

)
(18)

=
1
2

(
2q

r

)
. (19)

Eq. (17) follows from the convention that
(
n
k

)
= 0 when k > n

or k < 0. Eq. (19) follows from Eq. (18) using the following
observations

•
∑q

i=0

(
q
i

)(
q

r−i

)
=
∑r

i=0

(
q
i

)(
q

r−i

)
=
(
2q
r

)
in which the

first equality is straightforward to show by taking all
possible cases: q < r, q = r and q > r.

• By symmetry,
∑r′−1

i=0

(
q
i

)(
q

r−i

)
=
∑q

i=r′

(
q
i

)(
q

r−i

)
=

1
2

(
2q
r

)
.

The upper bound in Eq. (16) is met with equality when
all adversaries choose the same disagreement set, which is
a q-sized subset of the honest workers, i.e., Di = D ⊂ H
for i = 1, . . . , q. In this case, it can be seen that the sets
Xj , j = r′, . . . , r are disjoint so that (14) is met with equality.
Moreover, (15) is also an equality. This finally implies that
(16) is also an equality, i.e., this choice of disagreement sets
saturates the upper bound.

It can also be seen that in this case, the adversarial strategy
yields a graph G with multiple maximum cliques. To see
this, we note that the adversaries in A agree with all the
computed gradients in H \ D. Thus, they form a clique of
M

(1)
G of size K − q in G. Furthermore, the honest workers in

H form another clique M
(2)
G , which is also of size K−q. Thus,

the detection algorithm cannot select one over the other and
the adversaries will evade detection; and the fallback robust
aggregation strategy will apply.
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