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ABSTRACT

This work advances the understanding of oscillator Ising machines (OIMs) as a nonlinear dynamic system for solving computationally hard
problems. Specifically, we classify the infinite number of all possible equilibrium points of an OIM, including non-0/π ones, into three types
based on their structural stability properties. We then employ the stability analysis techniques from control theory to analyze the stability
property of all possible equilibrium points and obtain the necessary and sufficient condition for their stability. As a result of these analytical
results, we establish, for the first time, the threshold of the binarization in terms of the coupling strength and strength of the second harmonic
signal. Furthermore, we provide an estimate of the domain of attraction of each asymptotically stable equilibrium point by employing the
Lyapunov stability theory. Finally, we illustrate our theoretical conclusions by numerical simulation.
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Ising machines are actively being investigated as alternate
compute engines to efficiently solve large-scale combinatorial
optimization problems, many of which are NP-hard problems.
The oscillator Ising machine (OIM), as an analog circuit design
solution, is one such promising candidate. Many experimental
OIM prototypes show a common phenomenon wherein phases
of coupled oscillators bifurcate and converge to either 0 or π if
the effect of sub-harmonic injection locking is sufficiently strong.
These phase clusters then represent the corresponding spin
assignments. As a dynamic system, this phenomenon, roughly
speaking, is equivalent to the asymptotic stability property of
an equilibrium point of the spin-based dynamics of the Ising
machine. However, much of the existing work does not explain
how an oscillator Ising machine works from a nonlinear control
theoretic perspective, and the analysis is mainly based on exper-
imental observations, which pertain to specific Ising machines.
Consequently, there is a lack of a more comprehensive insight
into the operation of OIMs. For example, the equilibrium points
related to 0/π have been the focus of most of the existing work,
and little attention has been paid to equilibrium points that con-
sist of non-0/π phases in the dynamics of the OIM, which also
affects its computation results. In this paper, we carry out a com-
prehensive analysis of the equilibrium points and their structural
and stability properties and quantify the influence of the second
harmonic signal on the stability of phase dynamics of an OIM.

I. INTRODUCTION

The von Neumann architecture-based digital computers have
become the workhorse of modern information processing. Despite
their immense success, there exist problems in computing that dig-
ital computers and algorithms still struggle to compute efficiently.
A case in point, and the beneficiary of the current work, is the
category of NP (non-deterministic polynomial time)-hard combi-
natorial optimization problems (COPs). Computing their solutions
using digital computers requires exponentially increasing comput-
ing resources with the increase in problem size, making even moder-
ate problems difficult to solve effectively. Moreover, such problems
are not just theoretical constructs but find immense practical appli-
cations across a wide spectrum of areas ranging from communica-
tion, interpretable machine learning, software, and data analytics to
maintaining supply chain in the manufacturing industry. For exam-
ple, decoding noisy multi-user MIMO signals in modern communi-
cation is an application that can be directly mapped to a modified
version of the computationally intractable MaxCut problem. Con-
sequently, there has been increasing interest in exploring alternate
computational paradigms to solve such problems.

Ising machines provide a promising physics-inspired com-
puting paradigm to solve such challenging COPs.1,2 The concept
of the Ising machine is based on the archetypal Ising model
used to investigate the properties of spin glasses. In the Ising
model, each spin can take two states (±1) and interact with the
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neighboring spins. Subsequently, the system evolves to a config-
uration that minimizes the system energy, specified by the Ising
Hamiltonian H = −

∑
i,j Jijsisj, where si and sj are the states of

the spins i and j, respectively, and Jij represents the connection
weights between them. From a computational standpoint, the rele-
vance of the energy-minimization property is that many challenging
COPs (e.g., MaxCut and Satisfiability3–6) can be mapped to such
an H, and the solution to these problems can be expressed in
terms of the minimization of H.7 Therefore, there has been active
research in dynamic system implementations, aka Ising machines,
whose dynamics can naturally evolve to minimize H. Several hard-
ware implementations spanning from degenerate optical parametric
oscillator (DOPO)-based coherent Ising machines,8–17 mechanical
resonator-based Ising machines,18–21 to electronic oscillator-based
Ising machines22–25 have been proposed, each with their benefits and
shortcomings. Here, we focus specifically on the electronic oscillator
Ising machine (OIM) owing to its scalability as well as compatibility
with the CMOS process technology.

The basic architecture of the OIM consists of a coupled net-
work of oscillators under second harmonic injection locking. The
network has the same topological structure as the input graph with
each oscillator representing a node of the input graph (spin) and the
coupling elements representing the edges (interactions among the
spins). It can be shown that the minima of the cost function of the
oscillator system can be equivalent to the minimum of the Hamilto-
nian. While much work has been done on the OIM, prior work26–31

primarily focuses on the computational properties or the hardware
implementation. There has been less emphasis on understanding the
dynamic behavior of OIMs, which can also be very consequential to
their computational properties.

The original work of Wang et al.26,27 showed that the deriva-
tive of the cost function along the trajectories of the OIM dynamics
is non-positive, which reveals the evolution trend of the cost func-
tion but does not indicate the stability properties of the equilibrium
points of the OIM dynamics that correspond to the minimum points
of the cost function. Reference 32 indicated that a sufficiently strong
coupling with the second harmonic signal, referred to as SYNC, is
needed for a binarized state of oscillators to emerge, even though
the threshold for such coupling strength seems to be difficult to
determine. Recently, Bashar et al.33 carried out a stability analysis
of the equilibrium points of an OIM. By numerically calculating the
eigenvalues of the Jacobian matrix at each equilibrium point, they
determined local asymptotic stability of the equilibrium points.

This paper builds on the work in Ref. 33 and significantly
advances the understanding of OIM from a control theoretic per-
spective. Unlike many existing works that are based on experimental
observations and numerical simulation pertaining to specific Ising
OIMs, this paper carries out stability analysis for general OIMs from
a control theoretic approach.

The main contributions of this paper are listed as follows.

• The classification of equilibrium points and stability analysis. We
identify all possible equilibrium points and classify them into
three types. We further identify Type I equilibrium points that are
always unstable and establish conditions in terms of the coupling
strength and strength of SYNC under which the rest of the Type
I equilibrium points are asymptotically stable or unstable. We

prove that all Type II equilibrium points are unstable. We estab-
lish conditions in terms of the coupling strength and strength of
SYNC under which a Type III equilibrium point is asymptotically
stable or unstable.

• The threshold for binarization. As a result of our stability analy-
sis, we show that as long as the strength of SYNC ensures that
at least one Type I equilibrium point is asymptotically stable, a
stable binarized state of oscillators will emerge. We establish, for
the first time, the threshold of binarization in terms of the cou-
pling strength and strength of SYNC. In addition, we examine the
influence of noise in the strength of SYNC on binarization.

• The estimate of the domain of attraction. For each asymptotically
stable equilibrium point, an estimate of its domain of attraction is
provided.

We note that, as in Ref. 33, we will restrict our consideration
to the case of unweighted graphs where the coupling weights among
the spins are either −1 or 0.

Notation: Throughout the paper, we will use standard nota-
tion. We use R, C, and Z to denote the sets of all real num-
bers, complex numbers, and integers, respectively. Given vectors

x1, x2, . . . , xN, col{x1, x2, . . . , xN} =
[
xT

1 , xT
2 , . . . , xT

N

]T
. Let 1N denote

col{1, 1, . . . , 1}. Let <(λ) denote the real part of λ ∈ C. For a matrix
M, [M]ij is its (i, j) entry and λ(M) denotes the set of its eigenvalues.

The remainder of the paper is organized as follows. Section II
introduces the problem we are to study in this paper. Our main
results are presented in Sec. III. We will start some technical prepa-
ration in Sec. III A, proceed to stability analysis of equilibrium points
in Sec. III B, and complete the section with the estimation of the
domains of attraction of asymptotically stable equilibrium points in
Sec. III C. Section IV presents numerical examples to illustrate the
theoretical results of the paper. Section V concludes the paper.

II. MOTIVATION AND PROBLEM FORMULATION

A combinatorial optimization problem (COP) is usually for-
mulated as the problem of finding an optimal combination of inte-
gers that minimizes the energy of coupled spins si, i = 1, 2, . . . , N.
The energy is equivalent to the Hamiltonian function given as
follows:

H = −
N∑

i,j=1,i<j

Jijsisj,

where spins si, sj ∈ {−1, 1} represent the states of oscillators i and
j, corresponding to phases of 0 and π , respectively, and Jij denotes
the connection weight between oscillators i and j with Jij = Jji. In
particular, Jij = −1 if oscillators i and j are connected, and Jij = 0
otherwise.

There exists an interesting relationship, namely, sisj = cos(φi

− φj), where φi and φj take the value of 0 or π . Note that φi and φj

settle to 0 or π , corresponding to si, sj equaling to 1 or −1. Taking
advantage of this relationship, we can map a bounded cost function
into the Hamiltonian function with a constant offset as follows:26

E = −K

N∑

i,j=1,i6=j

Jij cos(φi − φj) − Ks

N∑

i=1

cos(2φi),
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where K and Ks are two positive constants that we will later
further discuss. Therefore, E takes the minimum value, at a point
(φ1, φ2, . . . , φN), φi ∈ {0, π}, which is equal to 2K times the mini-
mum value of H with a constant offset NKs. Consequently, a typical
objective is to design the phase dynamics for the oscillators such that
the cost function E decreases along the trajectories of the dynamics,
namely,

dE

dt
≤ 0. (1)

Note that dE
dt

can be written as

dE

dt
=

N∑

i=1

∂E

∂φi

dφi

dt
=

N∑

i=1

∂E

∂φi

φ̇i.

Thus, the dynamics of φi given as φ̇i = − 1
2

∂E
∂φi

would satisfy (1). By

calculating ∂E
∂φi

, we yield

φ̇i = −K

N∑

j=1,j6=i

Jij sin(φi − φj) − Ks sin(2φi), (2)

where K > 0 represents the coupling strength and Ks > 0 represents
the strength of the coupling from the SYNC.

However, decreasing of the cost function along a trajectory the
Ising machine approaches an equilibrium point does not imply the
stability of that equilibrium point as the cost function is not posi-
tive definite with respect to its value at that equilibrium, which is
required by the Lyapunov stability theory. In the absence of this pos-
itive definiteness property of the cost function E, the trajectory could
pass through the equilibrium point as E continues to decrease. As a
result, an additional understanding of the stability of all equilibrium
points or solutions is needed. In our recent work,33 we resorted to
numerical calculation of the eigenvalues of the Jacobian matrix at
each equilibrium point to determine the local asymptotic stability of
the equilibrium points for various values of the coupling strengths
K and Ks. Strong effects of the coupling strength with the SYNC on
the stability of the equilibrium points were also observed.

In this paper, our objective is to carry out a comprehensive
analysis of the equilibrium points and their structural and stabil-
ity properties. In particular, we first classify all equilibrium points
into three types based on their structural stability. Then we carry
out stability analysis for all equilibrium points by Lyapunov stabil-
ity theory. We next establish the threshold of binarization in terms
of the ratio of Ks and K. Meanwhile, we examine the influence of
noise of in the value of Ks on binarization. In addition, we provide
the estimates of the domains of attraction for all asymptotically sta-
ble equilibrium points. Finally, numerical simulation illustrates our
analytical results.

III. MAIN RESULTS

A. Technical lemmas

To develop our main results, we need some preliminary tech-
nical lemmas.

Lemma 1 (Ref. 34): Consider a nonlinear system

ẋ = f(x), x ∈ R
N,

where f : D → R
N is continuously differentiable and D is a neighbor-

hood of its equilibrium point x = x?. Let

A =
∂f

∂x
(x)

∣∣∣∣
x=x?

.

Then,

1. The equilibrium point x = x? is asymptotically stable if <(λi)

< 0 for all eigenvalues λi of A.
2. The equilibrium point x = x? is unstable if <(λi) > 0 for one or

more of the eigenvalues λi of A.

Lemma 2: For any positive number m ∈ (0, π), the inequality
x sin(x) ≥ sin(m)

m
x2 holds for x ∈ [−m, m].

Proof: As shown in Fig. 1, sin x ≥ sin(m)

m
x for x ∈ [0, m], and

the equality holds for x = 0 and x = m. Thus, we have x sin(x)
≥ sin(m)

m
x2 for x ∈ [0, m]. Noting that x sin(x) and x2 are both even

functions, we see that x sin(x) ≥ sin(m)

m
x2 also holds for x ∈ [−m, 0].

Lemma 3: For any x, δ ∈ R, | cos(x + δ) − cos(x)| ≤ |δ|.
Proof: The largest and smallest slopes of cos(x) equal 1 and

−1, respectively. By the mean value theorem, for any δ 6= 0, we have
∣∣∣∣
cos(x + δ) − cos(x)

δ

∣∣∣∣ < 1,

and, hence, | cos(x + δ) − cos(x)| ≤ |δ| for any x, δ ∈ R. This com-
pletes the proof.

B. Stability analysis

The number of equilibrium points of system (2), some of
which are composed of phases other than 0 and π , is infinite.

FIG. 1. x, sin(x), and sin(m)

m
x.
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These equilibrium points can be classified into three types. The
first type of equilibrium point always exists no matter how the
system parameters or topology vary. Such equilibrium points are
called Type I (structurally stable) equilibrium points. The other two
types of equilibrium points change once the system parameters or
topology change and are referred to as Type II and III (structurally
unstable) equilibrium points. We study the stability of these three
types of equilibrium points separately. First, we identify the Type
I equilibrium points in Theorem 1 and analyze their stability in
Theorem 2. We will give the stability analysis for Type II and III
equilibrium points in Theorems 3 and 4, respectively.

Definition 1: A Type I equilibrium point φ? = col{φ?
1 , φ?

2 , . . . ,
φ?

N} satisfies φ?
i ∈ { kπ

2 : k ∈ Z} for all i, and it remains unchanged no
matter how the system parameters and topology vary.

Theorem 1: Let φ? = col{φ?
1 , φ?

2 , . . . , φ?
N} ∈ R

N be a Type I

equilibrium point of (2). Then, either φ?
i ∈

{
kπ
2 : k

2 ∈ Z
}

for all i or

φ?
i ∈

{
kπ
2 : k+1

2 ∈ Z
}

for all i.
Proof: The equilibrium point φ? satisfies the phase dynamics

(2), that is,

Ks sin(2φ?
i ) = −K

N∑

j=1,j6=i

Jij sin
(
φ?

i −φ?
j

)
. (3)

Since φ? remains unchanged as the system parameters vary, Eq. (3)
holds for all values of K and Ks, which implies that





sin(2φ?
i ) = 0, i = 1, 2, . . . , N,

N∑

j=1,j6=i

Jij sin(φ?
i −φ?

j ) = 0, i = 1, 2, . . . , N.
(4)

In addition, since (4) holds for all possible values of Jij, we have




2φ?
i =kπ , i = 1, 2, . . . , N,

φ?
i −φ?

j =kπ , i, j = 1, 2, . . . , N,

where k ∈ Z. It then follows that either

φ?
i ∈

{
kπ

2
:

k

2
∈ Z

}

for all i or

φ?
i ∈

{
kπ

2
:

k + 1

2
∈ Z

}

for all i. This completes the proof.

Theorem 2: Consider a Type I equilibrium point φ? = col{φ?
1 , φ?

2 , . . . , φ?
N} ∈ R

N. If φ?
i ∈

{
kπ
2 : k+1

2 ∈ Z
}

for all i, then, φ? is unstable for

any values of the parameters K and Ks. If φ?
i ∈

{
kπ
2 : k

2 ∈ Z
}

for all i, then, φ? is asymptotically stable for Ks >
KλN(D(φ?))

2 or Ks/K >
λN(D(φ?))

2

and unstable for Ks <
KλN(D(φ?))

2 or Ks/K <
λN(D(φ?))

2 , where λN (D(φ?)) denotes the maximum eigenvalue of matrix D(φ?), shown in (5).

D(φ?) =




−
N∑

j=1,j6=1
J1j cos(φ?

1−φ?
j ) J12 cos(φ?

1−φ?
2) · · · J1N cos(φ?

1−φ?
N)

J21 cos(φ?
2−φ?

1) −
N∑

j=1,j6=2
J2j cos(φ?

2−φ?
j ) · · · J2N cos(φ?

2−φ?
N)

...
...

. . .
...

JN1 cos(φ?
N−φ?

1) JN2 cos(φ?
N−φ?

2) · · · −
N∑

j=1,j6=N

JNj cos(φ?
N−φ?

j )




. (5)

Proof: Let f(φ) = col{f1(φ), f2(φ), . . . , fN(φ)}, where

fi(φ) = −K

N∑

j=1,j6=i

Jij sin(φi − φj) − Ks sin(2φi).

The Jacobian matrix of f(φ) at the equilibrium point φ = φ? is
evaluated as

A(φ?) =
∂f

∂φ

∣∣∣∣
φ=φ?

= KD(φ?)

− 2Ks




cos(2φ?
1) 0 · · · 0

0 cos(2φ?
2) · · · 0

...
...

. . .
...

0 0 · · · cos(2φ?
N)


 ,

where D(φ?) is as shown in (5).
Let

M1 =
{
φ = col{φ1, φ2, . . . , φN} : φi ∈

{
kπ

2
:

k + 1

2
∈ Z

}}

and

M2 =
{
φ = col{φ1, φ2, . . . , φN} : φi ∈

{
kπ

2
:

k

2
∈ Z

}}
.

If φ? ∈ M1, then the Jacobian matrix at φ = φ? is given as

A(φ?) = KD(φ?) + 2KsIN.

It can be verified that D(φ?) has the following property:

D(φ?)1N = 0,
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which means that D(φ?) has a 0 eigenvalue with an associated
eigenvector 1N. Thus, we can conclude that A(φ?) has at least one
eigenvalue that is equal to 2Ks > 0. By using Lemma 1, φ = φ? is
unstable.

If φ? ∈ M2, then the Jacobian matrix at φ? is given as

A(φ?) = KD(φ?) − 2KsIN.

Let λN (D(φ?)) be the maximum eigenvalue of matrix D(φ?). Then,
all eigenvalues of A(φ?) are negative if

Ks >
KλN (D(φ?))

2
.

In this case, by Lemma 1, φ = φ? is asymptotically stable. On the
other hand, at least one eigenvalue of A(φ?) is positive if

Ks <
KλN (D(φ?))

2
.

In this case, again by Lemma 1, φ = φ? is unstable. This completes
the proof.

Remark 1: It is noted that D(φ?) is a symmetric matrix with
off-diagonal elements belonging to {−1, 0, 1}. In some literature,35,36

D(φ?) is dubbed as “Net Laplacian,” “Repelling Laplacian,” or “Signed
Laplacian.” Determining the eigenvalues of D(φ?) will incur a large
computational cost as the number of oscillators N increases. Although
an upper bound of its maximum eigenvalue can be estimated in
terms of its matrix norm ‖D(φ?)‖p, such an estimate could be very
conservative. Consequently, a selection of the parameters K and Ks

based on this estimate could be conservative. Recently, a relatively less
conservative upper bound was given in Ref. 37 as

λN

(
D(φ?)

)
≤ max

16i6N

{
1

2

(
d±

i +
√

d±
i

2 + 8dimi

)}
,

where d±
i = d+

i − d−
i , mi =

∑
j∈Ni

d?
j

di
, and d?

j = max{d+
j , d−

j }. Here,

d+
i (respectively, d−

i ) represents the number of vertices adjacent to i by
a positive (respectively, negative) edge, and Ni represents the index set
of vertex i’s neighbors.

Remark 2: An alternative way to determine a precise range of
Ks/K within which A(φ?) has all negative eigenvalues is through ver-
ification of a linear matrix inequality (LMI).38 The symmetric matrix
A(φ?) will have all negative eigenvalues if and only if there is a positive
definite matrix P ∈ R

N×N such that the following Lyapunov matrix
inequality holds:

AT(φ?)P + PA(φ?) < 0

or
(
D(φ?) − 2αIN

)T
P + P

(
D(φ?) − 2αIN

)
< 0, (6)

where α = Ks/K > 0. Thus, the range of α satisfying (6) can be
obtained by solving the following LMI optimization problem:

min
P>0,α>0

α,

s.t. Inequality (6).
(7)

Since Inequality (6) is an LMI for each fixed value of α, the optimiza-
tion problem (7) can be solved by a line search over α ∈ (0, ∞).

Remark 3: Theorem 2 establishes the condition for stability of
the equilibrium points that belong to set M2. This condition is nec-

essary and sufficient except for the critical case of Ks = KλN(D(φ?))

2 . In
this case, the eigenvalues of the Jacobian matrix are all non-positive
but at least one of them is zero. As a result, the linearization fails
to determine the stability of the equilibrium point in question and
further analysis is entailed. We give two examples to show that the
equilibrium point can be either stable or unstable in this critical case.

Example 1 (Stable equilibrium): Consider two coupled oscil-
lators. The dynamics φ̇ = f(φ) are given as

{
φ̇1 = K sin(φ1 − φ2) − Ks sin(2φ1),

φ̇2 = K sin(φ2 − φ1) − Ks sin(2φ2).
(8)

Consider the equilibrium point φ? = col(0, 0), for which

D(φ?) =
[

1 −1
−1 1

]

and λ(D(φ?)) = {0, 2}. Thus, the critical case is Ks = K. In this crit-
ical case, the Jacobian matrix at equilibrium point φ? = col(0, 0)
is

A =
[
−K −K
−K −K

]
,

with λ(A) = {−2K, 0}. Hence, no conclusion can be drawn on the sta-
bility of the equilibrium point. We will resort to the center manifold
theory34 to analyze the stability. To do so, we first write (8) as

φ̇ = Aφ + f̃(φ),

where f̃(φ) = f(φ) − Aφ. For brevity and without loss of gener-
ality, we let K = 1. We next carry out a state transformation
θ = col(θ1, θ2) = Tφ, with

T =




−
1

2

1

2
1

2

1

2


 .

It is easy to verify that

{
θ̇1 = g1(θ1, θ2),

θ̇2 = −2θ2 + g2(θ1, θ2),
(9)

where

g1(θ1, θ2) = sin(2θ1) −
1

2
sin(2θ1 − 2θ2) −

1

2
sin(2θ1 + 2θ2),

g2(θ1, θ2) =
1

2
sin(2θ1 − 2θ2) −

1

2
sin(2θ1 + 2θ2) + 2θ2.

Let θ2 = h(θ1) be a center manifold. Then, the function h(θ1) satisfies
the partial differential equation

N(h(θ1)) =
∂h

∂θ1
(θ1)

(
A1θ1 + g1(θ1, h(θ1))

)
− A2h(θ1)

− g2(θ1, h(θ1)) = 0, (10)
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with the boundary conditions

h(0) = 0,
∂h

∂θ1
(0) = 0.

It is noted that h(θ1) = 0 satisfies (10). Hence, the reduced system can
be obtained from (9) as

θ̇1 = 0.

Consider V(θ1) = θ 2
1 . The derivative of V along the trajectory of the

reduced system is given by

V̇(θ1) = 2θ1θ̇1 = 0.

Thus, by Corollary 8.1 of Ref. 34, system (8) is stable at the equilibrium
point φ? = col(0, 0).

In fact, we also note that system (8) has a continuum of equi-
librium points on φ1 + φ2 = 0 when Ks = K. Since θ2 = 1

2 (φ1 + φ2),
every point on the center manifold θ2 = 0 is an equilibrium point. We
will show that each of these equilibrium points is stable. To see this,
we consider V(θ2) = θ 2

2 . The derivative of V(θ2) along the trajectory
of (9) can be evaluated as

V̇(θ2) =
∂V

∂θ2
θ̇2 = −Kθ2

(
sin(2φ1) + sin(2φ2)

)

= −K(φ1 + φ2)
(

sin(2φ1) + sin(2φ2)
)
.

We consider the region of |φ1| < π

4 , |φ2| < π

4 in the following two
cases.

Case 1: φ1 + φ2 ≥ 0. In this case, φ1 ≥ −φ2 and 2φ1, 2φ2

∈
(
− π

2 , π

2

)
. Then, sin(2φ1) ≥ sin(−2φ1) or sin(2φ1) + sin(2φ2)

≥ 0. Consequently, V̇(θ2) ≤ 0.
Case 2: φ1 + φ2 < 0. In this case, φ1 < −φ2 and 2φ1, 2φ2

∈
(
− π

2 , π

2

)
. Then, sin(2φ1) < sin(−2φ2) or sin(2φ1) + sin(2φ2)

< 0. Consequently, V̇(θ2) < 0.
Based on the above analysis, we conclude that V̇(θ2) < 0 in the

region of |φ1| < π

4 , |φ2| < π

4 , φ1 + φ2 6= 0. Thus, all trajectories con-
verge to the manifold θ2 = 0 asymptotically, and on the manifold,
θ̇1 = 0. This shows that every point on the manifold is stable, but not
asymptotically stable. A phase portrait is shown in Fig. 2 to illustrate
our analytical conclusion.

Example 2 (Unstable equilibrium): Consider three coupled
oscillators, whose connectivity topology is shown in Fig. 3. The dynam-
ics φ̇ = f(φ) are given as





φ̇1 = K sin(φ1 − φ2) − Ks sin(2φ1),

φ̇2 = K sin(φ2 − φ1) + K sin(φ2 − φ3) − Ks sin(2φ2),

φ̇3 = K sin(φ3 − φ2) − Ks sin(2φ3).

(11)

Consider the equilibrium point φ? = col{0, 0, 0}, for which

D(φ?) =




1 −1 0
−1 2 −1

0 −1 1




and λ(D(φ?)) = {0, 1, 3}. Thus, the critical case is Ks = 1.5 K.
In this critical case, the Jacobian matrix at equilibrium point

FIG. 2. A phase portrait showing that all points on the manifold φ1 + φ2 = 0 is
a stable, but not asymptotically stable, equilibrium point when K = Ks = 1.

φ? = col{0, 0, 0} is

A =




−2K −K 0
−K −K −K
0 −K −2K


 ,

with λ(A) = {−3K, −2K, 0}. Hence, no conclusion can be drawn on
the stability of the equilibrium point. We will again resort to the center
manifold theory to analyze the stability. First, we write (11) as

φ̇ = Aφ + f̃(φ),

where f̃(φ) = f(φ) − Aφ. For brevity and without loss of gener-
ality, we let K = 1. We next carry out a state transformation
θ = col{θ1, θ2} = Tφ, θ2 = col{θ2,1, θ2,2}, with

T =




1

6
−

1

3

1

6
1

3

1

3

1

3

−
1

2
0

1

2




.

FIG. 3. A topology of three coupled oscillators.
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It can be verified that

θ̇1 = A1θ1 + g1(θ1, θ2),

θ̇2 = A2θ2 + g2(θ1, θ2),
(12)

where g2 = col{g2,1, g2,2},

A1 = 0, A2 =
[
−3 0

0 −2

]
,

and

g1(θ1, θ2) =
1

2

(
sin(3θ1 − θ2,2) + sin(3θ1 + θ2,2)

+ sin(−4θ1 + 2θ2,1)
)
−

1

4

(
sin(2θ1 + 2θ2,1 − 2θ2,2)

+ sin(2θ1 + 2θ2,1 + 2θ2,2)
)
,

g2,1(θ1, θ2) = 3θ2,1 −
1

2

(
sin(2θ1 + 2θ2,1 − 2θ2,2)

+ sin(2θ1 + 2θ2,1 + 2θ2,2) + sin(−4θ1 + 2θ2,1)
)
,

g2,2(θ1, θ2) = 2θ2,2 −
1

2

(
sin(3θ1 − θ2,2) − sin(3θ1 + θ2,2)

)

+
3

4

(
sin(2θ1 + 2θ2,1 − 2θ2,2)

− sin(2θ1 + 2θ2,1 + 2θ2,2)
)
.

Let θ2 = h(θ1) : R → R
2 be a center manifold. Then, the function

h(θ1) satisfies the partial differential equation

N(h(θ1)) =
∂h

∂θ1
(θ1)

(
A1θ1 + g1(θ1, h(θ1))

)
− A2h(θ1)

− g2(θ1, h(θ1)) = 0,

with the boundary conditions

h(0) = 0,
∂h

∂θ1
(0) = 0.

In this case, the solution h(θ1) to the partial differential equation
is hard to obtain. We will approximate it with its Taylor expan-
sion series ψ(θ1). We start with ψ(θ1) = 0 and verify that N(ψ(θ1))

= o(θ 3
1 ) in the neighborhood of θ1 = 0. Thus, by Ref. 34 [Theorem

8.3], h(θ1) = ψ(θ1) + o(θ 3
1 ) and the reduced system can be obtained

from (12) as

θ̇1 = sin(3θ1) −
1

2
sin

(
4θ1 − 2o(θ 3

1 )
)
−

1

2
sin

(
2θ1 + 2o(θ 3

1 )
)
. (13)

Recalling the Taylor expansion sin x at x = 0,

sin x = x −
1

6
x3 + o(x5),

we can rewrite the reduced system (13) as

θ̇1 =
3

2
θ 3

1 + o(θ 5
1 ).

which is unstable at θ1 = 0. By the Center Manifold Theorem, the
equilibrium point φ? = col{0, 0, 0} of the original system (11) is

FIG. 4. The evolution of the system trajectory from φ1(0) = 0.01,φ2(0)
= 0.01,φ3(0) = 0, showing that the equilibrium point φ? = col{0, 0, 0} is unsta-
ble when K = 10 and Ks = 15.

unstable. The evolution of φ1, φ2, and φ3 from a set of small initial
values is shown in Fig. 4 to illustrate our analytical conclusion.

We will next consider other types of equilibrium points, Type
II equilibrium points, and Type III equilibrium points.

Definition 2: A Type II equilibrium point φ? = col{φ?
1 ,

φ?
2 , . . . , φ?

N} satisfies φ?
i ∈ { kπ

2 , k ∈ Z} for all i, and there exists a set
of values J′ijs such that (4) does not hold.

Definition 3: A Type III equilibrium point φ? = col{φ?
1 ,

φ?
2 , . . . , φ?

N} is one for which φ?
i /∈ { kπ

2 : k ∈ Z} for at least one
i, i = 1, 2 · · · , N.

Remark 4: It is noted that the union of Type I and II equilib-
rium points is {φ = {φ?

1 , φ?
2 , . . . , φ?

N} : φ?
i ∈ { kπ

2 : k ∈ Z} for all i}. As
a result, the union of Type I, II, and III equilibrium points contains
all possible equilibrium points.

Remark 5: A Type II equilibrium point may fail to satisfy (4)
as the topology varies. A Type III equilibrium point satisfies (3) for
specific values of the system parameters K and Ks but does not satisfy
(4). Type II and Type III equilibrium points are structurally unstable.
On the contrary, Type I equilibrium points are structurally stable.

We will first examine the stability property of Type II equilib-
rium points.

Theorem 3: Any Type II equilibrium point φ = φ? is unstable.
Proof: For a given Type II equilibrium point, it satisfies (4)

with some given values of J′ijs, which means that each spin’s phase has

to belong to { kπ
2 : k ∈ Z} since

sin(2φi) = 0, i = 1, 2, . . . , N. (14)

However, it is noted that (4) does not hold for all values of J′ijs. Hence,

N∑

j=1,j6=i

Jij sin(φ?
i −φ?

j ) = 0, i = 1, 2, . . . , N (15)
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FIG. 5. Type II equilibrium points.

implies that there must exist at least two phase differences of cou-
pled spins that do not equal kπ , k ∈ Z, and these phase differences
can result in the corresponding terms in (15) canceling each other.
Thus, the only one possible that a Type II equilibrium point satisfies
(14) and (15) is that 0 + 2kπ , π + 2kπ , π

2 + 2kπ , − π

2 + 2kπ , k ∈ Z

appears simultaneously in the configuration. Additionally, any spin in
phases 0 + 2kπ or π + 2kπ must be connected to at least two points
in phases π

2 + 2kπ and − π

2 + 2kπ , vice versa since such configura-

tions will result in the emergence of terms sin( π

2 + 2kπ), sin
(
− π

2

+ 2kπ
)

in (15). Figure 5 gives two examples of possible configurations
of Type II equilibrium points.

The Jacobian matrix at φ = φ? is given by

A(φ?) =
∂f

∂φ

∣∣∣∣
φ=φ?

= KD(φ?)

− 2Ks




cos(2φ?
1) 0 · · · 0

0 cos(2φ?
2) · · · 0

...
...

. . .
...

0 0 · · · cos(2φ?
N)




= KD(φ?) − 2Ks1(φ?),

where cos(2φ?
i ) ∈ {+1, −1}, i = 1, 2, . . . , N. We will show that A(φ?)

has at least one positive eigenvalue. To do so, we only need to find
a vector x = col{x1, x2, . . . , xN} 6= 0 such that xTA(φ?)x > 0. Define
four sets

Q =
{
q : φ?

q = −
π

2
+ 2kπ

}
,

P =
{
p : φ?

p =
π

2
+ 2kπ

}
,

S =
{
s : φ?

s = 0 + 2kπ
}

,

U =
{
u : φ?

u = π + 2kπ
}

.

Note that these sets are all non-empty and form a partition of the set
{1, 2, . . . , N}. Based on these sets, we can then evaluate xTA(φ?)x as
follows:

xTA(φ?)x = KxTD(φ?)x − 2Ksx
T1(φ?)x

= K
∑

i∈Q,j∈P

Jij(xi − xj)
2 + K

∑

i∈S,j∈U

Jij(xi − xj)
2

− K
∑

i,j∈Q,i6=j

Jij(xi − xj)
2 − K

∑

i,j∈P,i6=j

Jij(xi − xj)
2

− K
∑

i,j∈S,i6=j

Jij(xi − xj)
2 − K

∑

i,j∈U,i6=j

Jij(xi − xj)
2

+ 2Ks

∑

i∈Q,j∈P

(
x2

i + x2
j

)
− 2Ks

∑

i∈S,j∈U

(
x2

i + x2
j

)
,

where we have used the fact that the (i, j) entry of D(φ?) equals to 0 if
i ∈ Q

⋃
P and j ∈ S

⋃
U since cos( π

2 + kπ) = 0, k ∈ Z. Noticing

some of the terms in xTA(φ?)x are non-negative, we have

xTA(φ?)x ≥ K
∑

i∈Q,j∈P

Jij(xi − xj)
2 + K

∑

i∈S,j∈U

Jij(xi − xj)
2

+ 2Ks

∑

i∈Q,j∈P

(
x2

i + x2
j

)
− 2Ks

∑

i∈S,j∈U

(
x2

i + x2
j

)
.

Let xi = xj = 0 for all i ∈ S and all j ∈ U. We have

xTA(φ?)x ≥ K
∑

i∈Q,j∈P

Jij(xi − xj)
2 + 2Ks

∑

i∈Q,j∈P

(x2
i + x2

j )

≥ −K
∑

i∈Q,j∈P

(xi − xj)
2 + 2Ks

∑

i∈Q,j∈P

(
x2

i + x2
j

)
,

which is positive if we choose xi = xj 6= 0 for all i ∈ Q and all j ∈ P.
Thus, there is a vector x 6= 0 such that xTA(φ?)x > 0, which implies
that A(φ?) is non-negative definite. Therefore, A(φ?) has at least one
positive eigenvalue, and, hence, the Type II equilibrium point φ = φ?

is unstable. This completes the proof.
We next examine some key properties of Type III equilibrium

points. We will first characterize their stability property with respect
to the values of the system parameters K and Ks.

Theorem 4: Consider a Type III equilibrium point φ = φ?

corresponding to specific values of the parameters K = K̄ and

Ks = K̄s. It is asymptotically stable if K̄s >
K̄λN(D̄(φ?))

2 and unstable if

K̄s <
K̄λN(D̄(φ?))

2 , where

D̄(φ?) = D(φ?) + δ




ϕ1 0 · · · 0
0 ϕ2 · · · 0
...

...
. . .

...
0 0 · · · ϕN


 ,

with

ϕi = − sin2(φ?
i ), i = 1, 2, . . . , N,

δ =
4
∑N

j=1,j6=κ Jκ j sin(φ?
κ − φ?

j )

sin(2φ?
κ)

=
−4K̄s

K̄
,

where φ?
κ /∈ { kπ

2 : k ∈ Z}.
Remark 6: A Type III equilibrium point satisfies (3) with given

values of the parameters K̄ and K̄s, which implies that

K̄s sin(2φ?
κ) = −K̄

N∑

j=1,j6=κ

Jκ j sin(φ?
κ−φ?

j )

or ∑N
j=1,j6=κ Jκ j sin(φ?

κ − φ?
j )

sin(2φ?
κ)

=
−K̄s

K̄
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for all κ such that φκ /∈ { kπ
2 : k ∈ Z}. Thus, the value of δ remains

unchanged for any κ such that φκ /∈ { kπ
2 : k ∈ Z}.

Proof: Consider the Jacobian matrix at φ = φ?,

A(φ?) =
∂f

∂φ

∣∣∣∣
φ=φ?

= K̄D(φ?)

− 2K̄s




cos(2φ?
1) 0 · · · 0

0 cos(2φ?
2) · · · 0

...
...

. . .
...

0 0 · · · cos(2φ?
N)




= K̄D(φ?) − 2K̄s




κ1 0 · · · 0
0 κ2 · · · 0
...

...
. . .

...
0 0 · · · κN




= K̄D̄(φ?) − 2K̄sIN,

where cos(2φ?
i ) = 1 − 2 sin2(φ?

i ), i = 1, 2, . . . , N. The remaining
proof is the same as in the proof of Theorem 2.

We finally examine the phases of the spins for Type III equilib-
rium points.

Theorem 5: Suppose that there exists a Type III equi-
librium φ = φ?. Let the set of all phases of all Type III
equilibrium points be 2 = {θ1 + 2k1π , θ2 + 2k2π , . . . , θm + 2kmπ :
k1, k2, . . . , km ∈ Z}, where θi and θj are non-equivalent of each other
for all i 6= j, that is, θi − θj 6= 2kπ for any k ∈ Z. Then, m ≥ 3.

Proof: We first observe that m 6= 1. Otherwise, 2 = {θ1

+ 2k1π : k1 ∈ Z}. By the definition of the Type III equilibrium
point, there exists at least one φ?

i /∈ { kπ
2 : k ∈ Z}. Therefore, we have

θ1 /∈ { kπ
2 : k ∈ Z}. In this case, however, the right-hand side of (3)

equals zero but its left-hand side is not. This contradicts the fact that
φ = φ? is an equilibrium point.

We next show that m 6= 2. Otherwise, 2 = {θ1 + 2k1π , θ2

+ 2k2π : k1, k2 ∈ Z}. Let us first consider the case that all φ?
i are

equivalent. In this case φ?
i ∈ {θ1 + 2k1π : k1 ∈ Z} for all i or φ?

i

∈ {θ2 + 2k2π : k2 ∈ Z} for all i, which, in view of (3), implies that
φ?

i ∈ { kπ
2 : k ∈ Z} for all i. This contradicts the fact that φ? is a

Type III equilibrium point.
We now consider the case that not all φ?

i are equivalent,
that is, there exist φ?

i1
∈ {θ1 + 2kπ : k ∈ Z} and φ?

i2
∈ {θ2 + 2kπ :

k ∈ Z}. Since φ = φ? is a Type III equilibrium point, θ1 /∈ { kπ
2 :

k ∈ Z} or/and θ2 /∈ { kπ
2 : k ∈ Z}. In what follows, we assume that

θ1 /∈ { kπ
2 : k ∈ Z}. We will analyze this case in the following two

separate scenarios.
The first scenario is that θ1 + θ2 6= 2kπ , k ∈ Z. Note that

the equilibrium point φ = φ?, with φ?
i ∈ 2, satisfies (3). Since

both sides of (3) are odd functions, there is another Type III

equilibrium point φ† = −φ?, with φ
†
i = −φ?

i ∈ {−θ1 + 2k1π , −θ2

+ 2k2π : k1, k2 ∈ Z}, that satisfies (3). The fact that θ1 /∈ { kπ
2 :

k ∈ Z}, along with the fact that θ1 + θ2 6= 2kπ , imply that there
are at least three non-equivalent phases {θ1 + 2k1π , θ2 + 2k2π , −θ1

+ 2k1π}, which contradicts the assumption that m = 2.

The second scenario is that θ1 + θ2 = 2kπ , k ∈ Z. In this sce-
nario, φ?

i ∈ {θ1 + 2k1π , −θ1 + 2k2π : k1, k2 ∈ Z} for all i and Eq. (3)
simplifies to

K̄s sin(2θ1) = K̄li sin(2θ1), i = 1, 2, . . . , N, (16)

where li denotes the number of spins in the opposite phase of spin i
that are connected to spin i. Equation (16) indicates that l1 = l2 = · · ·
= lN. As a result, (16) still holds if θ1 is alternated by any θ̃1 ∈ R.
This implies that there are infinity many Type III equilibrium points

of the form φ
†
i = φ?

i + sign(φ?
i )δ, δ 6= 2kπ , i = 1, 2, . . . , N and, con-

sequently, there are infinitely many non-equivalent phases among
Type III equilibrium points, contradicting the assumption that m = 2.
This completes the proof.

Theorem 6: Consider a Type III equilibrium point φ = φ?. If
φ = φ? is asymptotically stable, there exists another asymptotically
stable Type III equilibrium point φ = φ† such that there are at least
three non-equivalent phases in φ? and φ†.

Proof: For a Type III equilibrium point φ = φ?, there are at
least two non-equivalent phases in φ?. Otherwise, all φ?

i are equiv-

alent, implying, in view of (3), that φ?
i ∈ { kπ

2 : k ∈ Z} for all i. This
contradicts the fact that φ = φ? is a Type III equilibrium point.

First, our objective is to find such a φ† when there are
exactly two non-equivalent phases in φ?, that is, φ?

i ∈ {θ1 + 2k1π , θ2

+ 2k2π : k1, k2 ∈ Z} for all i, and there exist φ?
i1

∈ {θ1 + 2kπ :

k ∈ Z} and φ?
i2

∈ {θ2 + 2kπ : k ∈ Z}, θ1 /∈ { kπ
2 : k ∈ Z} or/and θ2

/∈ { kπ
2 : k ∈ Z}. Without loss of generality, we assume that θ1 /∈ { kπ

2 :
k ∈ Z}. We will analyze this case in the following two separate
scenarios.

The first scenario is that θ1 + θ2 6= 2kπ , k ∈ Z. We can find
φ† = −φ? that is asymptotically stable since the Jacobian matrix at
φ = φ? and φ = −φ? are the same and all eigenvalues of the Jaco-
bian matrix at φ = φ? have a negative real part. In addition, we
see that there are at least three non-equivalent phases {θ1 + 2k1π , θ2

+ 2k2π , −θ1 + 2kπ : k1, k2 ∈ Z} in φ? and φ†.
The second scenario is that θ1 + θ2 = 2kπ , k ∈ Z. Following an

argument similar to one in the proof of Theorem 5, we can find

φ† with φ
†
i = φ?

i + sign(φ?
i )δ, δ = π . We will show that φ = φ† is

asymptotically stable. Note that the Jacobian matrix at φ = φ? or
φ = φ† takes the following form:

A(φ) = K̄D − 2K̄s cos(2θ)IN

= K̄ cos(2θ)L1 + K̄L2 − 2K̄s cos(2θ)IN,

where θ ∈ {θ1, θ1 + π} and L1 and L2 are two constant matri-
ces. It is noted that A(φ?) = A(φ†). The fact that all eigenvalues of
A(φ?) have a negative real part then implies that φ = φ† is asymp-
totically stable. In addition, there are at least three non-equivalent
phases {θ1 + 2k1π , −θ1 + 2k2π , θ1 + π + 2k3π : k1, k2, k3 ∈ Z} in
φ? and φ†.

Finally, when there are at least three non-equivalent phases in
φ?. Recall that φ = φ† = −φ? is also asymptotically stable. Clearly,
there are at least three non-equivalent phases in φ? and φ†. This
completes the proof.

Remark 7: In many previous works (see, for example, Refs. 26,
27, 32, 33, and 33), the threshold of SYNC that binarizes the spin
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phases is difficult to determine. Our Theorem 2 provides such a thresh-
old. In particular, by Theorem 2, for given set of Jij’s and a fixed
value of K, at least one Type I equilibrium point is asymptotically

stable if Ks > minφ?

{
KλN(D(φ?))

2

}
, where φ = φ? is any Type I equi-

librium point, and the phases of all spins in asymptotically stable
Type I equilibrium points will be 0 + 2kπ or π + 2kπ . Theorem 2
also indicates that no Type I equilibrium points are asymptotically

stable if Ks < minφ?

{
KλN(D(φ?))

2

}
. On the other hand, Theorem 6 indi-

cates that Type III equilibrium points do not binarize even if there are
asymptotically stable Type III equilibrium points. We would like to
point out that there is a situation where asymptotically stable Type I
and Type III equilibrium points coexist with fixed K̄ and Ks that sat-

isfy Ks > minφ?

{
K̄λN(D(φ?))

2

}
. In this situation, the spin phases are still

not binarized. However, we can perturb Ks with a positive random
noise ξ(t). With this perturbation to Ks, Type III equilibrium points
will disappear as they are structurally unstable in terms of both Jij’s
and the parameter Ks, as discussed in Remark 5, and, hence, facilitate
the spin phases binarized. In summary, the threshold for binarization
is given by

Ks = min
φ?

{
KλN(D(φ?))

2

}
,

where φ = φ? is any Type I equilibrium point.

C. Domains of attractions

In this subsection, we will provide an estimate of the domains
of attraction for asymptotically stable equilibrium points. We first
recall the definition of the domain of attraction of an equilibrium
point of a nonlinear dynamic system.

Definition 4 (Ref. 34): Let x = x? be an asymptotically stable
equilibrium point for the nonlinear system

ẋ = f(x), x ∈ D, (17)

where f : D → R
N is locally Lipschitz and D is a domain where the

system operates. Let φ(t; x) be the solution of (17) that starts at initial
state x at time t = 0. The domain of attraction of x = x?, denoted by
DA, is defined by

DA =
{
x ∈ D : lim

t→∞
φ(t; x) = x?

}
.

Theorem 7: Consider an asymptotically stable Type I equilib-
rium point φ = φ?, where φ?

i ∈ { kπ
2 : k

2 ∈ Z} for all i = 1, 2, . . . , N.
Let

M =
{
φ : Jij(φi − φj) = π + 2kπ , k ∈ Z,

for all i and j such that Jij 6= 0
}
,

and

M =
{
φ : Jij(φi − φj) = 2kπ , k ∈ Z,

for some i and j such that Jij 6= 0
}
.

Also, let

I1 =
{
(i, j) : Jij(φ

?
i −φ?

j ) = π + 2kπ , i < j, Jij 6= 0
}

,

K1 =
{
i, j : (i, j) ∈ I1

}

and

I2 =
{
(i, j) : Jij(φ

?
i −φ?

j ) = 2kπ , i < j, Jij 6= 0
}

,

K2 =
{
i, j : (i, j) ∈ I2

}
= K

0
2 ∪ K

π
2 ,

K
0
2 =

{
i, j : (i, j) ∈ I2, φi, φj ∈ {2kπ}

}
= {l01, l02, . . . , l0p},

K
π
2 =

{
i, j : (i, j) ∈ I2, φi, φj ∈ {π + 2kπ}

}
= {lπ1 , lπ2 , . . . , lπq }.

If φ? ∈ M, then an estimate of its domain of attraction is given by

D̂A =
{
φ : ‖φ − φ?‖2 <

π

2

}
.

If φ? ∈ M, then an estimate of its domain of attraction is given by

D̂A =
{
φ : ‖φ − φ?‖2 <

βπ

2

}
,

where 0 < β < 1 is such that matrix Q∗ ∈ R
n×n for ∗ = 0, n = p and

∗ = π , n = q, shown in (18) below, is negative definite.

Q∗ =




−4
sin(βπ)

βπ
Ks − 2K

∑

j∈K∗
2 ,j6=l∗1

Jl∗1 j 2KJl∗1 l∗2 · · · 2KJl∗1 l∗n

2KJl∗2 l∗1 −4
sin(βπ)

βπ
Ks − 2K

∑

j∈K∗
2 ,j6=l∗2

Jl∗2 j · · · 2KJl∗2 l∗n

...
...

. . .
...

2KJl∗n l∗1 2KJl∗n l∗2 · · · −4
sin(βπ)

βπ
Ks − 2K

∑

j∈K∗
2 ,j6=l∗n

Jl∗n j




. (18)
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Proof: Let z = col{z1, z2, . . . , zN} = φ − φ?. Consider the
Lyapunov function candidate V(z) = zTz. The derivative of V along
the trajectory of (2) can be evaluated as

V̇ = 2żTz

= 2




−K

N∑

j=1,j6=1

J1j sin(φ1 − φj) − Ks sin(2φ1)

−K

N∑

j=1,j6=2

J2j sin(φ2 − φj) − Ks sin(2φ2)

...

−K

N∑

j=1,j6=N

JNj sin(φN − φj) − Ks sin(2φN)




T

z

= −2K

N∑

i=1

zi

N∑

j=1,j6=i

Jij sin
(
zi − zj + φ?

i −φ?
j

)

− 2Ks

N∑

i=1

zi sin(2zi),

where we used the fact that 2φ?
i = 2kπ , k ∈ Z, for all i.

Noting that Jij = Jji, we have

Jij sin(zi − zj + φ?
i −φ?

j ) = −Jji sin(zj − zi + φ?
j −φ?

i ),

and, hence,

V̇ = −2K

N∑

i,j=1,i<j

Jij(zi − zj) sin(zi − zj + φ?
i −φ?

j )

− 2Ks

N∑

i=1

zi sin(2zi)

= W1 + W2,

where, in view of the four index sets I1, K1, I2, and K2,

W1 = −2K
∑

(i,j)∈I1

Jij(zi − zj) sin(zi − zj + φ?
i −φ?

j )

− 2Ks

∑

i∈K1 ,i/∈K2

zi sin(2zi),

W2 = −2K
∑

(i,j)∈I2

Jij(zi − zj) sin(zi − zj + φ?
i −φ?

j )

− 2Ks

∑

i∈K2

zi sin(2zi).

In view of the definition of I1, W1 can be simplified as

W1 = 2K

N∑

(i,j)∈I1

Jij(zi − zj) sin(zi − zj)

− 2Ks

N∑

i∈K1 ,i/∈K2

zi sin(2zi).

It is clear that W1 < 0 if |2zi| < π and zi 6= 0 for all i ∈ K1, i /∈ K2

and |zi − zj| < π for all (i, j) ∈ I1.
Similarly, in view of the definition of I2 and for |zi − zj| < π

for (i, j) ∈ I2, W2 can be simplified as

W2 = −2K

N∑

(i,j)∈I2

Jij(zi − zj) sin(zi − zj)

− 2Ks

N∑

i∈K2

zi sin(2zi)

≤ −2K

N∑

(i,j)∈I2

Jij(zi − zj)
2 − 2Ks

N∑

i∈K2

zi sin(2zi)

≤ −2K

N∑

(i,j)∈I2

Jij(zi − zj)
2 − 4

sin(βπ)

βπ
Ks

N∑

i∈K2

z2
i

= zT

K
0
2
Q0z

K
0
2
+ zT

K
π
2
QπzKπ

2
,

where z
K

0
2

= col{zl01
, zl02

, . . . , zl0p
}, zKπ

2
= col{zlπ1

, zlπ2
, . . . , zlπq }, Q∗ ∈

R
n×n with ∗ = 0, n = p or ∗ = π , n = q is given in (18), and we have

used Lemma 2 with x = 2zi and m = βπ , β ∈ (0, 1).
Clearly, W2 < 0 if |2zi| < βπ for all i ∈ K2, |zi − zj| < π for all

(i, j) ∈ I2, and β ∈ (0, 1) is such that Q∗(Q0, Qπ ) is negative definite.
Now, if φ? ∈ M, then I2 = ∅, K2 = ∅, and, hence, V̇ = W1.

By the analysis above, V̇ < 0 if 0 < |2zi| < π and |zi − zj| < π

for all i ∈ K1 and all (i, j) ∈ I1, which is implied by φ ∈ DA

=
{
φ : ‖φ − φ?‖2 < π

2

}
. This establishes that D̂A = {φ : ‖φ − φ?‖2

< π

2

}
is an estimate of the domain of attraction of the equilibrium

φ = φ?.
On the other hand, if φ? ∈ M, V̇ = W1 + W2 or V̇ = W2. In

either case, V̇ < 0 if |2zi| < βπ for all i, and |zi − zj| < π for all
(i, j) ∈ I2 and β ∈ (0, 1) is such that Q∗(Q0, Qπ ) is negative def-
inite, which is implied by φ ∈ DA =

{
φ : ‖φ − φ?‖2 <

βπ

2

}
, with

β ∈ (0, 1) being such that Q∗(Q0, Qπ ) is negative definite. This estab-
lishes that D̂A =

{
φ : ‖φ − φ?‖2 <

βπ

2

}
is an estimate of the domain

of attraction of the equilibrium φ = φ? and completes the proof.
Theorem 8: The domain of attraction of an asymptotically

stable Type III equilibrium point φ = φ? is given by

D̂A =
{

φ : ‖φ − φ?‖2 ≤
−λN(A(φ?))

2N
(
K(N − 1) + 2Ks

)
}

.

Proof: Let z = φ − φ?. Then, we have

ż = A(φ?)z + f(z + φ?) − A(φ?)z, (19)
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where f(φ) = col{f1(φ), f2(φ), . . . , fN(φ)}, with

fi(φ) = −K

N∑

j=1,j6=i

Jij sin(φi − φj) − Ks sin(2φi),

and

A(φ?) =
∂f

∂φ

∣∣∣∣
φ=φ?

.

We recall that A(φ?), an expression of which is given in the proof of
Theorem 4, is symmetric with all its eigenvalues negative and, hence,
is negative definite.

By the mean value theorem, and noting that f(φ?) = 0, we have

fi(z + φ?) = fi(φ
?) +

∂fi(z + φ?)

∂z
(xi)z =

∂fi(z + φ?)

∂z
(xi)z,

where xi = col{xi1, xi2, . . . , xiN} is a point on the line segment connect-
ing z to the origin. Consequently, g(z) = f(z + φ?) − A(φ?)z can be
written as

g(z) = Ã(x)z,

where x = col{x1, x2, . . . , xN} and

Ã(x) =




∂f1(z + φ?)

∂z
(x1) −

∂f1(z + φ?)

∂z
(0)

∂f2(z + φ?)

∂z
(x2) −

∂f2(z + φ?)

∂z
(0)

...

∂fN(z + φ?)

∂z
(xN) −

∂fN(z + φ?)

∂z
(0)




= Ã1(x) + Ã2(x),

with Ã1(x) being a diagonal matrix whose ith diagonal entry is

[Ã1(x)]ii = −K

N∑

j=1,j6=i

Jij cos(xii − xij + φ?
i −φ?

j )

+ K

N∑

j=1,j6=i

Jij cos(φ?
i −φ?

j )

− 2Ks cos(2xii + 2φ?
i ) + 2Ks cos(2φ?

i ),

and Ã2(x) being a matrix whose diagonal entries are all zeros and
(i, j) entry is given by

[Ã2(x)]ij = KJij

(
cos(xii − xij + φ?

i −φ?
j ) − cos(φ?

i −φ?
j )

)
.

To obtain an upper bound of ‖Ã(x)‖2, we first derive

‖Ã(x)‖∞ = max
i





∣∣∣∣∣∣
−K

N∑

j=1,j6=i

Jij cos(xii − xij + φ?
i −φ?

j )

+ K

N∑

j=1,j6=i

Jij cos(φ?
i −φ?

j ))

− 2Ks cos(2xii + 2φ?
i ) + 2Ks cos(2φ?

i )

∣∣∣∣∣∣

+ K

N∑

j=1,j6=i

∣∣∣Jij cos(xii − xij +φ?
i −φ?

j ) − Jij cos(φ?
i −φ?

j )

∣∣∣





≤ max
i



2K

N∑

j=1,j6=i

∣∣∣Jij cos(xii − xij + φ?
i −φ?

j )

− Jij cos(φ?
i −φ?

j )

∣∣∣

+ 2Ks

∣∣∣ − cos(2xii + 2φ?
i ) + cos(2φ?

i )

∣∣∣





≤ max
i



2K

N∑

j=1,j6=i

∣∣∣Jij(xii − xij)

∣∣∣ + 2Ks

∣∣∣2xii

∣∣∣





≤ max
i

2
{(

K(N − 1) + 2Ks

)
‖xi‖1

}

≤ 2
(
K(N − 1) + 2Ks

)
‖z‖1, (20)

where we have used Lemma 3 twice with x = φ?
i − φ?

j and δ = xii

− xij, and x = 2φ?
i and δ = 2xii, respectively. In view of (20) and the

fact that ‖Ã(x)‖2 ≤
√

N‖Ã(x)‖∞, an upper bound of ‖g(z)‖2 can be
obtained as

‖g(z)‖2 ≤ ‖Ã‖2‖z‖2 ≤ 2
√

N
(
K(N − 1) + 2Ks

)
‖z‖1‖z‖2

≤ 2N
(
K(N − 1) + 2Ks

)
‖z‖2

2,

where we have used the fact that ‖z‖1 ≤
√

N‖z‖2.
Consider a Lyapunov function candidate V(z) = 1

2 zTz. The
derivative of V along the trajectory of (19) can be evaluated as

V̇ = zTA(φ?)z + zTg(z)

≤ λN

(
A(φ?)

)
‖z‖2

2 + 2N
(
K(N − 1) + 2Ks

)
‖z‖3

2,

where λN

(
A(φ?)

)
< 0 is the maximum eigenvalue of A(φ?). It is clear

that V̇ < 0 for any z 6= 0 and

‖z‖2 ≤
−λN

(
A(φ?)

)

2N
(
K(N − 1) + 2Ks

) .

This shows that

D̂A =
{

φ : ‖φ − φ?‖2 ≤
−λN

(
A(φ?)

)

2N
(
K(N − 1) + 2Ks

)
}
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FIG. 6. A phase portrait when K = 1 and Ks = 1.5. The red points indicate
the asymptotically stable equilibrium points φ? = col{0, 0}, φ? = col{0,π}, φ?

= col{π , 0}, and φ? = col{π ,π}. The blue point indicates the unstable equilib-
rium pointφ? = col

{
π

2
, π

2

}
. The red circles indicate the estimates of the domains

of attraction.

is an estimate of the domain of attraction of the equilibrium point and
the proof is completed.

IV. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments to illustrate
the analytical results obtained in this paper.

A. Stability analysis

Experiment 1: Consider an Ising machine of two coupled
spins. In this case, matrix D(φ?) is

D(φ?) =
[

cos(φ?
1−φ?

2) − cos(φ?
1−φ?

2)

− cos(φ?
2−φ?

1) cos(φ?
2−φ?

1)

]
.

There are infinitely many equilibrium points. We will consider the
stability property of five Type I equilibrium points φ? = col{0, 0},
φ? = col{0, π}, φ? = col{π , 0}, φ? = col{π , π}, φ? = col{ π

2 , π

2 }. By
Theorem 2, φ? = col{ π

2 , π

2 } is unstable for any values of the parame-
ters K and Ks.

For φ? = col{0, π} and φ? = col{π , 0},

D =
[
−1 1

1 −1

]
,

with λ(D) = {−2, 0}. By Theorem 2, φ? = col{0, π} and φ?

= col{π , 0} are asymptotically stable if Ks > 0. Two phase por-
traits around these two points are shown in Fig. 6 (K = 1,
Ks = 1.5) and Fig. 7 (K = 1, Ks = 0.5). Also shown in these figures
are the estimates of the domains of attractions, obtained according to
Theorem 7.

FIG. 7. A phase portrait when K = 1 and Ks = 0.5. The red points indicate the
asymptotically stable equilibrium points φ? = col{0,π} and φ? = col{π , 0}.
The blue points indicate unstable equilibrium points φ? = col{0, 0},
φ? = col{π ,π}, and φ? = col

{
π

2
, π

2

}
. The red circles indicate the estimates of

the domains of attraction.

For φ? = col{0, 0} and φ? = col{π , π},

D =
[

1 −1
−1 1

]
,

with λ(D) = {0, 2}. By Theorem 2, φ? = col{0, 0} and φ?

= col{π , π} are asymptotically stable if Ks > K, and unstable if
Ks < K. Two phase portraits around these two equilibrium points are

FIG. 8. The estimates of the domains of attraction of φ? = col{0,π , 0} (left) and
φ? = col{0, 0, 0} (right).
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FIG. 9. The estimate of the domain of attraction of φ? = col{0.8π ,−0.8π , 0}.

FIG. 10. The 3 × 3 King graph.

FIG. 11. Evolution of the phases of the nine spins in the King graph originating
from multiple sets of initial phases: Ks = 0.0100 that is substantially below the
threshold of Ks = 0.2764. The binarization does not occur and the spins converge
to more than two non-equivalent phases.

FIG. 12. Evolution of the phases of the nine spins in the King graph originating
frommultiple sets of initial phases:Ks = 0.2400 that is slightly below the threshold
of Ks = 0.2764. The binarization does not occur and the spins converge to more
than two non-equivalent phases.

shown in Fig. 6 (K = 1, Ks = 1.5) and Fig. 7 (K = 1, Ks = 0.5). The
matrix Q∗, Q0 for φ? = col{0, 0} and Qπ for φ? = col{π , π}, at these
two points is the same and is given by

Q∗ =




−4
sin(βπ)

βπ
Ks + 2K −2K

−2K −4
sin(βπ)

βπ
Ks + 2K


 .

FIG. 13. Evolution of the phases of the nine spins in the King graph originating
from multiple sets of initial phases: Ks = 0.2770 that is slightly above the thresh-
old of Ks = 0.2764. The Ising machine is binarized, with their phases converging
to two non-equivalent phases 0 and π .
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FIG. 14. Evolution of the phases of the nine spins in the King graph originat-
ing from multiple sets of initial phases: Ks = 0.7900 that is substantially above
the threshold of Ks = 0.2764. The Ising machine is binarized, with their phases
converging to two non-equivalent phases 0 and π .

For K = 1 and Ks = 1.5, β = 0.4743 is such that Q∗ < 0. An estimate
of the domain of attraction can be obtained for these two equilibrium
points according to Theorem 7 and shown in Fig. 6.

Experiment 2: Consider an Ising machine of three coupled
spins, with the coupling topology shown in Fig. 3. In this experiment,
we estimate the domains of attraction of two Type I equilibrium points

FIG. 15. A spanning tree graph.

FIG. 16. Evolution of the phases of the nine spins in the spanning tree shown in
Fig. 15: Ks = 0.43 without noise. The Ising machine is not binarized.

φ? = col{0, 0, 0} and φ? = col{0, π , 0}. According to Theorem 2, we
choose K = 1 and Ks = 3 such that these two points are asymptoti-
cally stable. By Theorem 7, the radius of the estimate of the domain of
attraction for φ? = col{0, π , 0} is π

2 .
For φ? = col{0, 0, 0},

Q0 =




−12
sin(βπ)

βπ
+ 2 −2 0

−2 −12
sin(βπ)

βπ
+ 4 −2

0 −2 −12
sin(βπ)

βπ
+ 2




.

We calculate that β = 0.6033 is such that Q0 < 0. Thus, the radius
of the estimate of the domain of attraction of φ? = col{0, 0, 0} is
obtained according to Theorem 7 as 0.6033π

2 . The estimate of domains
of attraction of φ? = col{0, π , 0} and φ? = col{0, 0, 0} is shown in
Fig. 8.

Experiment 3: Consider an Ising machine of three cou-
pled spins where spins are all-to-all connected. In this experi-
ment, we estimate the domain of attraction of a Type III equilib-
rium point. For K = 1 and Ks =

(
sin(1.6π) + sin(0.8π)

)
/ sin(1.6π)

≈ 0.381 966, φ? = col{0.8π , −0.8π , 0} is a Type III equilibrium

point. By Theorem 4, φ? is asymptotically stable since Ks >
λN(D̄(φ?))

2
= 0.1878. By Theorem 8, the radius of the estimate of the domain of
attraction of φ? is 0.3884

6
(

2+2×Ks

) = 0.023 421. This estimate of the domain

of attraction of φ? is shown in Fig. 9.

B. Binarization

We will examine the threshold of SYNC that binarizes the
Ising machine. We consider a 3 × 3 King graph, as shown in
Fig. 10. We denote the maximum eigenvalue of the matrix D(φ?)

at Type I equilibrium point φ? as λ9(D(φ?)). It can be verified that
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FIG. 17. Evolution of the phases of the nine spins in the spanning tree as shown in
Fig. 15: Ks = 0.43 + 0.02ξ(t), where ξ(t) ∈ [0, 1] is a random noise. The Ising
machine is binarized.

minφ? {λ9(D(φ?))} = 0.552 799. Thus, by Remark 7, the threshold
of SYNC is Ks = 0.552799K

2 . Let K = 1, resulting in a threshold of
SYNC Ks = 0.2764. The evolutions of the spins for Ks = 0.0100,
Ks = 0.2400, Ks = 0.2770, and Ks = 0.7900 under the same initial
phase values are shown in Figs. 11–14, respectively. We observe that
the phase configuration in Fig. 12 is very close to the binarized phase
configuration as Ks = 0.2400 is only slightly below the threshold of
Ks = 0.2764. The Hamiltonian values of the phase configurations

FIG. 18. Evolution of the phases of the three spins: Ks = 25 without noise.
The spins’ states converge to a Type III equilibrium point.

FIG. 19. Evolution of the phases of the three spins: Ks = 25 + 2ξ(t), where
ξ(t) ∈ [0, 1] is a random noise. The spins’ states do not converge to any
equilibrium points but oscillate.

corresponding to Ks = 0.2400 (Fig. 12) and Ks = 0.277 (Fig.13) are,
respectively, −8.085 and −8.

C. Effects of noise in the value of K s

In this subsection, we provide two experiments to examine the
effects of noise in the value of Ks. Both experiments show that noise
in the value of Ks indeed eliminates Type III equilibrium points,
leaving only binarized phase configurations.

Experiment 4: Consider a spanning tree, as shown in Fig. 15.
It can be verified that minφ? {λ9(D(φ?))} = 0. We fix K = 1 and
choose Ks = 0.43 > 0 such that at least one Type I equilibrium
point is asymptotically stable. The initial phase configuration is
col{0.33, 0.54, 0.18, 2.6, 0.19, 2.28, 1.97, 2.83, 1.58}. The spins’ states
are not binarized in this case, shown in the Fig. 16. However, the spins’
states are binarized after adding the random noise ξ(t) on Ks, shown
in Fig. 17.

Experiment 5: Consider three all-to-all connected spins.
Choose K = 100 and Ks = 25. The initial phase configuration is
col{0.13, 0.47, 0.32}. It can be verified that minφ?{λ3(D(φ?))} = 1.
By Theorem 2, all Type I equilibrium points are unstable. The spins’
states converge to a Type III equilibrium point without noise on Ks,
while they oscillate after noise is introduced on Ks. The trajectories
are shown in Figs. 18 and 19.

V. CONCLUSIONS

This paper has studied the oscillator Ising machines from a
control theoretic perspective. All equilibrium points of the spin-
based dynamic system are classified into three types. We have
conducted stability analysis on each type of equilibrium point. The
analysis shows that the ratio of the coupling strength among the
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oscillators (K) to the coupling strength from SYNC (Ks) deter-
mines the stability properties of these equilibrium points. As a side
result, the threshold of Ks

K
was obtained that determines whether

binarization emerges in the machine. Additionally, an estimate of
the domain of attraction for each asymptotically stable equilibrium
point was obtained. It has been known that an Ising machine may
potentially get trapped in a sub-optimal solution. The stability anal-
ysis carried out in this paper motivates the possibility that, for a COP
with a certain special structure, the Ising machine with appropriate
values of the parameters K and Ks could accurately find the global
optimal solution. What such special structures are and how to tune
the parameters are topics of our future study.
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